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Abstract

Personalised recommender systems aim to help users access and retrieve relevant
information or items from large collections, by automatically finding and suggesting
products or services of likely interest based on observed evidence of the users’ pref-
erences. For many reasons, user preferences are difficult to guess, and therefore re-
commender systems have a considerable variance in their success ratio in estimating
the user’s tastes and interests. In such a scenario, self-predicting the chances that a
recommendation is accurate before actually submitting it to a user becomes an intet-
esting capability from many perspectives. Performance prediction has been studied in
the context of search engines in the Information Retrieval field, but there is little if
any prior research of this problem in the recommendation domain.

This thesis investigates the definition and formalisation of performance predic-
tion methods for recommender systems. Specifically, we study adaptations of search
performance predictors from the Information Retrieval field, and propose new pre-
dictors based on theories and models from Information Theory and Social Graph
Theory. We show the instantiation of information-theoretical performance predic-
tion methods on both rating and access log data, and the application of social-based
predictors to social network structures.

Recommendation performance prediction is a relevant problem per se, because
of its potential application to many uses. Thus, we primarily evaluate the quality of
the proposed solutions in terms of the correlation between the predicted and the
observed performance on test data. This assessment requires a clear recommender
evaluation methodology against which the predictions can be contrasted. Given that
the evaluation of recommender systems is an open area to a significant extent, the
thesis addresses the evaluation methodology as a part of the researched problem. We
analyse how the variations in the evaluation procedure may alter the apparent behav-
iour of performance predictors, and we propose approaches to avoid misleading ob-
servations.

In addition to the stand-alone assessment of the proposed predictors, we re-
search the use of the predictive capability in the context of one of its common appli-
cations, namely the dynamic adjustment of recommendation methods and compo-
nents. We research approaches where the combination leans towards the algorithm
or the component that is predicted to perform best in each case, aiming to enhance
the performance of the resulting dynamic configuration. The thesis reports positive
empirical evidence confirming both a significant predictive power for the proposed
methods in different experiments, and consistent improvements in the performance
of dynamic recommenders employing the proposed predictors.






Resumen

Los sistemas de recomendacion personalizados tienen como objetivo ayudar a los
usuarios en el acceso y recuperacion de informacién u objetos relevantes en vastas
colecciones mediante la sugerencia automatica de productos o servicios de potencial
interés, basandose en la evidencia observada de las preferencias de los usuarios. Las
preferencias de usuario son dificiles de predecir por muchos motivos y, por tanto, los
sistemas de recomendacién tienen una variabilidad considerable en su tasa de acierto
al intentar estimar los gustos e intereses de cada usuario. En este escenario la auto-
prediccion de las probabilidades de que una recomendacién sea acertada antes de
proporcionarla al usuario se convierte en una capacidad interesante desde multiples
perspectivas. La prediccion de eficacia ha sido estudiada en el contexto de los moto-
res de busqueda en el campo de la Recuperacion de Informacion, pero apenas se ha
investigado en el dominio de la recomendacion.

Esta tesis investiga la definicién y formalizacién de métodos de prediccion de
eficacia para sistemas de recomendacién. Concretamente, se estudian adaptaciones de
predictores de eficacia de bisqueda en el campo de la Recuperacion de Informacion,
y se proponen nuevos predictores basados en modelos y técnicas de la Teoria de la
Informacién y la Teorfa de Grafos Sociales. Se propone la instanciaciéon de métodos
de teorfa de informacién para prediccion de eficacia tanto en datos de valoraciones
de usuario explicitas como en registros de accesos, asi como la aplicacion de predic-
tores sociales sobre estructuras de red social.

La prediccion de eficacia de recomendacion es un problema relevante per se da-
dos sus multiples usos y aplicaciones potenciales. Por ello, en primer lugar se evalia la
calidad de las soluciones propuestas en términos de la correlacion entre la eficacia
estimada y la observada en los datos de test. Esta valoracién requiere una metodologia
clara de evaluacion de sistemas de recomendaciéon con la que las predicciones puedan
ser contrastadas. Dado que la evaluacion de los sistemas de recomendacion es atn un
area de investigacion en buena medida abierta, la tesis aborda la metodologfa de eva-
luacién como parte del problema a investigar. Se analizan entonces cémo las variacio-
nes en el procedimiento de evaluaciéon pueden alterar la percepcion del comporta-
miento de los predictores de eficacia, y se proponen aproximaciones para evitar ob-
servaciones enganosas.

Ademas de las valoraciones independientes de los predictores propuestos, inves-
tigamos el uso de su capacidad predictiva en el contexto de una de sus aplicaciones
comunes, a saber, el ajuste dinamico de métodos hibridos para combinar algoritmos
y componentes de recomendacion. Se investigan aproximaciones donde la combina-
cién se inclina hacia el algoritmo o la componente que se predice va a tener mejor
eficacia en cada caso, a fin de mejorar la eficacia de la configuracién dinamica resul-
tante. La tesis presenta resultados empiricos positivos que confirman tanto un poder
predictivo significativo para los métodos propuestos, como consistentes mejoras en la
eficacia de recomendaciones dinamicas que utilizan los predictores propuestos.
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Chapter 1

Introduction

In this chapter we present a general overview of the thesis. In Sections 1.1 and 1.2
we provide the motivations and research goals of our work. In Section 1.3 we sum-
marise the main contributions of the thesis, and in Section 1.4 we list the publica-
tions resulting from our research. Finally, in Section 1.5 we describe the structure of

this document.
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1.1 Motivation

Information Retrieval (IR) technologies have gained outstanding prevalence in the
last two decades with the explosion of massive online information repositories, and
much in particular the World Wide Web. IR systems are researched and designed in
ways that seek to maximise the degree of satisfaction of certain objective conditions,
typically — though not necessarily only — user satisfaction. IR research and develop-
ment have revolved around the definition of models and algorithms that best achieve
this goal, methodologies and metrics that let assess how well the goal is achieved by
different systems, and sound theories providing a solid ground and orientation in the
development of IR algorithms and their consistent evaluation. Among many new
trends stemming from this main stream of research and developments, a new re-
search goal started to be considered by the early 2000’s: is it possible to predict how
good a result returned by an IR system is going to be, before presenting it to the
user, or even, before running the IR system at all (Cronen-Townsend et al., 2002)?
This question has given rise to a fertile strand of research on so-called performance
prediction in IR.

Performance prediction has many potential uses in IR. From the uset’s perspec-
tive it may provide valuable feedback that can be used to direct a search, from the
system’s perspective it may help to distinguish pootly performing queries, and from
the system administrator’s perspective it may let identify queries related to a specific
subject that are difficult for the search engine. Performance prediction approaches
are based on the analysis and characterisation of the evidence used by an IR system
to assess the relevance (utility, value, etc.) of retrieval objects (documents, goods,
etc.) at execution time (Cronen-Townsend et al., 2002). The most classic and basic
retrieval scenario involves a user query and a collection of documents as the basic
input to form a ranked list of search results, but other additional elements can be
taken into account to select and rank results (Baeza-Yates and Ribeiro-Neto, 2011).
Any information the retrieval system takes as input can be taken as input for the per-
formance prediction as well, and often the prediction methods use additional infor-
mation beyond that. The user context (current tasks, query logs, preferences, etc.),
global properties of the document collection, comparisons with respect to other ref-
erence elements such as historic data, and the output from other systems, among
others, are some examples of the different sources of information that a predictor
may draw evidence from.

Predicting the performance of a subsystem, module, function, or input by con-
trasting the performance estimation for a query for each component, enables an array
of dynamic optimisation strategies that select at runtime the option which is pre-
dicted to work best or, when larger systems or hybrid approaches are used, allows for
adjusting on the fly the participation of each module. The IR field is pervaded with
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cases where information relevance, retrieval systems, models, and criteria are based
on a fusion or combination of sub-models. Personalised retrieval systems (including
techniques such as personalised search, recommender systems, collaborative filtering,
and retrieval in context) are clear examples where performance prediction can be
applied since such systems combine several sources of evidence for relevance as-
sessment, such as explicit queries, search history, explicit user ratings, social informa-
tion, user feedback, and context models.

Performance prediction finds additional motivation in personalised recommen-
dation, inasmuch these applications may decide to produce recommendations or
hold them back, delivering only the sufficiently reliable ones. Furhermore, current
Recommender Systems (RS) are characterised by an increasing diversification of the
types and sources of data, content, evidence and methods, available to make deci-
sions and build their output. In such context, predicting the performance of a spe-
cific recommendation approach or component becomes an appealing problem, as it
lets propetly combine the available alternatives, and make the most of them by dy-
namically adapting the recommendation strategy to the situation at hand. The ques-
tion gains increasing relevance today, with the proliferation of hybrid recommenda-
tion techniques to improve the accuracy of the methods — the Netflix prize was a
paradigmatic example of the use of this, where all the top ranked participants used
combinations of large sets of recommendation methods. This calls for the research
of hybrid approaches with a level of dynamic self-adjustment mechanisms, in order
to optimise the resulting effectiveness of the recommendation systems, by opportu-
nistically taking advantage of high-quality data when available, but avoiding sticking
to fixed strategies when they can be predicted to yield poor results under certain
conditions.

Performance prediction in IR is typically assessed in terms of the correlation be-
tween a predictor’s scores and a system’s performance values on a per-query basis.
This requires reliable performance evaluation metrics and methodologies, which have
been thoroughly analysed, and are currently well established in the IR field, mostly
oriented to ad-hoc search. In contrast, evaluation in the RS field is more open, and
the variability in evaluation approaches and experimental configurations is significant.
How to measure the performance of a recommender system is a key issue in our re-
search since the system quality measurements may be influenced by statistical proper-
ties of the measurement approach and/or the experimental design. Throughout this
thesis we shall focus on the accuracy of the system, where we have to avoid that if a
metric — 1.e., precision — is biased towards some form of noise along with the recom-
mender’s quality, then a predictor capturing only that noise would appear as an
(equivocal) effective performance predictor. Hence, statistical biases (noises) of the
evaluation methodologies should be well understood in order to enable a meaningful

assessment of performance predictors.
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Drawing from the state of the art on performance prediction in IR as a starting
point, the present work restates the problem in the field of Recommender Systems
where it has barely been addressed so far. We research meaningful definitions of per-
formance in the context of RS, and the elements to which it can sensibly apply, in-
vestigating the statistical biases that may arise when adapting the IR evaluation
framework into RS. In doing so, we take as a driving direction the application of per-
formance prediction to achieve improvements in two specific combination problems
in the RS field, namely, the dynamic combination of recommendation methods in
hybrid recommendation systems, and the dynamic aggregation of neighbours’ signals

in user-based collaborative filtering.

1.2 Research goals

The main objective of the research presented here is to find predictive methods for

the performance of specific components in recommender systems, and to improve

the performance of combined recommendation methods, based on the dynamic,

automatic analysis and prediction of the expected performance of the constituents of
the composite methods, whereupon the relative participation of each constituent is
adjusted, in accordance to its predicted effectiveness. To address these problems, this
work has the following specific research objectives:

RG1: Analysis and formalisation of how retrieval performance is defined
and evaluated in recommender systems. We need to develop an in-depth study
on how recommender systems can be reliably evaluated in terms of numeric metric
values, since we aim to predict their performance. Moreover, we have to investigate
whether there is any bias on the way the systems are evaluated — either by the evalua-
tion methodologies or metrics, since any bias in the evaluation process would lead to
inconclusive or misleading results about the predictive power of the performance
prediction methods proposed. If these biases do exist, we aim to precisely under-
stand them and develop methodologies to isolate them; then, we shall check the ef-
fectiveness of the predictors against well-known baselines and whether it changes
when unbiased methodologies are used.

RG2: Adaptation and definition of performance prediction techniques for
recommender systems. We aim to study the potential of performance prediction in
specific problems and settings in the area of Recommender Systems. We shall inves-
tigate the definition of a formal framework where performance predictors can be
integrated. As a starting point, we aim to explore the adaptation of specific effective
predictors from Information Retrieval such as query clarity (Cronen-Townsend et al.,
2002) to recommender systems. Complementarily to the adaptation of known tech-
niques, we aim to research the definition of new predictors based on models from

Information Theory and Social Graphs, besides other heuristic, domain-specific ap-
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proaches. Once we have defined some recommendation performance predictors, we
shall assess the effectiveness of such predictors in terms of their correlation to per-
formance metrics to estimate the predictive power of the performance predictors.
RG3: Application of performance predictors to hybrid and compound re-
commender systems. We aim to identify and integrate the proposed predictors into
combined recommendation methods, in order to achieve an actual improvement in
the performance of the combined methods. With this goal in mind, we shall consider
problems where an aggregation of recommendation methods is needed, and shall
analyse how to apply the performance predictors mentioned above in such problems.
Besides, a methodological study for the experimental approach, setup, and metrics
should be performed in such a way that appropriate baseline methods and experi-
mental designs are used. Finally, we shall assess the improvements and benefits of

the combined methods when the performance predictors are applied.

1.3 Contributions

This thesis is devoted to the problem of estimating the performance of recom-
mender systems for particular users and items. The main contributions of this thesis
are related to the evaluation of the performance of a recommender system, and the
prediction of such performance, where we have addressed several issues regarding
both topics and we have proposed novel models and methods, which have been ap-
plied into two applications as we shall see next.

As a first step, this thesis analyses the Cranfield paradigm of Information Re-
trieval evaluation since recommender systems are usually considered as a particular
problem of information filtering, and, thus, of information retrieval at large (Belkin
and Croft, 1992). In Chapter 4 we discuss the differences involved in the ex-
perimental design alternatives from the common assumptions made in the
Cranfield paradigm, which result in substantial statistical biases arising in Re-
commender Systems, and we propose different methods to neutralise these

biases. Additionally, the following related contributions have been addressed:

e We propose a precise and systematic characterisation of design alternatives in
the adaptation of the Cranfield paradigm to recommendation tasks. We iden-
tify assumptions and conditions underlying the Cranfield paradigm that are not

granted in usual recommendation experiments.

e We detect and characterise resulting statistical biases, namely test sparsity and
item popularity, which do not arise in common test collections from IR, but do

interfere in recommendation experiments.
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e We propose two novel experimental designs in order to neutralise these biases.
We observe that a percentile-based evaluation considerably reduces the margin
for the popularity bias, whereas a uniform-test approach removes any statistical
advantage provided by having more positive test ratings. Furthermore, we find
that both approaches discriminate well between pure popularity-based recom-

mendation and an efficient personalised recommendation algorithm.

Additionally, in this thesis we show how query performance prediction tech-
niques developed in Information Retrieval can be adapted to Recommender
Systems, and result in effective predictors in this domain. We present these per-
formance predictors in Chapter 6, where we propose different adaptations of the
query clarity predictor based on different interpretations of the underlying language
models along with models from Information Theory and Social Graphs. Further-
more, in the same chapter we assess the effectiveness of such predictors by
measuring the correlation with respect to performance metrics, where we also
test the methods proposed in Chapter 4 to neutralise biases on evaluation. Specific
contributions regarding performance prediction for recommendation are summarised

as follows:

e We define and elaborate several predictive models in the Recommender Sys-
tems domain according to different formulations and assumptions, and based

on three types of preference data: rating-based, log-based, and social-based.

e Formulations for rating preferences are based on adaptations of query clarity
from IR and concepts from Information Theory such as entropy. In this adap-
tation we propose different probability estimations, where Bayesian derivations

and non-parametric estimations are developed.

e We also exploit temporal features when defining log-based predictors. Specifi-
cally, we use a time-aware version of the Kullback-Leibler divergence, along

with other time series concepts such as a uset’s autocorrelation.

e We use graph-based metrics from Graph Theory to define predictors leverag-
ing social network structures, and correlations between topological properties

of users and the success of recommendations delivered to them.

e We find strong correlations between the outputs of the predictors and the per-
formance metrics, thus finding empirical evidence of the predictive power of
the proposed approaches. Furthermore, when unbiased evaluation methodolo-
gies are used, the predictors still obtain good correlation values, evidencing that
our proposed predictors are not just capturing and benefitting from the ana-

lysed biases, especially when we compare them against other trivial predictors.

Finally, Chapters 7 and 8 present two applications of performance predictors on
Recommender Systems. In Chapter 7 we propose several linearly weighted hy-
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brids where the weights are dynamically adjusted based on the predictors’
output. We observe that the correlations obtained in Chapter 6 help decide which
are the best combinations to experiment with. More importantly, the correlation
between the predictor and the recommender tends to anticipate well when a
hybrid will outperform its baseline. Besides, Chapter 8 presents a unified
framework where the performance predictors are used to select and weight
nearest neighbours in a standard user-based collaborative filtering algorithm.
The standard methodology from performance prediction is adapted and translated
into this problem, where novel neighbour performance metrics are defined and the
predictive power of the predictors is assessed.

The contributions related to the application part of the thesis are, in summary:

e We propose a dynamic hybrid framework to automatically decide when and
how dynamic hybridisation should be done, depending on different conditions,
namely the correlations between the recommenders and the predictors, and the

relative performance level of the combined recommenders.

e In several experiments with the aforementioned performance predictors, our
results indicate that a strong correlation with performance tends to correspond
with enhancements in dynamic hybrid recommendation when the predictors

are used for the adjustment of the combination weights.

e We propose a theoretical framework for neighbour selection and weighting in
user-based recommender systems. This framework is based on performance
prediction by casting the neighbourhood-based rating prediction task as a case

of dynamic output aggregation.

e We compare several state-of-the-art rating-based trust metrics and other pro-
posed neighbour scoring techniques, interpreted as neighbour performance
predictors. We also propose several neighbour performance metrics that cap-

ture different notions of neighbour quality.

1.4 Publications related to the thesis

In the following international journal and conference papers we presented descrip-

tions, results and conclusions related to this thesis:

Performance prediction and evaluation

1. Bellogin, A., Cantador, 1., Diez, F., Castells, P., and Chavarriaga, E. (2012).
An empirical comparison of social, collaborative filtering, and hybrid recom-

menders. ACM Transactions on Intelligent Systems and Technology, to appear.
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Bellogin, A., Castells, P., and Cantador, 1. (2011). Predicting the Performance
of Recommender Systems: An Information Theoretic Approach. In Amati,
G. and Crestani, F., editors, ICTIR, volume 6931 of Lecture Notes in Computer
Science, pages 27-39, Berlin, Heidelberg. Springer Betlin / Heidelberg.

Bellogin, A., Castells, P., and Cantador, I. (2011). Self-adjusting hybrid re-
commenders based on social network analysis. In Proceedings of the 34" interna-
tional ACM SIGIR conference on Research and development in Information, SIGIR *11,
pages 1147-1148, New York, NY, USA. ACM.

Bellogin, A., Castells, P., and Cantador, 1. (2011). Precision-oriented evalua-
tion of recommender systems: an algorithmic comparison. In Proceedings of the
Sfifth ACM conference on Recommender systems, RecSys 11, pages 333—336, New
York, NY, USA. ACM.

Bellogin, A. and Castells, P. (2010). A Performance Prediction Approach to
Enhance Collaborative Filtering Performance. In Gurrin, C., He, Y., Kazai,
G., Kruschwitz, U., Little, S., Roelleke, T, Riiger, S., and Rijsbergen, editors,
Adpances in Information Retrieval, volume 5993 of Lecture Notes in Computer Sci-

ence, pages 382-393, Berlin, Heidelberg. Springer Berlin / Heidelberg.

Bellogin, A. and Castells, P. (2009). Predicting neighbor goodness in collabo-
rative filtering. In And, T. A., Yager and, R. R., And, H. B., And, H. C., and
Larsen, H. L., editors, FOAS, volume 5822 of Lecture Notes in Computer Science,
pages 605-616, Berlin, Heidelberg. Springer Betlin / Heidelberg.

Content-based recommendation

7.

10.

Cantador, 1., Bellogin, A., and Vallet, D. (2010). Content-based recommenda-
tion in social tagging systems. In Proceedings of the fourth ACM conference on Re-
commender systems, RecSys ’10, pages 237-240, New York, NY, USA. ACM.
Cantador, 1., Bellogin, A., and Castells, P. (2008). News@hand: A Semantic
Web Approach to Recommending News. In Nejdl, W., Kay, J., Pu, P., and
Herder, E., editors, Adaptive Hypermedia and Adaptive Web-Based Systems, vol-
ume 5149 of Lecture Notes in Computer Science, chapter 34, pages 279-283.
Springer Berlin / Heidelberg, Betlin, Heidelberg.

Cantador, 1., Bellogin, A., and Castells, P. (2009). Ontology-Based Personal-
ised and Context-Aware Recommendations of News Items. In Web Intelligence
and Intelligent Agent Technology, 2008. WI-LAT "08. IEEE/WIC/ ACM Interna-
tional Conference on, volume 1, pages 562—565.

Cantador, 1., Bellogin, A., Fernandez-Tobias, I., and Lépez-Hernandez, S.
(2011a). Semantic Contextualisation of Social Tag-Based Profiles and Item
Recommendations. In Huemer, C., Setzer, T., Aalst, W., Mylopoulos, ]J.,
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Sadeh, N. M., Shaw, M. J., Szyperski, C., Aalst, W., Mylopoulos, J., Sadeh, N.
M., Shaw, M. J., and Szyperski, C., editors, Electronic Commerce and Web Tech-
nologies, volume 85 of Lecture Notes in Business Information Processing, chapter 9,
pages 101-113. Springer Berlin Heidelberg, Berlin, Heidelberg.

11. Fernandez-Tobias, 1., Cantador, 1., and Bellogin, A. (2011). cTag: Semantic
contextualisation of social tags. In Proceedings of the Workshop on Semantic Adap-
tive Social Web (SASWeb 2011). CEUR Workshop Proceedings, vol. 730, pages 45—
54. RWTH, Aachen (2011).

Collaborative filtering recommendation

12. Bellogin, A., Wang, J., and Castells, P. Bridging Memory-Based Collaborative

Filtering and Text Retrieval. Information Retrieval Journal, to appear.

13. Bellogin, A., Cantador, 1., and Castells, P. A Comparative Study of Heteroge-
neous Item Recommendations in Social Systems. Information Sciences, to ap-
pear.

14. Bellogin, A. and Parapar, J. (2012). Using Graph Partitioning Techniques for
Neighbour Selection in User-Based Collaborative Filtering. In Proceedings of the
sixcth ACM conference on Recommender systems, RecSys *12, pages 213-216, New
York, NY, USA. ACM. (best short paper award)

15. Bellogin, A., Wang, J., and Castells, P. (2011). Structured collaborative filter-
ing. In Proceedings of the 20" ACM international conference on Information and knowl-
edge management, CIKM ’11, pages 2257-2260, New York, NY, USA. ACM.

16. Bellogin, A., Wang, J., and Castells, P. (2011). Text Retrieval Methods for
Item Ranking in Collaborative Filtering. In Clough, P., Foley, C., Gurrin, C.,
Jones, G., Kraaij, W., Lee, H., and Mudoch, V., editors, Advances in Information
Retrieval, volume 6611 of Lecture Notes in Computer Science, chapter 30, pages
301-306. Springer Berlin / Heidelberg, Berlin, Heidelberg.

17. Bellogin, A., Cantador, 1., and Castells, P. (2010). A study of heterogeneity in
recommendations for a social music setvice. In Proceedings of the 1" International
Workshop on Information Heterogeneity and Fusion in Recommender Systems, HetRec
’10, pages 1-8, New York, NY, USA. ACM.

Social filtering recommendation

18. Diez, F., Chavarriaga, J. E., Campos, P. G., and Bellogin, A. (2010). Movie
recommendations based in explicit and implicit features extracted from the
Filmtipset dataset. In Proceedings of the Workshop on Context-Aware Movie Recom-
mendation, CAMRa *10, pages 45-52, New York, NY, USA. ACM.
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Time-aware recommendation

19. Campos, P. G., Bellogin, A., Diez, F., and Cantador, I. (2012). Time Feature
Selection for Identifying Active Household Members. In Proceedings of the 21"
ACM international conference on Information and knowledge management, CIKM 12,
New York, NY, USA. ACM (to appear).

20. Campos, P. G., Diez, F., and Bellogin, A. (2011). Temporal rating habits: a
valuable tool for rating discrimination. In Proceedings of the 2" Challenge on Con-
text-Aware Movie Recommendation, CAMRa 11, pages 29-35, New York, NY,
USA. ACM.

21. Campos, P. G., Bellogin, A., Diez, F., and Chavarriaga, J. E. (2010). Simple
time-biased KNN-based recommendations. In Proceedings of the Workshop on
Contexct-Aware Movie Recommendation, CAMRa *10, pages 20—23, New York,
NY, USA. ACM.

Hybrid recommender systems

22. Cantador, L., Castells, P., and Bellogin, A. (2011). An enhanced semantic layer
for hybrid recommender systems. Infernational Journal on Semantic Web and In-
Sformation Systems, 7(1):44-T8.

23. Cantador, 1., Bellogin, A., and Castells, P. (2008). A multilayer ontology-
based hybrid recommendation model. .AI Commun., 21(2-3):203-210.

24. Cantador, 1., Castells, P., and Bellogin, A. (2007). Modelling Ontology-based
Multilayered Communities of Interest for Hybrid Recommendations. In
Workshop on Adaptation and Personalisation in Social Systems: Groups, Teams, Com-
munities, at the 11th International Conference on User Modeling.

Recommender evaluation

25. Bellogin, A., Cantador, 1., Castells, P., and Ortigosa, A. (2011). Discerning
Relevant Model Features in a Content-based Collaborative Recommender
System. In Firnkranz, J. and Hillermeier, E., editors, Preference Learning, chap-
ter 20, pages 429—455. Springer Berlin Heidelberg, Berlin, Heidelberg.

26. Bellogin, A., Cantador, I., Castells, P., and Ortigosa, A. (2008). Discovering
Relevant Preferences in a Personalised Recommender System using Machine
Learning Techniques. In Preference 1earning Workshop (PL. 2008), at the 8" Eunro-
pean Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML PKDD 2008), pages 82-96.

These publications are related to the contents of this thesis as follows. In [4] we
analyse different evaluation methodologies available in the recommendation literature
(Chapters 3 and 4). In [2], [5], and [6] we define the formulations for the concept of

user clarity based on ratings (Chapter 6), whereas in [1] and [3] we define the social-
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based predictors (again, Chapter 6). Besides, in [1] and [3] we also investigate the use
of performance predictors for dynamic hybrid recommendation (Chapter 7). More-
over, in [5] and [6] we address the problem of neighbour weighting based on
neighbour performance predictors (Chapter 8).

Additionally, during the course of the thesis, the research presented here has mo-
tivated a number of publications that address broader topics in the field, such as con-
tent-based recommendation [7-11], collaborative filtering [12-17], social filtering
techniques [18], time-aware recommendation [19-21], hybrid recommender systems
[22-24], and recommendation evaluation [25, 26]. These publications have resulted in
the use and construction of datasets, the development of algorithms and the research

and use of some evaluation methodologies and metrics that appear in this thesis.

Additional publications

Preliminary work towards the approaches presented in this thesis was published in
my Master’s Thesis entitled “Performance prediction in recommender Systems: Ap-
plication to the dynamic optimisation of aggregative methods” (Bellogin, 2009); spe-
cifically, the concept of performance prediction for recommendation is proposed in
such work. Apart from that, the motivation, potential impact, and initial main results
of our research were published as contributions in two international doctoral sympo-

siums:

e Bellogin, A. (2011). Predicting performance in recommender systems. Doctoral
Symposium. In Proceedings of the fifth ACM conference on Recommender systems, Rec-
Sys 11, pages 371-374, New York, NY, USA. ACM.

e Bellogin, A. (2011). Performance Prediction in Recommender Systems. Doc-
toral Symposium. In Konstan, J., Conejo, R., Marzo, J., and Oliver, N., editors,
User Modeling, Adaption and Personalization, volume 6787 of Lecture Notes in Com-
puter Science, pages 401-404, Berlin, Heidelberg. Springer Berlin / Heidelberg.

Furthermore, the following submissions are under revision, some of them

closely related to the topics of the thesis:

e Bellogin, A., Castells, P., and Cantador, 1. Statistical Biases in IR Metrics for
Recommender Systems: A Methodological Framework for the Adaptation of
the Cranfield Paradigm. Under review.

e Bellogin, A., Castells, P., and Cantador, I. Neighbour Selection and Weighting
in User-Based Recommender Systems: A Performance Prediction Approach.

Under review.

e Parapar, J., Bellogin, A., Castells, P., and Barreiro, A. Relevance-Based Lan-

guage Modelling for Recommender Systems. Under review.
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1.5 Structure of the thesis

The thesis is divided into six parts. The first part introduces and motivates the prob-
lem addressed, along with a survey of the Recommender Systems field, where this
thesis is framed. The second part describes the different evaluation techniques used
in the recommender systems literature and provides an analysis of the design alterna-
tives and statistical biases that may arise. The third part gives background knowledge
and a literature survey on performance prediction, proposes translations of this con-
cept into the recommender system space, and evaluates the predictive power of these
approaches. The fourth part provides two applications of the proposed recom-
mender performance predictors. The fifth part concludes and summarises the main
contributions of this thesis. Additional information and details are provided in the
last part.
In more detail, the contents of this thesis are distributed as follows:

Part I. Introduction

¢ Chapter 1 presents the motivation, research goals, contributions and publica-

tions related to the thesis.

e Chapter 2 provides an overview of the state of the art in recommender sys-
tems, considering a classification of the main types of recommendation ap-
proaches. We also describe the weaknesses of the different recommendation
techniques and present a broader class of hybrid recommenders that aim to

overcome these limitations.
Part I1. Evaluating Performance in Recommender Systems

e Chapter 3 describes the main evaluation metrics and methodologies used in
the recommender systems field. The public datasets commonly used in the

field are also described.

e Chapter 4 provides an analysis and formalisation of the different evaluation
methodologies reported in the literature. First, we present a systematic charac-
terisation of the experimental design alternatives. Next, we identify and analyse
specific statistical biases arising when some methodologies are applied to rec-
ommendation, and propose two alternative experimental designs that effec-

tively neutralise such biases to a large extent.
Part III. Predicting Performance in Recommender Systems

e Chapter 5 presents the problem of performance prediction in Information Re-
trieval, surveys the main research works in that area, both in the definition of
(query) performance predictors and also in the predictor evaluation in order to

infer their predictive power.
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¢ Chapter 6 states the problem of performance prediction in recommender sys-
tems. We define several performance predictors based on three recommenda-
tion input spaces where we qualitative analyse the predictive power of the pre-

dictors.
Part IV. Applications

e Chapter 7 proposes a framework where recommender performance predictors
are used to build dynamic hybrid recommender systems. We evaluate these re-
commenders in the three input spaces previously considered for the definition
of performance predictors and using different experimental design alternatives

where some statistical biases are neutralised.

e Chapter 8 restates the user-based recommendation problem, providing a gen-
eralisation as a performance prediction problem. We investigate how to adopt
this generalisation to define a unified framework where we conduct an objec-
tive analysis of the effectiveness (predictive power) of neighbour scoring func-

tions.
Part V. Conclusions

e Chapter 9 concludes with a summary of the main contributions of this thesis,

and a discussion about future research lines.
Part VI. Appendices

e Appendix A provides details about the methods proposed in this thesis: con-
figuration of the recommendation algorithms and parameters of the experi-
mental designs used in the evaluation. Detailed statistics about the datasets
used in the experiments are provided, complementary to those given in previ-

ous chapters.
e Appendix B contains the translation into Spanish of Chapter 1.

e Appendix C contains the translation into Spanish of Chapter 9.






Chapter 2

Recommender systems

The aim of recommender systems is to assist users in finding their way through huge
databases and catalogues, by filtering and suggesting relevant items taking into ac-
count or inferring the users’ preferences (i.e., tastes, interests, or priorities).

Three types of recommender systems are commonly recognised according to
how recommendations are made, namely content-based filtering (CBF), collaborative
filtering (CF), and social filtering (SF) systems. A CBF system suggests a user items
similar to those she preferred or liked in the past, a CF system suggests a user items
that people with similar preferences liked in the past, and a SF system suggests items
according to the preferences of the user’s social contacts in a social network. Each of
these types of recommendations has its own strengths and weaknesses. In order to
address and compensate particular shortcomings, combinations of different recom-
mendation approaches are usually developed, forming the so called hybrid filtering
(HF) systems.

In this chapter we provide an overview of terminology, techniques, and limita-
tions related to the above types of recommender systems. In Section 2.1 we formalise
the problem of recommendation, and introduce the different types of recommenda-
tion approaches. Next, in Section 2.2 we describe content-based recommendation
approaches, rating- and log-based recommendation approaches — as special cases of
collaborative filtering —, and social-based recommendation approaches. In Section
2.3 we then explain generic hybrid filtering approaches. Finally, in Section 2.4 we

present particular limitations of each type of recommender systems.
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2.1 Formulation of the recommendation problem

Collaborative filtering can be considered as the first proposed recommendation ap-
proach. The term was coined in the mid 90’s by Goldberg and colleagues when de-
veloping an automatic filtering system for electronic mail (Goldberg et al., 1992),
although sometimes the stereotypes defined in (Rich, 1979) have been considered as
an eatlier reference. Collaborative filtering has been classed as part of the Informa-
tion Retrieval area by several authors (Belkin and Croft, 1992; Foltz and Dumais,
1992), who have considered recommender systems as a particular case of informa-
tion filtering. However, only a few recent attempts have been made at bringing re-
commender systems and information retrieval models together, by establishing
equivalences between them (Wang et al., 2008b; Wang et al., 2008a; Bellogin et al.,
2011b). Instead, recommender systems have been traditionally investigated from a
different perspective, such as preference prediction and Machine Learning (Breese
et al,, 1998), upon which the main prediction models and evaluation metrics have
been developed.

In this context distinct formulations and notations have been proposed. The
overview by Adomavicius and Tuzhilin (2005) are among the most cited. In that
work the recommendation problem is defined as follows. Let U be a set of users, and
let 7 be a set of items. Let g: UXJ—R, where R is a totally ordered set, be a utility
function such that g(u, i) measures the gain of usefulness of item i for user u. Then,
for each user u € U, we aim to choose items i™@*" € J, unknown to the user, which

maximise the utility function g, that is:
Yu €U, ™ = argmax g(u, i)
i€

Depending on the exploited source of user preference information, and the way
in which the utility function g is estimated for different users, the following two
main types of recommender systems are commonly distinguished: 1) content-based
recommender systems, in which a user is suggested items similar to those she liked or
preferred in the past, and 2) collaborative filtering systems, in which a user is sug-
gested items that people with similar preferences liked in the past. We extend this
classification by also considering social recommender systems, i.e., systems in which
a user is suggested items that friends — e.g. in an online social network — liked in the
past. These systems are related but significantly different from collaborative filtering
systems. Moreover, we distinguish two types of collaborative filtering systems, based
on the form of their input: systems that exploit explicit user ratings (rating-based
systems), and systems that exploit implicit user preference information (log-based
systems). The rating assigned to an item by a particular user is typically interpreted as
the true utility of that item for the user. There are systems, however, where no ex-

plicit ratings are available, but where user interests can be inferred from implicit
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feedback information. In order to provide item recommendations in such systems,
two plausible approaches do exist: 1) directly exploiting implicit preference data
(Wang et al., 2008b; Deshpande and Karypis, 2004; Das et al., 2007; Hu et al., 2008;
Linden et al., 2003), and 2) transforming implicit preference data into explicit ratings
to be exploited by standard CF strategies (Celma, 2010; Jawaheer et al., 2010; Adams,
2007).

Other types of recommender systems have been considered in the literature, al-
though they will not be described in detail herein; these are knowledge-based, utility-
based, and demographic-based recommender systems.They use, respectively, seman-
tic descriptions of the user preferences and item characteristics, an utility function
over the items that describes the users’ preferences, and demographic information
about the users. For further descriptions and examples of these techniques, see
(Burke, 2002) and (Ricci et al., 2011).

For any of the above mentioned types of recommender systems, models can be
combined to improve their separate performance, or other characteristic of interest,
such as the capability of providing more diverse and novel recommendations, and
offering better explanations of recommendations. When such a combination is per-
formed, the recommendation approach is considered a hybrid recommender (or hy-
brid filtering) system (Burke, 2002).

2.2 Recommendation techniques

As mentioned above, the main goal of a recommender system is to provide users
with the most useful items according to their preferences. For such purpose, differ-
ent strategies may be used, which can be categorised based on the type of data ex-
ploited, namely content-based, rating- and log-based collaborative filtering, and social
recommendation strategies. In this section we formalise these strategies. We shall use
the following notation. Letters u and v will be reserved for users (u, v € U), whereas
[ and j will denote items (i,j € J), U and J being, respectively, the set of users and
items in the system. Besides, 7 € R will denote a particular rating value, and R will be
the set of possible rating values, either discrete (typically, R = {1,2,3,4,5}) or con-
tinuous (e.g. R = [0,5]). Finally, 7 shall denote a rating prediction (as opposed to
observed ratings denoted by 7).

2.2.1 Content-based recommenders

Content-based filtering (CBF, or simply content-based) techniques recommend items
similar to those previously liked by a user. An extensive survey of this type of tech-
niques can be found in (Lops etal, 2011; Pazzani and Billsus, 2007), and
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(Adomavicius and Tuzhilin, 2005). In this section we briefly discuss some of the
main approaches proposed in the field.

Content-based recommendation algorithms build a user’s profile based on the
features of the objects rated by the user, which are assumed to reflect the uset’s con-
tent-based interests (Lops et al., 2011). In general, a CBF technique can be classified
according to whether a model is built from underlying data, commonly based on
Machine Learning techniques (Lops etal, 2011; Pazzani and Billsus, 1997,
de Gemmis et al., 2008), or use a heuristic function to compute item scores, mainly
inspired on Information Retrieval methods (Diederich and Iofciu, 2006; Balabanovic
and Shoham, 1997; Cantador et al., 2010).

Probabilistic methods in general and the naive Bayes approach in particular gen-
erate a probabilistic model based on previously observed data. The naive Bayes
model estimates the « posteriori probability P(c|d) of document d belonging to class
¢, based on the a priori probability P(c) for the class, the probability P(d) of observ-
ing the document, and the probability P(d|c) of observing the document given the
class (Lops et al., 2011), as follows:

P(c)P(d|c)
P(d)

In recommendation the naive Bayes method is used to estimate the probability

P(cld) =

that a document (an item) is either relevant or irrelevant (class ¢), based on the in-
formation available for each user, that is, documents already rated are used to build
the P(d|c) probabilities. This approach has been used by many different authors
(Mooney and Roy, 2000; Semeraro et al., 2007; de Gemmis et al., 2008; Lops et al,,
2011).

Alternative methods for classifying the items in a system as relevant or irrelevant
for each user include decision trees and neural networks (Pazzani and Billsus, 1997).
These techniques, similarly to the naive Bayes method, estimate in which class each
(unrated or unobserved) item fits best with the user’s profile.

Techniques based on Information Retrieval methods are specified by the way
users and items are represented and the similarity function used between them. Typi-
cally they use a vector space model where each feature is weighted in a particular
way. For instance, instead of using the frequency of each feature in a user/item pro-
file, more complex functions from the Information Retrieval field may be used, such
as TF-IDF and BM25 (Cantador et al., 2010). Furthermore, many different feature
spaces have been considered in the literature: keywords (Lieberman, 1995; Pazzani
et al.,, 1990), tags (Diederich and Iofciu, 2006; Michlmayr and Cazer, 2007), and se-
mantic concepts enriched by different techniques (Magnini and Strapparava, 2001;
Eirinaki et al., 2003; Cantador, 2008).
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Regarding the feature vector similarity, the most common measure is the cosine
similarity, even though the standard dot product between two vectors has also been
used (Cantador et al., 2010):

simgoe (d;, d;) = Z Wi Wi 2.1)
k

Simdot(di, d])
2.2)
\[Zk Wi; \[Zk szj

where Wy; is the weight assigned (by any of the techniques mentioned before) to the

Simcos (di' d]) =

feature k in document i.

In recommender systems items are suggested by decreasing order of similarity
with the user, whose profile is represented in the same form of the documents (that
is, in the space of features under consideration). The similarities are computed as the
feature vector similarity between each (unrated or unobserved) document in the col-

lection and the user’s vector.

2.2.2 Rating-based recommenders

Collaborative filtering (CF) techniques match people with similar preferences, or
items with similar choice patterns from users, in order to make recommendations.
Unlike CBF, CF methods aim to predict the utility of items for a particular user ac-
cording to the items previously evaluated by other like minded users. These methods
have the interesting property that no item descriptions are needed to provide rec-
ommendations, since the methods merely exploit information about past ratings.
Compared to CBF approaches, CF also has the salient advantage that a user may
benefit from other people’s experience, thereby being exposed to potentially novel
recommendations beyond her own experience (Adomavicius and Tuzhilin, 2005).

In this section we focus on those CF techniques based on explicit numeric rat-
ings, which are the most common in the literature. For additional references, see
(Desrosiers and Karypis, 2011; Koren and Bell, 2011) and (Adomavicius and Tuz-
hilin, 2005). Most of our discussion nonetheless applies to log-based recommenders
alike. In fact, as we shall show in the next section, most of the rating-based tech-
niques can be used when no ratings are available (although the equivalence intro-
duces additional assumptions).

In general, CF approaches are commonly classified into two main categories:
model-based and memory-based. Model-based approaches build statistical models
of user/item rating patterns to provide automatic rating predictions. Some ap-
proaches learn such models by performing some form of dimensionality reduction in

order to uncover latent factors between users and items, e.g. by such techniques as
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Singular Value Decomposition (SVD) for matrix factorisation (Billsus and Pazzani,
1998; Koren et al.,, 2009), probabilistic Latent Semantic Analysis (pLSA), or Latent
Dirichlet Allocation (LDA) (Hofmann, 2003; Blei et al., 2003). Other approaches use
probabilistic models where the recommendation task is modelled by user and item
probability distributions (Wang et al., 2006b; Wang et al., 2008a), e.g. by learning a
probabilistic model with a maximum entropy estimation (Pavlov et al., 2004; Zitnick
and Kanade, 2004), Bayesian networks (Breese et al., 1998), and Boltzmann machines
(Salakhutdinov et al., 2007). A graph-based model that exploits positive and negative
preference data is proposed in (Clements et al., 2009). Besides, other Machine Learn-
ing techniques have also been proposed, such as artificial neural networks (Billsus
and Pazzani, 1998) and clustering strategies (Kohrs and Merialdo, 1999; Cantador
and Castells, 20006).

Memory-based approaches, on the other hand, make rating predictions based on
the entire rating collection (Adomavicius and Tuzhilin, 2005; Desrosiers and Karypis,
2011). These approaches can be user- and item-based strategies. User-based strate-
gies are built on the principle that a particular uset’s rating records are not equally
useful to all other users as input for providing personal item suggestions (Herlocker
et al., 2002). Central aspects to these algorithms are thus a) how to identify which
neighbours form the best basis to generate item recommendations for the target user,
and b) how to properly make use of the information provided by them. Typically,
neighbourhood identification is based on selecting those users who are more similar
to the target user according to a similarity metric (Desrosiers and Karypis, 2011). The
similarity between two users is generally computed by a) finding a set of items that
both users have interacted with, and b) examining to what degree the users displayed
similar behaviors (e.g. rating, browsing and purchasing patterns) on these items. This
basic approach can be complemented with alternative comparisons of virtually any
user feature a system has access to, such as personal demographic and social network
data. It is also common practice to set a maximum number of neighbours (or a
minimum similarity threshold) to restrict the neighbourhood size either for computa-
tional efficiency, or in order to avoid noisy users who are not similar enough. Once
the target user’s neighbours are selected, the more similar a neighbour is to the user,
the more her preferences are taken into account as input to produce recommenda-
tions. For instance, a common user-based approach consists of predicting the rele-
vance of an item for the target user by a linear combination of her neighbours’ rat-
ings, weighted by the similarity between the target user and such neighbours.

In the following equations we present two versions of a user-based CF tech-
nique; in the first one rating deviations from the user’s and neighbour’s rating means
are considered (Resnick et al., 1994), whereas in the second one the raw scores given
by each neighbour are used (Aggarwal et al., 1999; Shardanand and Maes, 1995):
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Fu,i) =7 +C z sim(u, v)(r(v, i) — 7(v)) (2.3)

VEN (u,i)

(u,i) =C Z sim(u,v)r(v,i) 2.4
VENy (u,i)

where C is a normalisation factor (different in each formulation) and Ny (u, i) is a
neighbourhood of size k, which may use information of the target item i. As stated
in (Adomavicius and Tuzhilin, 2005), these techniques simply use a different function
to aggregate the ratings from the neighbourhood. Note that in this case the utility
function g(u, i) is assumed to be equivalent to the predicted rating 7(u, i), although
alternative transformations could be applied if required. Additionally, the similarity
between two users is generally computed by means of the Pearson’s correlation coef-
ficient or the cosine similarity between the vectors representing each user’s prefer-

ences (Adomavicius and Tuzhilin, 2005):
> (rw ) = FW)(r(v,i) — F(v))
(B ) 5,0 — 7))’
Xir(u,Dr(v, i)

SiM cysine(U, V) = (2.6)

VZir(w, )2 X (v, i)?

Note that these similarities are equivalent when the data is centered on the mean.

S imPearson (u' 17) =

(2.5)

Nonetheless, some authors have reported that the performance of recommenders
based on Pearson’s similarity is superior to that of cosine’s (Breese et al., 1998; Her-
locker et al., 1999). Moreover, other similarity measures and modifications on how
the neighbours are selected and weighted have been proposed, either by modifying
the similarity measure (McLaughlin and Herlocker, 2004; Ma et al., 2007), by using
clustering methods to compute a user’s neighbourhood (O’Connor and Herlocker,
1999; Xue et al., 2005), or by learning the best interpolation weights for rating predic-
tion (Bell and Koren, 2007; Koren, 2008). Additionally, in the context of trust-based
recommendation, the neighbours are weighted (and selected) according to their im-
portance from the target user’s point of view (O’Donovan and Smyth, 2005; Weng
et al., 2006; Kwon et al., 2009; Hwang and Chen, 2007).

Item-based strategies, on the other hand, recognise patterns of similarity be-
tween the items themselves, instead of between user choices like user-based ap-
proaches do. In general item-based recommenders look at each item on the target
user’s list of chosen/rated items, and find other items that seem to be “similat” to
that item (Shardanand and Maes, 1995; Sarwar et al., 2001). The item similarity is
usually defined in terms of rating correlations between users, although cosine-based

or probability-based similarities have also been proposed (Deshpande and Karypis,
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2004). As stated in (Sarwar et al., 2001), adjusted cosine similarity has been proved to
obtain better performance than other item similarities. This similarity subtracts the

uset’s average rating from each co-rated pair in the standard cosine formulation:
Zu(r(u, i) — f(u))(r(u,j) — F(u))
. _ 2 . _ 2
\[Zu(r(w D) —7(w) \[Zu(r(u,J) — (W)

The rating prediction computed by item-based strategies is generally estimated as
follows (Sarwar et al., 2001):

Fu,i) =C Z sim(i, r(w, ) (2.8)

JES;

sim(i, j) =

(2.7)

We have to note that the set of more similar items S; is generally replaced by 7,
— the set of items rated by user U — since for any other item, the rating provided by

the user is assumed to be zero, and thus, it does not contribute to the summation.

2.2.3 Log-based recommenders

Different methods have been proposed to use implicit evidence of user preferences.
The work of Oard and Kim (1998) represents one of the first attempts to exploit
implicit user feedback to estimate future ratings in a recommender system. In general
most of recent approaches have used formal models (generally probabilistic) in order
to introduce implicit data for recommendation, although some approaches using ad-
hoc techniques can be found. For example, Linden et al. (2003) use a simple vector
representation, where each component represents purchased items, and recommen-
dations are obtained by ranking each item according to how many similar users pur-
chased it. Bernhardsson (2009) proposes a graph item-based algorithm that finds the
closest tracks for a given track using probabilistic LSA (pLSA), and then derives the
recommendations using heuristic and model-based probabilities, by brute force.
Additionally, several formal algorithms have been proposed to use implicit user
feedback from log data: namely matrix factorisation, such as SVD (Hu et al., 2008)
and pLSA (Das et al., 2007), and language models and other probabilistic approaches
(Wang et al., 2006a; Wang, 2009; Wang et al., 2008b; Deshpande and Karypis, 2004).
These algorithms aim to capture the user’s preferences by considering the consumed
(purchased, listened, browsed, etc.) items as evidence of positive relevance for the
user. This fact often leads to binary models in which the number of times the user
has consumed each item is not taken into consideration. Nevertheless, a benefit of
using binary data is that it allows to better account for the fact that ratings are not
missing at random — or equivalently, that users choose deliberately which items to
rate (Marlin et al., 2007). Besides this a general concern about negative preferences
has arisen. For instance, in (Lee and Brusilovsky, 2009), (Wang et al., 2008¢), and
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(Xin and Steck, 2011) the authors attempt to incorporate negative preferences in-
ferred from implicit data.

Other authors have proposed different transformations in order to obtain ex-
plicit ratings from implicit feedback. The most naive approach is to make a corre-
spondence between the existence of an item in a log record and a (frequency-
independent) rating. For example, the algorithm proposed in (Ali and van Stam,
2004) cannot distinguish an explicit +1 rating from the rating inferred from implicit
data. This is the same procedure that can be found in (Lee et al., 2008), but with
other transformations based on the time in which an item was entered in the system
and consumed.

In (Baltrunas and Amatriain, 2009), based on (Celma, 2010) and (Celma, 2008),
the authors use a more elaborate mapping where the number of times a user listened
to an artist (or track) is taken into account, in such a way that the artists (tracks) lo-
cated in the 80-100% interquintile range of the user’s playcount distribution receive a
rating of value 5 (in a five point scale), the next interquintile range is mapped to a
rating of value 4, and so on. This technique has also been used in other works, such
as (Vargas and Castells, 2011). A similar technique is presented in (Jawaheer et al.,
2010), where three methods are proposed in order to calculate the preference of a
user for an artist: 1) absolute, where the raw count of the number of times that artist
has been played is used; ii) normalised, where the preference is inferred by the ratio
between the counts for an artist and the total number of artists played by the user;
and iii) logarithmic, similar to the previous one but smoothing the preference values
by applying a logarithmic transformation.

Finally, Adams (2007) proposes a complete ad-hoc formula that takes several pa-
rameters into consideration, such as the number of times the current track has been
played and skipped, the number of seconds when it was skipped, and the number of
days since it was last played.

In conclusion, there is no definitive unique method for transforming implicit
into explicit data. Moreover, it is unclear to what extent the mapping is reliable (Hu
et al., 2008), since it inherently represents different information gathered from the
user — for instance, negative preferences can only be fetched using explicit data.
However, a recent study reported a strong relation between the amount of times
users listen to an album, and the rating they provide to the album (Parra and Ama-
triain, 2011).

2.2.4 Social-based recommenders

Recommender systems that exploit social information, such as contacts and interac-
tions between users, have started to be developed in recent years. We shall hence-
forth refer to this type of recommendation approaches as Social Filtering (SF) sys-
tems. Recommendations by SF approaches have the interesting property that they
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are generally easier to explain than user-based CF approaches. Recommendations
through friends are indeed easy to interpret by end-users. They also help dealing with
the cold start problem, where new users are more difficult to provide recommenda-
tions for as long as it is not possible to reliably compute their similarity with other
users for lack of data (Golbeck, 2006; Arazy et al., 2009).

Shepitsen et al. (2008) propose a personalisation approach for recommendation
in folksonomies that relies on hierarchical tag clusters. The approach suggests the
most similar items to the uset’s closest cluster by means of the cosine similarity
measure. Other approaches focus on graph based techniques for finding the most
relevant items for a particular user through hybrid networks involving people, items,
and tags (Konstas et al., 2009; Clements et al., 2010). In this context alternative
methods have been proposed to deal with data sparsity. Besides, prediction accuracy
is improved by means of factor analysis based on probabilistic matrix factorisation,
employing both the users’ social network information and rating records (Ma et al.,
2008). Ma et al. (2009) combine the recommendations made by trusted friends with
those generated by a matrix factorisation algorithm. In a similar way, Jamali and Ester
(2009) propose to perform a random walk on the trust network, considering the
similarity of users in the termination condition; then, the top rated items are recom-
mended. Both approaches are competitive in cold start situations.

Complementarily, simpler algorithms (referred to as “pure” social recommenders
henceforth) have also been proposed in (Liu and Lee, 2010) and (Bellogin et al.,
2012). In (Liu and Lee, 2010) an adaptation of the user-based CF technique is pro-
posed, where the set of nearest neighbours is replaced by the target user’s (explicit)
friends. That is:

N, (u,i) = {v € U:vis friend of u} 2.9)

This lets easily incorporate social information into the CF prediction equation,
building a straightforward technique that enables a direct interpretation of the sug-
gestions, namely those items recommended by friends. Similarly, based on a recom-
mender proposed in (Barman and Dabeer, 2010), where the items suggested to a user
are the most popular among her set of similar users, in (Bellogin et al., 2012) we pro-
posed a friends’ popularity recommender that suggests the target user those items
most popular for her set of friends. A score is generated by transforming the item
position with the following equation, once a ranking has been generated using the

score f(u, i):
f(u,i) = {v € U:vis friend of u and rat(v,i) # ¢}|

pos(u,i)
N

where pos(u, i) represents the position of item i in the top-N recommended list for

2.10)
g, i;N) = 1-

user U. We may trim the returned list at some level N, or assume N to be exactly the
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length of the generated recommendation list. Obviously, the computed scores cannot
be interpreted as ratings, but as a utility or ranking score. In (Bourke et al., 2011)
Bourke and colleagues also make use of the social graph of a user to build the
neighbourhood, analysing the perceived trust, which is found to be higher when the
users are given the opportunity to manually select the neighbourhood to be used for
computing recommendations.

Ben-Shimon et al. (2007) propose a recommendation approach based on the dis-
tances between users in the social graph. The approach uses Breadth-First Search to
build a social tree for each user u denoted as X(u,L), where L is the maximum
number of levels taken into consideration in the algorithm, and K is an attenuation
coefficient of the social network that determines the extent of the effect of d(u, v),
that is, the impact of the distance between two users in the social graph (e.g. by using
an algorithm that computes the distance between two nodes in a graph, such as the
Dijkstra’s algorithm (Dijkstra, 1959). Hence, when K = 1 the impact is constant, and
the resulting ranking is sorted by the popularity of the items. Furthermore, for that
value of K, no expansion is applied and only directly connected users are involved in
the score computation. Once the value of K is chosen, a rating score is generated

according to the following equation:

g i) = Z K~y (v, i) @2.11)
veX(u,L)

An alternative way of introducing social information into a recommender system
is by the so called trust-based recommendation approaches, even though social rela-
tionships and trust relationships do not model exacly the same concept (Ma et al.,
2011). Trust-aware recommenders, in contrast with those defined in Section 2.2.2,
make use of trust networks, where users express a level of trust on other users
(Massa and Avesani, 2007a). These recommenders need a trust network and a trust
metric, so that trustworthiness of every user can be computed. Depending on the
available data, we would have to infer a plausible trust network, from the information
we already know about users, such as social interactions among users or explicit trust
relations. Typically, uniform trust values from each user are assumed, since no dis-
tinction can be made among a user’s contacts. For example, a user with 4 friends
would have a trust level of 0.25 for each friend, whereas a user with 2 friends would
have such trust level of 0.5.

Once the trust network is defined, either explicitly or implicitly, we can set dif-
ferent definitions for the trust metrics depending on whether they are global (a global
reputation value is calculated for each user) or local (a trust score is computed be-
tween a source user on a target user). Social-based trust metrics make use of explicit
trust networks of users, built upon friendship relationships (Massa and Bhattacharjee,
2004) and explicit trust scores between individuals in a system (Ma et al., 2009; Wal-
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ter et al., 2009). These metrics and, to some extent, their inherent meanings, are dif-
ferent with respect to rating-based metrics. Nonetheless, Ziegler and Lausen (2004)
conduct a thorough analysis that shows empirical correlations between trust and user
similarity, suggesting that users tend to create social connections with people who
have similar preferences. Once such a correlation is proved, techniques based on
social-based trust are applicable.

Golbeck and Hendler (2006) propose a metric called TidalTrust to infer trust re-
lationships by recursive search. Inferred trust values are used for every user who has
rated a particular item in order to select only those users with high trust values. Then,
a weighted average between ratings and trust provides the predicted ratings. A similar
algorithm is used in (Walter et al., 2009), where the prediction is based on the ratings
of the trusted neighbours. Different integrations of the trust metric into the recom-
mendation process are proposed in (Massa and Avesani, 2007a), along with two met-
rics: PageRank and MoleTrust. The former is considered as a global metric based on
the well-known PageRank algorithm (Brin and Page, 1998); the latter is a local metric
based on a Depth-First graph traversal algorithm with an adjustable trust propagation
hotizon (Massa and Avesani, 2007a).

Finally, as proposed in (Massa and Avesani, 2007a), two ways to incorporate
these trust metrics into the recommendation models can be considered. The first one
makes use of the trust metric instead of the similarity metric in the standard user-
based CF formula. The second one, on the other hand, computes the average be-
tween Pearson’s similarity and the trust metric when both values are available; other-
wise it uses the only available value, thus overcoming the natural data sparsity. Re-
cently, Guo et al. (2012) propose to merge the ratings from the trusted neighbours in

order to decrease sparsity prior to the computation of the predicted rating.

2.3 Combining recommender systems

The proliferation of new recommendation strategies is giving rise to an increasing
variety of available options for the development of recommender systems. Research
in Machine Learning has long shown that the combination of methods usually
achieves better results than each method separately, which is also true in Recom-
mender Systems — the Netflix prize has been a paradigmatic example of this, where
all the top classified teams used large recommender ensembles, which can be consid-
ered as a case of hybrid filtering approaches.

In such a hybrid approach the most important decision is how to combine the
information. First, however, it has to be decided what kind of information is going to
be used in the ensemble. The standard approach in the literature is to combine CBF
and CF recommenders, overcoming the sparsity and restricted feature problems of

individual recommenders, as we shall see in the next section. However, other types



2.3 Combining recommender systems 29

and sources of information, such as social contacts and timestamps, have been re-
cently integrated into the classical formulation of standard recommendation tech-
niques.

In (Burke, 2002) a detailed taxonomy of hybrid recommender systems is pre-
sented, classifying existing approaches into the following types:

e Cascade: the recommendation is performed as a sequential process in such a

way that one recommender refines the recommendations given by the other.

¢ Feature augmentation: the output from one recommender is used as an addi-

tional input feature for other recommender.

o Feature combination: the features used by different recommenders are inte-
grated and combined into a single data source, which is exploited by a single

recommender.

e Meta-level: the model generated by one of the recommenders is used as the
input for other recommender. As stated in (Burke, 2002): “this differs from
feature augmentation: in an augmentation hybrid, we use a learned model to
generate features for input to a second algorithm; in a meta-level hybrid, the

entire model becomes the input.”

e Mixed: recommendations from several recommenders are available, and are
presented together at the same time by means of certain ranking or combina-

tion strategy.

e Weighted: the scores provided by the recommenders are aggregated using a

linear combination or a voting scheme.

e Switching: a special case of the previous type considering binary weights, in

such a way that one recommender is turned on and the others are turned off.

The use of a specific type of hybrid recommendation method depends on the fi-
nal application, but, more importantly, on the type of recommenders being com-
bined. Indeed, Burke (2002) presents an analysis of the possible hybrids, their limits
and incompatibilities, based on a representative subset of the recommendation tech-
niques available nowadays. Moreover, the author notes that some combinations turn
out to be redundant because of the symmetry in the hybridisation process for some
of the techniques listed above: weighted, mixed, switching, and feature combination.
Incompatible combinations arise for the feature combination and meta-level tech-
niques, where in some situations one of the recommenders is not able to use the
model or the features generated by the other recommender.

Burke (2002) focuses on hybrid techniques where the information being com-
bined consists of ratings (to be used by CF recommenders), content features (to be

used by CBF, knowledge-based, and utility-based recommenders), and demographic
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information. In the following, we survey hybrid recommenders where inputs in the
form of social information, collaborative (either ratings or logs), and content features
have been used. In the next section we analyse the limitations of these types of tech-
niques, together with the benefits that hybridisation may bring.

Among these possibilities, the most popular combination (probably due to its
inherent interest) consists of blending content-based and collaborative filtering re-
commenders. In fact, one of the first proposed hybrid techniques (Balabanovic and
Shoham, 1997) makes use of these two recommendation approaches by suggesting
items similar to the user’s profile (using content-based profiles) and those items
highly rated by a user with a similar profile, by means of a collaborative formulation
where neighbours are determined using a content-based similarity. In a similar way,
Pazzani (1999) combines content-based, demographic, and collaborative information
using two techniques: by plugging content-based similarity functions into collabora-
tive methods and by combining the final rankings produced by each recommender
seeking a consensus, that is, how many systems recommend each item, and in what
ranking position are both considered to build the final ranking.

In (Rojsattarat and Soonthornphisaj, 2003) a technique to derive a less sparse
pseudo rating matrix is proposed. More specifically, a pseudo user-ratings vector for
every user is built with the item ratings provided by user u when available, or the
ratings predicted by a content-based recommender otherwise. Gunawardana and
Meek (2009) propose to combine content and collaborative information in a coher-
ent manner by using a specific type of probabilistic models, Boltzmann machines.
These models let encoding the above sources of information as features, and then,
weights are learned to reflect how each feature helps predict the user ratings. Other
probabilistic models for combining these sources of information have been proposed
in (Yu et al,, 2003), where a hierarchical Bayesian model learns a prior distribution by
using probabilistic Support Vector Machines (SVMs).

Also from a machine learning perspective, an ensemble technique known as
stacking is used in (Bao et al., 2009), which learns multiple classifiers for different
prediction levels: at the first level, the recommendation techniques (a user-based CF,
an item-based CF, and a CBF algorithm) output a rating prediction, which may be
combined at the second level by a meta-learning algorithm that uses the predictions
as meta-features.

Alternatively, the same model can also be combined with itself using different
parameter values. For instance, in (Gantner et al., 2010) different factor models are
combined, where each model may have different regularisation parameters, stop
conditions and dimensionality values. Jahrer et al. (2010) combine a set of diverse CF
recommenders by using different machine learning techniques such as linear regres-
sion, neural networks, and a combination of bagging and gradient boosting trained

with decision trees.
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Furthermore, hybrid models have been proposed combining social and content
or collaborative information. In (Konstas et al., 2009) a Random Walk algorithm is
applied to a graph comprising of tags, social information, and implicit feedback from
users. In this way, more elaborate patterns and rules than the standard correlation
measure between users are provided. A similar approach can be found in (Liu et al.,
2010) for tag recommendation. The approach defined in (Clements et al., 2010) im-
proves search and recommendation by combining tags and ratings, and integrating
them into the uset’s social network also using a Random Walk algorithm. Hotho et
al. (2006) exploit social information along with tag content by converting a folkso-
nomy into a graph and then applying a weight-spreading algorithm for folksonomies
called FolkRank (similar to the well-known PageRank algorithm (Brin and Page,
1998). Finally, Jamali and Ester (2009) combine information from the social network
(in terms of trust between users) and ratings (collaborative) in order to alleviate the
cold-start problem. In that work, the authors make use of the collaborative informa-
tion as a termination condition of a random walk performed over the trust network
by considering the similarity of users; additionally, the authors also combine those
two sources for computing two sets of neighbours and, then, merging the items pro-

duced from those similar users.

2.4 General limitations of recommender systems

Each type of recommendation technique has strengths and weaknesses, well known
in the field. We have already noted the main characteristics of each technique, which
are largely dependent on the source of information being used. In this section we
analyse the main limitations of each technique. Furthermore, although ideally hybrid
recommendation techniques would overcome the problems of the combined tech-
niques, there are certain limitations that are inherent to the recommendation prob-
lem, and thus, have to be addressed indepedently. Besides, by combining different

methods, additional problems, along with more limitations, arise.

2.4.1 Limitations of single recommendation algorithms

In this section we describe the different limitations identified in the literature for the
main types of recommenders described in the previous sections.

The main limitations of CBF approaches are the following (Adomavicius and
Tuzhilin, 2005; Pazzani and Billsus, 2007; Cantador, 2008):

¢ Restricted content analysis. Content-based recommendations depend on the
available features explicitly associated with the items. These features should be

in a form that can be automatically parsed by a computer, or manually ex-
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tracted somehow, which, depending on the domain, could be unfeasible or

very difficult to maintain.

e New user. A user has to show some preference (ratings) for a sufficient num-
ber of items before a recommender can build a reliable content-based user pro-
file.

¢ Opverspecialisation. Since content-based recommenders only retrieve items
similar to what the user has already rated, recommendations are very similar
and, probably, well known to the user, providing little (or none) novelty from

the user perspective.

o Portfolio effect. Related to the previous limitation, sometimes the recom-
mended items are very similar among them, leading to a set of insufficiently di-

verse or too redundant item suggestions.
CF approaches have the following general weaknesses:

¢ Rating data sparsity. The number of observed user-item interactions (e.g. rat-
ings) is generally very small compared to the number of all user-item pairs.
This fact may cause CF algorithms to produce unreliable recommendations,

since they have been inferred from insufficient data.

e Grey sheep. Since collaborative recommendations rely on the tastes of similar
people to suggest new items, when a user has very specific or unusual prefer-
ences, it will be more difficult for the system to find good neighbours, and

thus, to recommend interesting items.

e New item. Until a new item has been rated by a substantial number of users, a
recommender system may not be able to recommend it; hence, popular items

tend to have advantage in this kind of systems.

e New user. Like in the content-based approaches, until a user has not provided
with enough ratings, the system is unable to recommend her interesting un-

known items.

In addition to these weaknesses, log-based CF techniques have other limitations.
Specifically, they are not able to capture negative preferences from the user since
unobserved items cannot be inferred as unliked items (they may represent items un-
known for the user). In contrast, it is easier to capture this type of information be-
cause it is less expensive for the user than providing a rating. Furthermore, although
the problem of ratings missing not at random is ubiquitous and inherent to any re-
commender system — since users typically rate only a small fraction of the available
items — log-based recommenders, and more specifically, the binary data inferred
from these implicit interactions, have the theoretical advantage that they are able to

exploit implicit preferences since the items observed by the users are deliberately
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Problem Description CBF | CF SF
Restricted Items to be recommended must have available data

. related to their features. This data is often unavailable | Yes No No
content analysis :
or incomplete.
CBF recommenders are trained with the content fea-
Overspecialisation | tures of the items. All the recommended items are Yes No No
similar to those already rated.
CBF recommenders suggest items based on the item
Portfolio effect features. An item is recommended even if it is too Yes No No
similar to a previously rated item.
A user has to rate enough items in order to infer their
New user preferences. When a new user enters into the system Yes | Yes | No
she has no ratings.
Items have to be rated by a substantial number of
New item users for being recommended. Recently incorporated No Yes No
items have none or insufficient ratings.
A user has to be similar to others in the community to
Grey sheep receive recommendations. Users whose tastes are No Yes | No
unusual may not receive useful suggestions.
Rating data sparsity Ratings are use;d to train user and item models. The No ves | No
number of available ratings is usually small.
Social Social connections are used to build social models.
. . No No Yes
sparsity The number of connections per user may be small.
New social A user has to be connected with someone else to
; receive recommendations. When the user is new, she No No Yes
connection . .
may not have any social connections.
Similarity based on social connections is used in SF
Social similarity recommenders. Two users socially connected may or No No Yes

may not have interests in common.

Table 2.1. List of common problems in CBF, CF, and SF systems.

selected by them. Thus, potentially more useful information about the user can be
gathered (Koren and Bell, 2011).

Regarding CF in general, memory-based approaches achieve lower performance

than model-based approaches. However, as stated in (Desrosiers and Karypis, 2011)

and (Koren and Bell, 2011), good prediction accuracy does not guarantee an effective

and satisfying user experience. Hence, the main advantages of memory-based re-

commenders are simplicity, justifiability, efficiency, and stability.

Finally, SF approaches have other limitations, as we describe next:

e Social sparsity. Social filtering methods need that every user has to be con-

nected through at least one contact in the social network to be able to produce

recommendations, which is not a typical situation for most of the users in a

system.




34 Chapter 2. Recommender systems

e New social connection. Recommendations may get biased if a user has a very
small social network, up to the point that if she has only one connection, every
social recommendation would be generated based on the activity of just one

user.

o Social similarity. The fact that two users share some kind of connection in a
social network does not necessarily mean that these users have similar interests.
Although some studies have shown some correlation between both (Ziegler
and Lausen, 2004), the misuse of this similarity may lead to bad recommenda-
tions, even though the user’s experience may be improved in terms of diversity

and serendipity.

As a summary, Table 2.1 shows a comparison of the main limitations for the

three types of recommendation algorithms described.

2.4.2 Limitations of recommender ensembles

As we have explained in the previous section, each type of recommendation — CBF,
CF, and SF — has its own limitations. Hybrid filtering systems are normally out of
this analysis since they compensate the shortcomings of one approach by the
strengths of the other, unless both suffer from the same problem, as in the case of a
new user when we combine CBF and CF approaches.

In general, hybrid recommenders are useful for alleviating the individual limita-
tions of the combined recommenders. However, recommender ensembles do not
always outperform individual recommenders. Van Setten (2005) describes the situa-
tion where all recommenders produce predictions that are “on the same side of the
rating the user would give, all too low or all too high.” In this situation the ensemble
would be less accurate than the best individual recommender. Additionally, when a
particular recommender always obtains superior/inferior performance than the rest
of recommenders in the ensemble, the corresponding recommender ensemble may
not be useful. In that case the underperforming recommenders are useless from the
beginning, whereas the over performing one should be used alone, and there is no
point in combining them.

The above issues assume that a particular metric is aimed to be optimised. Need-
less to say that the use of multiple recommenders may provide better results with
respect to other evaluation properties, such as diversity, novelty, and serendipity,
probably at the expense of a lower quality or accuracy of the recommendations
(Shani and Gunawardana, 2011).

Additionally, the recommender ensemble problem is similar to that of combining
classifiers in the Machine Learning field, a well studied research problem in that
community (Kuncheva, 2004). In such context, the diversity in the classifier outputs

is known to be a requirement for the combination to be effective. Thus, whenever
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some classifiers in an ensemble fail, these errors should be made on different objects,
in order to let a final performance improvement with the ensemble. In (Kuncheva,
2004) and (Kuncheva and Whitaker, 2003) Kuncheva and Whitaker present a num-
ber of diversity metrics, and analyse the relation of such metrics with respect to the
accuracy of a recommender ensemble, although they do not provide a systematically
formulation of such relation. As stated by the authors, the problem of classifier com-
bination and its relation with diversity may rise from the underlying meaning of di-
versity: whether it is a characteristic of the set of classifiers, or it is more complex and
a mixture of the characteristics of the set of classifiers, the combiner, and the etrrors.
Finally, although many different hybrid filtering approaches have been proposed
for recommender systems, there is a lack of a similar analysis to the one performed in
Machine Learning, where the different characteristics of the datasets and individual
recommenders have been investigated and assessed. A preliminary analysis was pet-
formed in (Bellogin et al., 2010), but an in-depth and larger-scale study would benefit
the community, considering different evaluation perspectives and, probably, borrow-

ing from the Machine Learning research on this topic.

2.5 Summary

Along over two decades of research and commercial development, recommender
systems have proved to be a successful technology to overcome the information
overload that burdens users in modern online media. The inherent possibility of deal-
ing with diverse sources of information, such as the content of the items and the
collaborative and social interactions among users and between users and a system,
has enabled the development of rich strategies based on each of these evidences,
deriving content-based, collaborative, and social filtering recommendation ap-
proaches. Furthermore, as each particular type of recommendation technique has its
own limitations and weaknesses, hybrid strategies have been proposed that combine
the suggestions generated by different techniques in different ways. The success of
ensemble approaches has been recently evidenced in the Netflix prize, where the top
classified teams used different forms of recommender ensembles.

There are, however, general limitations remain unsolved, and are still considered
as open research problems in the field. We have mentioned the sparsity of the infor-
mation (either in the forms of content-based attributes, collaborative ratings, and
social connections), and the new user problem, but other problems, not related to an
specific recommendation technique, have been identified in the literature, and de-
serve special attention by themselves, such as the need of contextualisation, the ex-
planation of the recommendations, and the efficiency in computing recommenda-
tions (Adomavicius and Tuzhilin, 2005).
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Evaluating performance

in recommender systems

If you cannot measure it, you cannot improve it.
William Thomson (Lord Kelvin)






Chapter 3

Evaluation of recommender

systems

The evaluation of recommender systems has been, and still is, the object of active
research in the field. Since the advent of the first recommender systems, recommen-
dation performance has been usually equated to the accuracy of rating prediction,
that is, estimated ratings are compared against actual ratings, and differences between
them are computed by means of the mean absolute error and root mean squared error met-
rics. In terms of the effective utility of recommendations for users, there is however
an increasing realisation that the quality (precision) of a ranking of recommended
items can be more important than the accuracy in predicting specific rating values.
As a result, precision-oriented metrics are being increasingly considered in the field,
and a large amount of recent work has focused on evaluating top-N ranked recom-
mendation lists with the above type of metrics.

In this chapter we provide a survey of different evaluation metrics, protocols,
and methodologies in the recommender systems field. In Section 3.1 we provide a
preliminary overview of how recommender systems are evaluated, presenting the
main (online and offline) evaluation protocols and dataset partitioning methods.
Next, in Section 3.2 we present the most common evaluation metrics, classified into
error-based and precision-based metrics, and in Section 3.3 we describe different
dataset partition strategies used in the experimental configurations. Finally, in Section
3.4 we present some evaluation datasets which are commonly used by the research

community, and that were used in the experimental work of this thesis.
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3.1 Introduction

The evaluation of recommender systems has been a major object of study in the field
since its eatliest days, and is still a topic of ongoing research, where open questions
remain (Herlocker et al., 2004; Shani and Gunawardana, 2011). Two main evaluation
protocols are usually considered (Gunawardana and Shani, 2009): on/ine and offline. In
this thesis we focus on offline evaluation, which lets compare a wide range of candi-
date algorithms at a low cost (Shani and Gunawardana, 2011). For a review of the
different tasks and protocols for online recommendation evaluation, see (Shani and
Gunawardana, 2011), (Pu et al., 2012), and (Kohavi et al., 2009).

Drawing from methodological approaches common to the evaluation of classifi-
cation, machine learning and information retrieval algorithms, offline recommender
system evaluation is based on holding out from the system a part of the available
knowledge of user likes (test data), leaving the rest (training data) as input to the algo-
rithm, and requiring the system to predict such preferences, so that the goodness of
recommendations is assessed in terms of how the system’s predictions compare to
the withheld known preferences. In the dominant practice, this comparison has been
oriented to measure the accuracy of rating prediction, computing error-based met-
rics. However, in terms of the effective utility of recommendations for users, there is
an increasing realisation that the quality (precision) of the ranking of recommended
items can be more important than the accuracy (error) in predicting specific rating
values. As stated in (Herlocker et al., 2004), the research community has moved from
the annotation in context task (i.e., predicting ratings) to the find good items task (i.e., pro-
viding users with a ranked list of recommended items), which better corresponds to
realistic settings in working applications where recommender systems are deployed.
As a result, precision-oriented metrics are being increasingly considered in the field.
Yet there is considerable divergence in the way such metrics are applied by different
authors, as a consequence of which the results reported in different studies are diffi-
cult to put in context and be compared.

In the classical formulation of the recommendation problem, user preferences
for items are represented as numeric ratings, and the goal of a recommendation algo-
rithm consists of predicting unknown ratings based on known ratings and, in some
cases, additional information about users, items, and the context. In this scenario, the
accuracy of recommendations has been commonly evaluated by measuring the error
between predicted and known ratings, using metrics such as the Mean Absolute Er-
ror (MAE), and the Root Mean Squared Error (RMSE). Although dominant in the
literature, some authors have argued this evaluation methodology is detrimental to
the field since the recommendations obtained in this way are not the most useful for
users (McNee et al., 2006). Acknowledging this, recent work has evaluated top-N

ranked recommendation lists with precision-based metrics (Cremonesi et al., 2010;
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McLaughlin and Herlocker, 2004; Jambor and Wang, 2010b; Bellogin et al., 2011b),
drawing from evaluation well studied methodologies in the Information Retrieval
field.

Precision-oriented metrics measure the amount of relevant and non-relevant re-
trieved (recommended) items. A solid body of metrics, methodologies, and datasets
has been developed over the years in the Information Retrieval field. Recommenda-
tion can be naturally stated as an information retrieval task: users have an implicit
need with regards to a space of items which may serve the uset’s purpose, and the
task of the recommender system is to select, rank and present the user a set of items
that may best satisfy her need. The need of the user and the qualities or reasons why
an item satisfies it cannot be observed in full, or described in an exact and complete
way, which is the defining characteristic of an information retrieval problem, as op-
posed to data retrieval tasks or logical proof. It is thus natural to adapt relevance-
based Information Retrieval evaluation methodologies here, which mainly consist of
obtaining manual relevance labels of recommended items with respect to the uset’s
need, and assessing, in different ways, the amount of relevant recommended items.

Recommendation tasks and the available data for their evaluation, nonetheless,
have specific characteristics, which introduce particularities with respect to main-
stream experience in the Information Retrieval field. In common information re-
trieval experimental practice, driven to a significant extent by the TREC campaigns
(Voorhees and Harman, 2005), relevance knowledge is typically assumed to be (not
far from) complete — mainly because in the presence of a search query, relevance is
simplified to be a user-independent property. However, in recommender systems it is
impractical to gather complete preference information for each user in a system. In
datasets containing thousands of users and items, only a fraction of the items that
users like is generally known. The unknown rest are, for evaluation purposes, as-
sumed to be non-relevant. This is a source of — potentially strong — bias in the meas-
urements depending on how unknown relevance is handled. In the next chapter we
cover in detail these problems, along with an analysis of the different experimental
design alternatives available in the literature.

In the reminder of this chapter we present some of the most common evaluation
metrics. We classify them into error-based and precision-based metrics, accounting
for the two tasks previously described — rating prediction and item ranking, respec-
tively. After that, we describe the main methodologies used in the area to partition
datasets and to select the candidate items in the latter task. Finally, we introduce the

datasets used in this thesis to evaluate different recommendation algorithms.
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3.2 Evaluation metrics

The evaluation of recommender systems should take into account the goal of the
system itself (Herlocker et al., 2004). For example, in (Herlocker et al., 2004) the au-
thors identify two main user tasks: annotation in context and find good items. In these
tasks the users only care about errors in the item rank order provided by the system,
not the predicted rating value itself. Based on this consideration, researchers have
started to use precision-based metrics to evaluate recommendations, although most
works also still report error-based metrics for comparison with state of the art ap-
proaches. Moreover, other authors, such as Herlocker and colleagues (Herlocker
et al., 2004), encourage considering alternative performance criteria, like the novelty
of the suggested items and the item coverage of a recommendation method. We de-

scribe the above types of evaluation metrics in the subsequent sections.

3.2.1 Error-based metrics

A classic assumption in the recommender systems literature is that a system that pro-
vides more accurate predictions will be preferred by the user (Shani and Gunawar-
dana, 2011). Although this has been further studied and refuted by several authors
(McNee et al.,, 2006; Cremonest et al., 2011; Bollen et al., 2010), the issue is still
worth being analysed.

Traditionally, the most popular metrics to measure the accuracy of a recom-
mender system have been the Mean Absolute Error (MAE), and the Root Mean
Squared Error (RMSE):
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where 7 and 7 denote the predicted and real rating, respectively, and Te corresponds
to the test set. The RMSE metric is usually preferred to MAE because it penalises
larger errors.

Different variations of these metrics have been proposed in the literature. Some
authors normalise MAE and RMSE with respect to the maximum range of the
ratings (Goldberg et al., 2001; Shani and Gunawardana, 2011) or with respect to the
expected value if ratings are distributed uniformly (Matlin, 2003; Rennie and Srebro,
2005). Alternatively, per-user and per-item average errors have also been proposed
in order to avoid biases from the error (or accuracy) on a few very frequent users or
items (Massa and Avesani, 2007a; Shani and Gunawardana, 2011). For instance, the

user-average MAE is computed as follows:
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A critical limitation of these metrics is that they do not make any distinction be-
tween the errors made on the top items predicted by a system, and the errors made
for the rest of the items. Furthermore, they can only be applied when the recom-
mender predicts a score in the allowed range of rating values. Because of that, log-
based, and some content-based and probabilistic recommenders cannot be evaluated
in this way, since 7(u,i) would represent a probability or, in general, a preference
score. Hence, these methods can only be evaluated by measuring the performance of

the generated ranking using precision-based metrics.

3.2.2 Precision-based metrics

These metrics can be classified into three groups: metrics that only use one ranking,
metrics that compare two rankings (typically, one of them is a reference or ideal

ranking), and metrics from the Machine Learning field.

Metrics based on one ranking

Examples of these metrics are precision, recall, normalised discounted cumulative
gain, mean average precision, and mean reciprocal rank. Each of these metrics cap-
tures the quality of a ranking from a slightly different angle. More specifically, preci-
sion accounts for the fraction of recommended items that are relevant, whereas re-
call is the fraction of the relevant items that has been recommended. Both metrics
are inversely related, since an improvement in recall typically produces a decrease in
precision. They are typically computed up to a ranking position or cutoff k, being
denoted as P@k and R@k, and defined as follows (Baeza-Yates and Ribeiro-Neto,
2011):
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where Rel,, represents the set of relevant items for user u, and Rel, @k is the num-
ber of relevant recommended items up to position k.

Recall has also been referred to as hit-rate in (Deshpande and Karypis, 2004).
Hit-rate has also been defined as the percentage of users with at least one correct
recommendation (Bellogin et al., 2012), corresponding to the success metric (or first
relevant score), as defined by TREC (Tomlinson, 2005).
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Furthermore, the mean average precision (MAP) metric provides a single
summary of the user’s ranking by averaging the precision figures obtained after each

new relevant item is obtained, as follows (Baeza-Yates and Ribeiro-Neto, 2011):
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where rank(u, i) outputs the ranking position of item i in the user’s u list; hence,

precision is computed at the position where each relevant item has been recom-
mended.

Normalised discounted cumulative gain (nDCG) uses graded relevance that
is accumulated starting at the top of the ranking and may be reduced, or discounted,

at lower ranks (Jarvelin and Kekaldinen, 2002):
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where the discount function fdis(rel(u, ip),p) is usually defined as fys(x,y) =
(2* —=1)/log(1 + y) or simply fyis(x,¥) = x/logy if y > 1, fy,(x,¥) = x oth-
erwise, depending on the emphasis required on retrieving highly relevant items (Croft
et al., 2009). IDCGK denotes the score obtained by an ideal or perfect ranking for
user U up to position k, which acts as a normalisation factor in order to compare
different users and datasets. Besides, p,, denotes the maximum number of items
evaluated for each user; which is typically assumed to be a cutoff k, the same for all
the users. In that situation, this metric is denoted as nDCG@k.

Using a different discount function, the rank score or half-life utility metric
(Breese et al., 1998; Herlocker et al., 2004; Huang et al., 2006) can be obtained as

follows:
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where d is the default ranking, and « is the half-life utility that represents the rank of
the item on the list such that there is a 50% chance that the user will view that item.
In (Breese etal.,, 1998) the authors use a value of 5 in their experiments, and note
that they did not obtain different results with a half-life of 10.

Mean reciprocal rank (MRR) favours rankings whose first correct result occurs
near the top ranking results (Baeza-Yates and Ribeiro-Neto, 2011). It is defined as

follows:

1
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where s,(u) is a function that returns the position of the first relevant item obtained
for user u. This metric is similar to the average rank of correct recommendation
(ARC) proposed in (Burke, 2004) and to the average reciprocal hit-rank (ARHR)
defined in (Deshpande and Karypis, 2004).

It is important to note that since its eatly days, there has been a concern in the
Information Retrieval field for the value and validity of the standard precision and
recall metrics in interactive contexts (Su, 1992; Belkin and Croft, 1992). Nonetheless,
precision-based metrics such as precision and recall, and more in general, metrics
that measure the quality of the item ranking returned by a recommender have been

frequently used in the field, despite they often lead to uncomparable results (Bellogin
et al., 2011a).

Metrics based on two rankings

Additionally, specific metrics have been defined in the context of recommender
evaluation that take as inputs two rankings (ideal vs estimated) instead of just one. A
first example is the normalised distance-based performance measure (NDPM),
used in (Balabanovic and Shoham, 1997), and proposed in (Yao, 1995). This metric
compares two different weakly ordered rankings, and is formulated as follows
(Herlocker et al., 2004; Shani and Gunawardana, 2011):

Ccon Ctle
NDPM = il Z (3.10)

where Cy, is the number of pairs of items for which the real ranking (reference rank-
ing using the ground truth) asserts an ordering, i.e., the items are not tied. Besides,
C°" denotes the number of discordant item pairs between the method’s ranking and
the reference ranking, and CH® represents the number of pairs where the reference
ranking does not tie, but where the method’s ranking does. This metric is comparable
across datasets since it is normalised with respect to the worst possible scenario (de-
nominator). Furthermore, it provides a perfect score of 0 to systems that correctly
predict every preference relation asserted by the reference, and a worst score of 1 to
methods that contradict every reference preference relation. Besides, a penalisation
of 0.5 is applied when a reference preference relation is not predicted, whereas pre-
dicting unknown preferences (i.e., they are not ordered in the reference ranking) re-
ceives no penalisation.

As the previous metric, rank correlation metrics such as Spearman’s p and
Kendall’s T have also been proposed to directly compare the system ranking to a
preference order given by the user. These correlation coefficients are later defined

and analysed (Chapter 5). Here we only indicate that they provide scores in the range
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of —1 to 1, where 1 denotes a perfect correlation between the two above rankings,
and —1 represents an inverse correlation.

These two metrics, along with NDPM, suffer from the interchange weakness
(Herlocker et al., 2004), that is, interchanges at the top of the ranking have the same
weight that interchanges at the bottom of the ranking,.

Metrics from Machine Learning

Finally, some other metrics from the Machine Learning literature have also been
used, although they are not very popular. For instance, the receiving operating
characteristic (ROC) curve and the area under the curve (AUC) have been used in
(Herlocker et al., 1999), (Schein et al.,, 2001), (Schein et al., 2002), and (Rojsattarat
and Soonthornphisaj, 2003), among others. Metrics based on the ROC curve provide
a theoretically grounded alternative to precision and recall (Herlocker et al., 2004).
The ROC model attempts to measure the extent to which an information filtering
system can successfully distinguish between signal (relevant items) and noise. Starting
from the origin of coordinates at (0,0), the ROC curve is built by considering, at each
rank position, whether the item is relevant or not for the user; in the first case, the
curve goes one step up, and in the second, one step right.

A random recommender is expected to produce a straight line from the origin to
the upper right corner; on the other hand, the more leftwards the curve leans, the
better is the performance of the system. These facts are related to the area under the
ROC curve, a summary metric that is expected to be higher when the recommender
petforms better, where the expected value of a random recommender is 0.5, corre-
sponding to a diagonal curve in the unit square.

In (Schein etal, 2001) the authors discriminate between the Global ROC
(GROC) curve and the Customer ROC (CROC) curve, where the former assumes
that only the most certain recommendations are made where some users may receive
no recommendation at all; thus, the number of recommendations could be different
for each user. The CROC curve is more realistic in the sense that every user receives
the same amount of recommended items. However, for this curve a perfect recom-
mender would not necessarily obtain an AUC of 1, and thus, it is required to com-
pute the associated value of a perfect ROC curve in order to provide a fair compari-

son and normalise accordingly.

3.2.3 Other metrics

As different applications have different needs, additional characteristics of recom-
mendations could be taken into consideration, and thus alternative metrics beyond
accuracy and precision may be measured. In this context, it is important to under-

stand and evaluate the possible trade-offs between these additional characteristics
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and their effect on the overall recommendation performance (Shani and Gunawar-
dana, 2011). For instance, some algorithms may provide recommendations with high
quality or accuracy, but only for a small proportion of users or items, probably due to
data sparsity. This effect can be quantified by measuring the coverage of the re-
commender system. Two types of coverage can be defined: user coverage (proportion
of users to whom the system can recommend items) and e or catalog coverage (pro-
portion of items the system can recommend). In (Shani and Gunawardana, 2011)
two metrics are proposed for measuring item coverage: one based on the Gini’s in-
dex, and another based on Shannon’s entropy. In (Ge et al., 2010) the authors pro-
pose simple ratio quantities to measure such metrics, and to discriminate between the
percentage of the items for which the system is able to generate a recommendation
(prediction coverage), and the percentage of the available items that are effectively ever
recommended (catalog coverage). A similar distinction is considered in (Herlocker et al.,
2004) and (Salter and Antonopoulos, 20006). In (Hetrlocker et al., 2004) it is acknowl-
edged that item coverage is particularly important for the tasks of find all good items
and annotation in context. Besides, a system with low coverage is expected to be less
valuable to users and the authors propose to combine coverage with accuracy meas-
ures to yield an overall “practical accuracy” measure for the system, in such a way
that coverage is raised only because recommenders produce bogus predictions.

Beyond coverage, two recommendation characteristics have become very popu-
lar recently: novelty and diversity. Already a large amount of work has focused on
defining metrics for measuring such characteristics (Lathia et al., 2010; Shani and
Gunawardana, 2011; Vargas and Castells, 2011; Zhang and Hurley, 2009), and de-
signing algorithms to provide novel and/or diverse recommendations (Jambor and
Wang, 2010b; Onuma et al., 2009; Weng et al., 2007; Zhou et al., 2010).

Novel recommendations are those that suggest the user items she did not know
about prior to the recommendation (Shani and Gunawardana, 2011), referred to as
non-obvious items in (Herlocker et al., 2004; Zhang et al., 2002). Novelty can be
directly measured in online experiments by directly asking users whether they are
familiar with the recommended item (Celma and Herrera, 2008). However, it is also
interesting to measure novelty in an offline experiment, so as not to restrict its
evaluation to costly and hardly reproducible online experiments.

Novelty can be introduced into recommendations by using a topic taxonomy
(Weng et al., 2007), where items containing novel topics are appreciated. Typically,
novel topics are obtained by clustering the previously observed topics for each user.
In (Lathia et al., 2010), novelty measures the amount of new items appearing in the
recommended lists over time. In (Onuma et al., 2009) a technique based on graphs is
introduced to suggest nodes (items) well connected to older choices, but at the same

time well connected to unrelated choices.
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Metrics based on Information Theoretic properties of the items being recom-
mended have also been proposed by several authors. In (Bellogin et al.,, 2010) the
entropy function is used to capture the novelty of a recommendation list, in (Zhou
etal,, 2010) the authors use the self-information of the uset’s top recommended
items, and in (Filippone and Sanguinetti, 2010) the Kullback-Leibler divergence is
used.

In Information Retrieval, diversity is seen as an issue of avoiding redundancy and
finding results that cover different aspects of an information need (Radlinski et al.,
2009). In that context, most of the proposed methods and metrics make use of (ex-
plicit or inferred) query aspects (topics or interpretations) to rank higher the most
likely results (Demidova et al., 2010), or diversify a prior result set (Clarke et al., 2008;
Agrawal et al., 2009; Chandar and Carterette, 2010; Radlinski et al., 2008; Rafiei et al.,
2010).

In recommender systems diversity has been typically defined in an ad-hoc way,
often mixing concepts such as diversity, novelty and coverage. For example, in (Salter
and Antonopoulos, 2006) the authors make use of the catalog coverage defined
above as a measure of recommendation diversity. A similar assumption is done in
(Kwon, 2008). In (Zhou et al., 2010) the authors show that by tuning appropriately a
hybrid recommender it is possible to obtain simultaneous gains in both accuracy and
diversity, which is measured as the inter-list distance between every pair of users in
the collection. Zhang and Hurley (2008) measure the novelty of an item by the
amount of diversity it brings to the recommendation list, which is computed using a
distance or dissimilarity function.

More formal definitions for diversity have also been proposed. In (Lathia et al,,
2010) the authors propose to analyse diversity of top-N lists over time by comparing
the intersection of sequential top-N lists. A statistical measure of diversity is pro-
posed in (Zhang and Hurley, 2009), where the authors consider a recommendation
algorithm to be fully diverse if it is equally likely to recommend any item that the user
likes. In (Jambor and Wang, 2010b), the introduction of the covariance matrix into
the optimisation problem leads to promote items in the long tail. A similar result is
obtained in (Celma and Herrera, 2008), where the items with fewer interactions
within the community of users (long tail) are assumed to be more likely to be un-
known. Based on item similarities and focused on content-based algorithms, the au-
thors in (Bradley and Smyth, 2001) propose a quality metric which considers both the
diversity and similarity obtained in the recommendation list. A definition based on
the entropy of the probability distributions of each recommender with respect to the
items is proposed in (Bellogin et al., 2010), and the Gini’s index is used in (Fleder and
Hosanagar, 2009).

Finally, in (Vargas and Castells, 2011) a formal framework for the definition of

novelty and diversity metrics is presented, where several previous metrics are unified



3.3 Experimental setup 49

by identifying three ground concepts at the roots of novelty and diversity: choice,
discovery, and relevance.

Other metrics such as serendipity, privacy, adaptivity, confidence, and scalability
have been less explored in the literature, but their importance and application to re-
commender systems have already been discussed, making clear their relation with the
uset’s experience and satisfaction, which is the ultimate goal of a “good” recom-
mender system (Herlocker et al., 2004; McNee et al., 2006; Shani and Gunawardana,
2011).

3.3 Experimental setup

An important decision in the experimental configuration of a recommender evalua-
tion is the dataset partition strategy. How the datasets are partitioned into training
and test sets may have a considerable impact on the final performance results, and
may cause some recommenders to obtain better or worse results depending on how
this partition is configured. Although an exhaustive analysis of the different possibili-
ties to choose the ratings/items to be hidden is out of the scope of this thesis, we
briefly discuss now some of the most well-known methods used.

First, we have to choose whether or not to take time into account (Gunawardana
and Shani, 2009). Time-based approaches naturally require the availability of user
interaction data timestamps. A simple approach is to select a time point in the avail-
able interaction data timeline to separate training data (all interaction records prior to
that point) and test data (dated after the split time point). The split point can be set
so as to, for instance, have a desired training/test ratio in the experiment. The ratio
can be global, with a single common split point for all users, or user-specific, to en-
sure the same ratio per user. Time-based approaches have the advantage of more
realistically matching working application scenarios, where “future” user likes (which
would translate to positive response to recommendations by the system) are to be
predicted based on past evidence. As an example, the well-known Netflix prize pro-
vided a dataset where the test set for each user consisted on her most recent ratings
(Bennett and Lanning, 2007).

If we ignore time, there are at least the following three strategies to select the
items to hide from each user: a) sample a fixed number (different) for each user; b)
sample a fixed (but the same for all) number for each user, also known as giwen 1 or all
but n protocols; c) sample a percentage of all the interactions using cross-validation. The
most usual protocol is the last one (Goldberg et al., 2001; Sarwar et al., 2001), al-
though several authors have also used the @/ but n protocol (Breese et al., 1998; Wang
et al., 20082). The MovieLens datasets provide random splits following a five-fold

cross validation strategy, as we shall see in the next section.
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Nonetheless, independently from the dataset partition, it is recognised that the
goals for which an evaluation is performed may be different in each situation, and
thus, a different setting (and partition protocol) should be developed (Hetlocker
et al., 2004; Gunawardana and Shani, 2009). If that is not the case, the results ob-
tained in a particular setting would be biased and difficult to use in further experi-
ments, for instance, in an online experimentation.

Furthermote, as mentioned eatlier, in order to evaluate ranked recommendations
for a target user U, it is required to select two sets of items, namely relevant and not
relevant. In the next chapter, we describe different possibilities explored in the litera-
ture, along with a detailed analysis of these alternatives and the possible biases that

may appear.

3.4 Evaluation datasets

In this section we present three datasets that were used in the experimental parts of
this thesis. The datasets correspond to different domains: movie recommendation, in
which user preferences are provided in the form of ratings, and music recommenda-
tion, where user preferences are derived from implicit (log-based) evidence. Fur-
thermore, one of the datasets includes social information that can be exploited by

social filtering algorithms.

3.4.1 MovieLens dataset

The Grouplens research lab' has released different datasets obtained from user in-
teraction in the MovieLens recommender system. At the time of writing, there are

three publicly available MovielLens datasets of different sizes:
e The 100K dataset, containing 100,000 ratings for 1,682 movies by 963 users.
e The 1M dataset, with one million ratings has 6,040 users and 3,900 movies.

e The 10M dataset, with 10 million ratings consists of almost 71,600 users and
10,700 movies, and 100,000 tag assignments.

Although there are larger public datasets (such as the one provided for the well-
known competition organised by Netflix’ between 2006 and 2009), the first two
MovielLens datasets are currently, by far, the most used in the field.

The ratings range on a 5-star scale in all three datasets; the 100K and 1M ver-
sions only use “integer” stars, and 10M uses “half star” precision (ten discrete rating

values). Every user has at least 20 ratings in any of the datasets.

! GroupLens research lab, http:/ /www.grouplens.org
2 Netflix site, http://www.netflix, and Netflix Prize webpage, http://www.netflixprize.com
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3.4.2 Last.fm dataset

Last.fm is a social music website. At the moment, the site has more than 40 million
users (claimed 30 million active in 2009°) in more than 190 countries. Several authors
have analysed and used this system for research purposes; special mention deserves
those who have made their datasets public, such as (Konstas et al.,, 2009), (Celma,
2010), and (Cantador et al., 2011).

In 2010, Oscar Celma released two datasets collected using the Last.fm API. The
first one (usually referred to as 360K) contains the number of plays (called serobblings
in the platform) of almost 360,000 users, counted on music artists, amounting to
more than 17 million of (user, artist, playcounts) tuples. The second dataset (named
1K) contains fewer users (nearly 1,000) but, in contrast to the previous one, the
whole listening history of each user is collected as tuples (user, timestamp, artist, mu-

sic track) for up to 19 million tuples.

3.4.3 CAMRa dataset

In 2010 the 1% Challenge on Context-aware Movie Recommendation (CAMRa 2010°)
was held at the 4" ACM conference on Recommender Systems (RecSys 2010). The
challenge organisers released four datasets that were used in three different challenge
tracks (Adomavicius et al., 2010). These tracks were focused on temporal recom-
mendation (weekly recommendation), recommendation based on mood (Moviepilot track),
and social recommendation (Fimtipset track). Two ditferent datasets were provided
for the first track, whereas the second and third tracks were assigned a different data-
set each (Said et al., 2010).

These datasets were gathered from the Filmtipset’ and Moviepilot’ communities,
and, depending on the track, contained social links between users, movie ratings,
movie reviews, review ratings, comments about actors and movies, movie directors
and writers, lists of favourite movies, moods, and links between similar movies. Film-
tipset is the largest online social community in the movie domain in Sweden, with
more than 90,000 registered users and 20 million ratings in its database. Moviepilot,
on the other hand, is the leading online movie and TV recommendation community
in Germany; it has over 100,000 registered users and a database of over 40,000 mov-
ies with roughly 7.5 million ratings (Said et al., 2010).

Further editions of this challenge have also released datasets related to recom-

mendation tasks (focused on group recommendation in 2011 (Said et al., 2011) and

3 Announcement, http://bloglast.fm/2009/03 /24 /lastfm-radio-announcement
+ CAMRa site, http://2010.camrachallenge.com/

5> Filmtipset site, http://www.filmtipset.se

¢ Moviepilot site, http://www.moviepilot.de


http://blog.last.fm/2009/03/24/lastfm-radio-announcement
http://2010.camrachallenge.com/
http://www.filmtipset.se/
http://www.moviepilot.de/
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on additional context information in 2012). However, they were not used in this the-

sis, and thus, they are not described in detail here.

3.5 Summary

In the Recommender Systems literature several evaluation metrics, protocols, and
methodologies have been defined. It remains unclear the equivalence between them
and the extent to which they would provide comparable results.

The problem of evaluating recommender systems has been a major object of
study and methodological research in the field since its earliest days. Error-based
metrics have widely dominated the field, and precision-based metrics have started to
be adopted more recently. Other metrics from the Machine Learning field have been
proposed but they are not widely used in the community yet. Moreover, metrics for
additional dimensions such as novelty or diversity have also started to be researched
in the last few years.

There are, still, important characteristics of the evaluation methodologies and
metrics that remain unexplored. In contrast to the Information Retrieval community,
where statistical analysis and eventual biases in the evaluation as a whole have been
studied (Buckley et al., 2006; Aslam et al., 2006; Soboroff, 2004), there is a lack of
such an analysis for recommender systems. This raises a key issue for our research
which shall be analysed in depth in the next chapter, where we propose some alterna-

tive methodologies to overcome some of the possible biases that may arise.



Chapter 4

Ranking-based evaluation of
recommender systems:

experimental designs and biases

There is an increasing consensus in the Recommender Systems community that the
dominant error-based evaluation metrics are insufficient, and to some extent inade-
quate, to properly assess the practical effectiveness of recommendations. Seeking to
evaluate recommendation rankings — which largely determine the effective accuracy
in matching user needs — rather than predicted rating values, Information Retrieval
metrics have started to be applied to evaluate recommender systems.

In this chapter we analyse the main issues and potential divergences in the appli-
cation of Information Retrieval methodologies on recommender system evaluation,
and provide a systematic characterisation of experimental design alternatives for this
adaptation. We lay out an experimental configuration framework upon which we
identify and analyse specific statistical biases arising in the adaptation of Information
Retrieval metrics to recommendation tasks, which considerably distort the empirical
measurements, hindering the interpretation and comparison of results across experi-
ments. We propose two experimental design approaches that effectively neutralise
such biases to a large extent. We support our findings and proposals through both
analytical and empirical evidence.

We start the chapter by introducing the problem of (un)biased evaluation in re-
commender systems. The reminder of the chapter follows by revisiting the principles
and assumptions underlying the Information Retrieval evaluation methodology: the
Cranfield paradigm (Section 4.2). After that, in Section 4.3 we elaborate a formal
synthesis of the main approaches to the application of Information Retrieval metrics
to recommendation. In Sections 4.4 and 4.5 we analyse, respectively, the sparsity and
popularity biases of Information Retrieval metrics on recommendation tasks. We
present and evaluate two approaches to avoid these biases in Section 4.6,and end

with some conclusions in Section 4.7.
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4.1 Introduction

There seems to be a raising awareness in the Recommender Systems (RS) community
that important — or even central — open questions remain to be addressed concerning
the evaluation of recommender systems. As we mentioned in the previous chapter,
the error in predicting held-out user ratings has been by far the dominant offline
evaluation methodology in the RS literature (Breese et al., 1998; Herlocker et al.,
2004). The limitations of this approach are increasingly evident, and have been exten-
sively pointed out (Cremonesi et al., 2010). The prediction error has been found to
be far from enough or even adequate to assess the practical effectiveness of a re-
commender system in matching user needs. The end users of recommendations re-
ceive lists of items rather than rating values, whereby recommendation accuracy met-
rics — as surrogates of the evaluated task — should target the quality of the item selec-
tion and ranking, rather than the numeric system scores that determine this selection.

For this reason, researchers are turning towards metrics and methodologies from
the Information Retrieval (IR) field (Barbieri et al., 2011; Cremonesi et al., 2010; Her-
locker et al., 2004), where ranking evaluation has been studied and standardised for
decades. Yet, gaps remain between the methodological formalisation of tasks in both
fields, which result in divergences in the adoption of IR methodologies, hindering the
interpretation and comparability of empirical observations by different authors. The
use of IR evaluation techniques involves the adoption of the Cranfield paradigm
(Voorhees and Harman, 2005), and common metrics such as precision, mean average
precision (MAP), and normalised Discounted Cumulative Gain (nDCG) (Baeza-
Yates and Ribeiro-Neto, 2011). Given the natural fit of top-n recommendation in an
IR task scheme, the adoption of IR methodologies would seem straightforward.
However, recommendation tasks, settings, and available datasets for offline evalua-
tion involve subtle differences with respect to the common IR settings and experi-
mental assumptions, which result in substantial biases to the effectiveness measure-
ments that may distort the empiric observations and hinder comparison across sys-
tems and experiments.

Furthermore, how to measure the performance of a recommender system is a key
issue in our research. The variability in the experimental configurations, and the ob-
served statistical biases of the evaluation methodologies should be well understood,
since we aim to predict the performance of a system. We should avoid the situation
where a metric shows some source of noise together with the recommender’s quality,
since then a predictor capturing only that noise would appear as an (equivocal) effec-
tive performance predictor.

Taking up from prior studies on the matter (Cremonesi et al., 2010; Herlocker
et al., 2004; Shani and Gunawardana, 2011; Steck, 2011), we revisit the methodologi-

cal assumptions underlying IR metrics, and analyse the differences between Recom-
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mender Systems and Information Retrieval evaluation settings and their implications.
Upon this, we identify two sources of bias in IR metrics on recommender systems:
data sparsity and item popularity. We characterise and study the effect of these two
factors both analytically and empirically. We show that the value range of common
IR metrics is determined by the density of the available user preference information,
to such an extent that the measured values per se are not meaningful, except for the
purpose of comparison within a specific experiment. Furthermore, we show that the
distribution of ratings among items has a drastic effect on how different algorithms
compare to each other. Finally, we propose and analyse two approaches to mitigate
popularity biases on the measured ranking quality, providing theoretical and empiri-

cal evidence of their effectiveness.

4.2 Cranfield paradigm for recommendation

Information Retrieval evaluation methodologies have been designed, studied, and
refined over the years under the so-called Cranfield paradigm (van Rijsbergen, 1989;
Voorhees, 2002b). In the Cranfield paradigm, as e.g. typically applied in the TREC
campaigns (Voorhees and Harman, 2005), information retrieval systems are evaluated
on a dataset comprising a set of documents, a set of queries — referred to as 7gpzs and
consisting of a description or representation of user information needs —, and a set of
relevance judgments by human assessors — referred to as ground truth. The assessors
manually inspect queries and documents, and decide whether each document is rele-
vant or not for a query. Theoretically, each query-document pair should be assessed
for relevance, which, for thousands or millions of documents, is obviously unfeasi-
ble. Therefore, a so-called pooling approximation is applied, in which the assessors
actually inspect and judge just a subset of the document collection, consisting of the
union of the top-n documents returned by a set of systems for each query. These
systems for pooling are commonly the ones to be evaluated and compared, and n is
called the pooling depth, typically ranging around 100 documents. While this procedure
obviously misses some relevant documents, it has been observed that the degree of
incompleteness is reasonably small, and the missing relevance does not alter the em-
piric observations significantly, at least up to some ratio between the pooling depth
and the collection size (Buckley et al., 2007).

Whereas in a search system users may enter multiple queries, the recommenda-
tion task — in its classic formulation — typically considers a single “user need” per
user, that is, a user has a set of cohesive preferences which defines her main interests.
In this view a natural fit of recommendation in the Cranfield paradigm would take
users — as an abstract construct — as the equivalent of queries in ad-hoc retrieval (the
user need to be satisfied), and items as equivalent to documents (the objects to be

retrieved and ranked), summarised in Table 4.1. A first obvious difference is that
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Task element TREC ad-hoc retrieval task | Recommendation task

Information need expression | Topic (query and description) | User profile

All documents in the collection | Target item set

Candidate answers ) One or more per user,
Same for all queries .
commonly different

Document data available as Training ratings,

. Document content .
system input item features
Relevance Topical, objective Personalised, subjective
Ground truth Relevance judgments Test ratings
Relevance assessment Editorial assessors End users
Relevance knowledge Reasonably complete Highly incomplete
coverage (pooling) (inherently to task)

Table 4.1. Fitting the recommendation task in the Cranfield IR evaluation paradigm

queries are explicit representations of specific information needs, whereas in the rec-
ommendation setting, user profile records are a global and implicit representation of
what the user may need or like. Still, the query-user mapping is valid, inasmuch as
user profiles may rightfully fit in the IR scheme as “vague queries.”

The definition of ground truth is less straightforward. User ratings for items, as
available in common recommendation datasets, are indeed relevance judgments of
items for user needs. However, many recommendation algorithms (chiefly, collabora-
tive filtering methods) require these “relevance judgments” as input to compute rec-
ommendations. The rating data withholding evaluation approach, pervasive in RS
research, naturally fits here: some test ratings can be held out as ground truth and the
rest be left as training input for the systems. Differently from TREC, here the “que-
ries” and the relevance assessments are both entered by the same people: the end-
users. Furthermore, how much data are taken for training and for ground truth is left
open to the experiment designers, thus adding a free variable to be watched over as it
significantly impacts the measurements.

On the other hand, whereas in the IR setting all the documents in the collection
are candidate answers for all queries, the set of target items on which recommender
systems are tested for each user need not be necessarily the same. As already de-
scribed in the previous chapter, in general, the items with a test rating are included in
the candidate set for the raters, though not necessarily in a single run (Cremonesi
et al., 2010). Moreover, it is common to select further non-rated target items, but not
necessarily all the items (Bellogin et al., 2011a). Furthermore, the items rated by a
user in the training set are generally excluded from the recommendation to this user.
The way these options are configured has a drastic effect on the resulting measure-
ments, with variations in orders of magnitude (Bellogin et al., 2011a).

In addition to this, the coverage of user ratings is inherently much smaller in re-

commender systems’ datasets compared to TREC collections. The amount of un-
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known relevance — which in TREC is assumed to be negligible — is pervasive in rec-
ommendation settings (it is in fact intrinsic for the task to make sense), to a point
where some assumptions of the IR methodology may not hold, and the gap between
measured and real metric values becomes so significant that a metric’s absolute mag-
nitude may just lose any meaning. Still, such measurements may support comparative
assessments between systems, as far as the bias is system-independent.

Finally, the distribution of relevance in the retrieval space displays popularity pat-
terns that are absent in IR datasets. The number of users who like each item is very
variable (typically long-tailed) in recommendation datasets, whereas in TREC collec-
tions very few documents are relevant for more than one query. We shall show that
this phenomenon has a very strong effect not only on metric values, but more im-
portantly on how systems compare to each other.

In order to provide a formal basis for our study we start by elaborating a system-
atic characterisation of design alternatives for the adaptation of IR metrics to re-
commender systems, taking into account prior approaches described in the literature,
such as those presented in the previous chapter. This formal framework will help us
to analyse and describe the measurement biases in the application of IR metrics to

recommender systems, and study new approaches to mitigate them.

4.3 Experimental design alternatives

The application of Information Retrieval metrics to recommender systems evaluation
has been studied by several authors in the field (Barbieri et al., 2011; Breese et al.,
1998; Cremonesi et al., 2010; Herlocker et al., 2004; Shani and Gunawardana, 2011).
We elaborate here an experimental design framework that aims to synthesise com-
monalities and differences between studies, encompassing prior approaches and sup-
porting new variants upon a common methodological grounding. We formalise the
different methodologies presented in the previous chapter, and provide an equiva-
lence between both formulations.

In the following, given a rating set split into training and test rating sets, we say
an item [ € J is relevant for a user u € U if u rated i positively, and its correspond-
ing rating falls in the test set. By positive rating we mean a value above some design-
dependent threshold. All other items (non-positively rated or non-rated) are consid-
ered as non-relevant. Like in the previous chapter, recommender systems are re-
quested to rank a set of target items Ty, for each user. Such sets do not need to be the
same for each user, and can be formed in different ways. In all configurations Ty,
contains a combination of relevant and non-relevant items, and the different ap-

proaches are characterised by how these are selected, as we describe next.
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Design settings Alternatives

Al ¢c=7

Tl € = Uyey Reest (W)

AR T, D PRyesc (1)

IR [T N PRes(w)| =1

AN N, = € — PRest(U) = Rerain (1)
NN Fixed [N, |, random sampling

Base candidate items

Relevant

Item selection

Non-relevant

Table 4.2. Design alternatives in target item set formation.

4.3.1 Target Item Sampling

We identify three significant design axes in the formation of the target item sets: can-
didate item selection, relevant item selection, and irrelevant item sampling. We con-
sider two relevant alternatives for each of these axes, summarised in Table 4.2, which
we describe next.

We shall use R(u) and PR(u) to denote the set of all and positively rated items
by user u, respectively, and r(u), pr(u) to denote the respective size of those sets.
With the subscripts “test” and “train” we shall denote the part of such sets (or their
sizes) contained on the corresponding side of a data split. An equivalent notation
r(i), pr(i), and so on, will be used for the ratings of an item, and when no user or
item is indicated, the total number of ratings is denoted. This notation and the rest to
be used along the chapter are summarised in Table 4.3.

Let N, = T, — PRyest (1) be the non-relevant target items for u. As a general
rule, we assume non-relevant items are randomly sampled from a subset of candidate
items C C J, the choice of which is a design option. We mainly find two significant
alternatives for this choice: € =J (e.g. (Shani and Gunawardana, 2011)) and
C = Uyeu Reest (W) (e.g. Bellogin et al., 2011a; Vargas and Castells, 2011)). The first
one, which we denote as Al for “all items”, matches the typical IR evaluation setting,
where the evaluated systems take the whole collection as the candidate answers. The
second, to which we shall refer as TT (“test items”) is an advisable condition to avoid
certain biases in the evaluation of RS, as we shall see.

Once C is set, for each user we select a set N, € € — PRiest(#) — Ripain (W).
N, can be sampled randomly for a fixed size [N | (we call this option NN for “N
non-relevant”), or all candidate items can be included in the target set, Ny, = C —
PRiest () — Ripain (1) (we refer to this as AN for “all non-relevant”). Some authors
have even used Ty, = Ryese(u) (Basu et al., 1998; Jambor and Wang, 2010a; Jambor
and Wang, 2010b), but we discard this option as it results in a highly overestimated

precision (Bellogin et al., 2011a). The size of Ny, is thus a configuration parameter of
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the experimental design. For instance, in (Cremonesi et al., 2010) the authors pro-
pose |Ny| = 1,000, whereas in (Bellogin et al., 2011a) the authors consider N, =
Upew Reest (V) — Rirain (1) — PRyese (1), among other alternatives. To the best of
our knowledge, the criteria for setting this parameter have not been analysed in detail
in the literature, leaving it to common sense and/or trial and etror. It is worth noting
nonetheless that in general [Ny, | determines the number of calls to the recommenda-
tion algorithms, whereby this parameter provides a handle for adjustment of the cost
of the experiments.

Regarding the relevant item selection, two main options are reported in the lit-
erature, to which we shall refer as AR for “all relevant”, and 1R for “one relevant.”
In the AR approach all relevant items are included in the target set, ie., Ty D
PRes: (1) (Bellogin et al., 2011a). In the 1R approach, for user u, several target item
sets T,; are formed, each including a single relevant item (Cremonesi et al., 2010).
This approach may be more sensitive to the lack of recommendation coverage, as we
shall observe later on. The choice between an AR or a 1R design involves a differ-
ence in the way the ranking quality metrics are computed, as we shall discuss in the

next section.

Symbol Meaning
U 7 C Set of all users | all items | candidate items
" Trest Terain Nr. of all | test | training ratings
pr DPliest DPTtrain Nr. of all | test | training positive ratings
R(u) Riest(W)  Ryrain(u) [Setofall | test | training items rated by u
PR(u) PR.os:(u) PRypqin(w) [Set of all | test | training items liked by u
r(u) pr(u) INT. of items rated | liked | ... by u
(i) pr(i) INT. of users who rated | like | ... item i
T, Ty Set of target items for u in AR | 1R
N, N7 Non-relevant items added to build T, | T},
Pi@n(T,) P@n of item set T, as ranked by s for u
top¥(T,,n) 'Top n items in T,, as ranked by s for u
T4 (i,S) Position of i in S 3 i as ranked by s for u
i° i The item ranked k-th in T,, | T by s for u
o Split ratio: reee /T
P p p, = Ty N PR W|/ITyl, p = avg, p,
¢ “Average” target set size: 1/avg,(1/|T,1)
S Relevance density in target sets: pr/ (t|U|)

Table 4.3. Notation summary.
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4.3.2 AR vs. 1R Precision

Essentially, the way metrics are defined in AR and 1R differs in how they are aver-
aged. In AR the metrics are computed on each target set Ty, in the standard way as in
IR, and then averaged over users (as if they were queries). As a representative and
simple to analyse metric, we shall use P@n henceforth, but similar properties to all
the ones discussed here are observed for other metrics such as MAP and nDCG. The

mean AR precision of a recommender system S can be expressed as:
1 1 u
P,@n = m Z E |t0ps (Tw Tl) N PRtest(u)l
uelu

where top¥ (T, n) denotes the top n items in Ty, ranked by s for u.
In the 1R design, drawing from (Cremonesi et al., 2010), we compute and aver-

age the metrics over the Ty sets, as follows:

PTeest(u)
. 1 2 ‘ 4.1
1RP,@n = precision(n) = E Pr@n(Ty) *+1
PTtest -
ueu r=1

where P*@n(Ty)) is the standard precision of Ty, for u. This form to express the
metric is equivalent to the original formulation in (Cremonesi et al., 2010), but lets a
straightforward generalisation to any other IR metric such as MAP and nDCG, by
just using them in place of Py*@n in Equation (4.1). We shall intentionally use the
same symbol P to refer both to 1R and AR precisions when there is no ambiguity.
Whenever there may be confusion, or we wish to stress the distinction, we shall use
1RP to explicitly denote 1R precision.

AR precision basically corresponds to the standard precision as defined in IR,
whereas 1R precision, while following essentially the same principle, departs from it
in the formation of runs, and the way to average values. Additionally, note that the
maximum value of 1RP@n is 1/n as we shall see in the next section, mainly since
each run has only one relevant item. Besides, in Section 4.4 we shall establish a for-

mal relation between both ways to compute precision.

4.3.3 Preliminary Test

In order to illustrate the effects of the different described alternatives, we show their
results on three common collaborative filtering algorithms, based respectively on
probabilistic Latent Semantic Analisys (pLSA) (Hofmann, 2004), matrix factorisation
(MF) (Koren et al., 2009), and user-based nearest-neighbours (kNN) (Cremonesi
et al., 2010). As additional baselines, we include recommendation by popularity and

random recommendation. We use two datasets: the 1M version of MovieLens, and
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Figure 4.1. Precision of different recommendation algorithms on MovieLens 1M and
Last.fm using AR and 1R configurations.

an extract from Last.fm published by O. Celma (Celma and Herrera, 2008). Details
about the implementation and datasets partition are provided in Appendix A.

Figure 4.1 shows the P@10 results with AR and 1R configurations. For 1R we
shall always use TI-NN, with |T,,| = 100. This is a significantly lower value than | T,
= 1,001 reported in (Cremonesi et al., 2010), but we have found it sufficient to en-
sure statistical significance (e.g. Wilcoxon p < 0.001 for all pairwise differences be-
tween the recommenders in Figure 4.1), at a considerably reduced execution cost. We
adopt the TT policy in 1R to avoid biases that we shall describe later. In the AR con-
figuration we show TI-AN and AI-AN for MovielLens, though we shall generally
stick to TI-AN in the rest of the chapter. In Last.fm we use only TI-NN and a tem-
poral split, with [Ny | = 2,500 for efficiency reasons, since |I| = 176,948 is consid-
erably large in this dataset. We set the positive relevance rating threshold to 5 in
MovieLens, as in (Cremonesi et al., 2010), whereas in Last.fm, we take any number
above 2 playcounts as a sign of positive preference. We have experimented with
other thresholds for positive ratings, obtaining equivalent results to all the ones that
are reported here — the only difference is discussed in Section 4.6.

It can be seen that pLSA consistently performs best in most experimental con-
figurations, closely followed by popularity, which is the best approach in Last.fm
with AR, and that MF is generally superior to kINN. Some aspects strike our atten-
tion. First, even though P@10 is supposed to measure the same thing in all cases, the
range of the metric varies considerably across configurations and datasets, and even
the comparison is not always consistent. For instance, in AR popularity ranges from
0.08 on Movielens to 0.35 on Last.fm; and AR vs. 1R produces some disagreeing
comparisons on Last.fm. It may also be surprising that popularity, a non-personalised
method, fares so well compared to other algorithms. This effect was already found
recently in (Cremonesi et al., 2010) and (Steck, 2011). We also see that TI and Al
produce almost the same results. This is because Uyey Reese (W) ~ 7 in Movielens;

differences become noticeable in configurations where Uyeqy Reese (W) is significantly
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smaller than J, as we shall see in Section 4.6.2. As mentioned before, note that in this
case, the upper bound of P@10 for the 1R methodology is 0.10.

Some of this variability may reflect actual strengths and weaknesses of the algo-
rithms for different datasets, but we shall show that a significant part of the observed
variations is due to statistical biases arising in the adaptation of the Cranfield meth-
odology to recommendation data, and are therefore meaningless with respect to the
assessment of the recommenders’ accuracy. Specifically, we have found that the met-
rics are strongly biased to test data sparsity and item popularity. We shall analyse this
in detail in Sections 4.4 and 4.5, but before that we establish a relation between AR
and 1R precision that will help in this analysis.

4.3.4 Relation between AR and 1R

We have seen that AR and 1R precisions produce in general quite different values,
and we shall show they display different dependencies over certain factors. We find
nonetheless a direct relation between the two metrics. Specifically, 1R precision is
bound linearly by NN-AR precision, that is, IRP;@n = O(P;@n), as we show next.

Lemma. Let us assume the irrelevant item sampling in 1R is done only once for all
the test ratings of a user, that is, we select the same set of non-relevant items
N} = N, in the T;] target sets. If we denote T, = Ny U PRps (1) — in other words,
T, = U, T} —, we have:
|u|PS@n < 1RPS@1’1 < Zueu muPsu@mu(Tu) (4.2)
PTtest N Pliest

with My = N + Pries: (W) — 1, where P;@n is the NN-AR precision computed with

the target sets {T}, }.

Proof. Let ij; be the relevant item included in Ty, and let T#(i, S) denote the ranking
position assigned to i by s for u within a set S, where i € S. Since T; © T,,, we have
that T¥ (i}, Ty ) < t#(il, Ty). This means that if i}, is ranked above n in Ty, then it is
also above n in its target set Ty,. Hence Z:Ztle“(u)ﬁop;‘ (T),n) N PR, (W] =
[top¥ (T, n) N PRiest (W)]. Summing on u, and dividing by n and pryese we prove
the first inequality of Equation (4.2).

On the other hand, it is easy to see that T#(il,, TX) = t#(il, T,,)) + preese (W) —
1. Thus, if if; is ranked above 1 in T,¥, then it is above my, = n + pries(u) — 1 in

T,. Thus Pt ®|topt (T, n) N PReese ()] < [t0p¥(Ty, my) N PRegse (W) =

r=1

m, Ps@m,, (T,). And the second inequality of Equation (4.2) follows again by sum-

ming on U, and dividing by 1 and pries;. U
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Figure 4.2. Empiric illustration of Equation (4.2). The curves show 1IRP@10 and its bounds,
for pLSA and kNN over MovieLens 1M. The light and dark shades mark the distance to the
upper and lower bounds, respectively. The left side shows the evolution when progressively
removing test ratings, and the right side displays the variation with |T,, | ranging from 100 to
1,000.

Note that the assumption Ny, = N,, in the lemma is mild, inasmuch as the statis-
tical advantage in taking different N, for each r is unclear. Even in that case, P;@n
and avg,ecy (muPSu @m,, (Tu)) should be reasonably stable with respect to the ran-
dom sampling of Ny, and thus Equation (4.2) tends to hold. Figure 4.2 illustrates the
relation between the AR bounds and the 1R values. The empiric observation suggests
they provide similar while not fully redundant assessments. We also see that the
bounding interval reduces progressively as |T,,| is increased (right), and even faster

with test data sparsity (left) — in sum, the metric converges to its bounds as |T,| >

avgy PTiest (u) = prtest/lul-

4.3.5 Limitations of error-based metrics

The analysis presented in (Bellogin et al., 2011a) leads to question again the suitability
of error metrics. As in (McLaughlin and Herlocker, 2004), we found that there is no
direct equivalence between results with error- and precision-based metrics. Common
sense suggests that putting more relevant items in the top-N is more important for
real recommendation effectiveness than being accurate with predicted rating values,
which are usually not even shown to real users. Our study confirms that measured
results differ between these two perspectives. An online experiment, where real us-
ers’ feedback is contrasted to the theoretic measurements, may shed further light for
an objective assessment and finer analysis of which methodology better captures user
satisfaction.

Furthermore, the use of error-based metrics may not be applicable depending on
the dataset or the recommender evaluated. For instance, log-based datasets and
probabilistic (e.g. pLSA) or popularity-based recommenders cannot be evaluated

using error-based metrics because no real ratings are available in the first case, and in
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the second case because such recommenders do not necessarily predict a rating, not
even a score in the range of ratings (Cremonesi et al., 2010).

The application of ranking-based metrics to recommendation, nonetheless, is far
from being trivial. Firstly, there are obvious differences between the Cranfield para-
digm and a standard recommendation context, as described in Section 4.2. Secondly,
the evaluation methodology may be sensitive to any statistical bias which may appear
in the process. In the next sections we shall analyse two of these sources of bias:

sparsity and popularity.

4.4 Sparsity bias

As mentioned earlier, we identify two strong biases in precision metrics when applied
to recommendation. The first one is a sensitivity to the ratio of the test ratings vs. the
added non-relevant items. We study this effect by an analysis of the expected preci-

sion for non-personalised and random recommendations in the AR and 1R settings.

4.4.1 Expected Precision

Let i, € T, be the item ranked at position k in the recommendation output for u
by a recommender system S, and let 0 be the ratio of test data in the training-test
data split. In an AR setup the expected precision at n (over the sampling space of
data splits with ratio g, the sampling of Ny, and any potential non-determinstic as-

pect of the recommender system — as e.g. in a random recommender) is:

n
1
E[P,@n] = avg (—Z p(rel|i}®,u, Tu))
ueu \N

k=1
where p(rel|i,u) denotes the probability that item i is relevant for user u, i.e., the
probability that i € PRps:(u). Now we may write p(rel|i,ﬁ"s,u, Tu)
p(rel, T, iy, w)/p(Tu|ii* w), where we have p(T,|ip*u) = p(iy" €T,) =
IT.I/ICl. On the other hand, p(rel, T,|iy* u) < p(iy" € PRt W) NT,) =
p (i,‘i’u € PRtest(u)) = p(rel|iy*,u), since PReg(w) © Ty, in the AR methodol-
ogy. If s is a non-personalised recommender then i and u are mutually independ-

ent, and it can be scen that avg,cy p(rel|iy®, u) = avg, ey p(relli®). All this

gives:

n
E[P,@n] = l—t z avg p(rel|i}”)
£ uet



4.4 Sparsity bias 065

where 1/t = avg, (1/|T,|) — if T,, have all the same size, then t = |T,|. As all rele-
vant items for each user are included in her target set, we have p(rel|i,’j’s) =
E[prtest(i};’s)] /IU|. If ratings are split at random into test and training, this is equal
too - pr(i}j’s)/l‘ul. Hence, we have:

E[P,@n] » |U| Z avg pr(iy®) (4.3)

Now, if items were recommended at random, we would have E[pr(tk RND)]
pr/|7], and therefore:
o-pr

. 4.4
(U] g6 4.4

E[PRND@n] = E[PRND] ~

where § is the average density of known relevance — which depends on how many
preferences for items the users have conveyed, and the size of the target test item
sets.

On the other hand, in a 1R evaluation setup, we have:

Preest(W) n

E[1RP,@n] = Z Z Z rel|i™*,u,TT
* n - PTiest ( |k )

ueu r=1

- U,r,S

where i;,”” € Ty denotes the item ranked at position k in T;]. For random recom-

mendation, we have p(?’elllur RND ), TT) = 1/|T;| = 1/t since all target sets have

the same size, whereby we have:

E[1RPryp@n] = E[1RPgryp] = 1/t (4.5)

4.4.2 Test Sparsity Bias

The above results for the expected random precision provide a formal insight on
strong metric biases to characteristics of the data and the experimental configuration.
In both Equations (4.4) for AR and (4.5) for 1R, we may express the expected ran-
dom precision as E[Pgyp @n] = avg, p, = p, where p,, is the ratio of positively
rated items by u in Ty, (or Ty, for that matter), and p ~ ¢ - §, or p = 1/t, depending
on the experimental approach. In the AR approach the density &, and thus the p
ratio, are also inversely proportional to t. Precision in this methodology is therefore
sensitive to (grows linearly with) o and pr, and is inversely proportional to t,
whereas 1R is only sensitive (inversely proportional) to t. The expected precision of
random recommendation naturally provides a lower bound for any acceptable re-
commender. Note that in any configuration of AR and 1R, the total precision of any

system is Py = Payp = p = E[Pryp @n], since as all systems are required to return
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Figure 4.3. Evolution of the precision of different recommendation algorithms on
MovielLens 1M, for different degrees of test sparsity. The x axis of the left and center
graphics shows different amounts of removed test ratings. The x axis in the right graphic is
the size of the target item sets.

(recommend) all items in the target sets Ty, (or Ty), that is, the total precision does
not depend on the ranking. At lower cutoffs, we expect to have P;@n >
E[Pgnp @n] = p. In other words, the lower bound — and so the expected range — for
the P@n of recommender algorithms grows with the average ratio of relevant items
per target item set.

The p ratio — hence the random precision — thus depends on several aspects of
the experimental setup (the experimental approach, the split ratio o, the number of
non-relevant items in the target sets), and the test collection (the number of ratings,
the number of users). Therefore, since p and the random precision can be adjusted
arbitrarily by how the test sets are split, constructed, etc., we may conclude that the
specific value of the metric has a use for comparative purposes, but has no
particular meaning by itself, unless accompanied by the corresponding aver-
age relevance ratio p of the target test sets. This is naturally in high contrast to
common IR datasets, where both the document collection and the relevance infor-
mation are fixed and not split or broken down into subsets. In fact, the metric values
reported in the TREC campaigns have stayed within a roughly stable range over the
years (Armstrong et al., 2009a; Armstrong et al., 2009b). Note also that the sparsity
bias we analyse here is different from the impact of training data sparsity in the per-
formance of collaborative filtering systems. What we describe is a statistical bias
caused by the sparsity of test data (as a function of overall data sparsity and/or test
data sampling), and its effect does not reflect any actual variation whatsoever in the
true recommendation accuracy.

The sparsity bias explains the precision range variations observed earlier in Fig-

ure 4.1. The empirically obtained values of random precision match quite exactly the
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theoretically expected ones. To what extent the random recommendation analysis
generalises to other algorithms can be further analysed empirically. Figure 4.3 illus-
trates the bias trends over rating density and target set size, using the experimental
setup of Section 4.3.3 (with TI-AN in AR, and TI-NN in 1R). We show only the
results in MovieLens — they display a similar effect on Last.fm. In the left and center
graphics, we simulate test sparsity by removing test ratings. In the right graphic we
vary t = |T,| in a 1R configuration. We observe that the empirical trends confirm
the theoretical analysis: precision decreases linearly with density in the AR methodol-
ogy (left graphic, confirming a linear dependence on &), whereas precision is inde-
pendent from the amount of test ratings in the 1R approach (center), and shows in-
verse proportionality to t (right). It can furthermore be seen that the biased behavior
analytically described for random recommendation is very similarly displayed by the
other recommenders (only differing in linear constants). This would confirm the
explanatory power of the statistical trend analysis of random recommendation, as a
good reference for similar biases in other recommenders. On the other hand, even
though the precision values change drastically in magnitude, it would seem that the
comparison between recommenders is not distorted by test sparsity. We find other
biases in precision measurements, however, which do affect the comparison of re-

commenders, as we study in the next section.

4.5 Popularity bias

Sparsity is not the only bias the metric measurements are affected by. The high ob-
served values for a non-personalised method such as recommendation by popularity
raise the question of whether this really reflects a virtue of the recommender, or
some other bias in the metric. We seck to shed some light on the question by a closer

study.

4.5.1 Popularity-Driven Recommendation

Even though they contradict the personalisation principle, the good results of popu-
larity recommendation can be given an intuitive explanation. By averaging over all
users, precision metrics measure the overall satisfaction of the user population. A
method that gets to satisfy a majority of users is very likely to perform well under
such metrics. In other words, average precision metrics tend to favour the satisfac-
tion of majorities, regardless of the dissatisfaction of minorities, whereby algorithms
that target majority tastes will expectably yield good results on such metrics. This
implicitly relies on the fact that on a random item split, the number of test ratings for
an item correlates with its number of training ratings, and its number of positive rat-

ings correlates with the total number of ratings. More formally, the advantage of
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popularity-oriented recommendation comes from the fact that in a random rating
split, E[priese ()] o< pr(i) o« E[prirqin ()] & 744in (i), which means that the items
with many training ratings will tend to have many positive test ratings, that is, they
will be liked by many users according to the test data. We analyse this next, more
formally and in more detail.

In a popularity recommender i}j’POP is the k-th item in the target set with most
ratings in the training set — ie., the system ranks items by decreasing order of
Ttmin(iZ’Pop). This ranking is almost user-independent (except for those, statistically
negligible, user items already in training which are excluded from the ranking) and
therefore, for an AR experimental design, Equation (4.3) applies. Since we have
Zﬁ:l pr(i};,Pop) = max; ZZ:l pr(i}lj’s) (as far as E[priese ()] & 1pqin (i) for a
random training-test split), the popularity recommendation is the best possible non-
personalised system, maximising E[Ps@n]. Popularity thus achieves a considerably
high precision value, just for statistical reasons.

For a 1R experimental design, using Equation (4.2) (lemma) we have:

U|E|P,@n E[lm, Pt@m,(T,
|UIE[P; ]SE[lRPS@n]sZ” [m, P} @m,(T,)]
PTtest N - PTiest

Now, since P@n and P*@m,, above are computed by AR, we may elaborate from

Equation (4.3) for a non-personalised recommender, and we get:

|71
n-t-pr uE

z pr(i}®) < E[1RP,@n] < ———— avg Z pr(i}*)

"PT ueu
This experimental approach is thus equally biased to popular items, since the latter
optimise X2_, pr(iy).

Note that the advantage of popularity over other recommenders is highly de-
pendent on the skewness in the distribution of ratings over items: if all items were
equally popular, the popularity recommender would degrade to random recommen-
dation — in fact slightly worse, as Pryese (1) X Typ5e (1) = 7/|I| = T4rqin (), so popu-
lar items would have fewer positive test ratings. On the other extreme, if a few items
(Iess than n) are liked by most users, and the rest are liked by very few, then popular-

ity approaches the maximum precision possible.

4.5.2 Popularity Distributions

In order to illustrate how the dependence between the popularity precision and the
background popularity distribution evolves, we simulate different degrees of skewness
in rating distributions. As a simulated distribution pattern we use a shifted power law
r(iy) = ¢y + B(c, + k)™%, where a determines the skewness (e.g. @ ~ 1.4 for
MovieLens 1M). Figure 4.4 (left) shows the shape of generated distributions ranging



4.5 Popularity bias 69

Simulated ratings 1R on simulated data Real datasets
Popularity L ‘s\' 5
—e— pLSA & w7
| —o— MF 08 |5 e
—+— kNN S R
---- Random < o 2
] 06 /S &
RS
] 04 e
. o \):\\
//
1 024/~
[ ’
O—0—0 '’
T T T T T T T T T 1 0
Items 0 04 08 12 16 2 Items

[

Figure 4.4. Effect of popularity distribution skewness on the popularity bias. The left
graphic shows the cumulated popularity distribution of artificial datasets with simulated
ratings, with skewness ranging from a = 0 to 2. The x axis represents items by popularity
rank, and the y axis displays the cumulative ratio of ratings. The central graphic shows the
precision of different recommendation algorithms on each of these simulated datasets. The
right graphic shows the cumulative distribution of positive ratings in real datasets.

from uniform (@ = 0) to a very steep long-tailed popularity distribution (@ = 2), and
(center) how the measured precision evolves in this range. The artificial data are cre-
ated with the same number of users, items, and ratings (therefore the same rating den-
sity) as in MovieLens 1M, setting ¢; and ¢, by a fit to this dataset, and enforcing these
constraints by adjusting 8. The rating values ate assigned randomly on a 1-5 scale, also
based on the prior distribution of rating values in Movie-Lens.

The results in Figure 4.4 (center) evidence the fact that the precision of popular-
ity-based recommendation is heavily determined by the skewness of the distribution.
It benefits from steep distributions, and degrades to slightly below random (0.0077
vs. 0.0100) when popularity is uniform. This slightly below-random performance of
popularity recommendation at @ = 0 is explained by the fact that E[pryes (i)] «
Elriese (D] = 7 () — E[1train ()] is inverse to the popularity ranking by Tepqin (1)
when (i) is uniform, as predicted at the end of the previous section. KNN and MF
stay essentially around random recommendation. This is because the data are devoid
of any consistent preference pattern (as collaborative filtering techniques would as-
sume) in this experiment, since the ratings are artificially assigned at random, and the
results just show the “pure” statistical dependency to the popularity distribution.
pLSA does seem to take advantage of item popularity, as it closely matches the effec-
tiveness of popularity recommendation. We show only the 1R design, but the effect
is the same in AR.

This observation also explains the difference between datasets from IR and
those from recommendation with regards to the popularity bias. Figure 4.4 (right)

shows the cumulative distribution of positive user interaction data per item in three
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datasets: Netflix, MovieLens, and Last.fm (the dataset in Section 4.3.3). The shapes
of the curves are typical of long-tailed distributions, where a few popular items ac-
cumulate most of the preference data (Celma, 2010; Celma and Cano, 2008). This
contrasts with the distribution of positive relevance judgments over documents in
TREC data (same figure) — where we have aggregated 30 individual tracks, filtering
out the documents that are not relevant to any query, and obtaining a set of 703 que-
ries, 129,277 documents, and 149,811 positive judgments. The TREC distribution is
considerably flatter, not far from uniform: 87.2% of documents are relevant to just
one quetry, and the maximum number of positive assessments per document is 25
(3.6% of queries), whereas the top popular item in Netflix, MovieLens, and Last.fm,
is liked by 20.1%, 32.7% and 73% of users, respectively.

Several reasons account for this difference between retrieval and recommender
datasets. First, in IR queries are selected by design, intending to provide a somewhat
varied testbed to compare retrieval systems. Hence, including similar queries with
overlapping relevance would not make much sense. Second, queries in natural search
scenarios are generally more specific and narrower than global user tastes for rec-
ommendation, whereby the corresponding relevant sets have much less intersection.
Furthermore, the TREC statistics we report are obtained by aggregating the data of
many tracks, in order to seek any perceptible popularity slant. The typical TREC ex-
periments are actually run on separate tracks comprising typically 50 queries, where
very few documents, if any, are relevant to more than one query. Note also that even
though we have filtered out over 0.7 million non-relevant plus nearly 5 million unla-
beled documents in the TREC statistics, the non-relevant documents actually remain
as input to the systems, contrarily to experiments in the recommender domain, thus
making up an even flatter relevance distribution. Moreover, in the usual IR evalua-
tion setting, the systems have no access to the relevance data — thus, they have no
means to take a direct bias towards documents with many judgments —, whereas in
recommendation, this is the primary input the systems (particularly collaborative fil-
tering recommenders) build upon. The popularity phenomenon has therefore never
been an issue in IR evaluation, and neither the metrics nor the methodologies have
had to even consider this problem, which arises now when bringing them to the rec-
ommendation setting — where the overlap between user preferences is not only

common, but actually needed by collaborative filtering algorithms.

4.6 Overcoming the popularity bias

After analysing the effects of popularity in precision metrics, the issue remains: to
what extent do the good results of popularity recommendation reflect only a statisti-
cal bias in a metric, or any degree of actual recommendation quality? The same ques-

tion should be raised for pLSA, which seems to follow the popularity trends quite
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Figure 4.5. Rating splits by a) a popularity percentile partition (left), and b) a uniform
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E[pr,.s. ()] —i.e., the random split ratio needs not be applied on a per-item basis — whereas
on the right it does represent pr . (i).

closely. We address the question by proposing and examining alternative experimen-
tal configurations, where the statistical role of popularity gets reduced, as we propose

next.

4.6.1 Percentile-Based Approach (P1R)

We propose a first approach to neutralise the popularity bias, which consists in parti-
tioning the set of items into M popularity percentiles J, € J, breaking down the
computation of accuracy by such percentiles, and averaging the m obtained values.
By doing so, in a common long-tailed popularity distribution, the margin for the
popularity bias is considerably reduced, as the difference Ay, in the number of posi-
tive test ratings per item between the most and least popular items of each percentile
is not that high. The popularity recommender is forced to recommend as many un-
popular as popular items, thus leveling the statistical advantage to a significant extent.
It remains the optimal non-personalised algorithm, but the difference — and thus the
bias — is considerably reduced. The technique is illustrated in Figure 4.5a.

A limitation of this approach is that it restricts the size of the target sets by
|T,| < |7|/m. For instance, for m = 10 in MovieLens 1M, this imposes a limit of
|T, | < ~ 370, which seems acceptable for 1R. The restriction can be more limiting in
the AR approach, e.g. the TI and Al options cannot be applied (except within the
percentiles). For this reason, we will only apply the percentile technique in the 1R
design, a configuration to which we shall refer as P1R.
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4.6.2 Uniform Test Item Profiles (UAR, U1R)

We now propose a second technique consisting of the formation of data splits where
all items have the same amount of test ratings. The assumption is that the items with
a high number of training ratings will no longer have a statistical advantage by having
more positive test ratings. That is, the relation E[priegs (1)] o 74qin (i) described in
Section 4.5.1 breaks up. The approach consists of splitting the data by picking a set T
of candidate items, and a number 7 of test ratings per item so that |T|n/r = o. For
this to be possible, it is necessary that (1 — &) r(i) =1, Vi € T, where € is a mini-
mum ratio of training ratings per item we consider appropriate. In particular, in order
to allow for n-fold cross-validation, we should have £ = 1/n. The selection of T can
be done in several ways. We propose to do so in a way that it maximises |T], i.e., to
use as many different target test items as possible, avoiding a biased selection to-
wards popular items. If we sort i € J by popularity rank, it can be seen that this is
achieved by picking T={i,€dlk<{} with (=
max {k| (1 —¢&)r(i,) k/r = g}, so thatn = (1 — €) r(ig). Figure 4.5b illustrates
this procedure.

The expected effect of this approach is that the statistical relation E[pryes: ()] o
pr (i) no longer holds, and neither should hold now, as a consequence, the rationale
described in Section 4.5.1 for popularity being the optimum non-personalised re-
commender. In fact, since E[pries: ()] =n-pr(i)/r(i) for any i €T, and
n = o - r/|T|, it can be seen that if C = T (TI policy) Equation (4.3) for AR yields:

pr(iy®)
ElRenl tI’UI Z well (1)

for any non-personalised recommender. If the ratio pr(i K ) / r(i;'s) of positive
ratings does not depend on k, we have E[P;@n] = E[Pgyp@n] = o - §. This means
that popularity recommendation may get some advantage over other recommenders
only if — and to the extent that — popular items have a higher ratio of positive ratings
than unpopular items, and popularity recommendation will degrade to random preci-
sion otherwise. On the other hand, it can be seen that if C 2 T (i.e., the TI policy is
not adhered to), then E[Pgyp @n] would get reduced by a factor of IT|/]1€].

For a non-personalised recommender in a 1R design, elaborating from Equa-
tions (4.2) and (4.3) we get:

pr(lk
n- t pr uE‘uz T(lus) = 1RP@ ] t " pr ueuZ T'(lus '
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Figure 4.6. Positive ratings ratio vs. popularity rank in MovieLens 1M. The graphic plots
pr(i)/r (i), where items are ordered by decreasing popularity. We display averaged values
for 100 popularity segments, for a smoothed trend view.

an equivalent situation where the measured precision of popularity recommendation
is bound by the potential dependence between the ratio of positive ratings and popu-
larity.

Figure 4.6 shows this ratio as pr(i)/r(i) with respect to the item popularity
rank in MovieLLens 1M. It can be seen that indeed the ratio grows with popularity in
this dataset, which does lend an advantage for popularity recommendation. Even so,
we may expect the bias to be moderate — but this has to be tested empirically, as it
depends on the dataset. Note also that in applications where all ratings are positive
(as e.g. in our Last.fm setup), popularity — and any non-personalised recommender —
would drop exactly to random precision (E[Ps@n] = ¢ - § in AR and 1/t in 1R).

A limitation of this approach is that the formation of T may impose limits on the
value of 0, and/or the size of T. If the popularity distribution is very steep, T may
turn out small and therefore biased to a few popular items. Moreover, there is in gen-
eral a solution for T only up to some value of 0 — it is easy to see (formally, or just
visually in Figure 4.5) that as ¢ = 1 there is no item for which (1 —€) r(iy) k/r =
0, unless the popularity distribution was uniform, which is never the case in practice.
We have however not found these limitations to be problematic in practice, and
common configurations turn out to be feasible without particular difficulty. For in-
stance, in MovieLens 1M we get |T| = 1,703 for ¢ = 0.2 with € = 0.2 (allowing for a
5-fold cross-validation), resulting in 17 = 118 test ratings per item.

This method can be used, as noted, in both the AR and 1R approaches. We shall
refer to these combinations as UAR and U1R respectively, where ‘U’ stands for the
“uniform” number of item test ratings. In U1R it is important to set C = T in order
to sample non-relevant items within T (i.e., N, € T, for the TI policy). Otherwise,
popularity would have a statistical advantage over other recommenders, as it would

systematically rank irrelevant items in Ny — T below any relevant item in T, whereas
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other algorithms might not. The same can be considered in UAR, unless the experi-
mental setup requires [Ty | > |T|, as e.g. in the Al design. In that case a slight popu-

larity bias would arise, as we shall see next.

4.6.3 Experimental Results

Figure 4.7 compares the results measured by 1R, AR and their corresponding popu-
larity-neutralising variants. The setup is the same as in previous sections, except that
for AR, we take TI-NN with [Ny | = 1,700, to level with UAR in random precision.
All the results correspond to MovieLens 1M except Last.fm where indicated. It can
be seen that P1R, UIR and UAR effectively limit the popularity bias. The techniques
seem to be more effective on 1R than AR: UIR and (even more) P1R actually place
the popularity algorithm by the level of random recommendation, whereas the meas-
ured popularity precision decreases in UAR, but remains above kNN. The advantage
of popularity over randomness in UIR and P1R is explained by the bias in the ratio
of positive ratings in popular items (Figure 4.6). This ratio is constant in Last.fm,
whereby popularity drops to random in U1R, as predicted by our analysis in the pre-
vious section, proving that the popularity bias remaining in the uniform-test ap-
proach is caused by this factor. This residual bias is higher in U1R than P1R, because
in the former, Ny, is sampled over a larger popularity interval (|T| = 1,703 vs. |I]| /
10 = 370 items), giving a higher range for advantage by popularity, which also ex-
plains why the latter still overcomes kNN in UAR. We may observe the importance
of using the TI policy in UAR, without which (in AI-UAR) a higher bias remains. We
also show the effect of removing the 10% most popular head items from the test
data (and also from C, i.e., they are excluded from N, sampling) in 1R, as a simple
strategy to reduce the popularity bias (Cremonesi et al., 2010). We see that this tech-
nique reduces the measured precision of popularity, but it is not quite as effective as
the proposed approaches.

It is finally worth emphasising how the percentile and uniform-test ap-
proaches discriminate between pure popularity-based recommendation and
an algorithm like pLSA, which does seem to take popularity as one of its signals,
but not the only one. The proposed approaches allow uncovering the difference,
neutralising popularity but not pLSA, which remains the best algorithm in all con-
figurations.

As we mentioned in Section 4.3, we have taken precision as a simple and com-
mon metric for our study, but all the presented analysis and proposed alternatives
straightforwardly generalise to other standard IR metrics, such as MAP, nDCG, and
Mean Reciprocal Rank (MRR). Their application is direct in the AR setting; and they
can be applied in 1R by simply introducing them in place of precision in the internal
summation of Equation (4.1). Figure 4.7 shows results for nDCG, where we see that
the analysed patterns hold just the same. The AR approach provides room for a
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Figure 4.7. Precision and nDCG of recommendation algorithms on MovieLens 1M (and
Last.fm only where indicated) using the 1R, U1R, P1R (m = 10 percentiles), AR, and UAR
methodologies. The “-10% head” bars show the effect of removing the 10% most popular
items from the test data (Cremonesi et al., 2010).

slightly wider metric variety than 1R, in the sense that some metrics reduce to each
other in 1R. For instance, for a single relevant item, MAP is equivalent to Mean Re-
ciprocal Rank (MRR = 1/k where k is the rank of the first relevant item). And
nDCG is insensitive to relevance grades in 1R (the grade of the single relevant item

cancels out), whereas grades do make a difference in AR.

4.7 Conclusions

The application of Information Retrieval methodologies to the evaluation of recom-
mender systems is not necessarily as straightforward as it may seem. Hence, it de-
serves close analysis and attention to the differences in the experimental conditions,
and their implications on the explicit and implicit principles and assumptions on
which the metrics build. We have proposed a systematic characterisation of design
alternatives in the adaptation of the Cranfield paradigm to recommendation tasks,
aiming to contribute to the convergence of evaluation approaches. We have identi-
fied assumptions and conditions underlying the Cranfield paradigm which are not
granted in usual recommendation experiments. We have detected and examined re-
sulting statistical biases, namely test sparsity and item popularity, which do not arise

in common test collections from IR, but do interfere in recommendation experi-
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ments. Sparsity is clearly a noisy variable that is meaningless with respect to the value
of a recommendation. Whether popularity is in the same case is less obvious; we
propose experimental approaches that neutralise this bias, leaving way to an unbiased
observation of recommendation accuracy, isolated from this factor. With a view to
their practical application, we have identified and described the pros and cons of the
array of configuration alternatives and variants analysed in this study.

In general, we have found that evaluation metrics computed in AR and 1R ap-
proaches differ in how they are averaged. This means, more specifically, that precision
obtained by approaches following a 1R design is bound linearly by precision of AR
approaches. Moreover, we have observed that a percentile-based evaluation considera-
bly reduces the margin for the popularity bias, although the main limitation of this ap-
proach is that it specifies a constraint on the size of the possible target sets. Addition-
ally, a uniform-test approach removes any statistical advantage provided by having
more positive test ratings. Furthermore, we have found that both approaches discrimi-
nate between pure popularity-based recommendation and an algorithm like pLLSA.

The main goal of our research addresses a second-order problem: we aim to pre-
dict the accuracy of the predictions of recommendation algorithms. As we shall see,
the (second-order) evaluation of our researched methods relies on the (first-order)
evaluation metrics and methodologies by which the recommendation algorithms’
accuracy is measured. In order to consistently evaluate our methods, the primary
recommendation evaluation has to be reliable and well-understood. Any bias in the
process would lead to inconclusive or misleading results about the predictive power
of our methods. For this reason, the results presented in this chapter are a necessity
for the main goal of this thesis, but the outcome can be of more general use. Specifi-
cally, in the following chapters we shall compare how the different methodologies
(with and without neutralised biases) may impact the observations on the predictive
power of our predictors.

The popularity effects in recommender systems have started to be reported in
recent work (Cremonesi et al., 2011; Cremonesi et al., 2010; Steck, 2011). Our re-
search complements such findings by seeking principled theoretical and empirical
explanations for the biases, and providing solutions within the frame of IR evaluation
metrics and methodology — complementarily to the potential definition of new spe-
cial-purpose metrics (Steck, 2011). The extent to which popularity is a noisy signal
may be further analysed by developing more complete metric schemes incorporating
gain and cost dimensions, where popular items would expectably score lower. Such
metrics may e.g. account for the benefits (to both recommendation consumers and
providers) drawn from novel items in typical situations (Vargas and Castells, 2011),
as a complement to plain accuracy. Online tests with real users should also be valu-
able for a comparative assessment of offline observations, and the validation of ex-

perimental alternatives.
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Chapter 5

Performance prediction in

Information Retrieval

Information retrieval performance prediction has been mostly addressed as a query
performance issue, which refers to the performance of an information retrieval sys-
tem in response to a specific query. It also relates to the appropriateness of a query as
an expression of the user’s information needs. In general, performance prediction
methods have been classified into two categories depending on the used data: pre-
retrieval approaches, which make the prediction before the retrieval stage using query
features, and post-retrieval approaches, which use the rankings produced by a re-
trieval engine. In particular, the so-called clarity score predictor — of special interest
for this thesis — has been defined in terms of language models, and captures the am-
biguity of a query with respect to the utilised document collection, or a specific result
set.

In this chapter we provide an overview of terminology, techniques, and evalua-
tion related to performance prediction in Information Retrieval. In Section 5.1 we
introduce terminology and foundamental concepts of the performance prediction
problem. In Section 5.2 we describe the different types of performance prediction
approaches, which are mainly classified in the two categories mentioned above: pre-
retrieval and post-retrieval approaches. Then, in Section 5.3 we provide a thorough
analysis on the use of clarity score as a performance prediction technique, including
examples, adaptations, and applications found in the literature. Finally, in Section 5.4
we introduce the general methodology used to evaluate performance predictors,

along with the most common methods to measure their quality.
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5.1 Introduction

Performance prediction has received little attention, if any, to date in the Recom-
mender Systems field. Our research, however, finds a close and highly relevant refer-
ence in the adjacent Information Retrieval discipline, where performance prediction
has gained increasing attention since the late 90’s, and has become an established
research topic in the field. Performance prediction finds additional motivation in
personalised recommendation, inasmuch the applications they are integrated in may
decide to produce recommendations or hold them back, delivering only the suffi-
ciently reliable ones. Moreover, the ability to predict the effectiveness of individual
algorithms can be envisioned as a strategy to optimise the combination of algorithms
into ensemble recommenders, which currently dominate the field — rarely if ever are
individual algorithms used alone in working applications, neither are they found indi-
vidually in the top ranks of evaluation campaigns and competitions (Bennett and
Lanning, 2007).

In Information Retrieval performance prediction has been mostly addressed as a
query performance problem (Cronen-Townsend et al., 2002). Query performance
refers to the performance of an information retrieval system in response to a particu-
lar query. It also relates to the appropriateness of a query as an expression of a user’s
information needs. Dealing effectively with poorly-performing queries is a crucial
issue in Information Retrieval since it could improve the retrieval effectiveness sig-
nificantly (Carmel and Yom-Tov, 2010).

In general, performance prediction techniques can be useful from different per-
spectives (Zhou and Croft, 2006; Yom-Tov et al., 2005a):

e From the user’s perspective, it provides valuable feedback that can be used to

direct a search, e.g. by rephrasing the query or suggesting alternative terms.

e From the system’s perspective, it provides a means to address the problem of
information retrieval consistency. The consistency of retrieval systems can be
addressed by distinguishing poorly performing queries. A retrieval system may
invoke different retrieval strategies depending on the query, e.g. by using query
expansion or ranking functions based on the predicted difficulty of the query.

e From the system administrator’s perspective, it may let identify queries related
to a specific subject that are difficult for the search engine. According to such
queries, the collection of documents could be extended to better answer insuf-

ficiently covered topics.

e From a distributed information retrieval’s perspective, it can be used to decide
which search engine (and/or database) to use, or how much weight give to dif-

ferent search engines when their results are combined.
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Specifically, the performance prediction task in Information Retrieval is formal-
ised based on the following three core concepts: performance predictor, retrieval
quality assessment, and predictor quality assessment. In this context, the per-
formance predictor is defined as a function that receives the query (and the result list
D, retrieved by the system, the set of relevant documents R, collection statistics C,
etc.), and returns a prediction of the retrieval quality for that query. Then, by means
of a predictor quality assessment method, the predictive power of the performance
predictor is estimated.

Based on the notation given in (Carmel and Yom-Tov, 2010), the problem of
performance prediction consists of estimating a true retrieval quality metric u(q)
(retrieval quality assessment) of an information retrieval system for a given query q.

Hence, a performance predictor f(q) has the following general form:

A(q) < ¥(q,Rq, Dg, C) (5.1)

The prediction methods proposed in the literature establish different functions
Y, and use a variety of available data, such as the query’s terms, its properties with
respect to the retrieval space (Cronen-Townsend et al., 2002), the output of the re-
trieval system — i.e., Dg and R, — (Carmel et al., 2006), and the output of other sys-
tems (Aslam and Pavlu, 2007).

According to whether or not the retrieval results are used in the prediction proc-
ess, such methods can be classified into pre-retrieval and post-retrieval approaches,
which are described in Sections 5.2.1 and 5.2.2, respectively. Another relevant dis-
tinction is based on whether the predictors are trained or not, but this classification is
less popular, and will not be considered here.

Moreover, the standard methodology to measure the effectiveness of perform-
ance prediction techniques (that is, the predictor quality assessment method) consists
of comparing the rankings of several queries based on their actual precision — in
terms of a an evaluation metric such as MAP — with the rankings of those queries
based on their performance scores, i.e., their predicted precision. In Section 5.4 we
detail this methodology, along with several techniques for comparing the above rank-
ngs.

5.1.1 Notion of performance in Information Retrieval

In order to identify good performance predictors, validating or assessing their poten-
tial, we first have to define metrics of actual performance. Performance metrics and
evaluation have been a core research and standardisation area for decades in the In-
formation Retrieval field. In this section we introduce and summarise the main per-
formance metrics and evaluation methodologies developed in the field.

The notion of performance in general, and in Information Retrieval in particular,

leads itself to different interpretations, views and definitions. A number of methods
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for measuring performance have been proposed and adopted (Hauff et al., 2008a;
Hauff, 2010), the most prominent of which will be summarised herein; see (Baeza-
Yates and Ribeiro-Neto, 2011) for an extended discussion.

As a result of several decades of research by the Information Retrieval commu-
nity, a set of standard performance metrics has been established as a consensual ref-
erence for evaluating the goodness of information retrieval systems. These metrics
generally require a collection of documents and a query (or alternative forms of user
input such as item ratings), and assume a ground truth notion of relevance — tradi-
tional notions consider this relevance as binary, while others, more recently pro-
posed, consider different relevance degrees.

One of the simplest and widespread performance metrics in Information Re-
trieval is precision, which is defined as the ratio of retrieved documents that are
relevant for a particular query. In principle, this definition takes all the retrieved
documents into account, but can also consider a given cut-off rank as the precision
at n or P@n, where just the top-n ranked documents are considered. Other related
and widespread metric is recall, which is the fraction of relevant documents retrieved
by the system. These two metrics are inversely related, since increasing one generally
reduces the other. For this reason, usually, they are combined into a single metric —
e.g. the F-measure, and the Mean Average Precision or MAP —, or the values of
one metric are compared at a fixed value of the other metric — e.g. the precision-
recall curve, which is a common representation that consists of plotting a curve of
precision versus recall, usually based on 11 standard recall levels (from 0.0 to 1.0 at
increments of 0.1).

An inherent problem of using MAP for poorly performing queries, and in gen-
eral of any query-averaged metric, is that changes in the scores of better-performing
queries mask changes in the scores of poorly performing queries (Voorhees, 2005b).
For instance, the MAP of a baseline system in which the effectiveness is 0.02 for a
query A, and 0.40 for a query B, is the same as the MAP of a system where query A
doubles its effectiveness (0.04) and query B decreases a 5% (0.38). In this context, in
(Voorhees, 2005a) two metrics were proposed to measure how well information re-
trieval systems avoid very poor results for individual queries: the %no measure,
which is the percentage of queries that retrieved no relevant documents in the top 10
ranked results, and the area measure, which is the area under the curve produced by
plotting MAP(X) versus X, where X ranges over the worst quarter queries. These
metrics were shown to be unstable when evaluated in small sets of 50 queries
(Voorhees, 2005b). A third metric was introduced in (Voorhees, 2000): gmap, the
geometric mean of the average precision scores of the test set of queries. This metric
emphasises poorly performing queries while it minimises differences between larger

scores, remaining stable in small sets of queries (e.g. 50 queries) (Voorhees, 2005b).
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Nonetheless, despite the above metrics and other efforts made to obtain better
measures of query performance, MAP, and more specifically the Average Precision
per query, are still widely used and accepted. See (Carmel et al,, 2006; Cronen-
Townsend et al.,, 2002; Hauff et al., 2008b; He and Ounis, 2004; He et al., 2008;
Kompaoré et al.,, 2007; Zhao et al., 2008; Zhou and Croft, 2006; Zhou and Croft,
2007), among others.

Almost as important as the performance metric is the query type, which can be
related to the differerent user information needs (Broder, 2002). Most work on pet-
formance prediction has focused on the traditional ad-hoc retrieval task where query
performance is measured according to topical relevance (also known as content-
based queries). Some work — such as (Plachouras et al., 2003) and (Zhou and Croft,
2007) — has also addressed other types of queries such as named page finding queries,
i.e., queries focused on finding the most relevant web page assuming the queries con-
tain some form of the “name” of the page being sought (Voorhees, 2002a).

When documents are timed (e.g. a newswire system), we can also distinguish two
main types of queries that have been only partially exploited in the literature (Diaz
and Jones, 2004; Jones and Diaz, 2007): those queries that favour very recent docu-
ments, and those queries for which there are more relevant documents within a spe-
cific period in the past.

Finally, we note that most of the research ascribed to predict performance has
been focused not on predicting the “true” performance of a query (whatever that
means), but on discriminating those queries where query expansion or relevance
feedback algorithms have proved to be efficient from those where these algorithms
fail, such as polisemic, ambiguous, and long queries. These are typically called bad-zo-
expand queries (Cronen-Townsend et al., 2006), illustrating the implicit dependence
on their final application.

5.1.2 A taxonomy of performance prediction methods

Existing prediction approaches are typically categorised into pre-retrieval methods
and post-retrieval methods (Carmel and Yom-Tov, 2010). Pre-retrieval methods
make the prediction before the retrieval stage, and thus only exploit the query’s terms
and statistics about these terms gathered at indexing time. In contrast, post-retrieval
methods use the rankings produced by a search engine, and, more specifically, the
score returned for each document along with statistics about such documents and

their vocabulary.
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Category

Sub-category

Performance predictor (name and reference)

Pre-retrieval

Linguistics

Morphological, syntactic, semantic:
(Mothe and Tanguy, 2005), (Kompaoré et al., 2007)

Statistics

Coherency:
coherence (He et al., 2008);
term variance (Zhao et al., 2008)
Similarity:
collection query similarity (Zhao et al., 2008)
Specificity:
IDF-based (Plachouras et al., 2004), (He and Ounis, 2004);
query scope (He and Ounis, 2004), (Macdonald et al., 2005);
simplified clarity: (He and Ounis, 2004)
Term relatedness:
mutual information (Hauff et al., 2008a)

Post-retrieval

Clarity

Clarity (Cronen-Townsend et al., 2002),
(Cronen-Townsend et al., 2006)

Improved clarity (Hauff, 2010) (Hauff et al., 2008b)

Jensen-Shannon Divergence (Carmel et al., 2006)

Query difficulty (Amati et al., 2004)

Robustness

Cohesion:
clustering tendency (Vinay et al., 2006);
spatial autocorrelation (Diaz, 2007);
similarity (Kwok et al., 2004), (Grivolla et al., 2005)
Document perturbation:
ranking robustness (Zhou and Croft, 2006);
document perturbation (Vinay et al., 2006)
Query perturbation:
query feedback (Zhou and Croft, 2007);
autocorrelation (Diaz and Jones, 2004) (Jones and Diaz, 2007);
query perturbation (Vinay et al., 2006);
sub-query overlap (Yom-Tov et al., 2005a)
Retrieval perturbation: (Aslam and Pavlu, 2007)

Score analysis

Normalised Query Commitment: (Shtok et al., 2009)

Standard deviation of scores: (Pérez-lglesias and Araujo, 2009),
(Cummins et al., 2011)

Utility Estimation Framework: (Shtok et al., 2010)

Weighted Information Gain: (Zhou and Croft, 2007)

Table 5.1. Overview of predictors presented in Section 5.2 categorised according to the
taxonomy presented in (Carmel and Yom-Tov, 2010).

Pre-retrieval performance predictors do not rely on the retrieved document

set, but on other information mainly extracted from the query issued by the user,

such as statistics computed at indexing time (e.g. inverse term document frequen-

cies). They have the advantage that predictions can be produced before the system’s

response is even started to be elaborated, which means that predictions can be taken
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into account to improve the retrieval process itself. However, they have a potential
handicap with regards to their accuracy on the predictions, since extra retrieval effec-
tiveness cues available with the system’s response are not exploited (Zhou, 2007).
Pre-retrieval query performance has been studied from two main perspectives: based
on probabilistic methods (and more generally, on collection statistics), and based on
linguistic approaches. Most research on the topic has followed the former approach.
Some researchers have also explored inverse document frequency (IDF) and related
features as predictors, along with other collection statistics

Post-retrieval performance predictors, on the other hand, make use of the re-
trieved results. Broadly speaking, techniques in this category provide better predic-
tion accuracy compared to pre-retrieval performance predictors. However, many of
these techniques suffer from high computational costs. Besides, they cannot be used
to improve the retrieval strategies without a post-processing step, as the output from
the latter is needed to compute the predictions in the first place. In (Carmel and
Yom-Tov, 2010) post-retrieval methods are classified as follows: 1) clarity based
methods that measure the coherence (clarity) of the result set and its separability
from the whole collection of documents; 2) robustness based methods that estimate
the robustness of the result set under different types of perturbations; and 3) score
analysis based methods that analyse the score distribution of results.

Table 5.1 shows a number of representative approaches on performance predic-
tion, which will be described in the next section. These approaches are categorised
according to the taxonomy and sub-categories proposed in (Carmel and Yom-Tov,
2010). In the table we can observe that the statistics category has been the most
popular approach for pre-retrieval performance prediction. Several predictors have
been categorised in the robustness category, probably due to its broad meaning
(query, document, and retrieval perturbation). Finally, we note that recent effort from

the community has been focused on the score analysis category.

5.2 Query performance predictors

In this section we explain the distinct performance predictors proposed in the litera-
ture. As mentioned before, based on whether or not retrieval results are needed to
compute performance scores, predictors can be classified into two main types: pre-
retrieval and post-retrieval predictors. In the following we summarise some of the
approaches of each of the above types. For additional information, the reader is re-
ferred to (Carmel and Yom-Tov, 2010), (Hauff, 2010), and (Pérez Iglesias, 2012).
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5.2.1 Pre-retrieval predictors

Pre-retrieval performance predictors do not rely on the retrieved document set, and
exploit other collection statistics, such as the inverse document frequency (IDF). In
this context, performance prediction has been studied from three main perspectives:
based on linguistic methods, based on statistical methods, and based on probabilistic
methods.

Linguistic methods

In (Mothe and Tanguy, 2005) and (Kompaoré et al.,, 2007) the authors consider 16
query features, and study their correlation with respect to average precision and re-
call. These features are classified into three different types according to the linguistic

aspects they model:
e Morphological features:

o Number of words.
o Average word length in the query.

o Average number of morphemes per word, obtained using the CELEX’
morphological database. The limit of this method is the database coverage,
which leaves rare, new, and misspelled words as mono-morphemic.

o Average number of suffixed tokens, obtained using the most frequent
suffixes from the CELEX database (testing if each lemma in a topic is eli-
gible for a suffix from this list).

o Average number of proper nouns, obtained by POS (part-of-speech)
tagger’s analysis.

o Average number of acronyms, detected by pattern matching.
o Average number of numeral values, also detected by pattern matching.

o Average number of unknown tokens, marked by a POS tagger. Most
unknown words happen to be constructed words such as “mainstream-

2y ¢

ing”, “postmenopausal” and “multilingualism.”

¢ Syntactic features:

o Average number of conjunctions, detected through POS tagging.
o Average number of prepositions, also detected through POS tagging.

o Average number of personal pronouns, again detected through POS
tagging.

o Average syntactic depth, computed from the results of a syntactic ana-
lyser. It is a straightforward measure of syntactic complexity in terms of

7 CELEX, English database (1993). Available at www.mpi.nl/wotld/celex
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hierarchical depth; it simply corresponds to the maximum number of
nested syntactic constituents in the query.

o Average syntactic links span, computed from the results of a syntactic
analyser; it is the average pairwise distance (in terms of number of words)
between individual syntactic links.

e Semantic features:

o Average polysemy value, computed as the number of synsets in the
WordNet® database that a word belongs to, and averaged over all terms of
the query.

In the above papers the authors investigated the correlation between these fea-
tures, and precision and recall over datasets with different properties, and found that
the only feature that positively correlated with the two performance metrics was the
number of proper nouns. Besides, many variables did not obtain significant correla-

tions with respect to any performance metric.

Statistical methods

Inverse document frequency is one of the most useful and widely used magnitudes in
Information Retrieval. It is usually included in the information retrieval models to
properly compensate how common terms are. Its formulation usually takes an ad
hoc, heuristic form, even though formal definitions exist (Roelleke and Wang, 2008;
Aizawa, 2003; Hiemstra, 1998). The main motivation for the inclusion of an IDF
factor in a retrieval function is that terms that appear in many documents are not
very useful for distinguishing a relevant document from a non-relevant one. In other
words, it can be used as a measure of the specificity of terms (Jones, 1972), and thus
as an indicator of their discriminatory power. In this way, IDF is commonly used as a
factor in the weighting functions for terms in text documents. The general formula

of IDF for a term t is the following:
N
IDF(t) = log— (5.2)
N;

where N is the total number of documents in the system, and n; is the number of
documents in which the term t appears.

Some research work on performance prediction has studied IDF as a basis for
defining predictors. He and Ounis (2004) propose a predictor based on the standard
deviation of the IDF of the query terms. Plachouras et al. (2004) represent the qual-
ity of a query term by a modification of IDF where instead of the number of docu-

ments, the number of words in the whole collection is used (inverse collection term

8 WordNet, lexical database for the English language. Available at http://wordnet.princeton.edu/
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frequency, or ICTF), and the query length acts as a normalising factor. These IDF-
based predictors displayed moderate correlation with query performance.

Other authors have taken the similarity of the query into account. Zhao et al.
(2008) compute the vector-space based query similarity with respect to the collection,
considered as a large document composed of concatenation of all the documents.
Then, different collection query similarity predictors are defined based on the
SCQ values (defined below) for each query term, by summing, averaging, or taking

the maximum values:

SCQ(t) = (1 + log TF(t))-IDF(Y) (53)

The similarity of the documents returned by the query has also been explored in

the field. The inter-similarity of documents containing query terms is proposed in
(He et al.,, 2008) as a measure of coherence, by using the cosine similarity between
every pair of documents containing each term. Additionally, two predictors based on
the pointwise mutual information (PMI) are proposed in (Hauff et al., 2008a). The

PMI of two terms is computed as follows:

p(tll tZ)
p(t)p(ty)

where these probabilities can be approximated by maximum likelihood estimations,

PMI(t,, t,) = log (5.4

that is, based on collection statistics, where p(ty,t,) is proportional to the number
of documents containing both terms, and p(t) o< TF(t). In that paper a first predic-
tor is defined by computing the average PMI of every pair of terms in the query,
whereas a second predictor is defined based on the maximum value. The predictive

power of these techniques remains competitive, and is very efficient at run time.

Probabilistic methods

These methods measure characteristics of the retrieval inputs to estimate perform-
ance. He and Ounis (2004) propose a simplified version of the clarity score (see

next section) in which the query model is estimated by the term frequency in the

query:

Py
SCS = ) Py (W|Q)10gz% (5.5)
f TF
Pi(wlq) = %:P(WIC’) = %

where qtf is the number of occurrences of a query term W in the query, gl is the
query length, TF(w) is the number of occurrences of a query term in the whole col-

lection, and |V is the total number of terms in the collection.
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Despite its original formulation, where the clarity score can be considered as a
pre-retrieval predictor (Cronen-Townsend et al., 2002), Cronen-Townsend and col-
leagues use result sets to improve the computation time. For this reason, it is typically
classified as a post-retrieval predictor (Zhou, 2007; Hauff et al., 2008a), and thus, we
describe it with more detail in the next sections.

Kwok et al. (2004) build a query predictor using support vector regression, by
training classifiers with features such as document frequencies and query term fre-
quencies. In the conducted experiments they obtained a small correlation between
predicted and actual query performances. He and Ounis (2004) propose the notion
of query scope as a measure of the specificity of a query, which is quantified as the

percentage of documents that contain at least one query term in the collection, i.e.,
log(NQ /N ), being Ny the number of documents containing at least one of the query

terms, and N the total number of documents in the collection. Query scope has
shown to be effective in inferring query performance for short queries in ad hoc text

retrieval, but very sensitive to the query length (Macdonald et al., 2005).

5.2.2 Post-retrieval predictors

Post-retrieval performance predictors make use of the retrieved results, in contrast to
pre-retrieval predictions. Furthermore, computational efficiency is usually a problem
for many of these techniques, which is balanced by better prediction accuracy. In the
following we present the most representative approaches of each of the different

sub-categories described in Section 5.1.2: clarity, robustness, and score analysis.

Clarity-based predictors

Cronen-Townsend et al. (2002) define query clarity as a degree of (the lack of)
query ambiguity. Because of the particular importance and use of this predictor in the
findings of this thesis, we shall devote a whole section (Section 5.3) for a thorough
description and discussion about it. It is worth noting that the concept of query clar-
ity has inspired a number of similar techniques. Amati et al. (2004) propose the
query difficulty predictor to estimate query performance. In that work query per-
formance is captured by the notion of the amount of information (Infoprr) gained
after the ranking. If there is a significant divergence in the query-term frequencies
before and after the retrieval, then it is assumed that the divergence is caused by a
query that is easy to respond to. Infoprr showed a significant correlation with average
precision, but did not show any correlation between this predictor and the effective-
ness of query expansion. The authors hence concluded that although the perform-
ance gains by query expansion in general increase as query difficulty decreases, very

easy queries hurt the overall performance.
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Adaptations of the query clarity predictor such as the one proposed in (Hauff
et al., 2008b) will be discussed later in Section 5.3. Additionally, apart from the Kull-
back-Leibler divergence, the Jensen-Shannon Divergence on the retrieved document
set and the collection also obtains a significant correlation between average precision
and the distance measured (Carmel et al., 20006).

Robustness-based predictors

More recently, a related concept has been coined: ranking robustness (Zhou and
Croft, 2000). It refers to a property of a ranked list of documents that indicates how
stable a ranking is in the presence of wucertainty in its documents. The idea of predict-
ing retrieval performance by measuring ranking robustness is inspired by a general
observation in noisy data retrieval. The observation is that the degree of ranking ro-
bustness against noise is positively correlated with retrieval performance. This is be-
cause the authors assumed that regular documents also contain noise, if noise is inter-
preted as uncertainty. The robustness score performs better than, or at least as well
as, the clarity score.

Regarding document and query perturbation, Vinay et al. (2006) propose four
metrics to capture the geometry of the top retrieved documents for prediction: the
clustering tendency as measured by the Cox-Lewis statistic, the sensitivity to
document perturbation, the sensitivity to query perturbation, and the local in-
trinsic dimensionality. The most effective metric was the sensitivity to document
perturbation, which is similar to the robustness score. Document perturbation, how-
ever, did not perform well for short queries, for which prediction accuracy dropped
considerably when alternative state-of-the-art retrieval techniques (such as BM25 or a
language modelling approach) were used instead of the TF-IDF weighting (Zhou,
2007).

Several predictors have been defined based on the concept of query perturba-
tion. Zhou and Croft (2007) propose two performance predictors are defined based
on this concept specifically oriented for Web search. First, the Weighted Informa-
tion Gain predictor measures the amount of information gained about the quality of
retrieved results (in response to a query) from an imaginary state that only an average
document (represented by the whole collection) is retrieved to a posterior state that
the actual search results are observed. This predictor was very efficient and showed
better accuracy than clarity scores. The second predictor proposed in that work is the
Query Feedback, which measures the degree of corruption that results from trans-
forming @ to L (the output of the channel when the retrieval system is seen as a
noisy channel, i.e., the ranked list of documents returned by the system). The authors
designed a decoder that can accurately translate L back into a new query Q', where-
upon the similarity between the original query @ and the new query Q' is taken as a

performance predictor, since the authors interpreted the evaluation of the quality of
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the channel as the problem of predicting retrieval effectiveness. The computation of
this predictor requires a higher computational cost than the previous one, being a
major drawback of this technique.

Additionally, in (Diaz and Jones, 2004) and (Jones and Diaz, 2007) the authors
exploited temporal features (time stamps) of the document retrieved by the query.
They found that although temporal features are not highly correlated to perform-
ance, using them together with clarity scores improves prediction accuracy. Similatly,
Diaz (2007) proposes to use the spatial autocorrelation as a metric to measure spatial
similarities between documents in an embedded space, by computing the Moran’s
coefficient over the normalised scores of the documents. This predictor obtained
good correlations results, although the author explicitly avoided collections such as
question-answering and novelty related under the hypothesis that documents with
high topical similarity should have correlated scores and, thus, in those collections
the predictor would not work properly.

Other predictor was proposed in (Jensen et al., 2005), where visual features such
as document titles and snippets are used from a surrogate document representation
of retrieved documents. Such predictor was trained on a regression model with
manually labelled queries to predict precision at the top 10 documents in Web search.
The authors reported moderate correlation with respect to precision.

In (Yom-Tov et al., 2005a) two additional performance predictors are proposed.
The first predictor builds a histogram of the overlaps between the results of each
sub-query that agree with the full query. The second predictor is similar to the first
one, but is based on a decision tree (Duda et al., 2001), which again uses overlaps
between each sub-query and the full query. The authors apply these predictors to
selective query expansion detecting missing content, and distributed information
retrieval, where a search engine has to merge ranks obtained from different datasets.
Empirical results showed that the quality of the prediction strongly depends on the
query length.

The following predictors have been based on the cohesion of the retrieved
documents. Kwok et al. (2004) propose predicting query performance by analysing
similarities among retrieved documents. The main hypothesis of this approach is that
relevant documents are similar to each other. Thus, if relevant documents are re-
trieved at the top ranking positions, the similarity between top documents should be
high. The preliminary results, however, were inconclusive since negligible correla-
tions were obtained. A similar approach is proposed in (Grivolla et al., 2005), where
the entropy and pairwise similarity among top results are investigated. First, the en-
tropy of the set of the K top-ranked documents for a query was computed. In this
case it was assumed that the entropy should be higher when the performance for a
given query is bad. Second, the mean cosine similarity between documents was pro-

posed, using the base form of TF-IDF term weighting to define the document vec-
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tors. Correlation between average precision and the proposed predictors was not
consistent along the different systems used in the experiment, although the predic-
tors could still be useful for performance prediction, especially when used in combi-

nation.

Predictors based on score analysis

Finally, the last family of post-performance predictors analyses the score distribu-
tions of the results for each query. We have to note that the Weighted Information
Gain predictor (Zhou and Croft, 2007) explained above is sometimes categorised
into this group. In the following we present other predictors where the retrieved
scores are explicit in the predictor computation.

For instance, the Normalised Query Commitment (NQC) predictor (Shtok
et al., 2009) measures the standard deviation of the retrieval scores, and applies a

normalisation factor based on the score of the whole collection:

\[ 1/|Dg| Saen,(s(@) = 1g)” (5.6)
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where g is the mean score of results in Dy (the retrieved set of documents for a

NQC(q) =

query q). This predictor measures the divergence of results from their centroid, a
“pseudo non-relevant document” that exhibits a relatively high query similarity
(Carmel and Yom-Tov, 2010).

The utility estimation framework (UEF) was proposed in (Shtok et al., 2010)
to estimate the utility of the retrieved ranking. In this framework three methods have
to be specified to derive a predictor: a sampling technique for the document sets, a
representativeness measure for relevance-model estimates, and a measure of similar-
ity between ranked lists. Other authors have proposed approaches where standard
deviation does not need to be computed for all the document scores in the retrieved
results. Pérez-Iglesias and Araujo (2009) use a cutoff to decide how many documents
are considered in the standard deviation computation. Moreover, Cummins et al.
(2011) use different strategies to automatically select such cutoff.

Recently, Cummins (2012) has used Monte Carlo simulations to understand the
correlations between average precision and the standard deviation of the scores in
the head of a ranked list. The author found that the standard deviation of the list is
positively correlated with the mean score of relevant documents, which in turn is

positively correlated with average precision.
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5.3 Clarity score

Cronen-Townsend et al. (2002) defined clarity score for Web retrieval as a measure
of the lack of ambiguity of a particular query. More recently, it has been observed
that this predictor also quantifies the diversity of the result list (Hummel et al., 2012).
In this section we provide a deep analysis of this performance predictor since we
shall use it along the rest of this thesis. We also describe examples and adaptations of

the clarity score.

5.3.1 Definition of the clarity score

The clarity score predictor is defined as a Kullback-Leibler divergence between the
query and the collection language model. It estimates the coherence of a collection
with respect to a query q in the following way, given the vocabulary V and a subset
of the document collection R, consisting of those documents that contain at least one

query term:

p(w|q)

p(w[C) 5-7)

clarity(q) = Z p(w|q)log,
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The clarity value can thus be reduced to an estimation of the prior p(W|C) (col-
lection language model), and the posterior p(W|q) of the query terms W (query lan-
guage model) using p(W|d) over the documents d € R, and based on term frequen-
cies and smoothing. It should be emphasised that if the set R, is chosen as the whole
collection C, then this technique could be classified as a pre-retrieval performance
predictor, since no information about the retrieval would be used. The importance of
the size of the relevance set R, (or number of feedback documents) has been studied
in (Hauff et al., 2008b), where an adaptation of the predictor was proposed in order
to automatically set the number of documents to consider.

As first published in (Cronen-Townsend et al., 2002) and (Cronen-Townsend
et al., 2000), query ambiguity is defined as “the degree to which a query retrieves

documents in the given collection with similar word usage.” Cronen-Townsend and
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colleagues found that queries whose highly ranked documents are a mix of docu-
ments from disparate topics receive lower scores than if they result in a topically-
coherent retrieved set, and reported a strong correlation between the clarity score
and the performance of a query. Because of that, the clarity score method has been
widely used in the area for query performance prediction.

Some applications and adaptations of the clarity score metric include query ex-
pansion (anticipating poorly performing queries that should not be expanded), im-
proving performance in the link detection task (more specifically, in topic detection
and tracking by modifying the measure of similarity of two documents) (Lavrenko
et al.,, 2002), and document segmentation (Brants et al., 2002). More applications can
be found in Section 5.3.3.

Zhou (2007) provides a complementary formulation of the clarity score by re-

writing the formulation used above as follows:

Laer, P(wW|d)p(dlq)
clarity(q) = Z Z pwld)p(dlq) log = qz;(vlrlllc)p i (5.8)
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In this way, Zhou emphasises, among other issues, the differences between the
query clarity and the Weighted Information Gain predictor. Indeed, the author pro-
poses the following generalisation of both formulations (for WIG and clarity). Spe-
cifically, the clarity formulation presented in Equations (5.7) and (5.8) is unified as

follows:

| & d)
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where T is a feature space, and Ry is a (ranked) document list. Besides this, d €
R, € C must be comparable somehow with elements § € T, in order to make sensi-

ble functions weight(¢, d) and p(§, d). In this context, the query clarity as defined
in (Cronen-Townsend et al., 2002) is an instantiation of Equation (5.9) where the

following three aspects are considered:
o The feature space T is the whole vocabulary, consisting of single terms.
o The weight function is defined as weight(¢,d) = p(w|d)p(d|q).
e The function p(&,d) is defined as ZdERq p(w|d)p(d|q), that is, it uses a
document model averaged over all documents in the ranked list.

These observations help to discriminate between the underlying models used by
these two predictors. In particular, for the query clarity, they also contribute to cap-
ture not so obvious divergences between a query and the collection, as we shall see in

the next section.
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) obedience train dog (2.43)
train dog (0.65)

train (0.33) railroad train dog (0.67)

railroad train (0.73) . )
railroad train caboose (1.46)

Table 5.2. Examples of clarity scores for related queries.

5.3.2 Interpreting clarity score in Information Retrieval

Aiming to better understand how the clarity score predictor behaves in Information
Retrieval, and to what extent it is able to capture the difficulty or ambiguity of que-
ries, in this section we summarise examples reported in the literature that let a clear
interpretation of the predictor’s values.

In a seminal paper (Cronen-Townsend et al., 2002) Cronen-Townsend and col-
leagues present the example shown in Table 5.2, which provides the clarity scores of
a number of related queries that share some of their terms. These queries are related
to each other in the sense that a particular query is formed by extending other query
with an additional term, starting with an initial query formed by a single term, ‘train’
in the example. According to the queries of the table, we can observe that the term
‘train’ has different meanings for the largest queries; it refers to ‘teach’ in the query
‘train dog’, to the ‘locomotive vehicle’ in the query ‘railroad train’, and can refer to
any of both meanings in the query ‘railroad train dog.” The clarity scores capture the
ambiguity of the queries (due to their different meanings for the term ‘train’), inde-
pendently from their length. In fact, the middle rightmost query ‘railroad train dog’
receives the lowest clarity score, corresponding to the most ambiguous query where
the two considered meanings of ‘train’ are involved.

In the same paper, Cronen-Townsend and colleagues present the distribution of
the language models for two queries, a clear query and a vague query (see Figure 2 in
(Cronen-Townsend et al, 2002)). Each distribution is presented by plotting
p(w|q) log, p(w|q)/p(w|C) against the query terms w. The authors show that the
distribution of the values of this function for the clear query dominates the distribu-
tion of the values of the vague query. This makes sense since the clarity score is
computed by summing the probability values in the distribution of every term in the
collection. Additionally, the authors show that the clear query presents spikes in its
query language model when p(w|q) is plotted against the terms, and compared with
the collection probability p(w|C). Hence, some of the terms with high contribution

from the query language model (i.e., with high p(w|q) values) obtain low collection
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probabilities (p(W|C)), thus evidencing a query that is different to the collection in
its term usage (i.e., it is a non ambiguous query).

The above examples involve the (implicit) assumption known as homogeneity as-
sumption, which specifies that the clarity score is higher if the documents in the con-
sidered collection are topically homogeneous. Hauff (2010) analyses the sensitivity of
results with respect to that assumption. Specifically, the author computes the clarity
score for three different ranked document lists: the relevant documents for a query, a
non-relevant random sample, and a collection-wide random sample. The difference
between the last two lists is that the second one is derived from documents judged as
non-relevant, whereas the third one could contain any document in which at least
one query term. Hauff shows how the clarity score is different depending on the
origin of ranked document list, leading to a higher (lower) score by using relevant
(non-relevant) documents for such list. However, we have to note that, as stated by
Hauff, the quality in the separation of the clarity scores computed by each document
list is different depending on the utilised dataset and queries.

The clarity score has been analysed in detail in Information Retrieval, mainly be-
cause its predictive power is superior to other performance predictors (in fact, it is
one of the best performing post-retrieval predictors according to the overview pre-
sented in (Hauff, 2010)), but also because it provides interpretable results and high
explanatory power in different IR processes, as we shall describe in the next section.
Apart from that, the interest in this predictor is clear because of its probabilistic for-
mulation and tight relationship with Language Models (Ponte and Croft, 1998).

5.3.3 Adaptations and applications of the clarity score

Cronen-Townsend and colleagues showed in (Cronen-Townsend et al.,, 2002) that
clarity is correlated with performance, proving that the result quality is largely influ-
enced by the amount of uncertainty involved in the inputs a system takes. In this
sense, queries whose highly ranked documents belong to diverse topics receive lower
scores than queries for which a topically-coherent result set is retrieved. Several au-
thors have exploited the clarity score functionality and predictive capabilities
(Buckley, 2004; Townsend et al., 2004; Dang et al., 2010), supporting its effectiveness
in terms of performance prediction and high degree of adaptation. For instance, the
predictor has been used for personalisation (Teevan etal, 2008) because of its
proven capability of predicting ambiguity. In that paper the authors use more or less
personalisation depending on the predicted ambiguity.

One of the first variants proposed in the area is the simplified clarity score pro-
posed in (He and Ounis, 2004), presented in Section 5.2.1. In that paper He and
Ouni changed the estimations of the posterior p(W|q) to simple maximum likeli-
hood estimators. Hauff et al. (2008b) proposed the Improved Clarity — called
Adapted Clarity in (Hauff, 2010) —, in which the number of feedback documents
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(Rq) is set automatically, and the term selection is made based on the frequency of
the terms in the collection to minimise the contribution of terms with a high docu-
ment frequency in the collection.

An alternative application of the clarity score is presented in (Allan and Raghavan,
2002), where the score obtained for the original set of documents returned by a query
is compared against that obtained for a modified query, which was presumed to be
more focused than the original one. Similarly, in (Buckley, 2004) Buckley uses the
clarity score to measure the stability of the document rankings and compare it against
a measure that uses the Mean Average Precision of each ranking (AnchorMap).

In (Sun and Bhowmick, 2009), Sun and Bhowmick adapted the concept of query
clarity to image tagging, where a tag is visually representative if all the images anno-
tated with that particular tag are visually similar to each other. In previous work (Sun
and Datta, 2009) Sun and Datta proposed a similar concept, but in the context of
blogging: a tag would receive a high clarity score if all blog posts annotated by the tag
are topically cohesive.

Finally, an extension of the Kullback-Leibler divergence was proposed in (Aslam
and Pavlu, 2007), where the Jensen-Shannon divergence was used instead. This dis-
tance is defined as the average of the Kullback-Leibler divergences of each distribu-
tion with respect to the average (or centroid) distribution. In this way, it is possible to
compute the divergence between more than two distributions. Besides, the Jensen-
Shannon divergence is symmetric, in contrast to the divergence used in the clarity

score, and thus, a metric can be derived from it (Endres and Schindelin, 2003).

5.4 Evaluating performance predictors

In this section we describe the approaches proposed in the literature to evaluate the
predictive power of a performance predictor. We define the different functions used
to compute the quality of the performance predictors, most of them based on well
known correlation coefficients between the true query performance values, and the

expected or predicted performance values.

5.4.1 Task definition

Based on the notation presented in Section 5.1, in the following we present different
techniques and functions to assess the effectiveness of performance predictors. Once
the retrieval quality has been assessed (1(q)), and the value of the performance pre-
dictor for each query is calculated (f1(q), using the function ¥), the predictor quality
is computed by using a predictor quality assessment function f9%% that measures the

agreement between the true values of performance and the estimations, that is:

Quality(y) = f™({u(qy), -, u(qn)} {8(q1), -+, 2(g)D (5.10)
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True quality values for each query are typically obtained by computing the per-
query performance of a selected retrieval method (Cronen-Townsend et al., 2002;
Hauff et al., 2008a), or by averaging the values obtained by several engines (Mothe
and Tanguy, 2005), in order to avoid biases towards a particular method. As we shall
see in the next section, the function f%4 typically represents a correlation coeffi-
cient; however, different possibilities are available and may be more appropriate de-
pending on the prediction task.

In fact, in (Hauff et al., 2009) three estimation tasks were considered, by dis-
criminating the output of the predictor function fi. Query difficulty estimation
could be defined as a classification task where I = {0,1} indicates whether the query
is estimated to perform well or poorly. The standard estimation of query perform-
ance, nonetheless, would be defined by a function I = R, in order to provide a
ranking of queries, where the highest score denotes the best performing query. Fur-
thermore, as stated in (Hauff et al.,, 2009), this function by itself does not directly
estimate the performance metric . In order to do that we need to have normalised
scores, such that the range of [l is compatible with that of the metric, which typically
requires I = [0,1]. In this case, we would be considering the normalised quety
petformance task.

The methodology described above is general enough to be applicable to any of
these three tasks, but is clearly inspired by the second one, that is, the estimation of
query performance and it can be easily applied also to third one (normalised per-
formance prediction). Because of that, we describe next a recently proposed meth-
odology more focused on the (binary) query classification task or query difficulty
prediction described in (Pérez-Iglesias and Araujo, 2010).

Let us suppose that, instead of continuous values of the performance metric u,
we are interested in estimating as accurately as possible the different difficulty grades of
the queries, that is, 4 = {1, -+, k}, where k is the number of difficulty grades avail-
able. Obviously, the output of the predictor fI also has to be grouped in one of the k
classes. Typically, we would have k = 3, representing “Easy”, “Average”, and
“Hard” queries, although a binary partition could also be acceptable. In these terms
the performance prediction problem is stated as a classification problem, where the
goal is to effectively predict the query class.

Furthermore, this technique lets set, at the quality computation step, whether we
want to weight uniformly each of the k classes, or if we are more interested in only
one of them, by building, for instance, a confusion matrix, and applying standard
Machine Learning evaluation metrics to a subset of it. In the next section we describe
the most popular techniques for doing this, along with a new metric introduced in

(Pérez-Iglesias and Araujo, 2010) oriented to the problem of performance prediction.
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5.4.2 Measuring the quality of the predictors

There are several methods for measuring the quality of the performance prediction
function i defined in the previous section. In particular, the quality function fa4a
may be able to capture linear relations, take into account the importance implied by
the scores or the ordering given by each variable (true and estimated performance,
i.e., p and 1), and exploit the implicit partitions derived by the method.

The most commonly used quality function is correlation, which has been meas-
ured by three well-known metrics: Pearson’s, Spearman’s, and Kendall’s correlation
coefficients. Pearson’s 1 correlation captures linear dependencies between the vari-
ables, whereas Spearman’s p and Kendall’s T correlation coefficients are used in
order to uncover non-linear relationships between the variables. They are generally
computed as follows, although in special situations (in presence of ties, or when there

are missing values in the data) alternative formulations may be used:

. Y= 00— y) (5.11)
VEm O — 023 (v — )2
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where x and y represent the two variables of interest, X and ¥ denote their means,
d(x;,y;) is the difference in ranks between x; and y;, and Q(x,y) is the minimum
number of swaps needed to convert the rank ordering of x to that of y. All these
coefficients return values between —1 and +1, where —1 denotes a perfect anti-
correlation, 0 denotes statistical independence, and +1 denotes perfect correlation.

It can be observed that Spearman’s p computes a Pearson’s 7 between the ranks
induced by the scores of the variables. Moreover, Kendall’s T is the number of opera-
tions required to bring one list to the order of the other list using the bubble sort algo-
rithm. Besides, although Spearman’s and Kendall’s correlations seem more general
than Pearson’s since they are able to capture non-parametric relations between the
variables, we have to consider that distances between the scores are ignored in the
rank-based coefficients, and thus, it is typically suggested to report one correlation
coefficient of each type.

It is important to note that the number of points used to compute the correla-
tion values affects the significance of the correlation results. The confidence test for a
Pearson’s 1 correlation, modeled as the t-value of a t-distribution (assuming normal-
ity) with N — 2 degrees of freedom (being N the size of the sample), is defined by
the following equation (Snedecor and Cochran, 1989):
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N
N Pearson’s r value 50 100 500
p-value 50 100 500 0.1 0.696 | 0.995 | 2.243
p<0.05 | 1.677 | 1.661 | 1.648 0.2 1.414 | 2.021 | 4.555
p<0.01 | 2407 | 2.365 | 2.334 0.3 2179 | 3.113 | 7.018
0.4 3.024 | 4.320 | 9.739

Table 5.3. Left: minimum t-value for obtaining a significant value with different sample sizes
(N). Right: t-value for a given Pearson’s correlation value and N points. In bold when the
correlation is significative for p < 0.05, and underlined for p < 0.01.

(5.14)

The t-value therefore depends on the size of the sample, and thus, the signifi-
cance of a Pearson’s correlation value r may change depending on the number of
test queries. In particular, for small samples, we may eventually obtain strong but
non-significant correlations; whereas for large samples, on the other hand, we may
obtain significant differences, even though the strength of the correlation values may
be lower. The above also applies to the correlations computed using the Spearman’s
coefficient, but only under the null hypothesis or large sample sizes (greater than
100) (Snedecor and Cochran, 1989; Zar, 1972). For Kendall’s correlation, the confi-
dence test can be computed using an exact algorithm when there are no ties based on
a power series expansion in N 1, depending again, thus, on the sample size (Best and
Gipps, 1974).

Table 5.3 shows the minimum t-value for obtaining a significant value with dif-
ferent sample sizes and p-values, along with the t-value computed using Equation
(5.14) for different correlation values and sample sizes. In the table we can observe
that the same correlation value may be significant or not depending on the size of the
sample, for instance, with 50 queries, observations are significant with p < 0.05 for
correlation values equal or above 0.3, whereas for 100 queries it is enough to obtain
Pearson’s correlation values of 0.2. This observation is related to the one presented
in (Hauff et al., 2009), where Hauff and colleagues compared the confidence intervals
of the three correlation coefficients described before, and observed how, due to the
small query set sizes, most of the predictors analysed (pre-retrieval approaches such
as clarity, IDF-based, and PMI) presented no significant differences, despite having
very different values. In particular, this generated a subset of the analysed predictors
that were not statistically different to the best performing predictor reported, and
thus, any of the predictors in subset may be used in a later application since they ob-

tain statistically similar (strictly speaking, not statistically different) correlations.
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Furthermore, in the same paper, Hauff and colleagues proposed to use the Root
Mean Squared Error (RMSE) as a quality function. The rationale behind this is that
the RMSE squared is the function being minimised when performing a linear regres-
sion, and thus, it should also be able to capture the (linear) relation between the vari-
ables. In fact, there is a close relation between the RMSE and the Pearson’s 1 coeffi-

cient, by means of the residual sum of squares (Carmel and Yom-Tov, 2010):
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Additional extensions to these correlation coefficients have been proposed. Most
of these extensions have been focused on incorporating weights in the computation
of the correlation (Melucci, 2009; Yilmaz et al., 2008). However, despite these met-
rics have an evident potential in the performance prediction area, to the best of our
knowledge there is no work using them in order to evaluate the quality of the predic-
tors (Pérez Iglesias, 2012).

Finally, a different family of quality functions can be considered in the query difficulty
task, that is, when the performance prediction is cast as a classification problem. These
techniques are based on the accuracy of the classification provided by the performance
predictor, and thus, classic Machine Learning techniques could be used. In (Pérez-Iglesias

and Araujo, 2010), Pérez-Iglesias and Araujo propose to use the F-measure:

precision - recall
F=2

5.17
precision + recall G17)

Additionally, in the same paper, Pérez-Iglesias and Araujo introduced a new met-
ric (distance based error measure, or DBEM) along with a methodology that is
focused on the misclassified difficulty classes between the predictor and the true
classes. With this goal in mind, the authors apply a clustering algorithm to both the
performance metric values and their estimations, aimed to minimise the distance
between elements in the same group, and maximise the distance between elements in
different groups. Specifically, Pérez-Iglesias and Araujo used the k-means algorithm,
setting the value of k to the number of relevance grades, k = 3 in their paper. The
metric DBEM is defined as follows:

Yrdist(c(x;), c(v))
xr m]ax dist ( c(x;), c(xj)) (5.18)

diSt(Ci,Cj) = ”l _]”;0 < l)] < k

DBEM =
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where ¢(x) is the function which assigns the proper class or partition to a given
score X, according to the clustering algorithm. This metric captures the distance be-
tween every partition, normalised by the maximum possible distance. In this case,

lower distances imply a better predictor quality.

5.5 Summary

Improvement of the predictive capabilities to infer the performance or difficulty of a
query is consolidated as a major research topic in Information Retrieval, where it has
been mostly applied to ad-hoc retrieval. Several performance predictors have been
defined based on many different information sources, demonstrating the usefulness
of such predictors in different tasks, mainly for query expansion, but also for rank
fusion, distributed information retrieval, and text segmentation.

Some issues are, however, still open in the field, mostly regarding the evaluation
of performance prediction. Performance prediction methods have been usually
evaluated on traditional TREC document collections, which typically consist of no
more than one million relatively homogenous newswire articles, and few research
work has exploited these techniques with larger datasets; see, e.g. (Carmel et al., 20006;
Zhou, 2007; Hauff, 2010) for some exceptions. Furthermore, reported correlation
coefficient values have been typically computed using a small number of points (e.g.
50 queries for standard tracks in TREC), not always providing enough confidence to
derive conclusions. And more importantly, how predictors have to be evaluated and
which metric has to be used are still open research questions, that have generated
some fruitful discussion in recent publications (Hauff, 2010; Pérez Iglesias, 2012),
although a definitive answer has not been obtained yet.

We may presume that in the future other information retrieval applications may
benefit from the framework derived by these techniques, and may develop tailored
performance predictors by using purpose-designed performance metrics and evalua-
tion methodologies, such as the recently developed concept of document difficulty in
(Alvarez et al., 2012). This thesis is an example of such an application in the Recom-
mender Systems field. More specifically, as we shall see in the next chapter, we trans-
late the problem of performance prediction to the Recommender Systems area,
where it has been barely studied. We focus our research on the query clarity predictor
as a basis for the recommendation performance predictors, although additional tech-
niques could be used, as we shall also present in Chapter 6. Finally, among the array
of evaluation strategies presented above, we have decided to use correlations since it
is the most common one in the literature, and provides a fair notion about the inter-

pretability of the results.



Chapter 6

Performance prediction in

recommender systems

In this chapter, we state and address the recommendation performance prediction
problem, proposing and evaluating different prediction schemes. After laying out a
formal frame for the problem, we start by researching the adaptation of principles
and prediction techniques that have been proposed and developed in ad-hoc Infor-
mation Retrieval. More specifically, we draw from the notion of query clarity as a
basis for finding suitable performance predictors that provide a well grounded theo-
retical formalisation. In analogy to query clarity, we hypothesise that the amount of
uncertainty involved in user and item data (reflecting ambiguity in user’s tastes and
item popularity patterns) may also correlate with the accuracy of the system’s rec-
ommendations. This uncertainty can be captured as the clarity of users and/or the
clarity of items by an adaptation of the query clarity formulation. This adaptation,
however, is not straightforward, as we shall describe. Besides the approaches elabo-
rating on the notion of clarity, we propose new predictors based on theories and
models from Information Theory and Social Graph Theory.

In Section 6.1 we formulate the research problem we aim to address. Next, in
Sections 6.2, 6.3, and 6.4 we propose several performance predictors for recom-
mender systems, some of them based on the clarity score, information theoretical
related concepts — such as entropy —, and graph-based metrics. The proposed predic-
tors are defined upon three different spaces, namely ratings, logs, and social net-
works. Moreover, we also provide specific correlations of the described predictors in
Section 6.5 in order to show their predictive power under different conditions along

with a discussion of the results. Finally, in Section 6.6 we provide some conclusions.
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6.1 Research problem

Performance prediction finds a special motivation in recommender systems. Con-
trary to query-based information retrieval, as far as the initiative relies on the system,
a performance prediction approach may provide a basis to decide producing recom-
mendations or holding them back, depending on the expected level of performance
on a per case basis, delivering only the sufficiently reliable cases. On the other hand,
recommenders based on a single algorithm are not competitive in practice, and real
applications heavily rely on hybridisations and ensembles of algorithms.

The capability to foresee which algorithm can perform better in different cir-
cumstances can therefore be envisioned as a good approach to enhance the perform-
ance of the combination of algorithms by dynamically adjusting the reliance on each
subsystem. Furthermore, it is well-known in the recommender systems field that the
performance of individual recommendation methods is highly sensitive to different
conditions, such as data sparsity, quality and reliability, which are subject to an ample
dynamic variability in real settings. Hence, being able to estimate in advance which
recommenders are likely to provide the best output in a particular situation opens up
an important window for performance enhancement. Alternatively, estimating which
users of a system are likely to receive worse recommendations allows for modifica-
tions in the recommendation algorithms to predict this situation, and react in ad-
vance.

The problem of performance prediction has been however barely addressed in
the Recommender Systems field. The issue has been nonetheless mentioned in the
literature — evidencing the relevance of the problem — and is in some way often im-
plicitly addressed by means of ad hoc heuristic tweaks such as significance weighting
in nearest neighbour recommenders (Herlocker et al., 1999) and confidence scores
(Wang et al., 2008a), along with additional computations (mainly normalisations)
which are introduced into the recommendation methods aimed to better estimate the
predicted ratings.

In the recommendation context, the problem of performance prediction can be
stated as follows. We define a performance predictor as a function that takes a cer-
tain input, and returns a real value that correlates with some utility dimension of a
recommender system. This is an instantiation of the problem presented in Section
5.1 but in the recommendation setting. For such purpose, we first specify more pre-
cisely what the input space of predictors consists of, and how the predictor input and
output relate to the data involved in recommendation. Thus, a utility predictor han-

dles the following information:
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Input variables

e The specific configuration of the recommender system. For instance, for a
nearest neighbour recommender input parameters could be the neighbour map

(that assigns a set of neighbours to each user) and a user similarity metric.
e Any input of the recommender, such as the active user and the active item.

e Background/context information: any known uset, item, and uset-item interac-
tion data, such as user ratings, user features, item features, social network in-
formation, data timestamps, etc. We have to note that, even though the predic-
tor will generally use this type information, we consider it as implicit input and
do not include it explicitly in our notation to avoid making it needlessly cum-

bersome.

Output variable
e A valuein R.

A predictor is thus a function y: R X U X J = R (R being the set of all recom-
menders) that estimates the performance of the system, possibly using additional
information available in the background. A predictor can be independent from some
of these inputs, which would be then omitted in the previous notation. For instance,
in this chapter we shall present predictors of the form y:U — R and y:J —» R. Ad-
ditionally, a predictor may assume a specific parameterised recommender algorithm
family (e.g. nearest neighbour collaborative filtering), and needs some element of its
configuration as input. It may also happen that a predictor does not make any as-
sumption on the recommender — it does not depend on it — but still the predictor
works well only for certain types of recommenders. It would be syntactically possible
and correct to apply the predictor with other recommenders, although it may work
badly. In general, what it means for a predictor to work “well” may depend on the
application, but we generally assume it can be evaluated in terms of its correlation to
some utility dimension of recommendations, such as an accuracy metric (RMSE,
precision, nDCG) or alternative metrics such as novelty, diversity, etc.

If a recommender system can be decomposed into its internal configuration,
then a predictor can directly take as input the components of the recommender con-
figuration. For instance, neighbourhood-based collaborative filtering recommenders
can be represented in R = E X N X §, where &: RF x R¥ - R* is a preference
estimation function (based on k similarity values between the target user and her
neighbours, and k neighbours’ ratings on the target item), N: U — P(U) is a
neighbourhood assignment map, and § is a similarity metric. Upon such a model, we

would have y:EX N XS XU XTI - R.
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We may also constrain some inputs to a relevant condition they should meet.
For instance, we could limit ourselves to a neighbourhood map that considers a user
v as a candidate neighbour. In that case, this map can be essentially represented by v,
and then we would have y:E XU XS X U X T = R (note that the first U in the
Cartesian product stands for neighbour users, and the second U for target users).

It is important to note that when the predictor takes as input some of the inputs
of the recommender, namely the active user and/or the active item, then the predic-
tor’s correlation with the recommender’s utility must be measured on a per-input
basis. For instance, if the predictor just takes users as input arguments, it should cot-
relate with the average utility per user.

Moreover, predictors can also be used to enhance hybrid recommenders by fa-
vouring strategies that are predicted to produce better results. This can be done by
relating activation switches in the recommenders to predictor values, so that one
recommender or the others are activated or favoured depending on the predictor’s
estimation.

The way in which these activation switches are related to predictors is typically
application-dependent. For instance, in ensemble recommenders consisting of a
unique (Boolean) selection among a set of recommenders, the selection/discarding
of recommenders can be a binary function of a predictor for each recommender. If
the ensemble consists of a linear combination of recommenders, the weights in the
combination can also be a function of the predictors. In neighbourhood-based col-
laborative filtering, activation switches can be the weights of neighbours in the pre-
diction of user ratings. Indeed, relating predictor values to activation switches is a
non-trivial problem and generally requires some research on itself.

Based on all the above mentioned issues, the general research problem we ad-
dress consists of a) finding effective predictors of recommendation utility, and b)
identifying and testing useful applications for the found predictors. In the reminder
of this chapter we propose different predictors of recommendation utility using dif-
ferent types of input, namely ratings, logs, and social information. In Chapters 7 and
8 we shall exploit and evaluate such predictors in two applications: dynamic hybrid

recommendation, and dynamic neighbour weighting in collaborative filtering.

6.2 Clarity for preference data: adaptations of query
clarity

In this thesis, we propose different adaptations for the concept of query clarity to
recommender systems. First, we deal with the definition of user clarity when rating-
based preference data is available, where alternative ground models are proposed,

depending on which random variables want to be considered in the computation of
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the user clarity. Then, we define the concept of user clarity for log-based preference
data. Additionally, for ratings we also define the concept of item clarity.

Now we propose a fairly general adaptation of query clarity, which may be in-
stantiated into different schemes, depending on the input spaces considered. At an
abstract level, we consider an adaptation that equates users in the recommendation
domain to queries in the search domain, as the corresponding available representa-
tions of user needs in the respective domains. This adaptation results in the following
formulation for user clarity:

clarity(u) = Z p(x|u) log, % (6.1)

XEX

As we can observe, the clarity formulation strongly depends on a “vocabulary”
space X, which further constrains the user-conditioned model (or user model for
short) p(x|u), and the background probability p(x). In ad-hoc information retrieval,
this space is typically the space of words, and the query language model is a probabil-
ity distribution over words (Cronen-Townsend et al.,, 2002). In recommender sys-
tems, however, we may have different interpretations, and thus, different formula-
tions for such a probabilistic framework, as we shall show. In all cases, we will need
to model and estimate two probability distributions: first, the probability that some
event (depending on the current probability space X) is generated by the user lan-
guage model (user model); and second, the prior probability of generating that event
(background model).

Under this formulation, user clarity is in fact the difference (Kullback-Leibler di-
vergence) between a user model and a background model. The use of user and back-
ground distributions as a basis to predict recommendation performance lies on the
hypothesis that a user probability model being close to the background (or collec-
tion) model is a sign of ambiguity or vagueness in the evidence of user needs, since
the generative probabilities for a particular user are difficult to single out from the
model of the collection as a whole. In Information Retrieval, this fact is interpreted
as a query for which the relevant documents are a mix of articles about different top-
ics (Cronen-Townsend et al., 2002).

As an additional step, we generalise the adaptation stated in Equation (6.1) to al-

low for different reference probability models parameterised by a generic variable 6.

p(x|u, 0)
;P(xlu, 6) log, k8 (6.2)

This generalisation will allow for the development of further varieties of the clarity

clarity(u) = Eq

scheme, and simplifies to Equation (6.1) whenever we implicitly consider a fixed 8,
as we shall see next. Equivalently, the variable 8 may be integrated in both user and

background models by exploiting a multidimensional vocabulary space:
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p(x, 6|u)

clarity(u) = z p(x, 0|u) log, S5 0) (6.2b)

XEX,0€EO
It is easy to see that Equations (6.2) and (6.2b) are fully equivalent, and thus al-

low two interpretations for the same magnitude.

As stated in (Cronen-Townsend et al., 2002), language models capture statistical
aspects of the generation of language. Therefore, if we use different vocabularies, we
may capture different aspects of the user. The probabilistic relations between the
variables involved in Equation (6.2) also depend on the nature of the data, and the
different possible generative models induced by the recorded observations of user-
item interactions (the input to a recommender system). In this thesis we consider two
types of interaction data records: users-rating-items (where the atomic event is a user
rating an item with a value), and users “consuming’ items (a user accesses an item at
some time instant). The first type fits a dataset such as MovieLens and CAMRa, and
the second fits well Last.fm data — the datasets on which we shall test the methods to
be developed here. Across these two types, in our research we explore mainly three
vocabulary spaces for X: ratings, items, and time. Each of the vocabulary spaces
induces its own user-specific interpretation, as we shall see. As for the optional con-
textual parameter 6, we shall consider here only the space of items ranging over the
set of items — thus fully leveraging the triadic nature of the user-item-rating and user-
item-time spaces. The scheme is however open to the exploration of further possi-
bilities, as is the vocabulary space itself, beyond the options researched here.

In the following sections we thus explore several alternatives for rating-based

and log-based data spaces (and their induced generative models).

6.2.1 Rating-based clarity

As just mentioned, in the rating space, we consider a set of user-item-rating tuples,
where each user-item pair appears in a unique tuple (i.e., users only rate items once).
We consider two possible vocabulary spaces: items and ratings, and two context alter-
natives: items (which make only sense in the rating vocabulary) and none. The resulting
clarity schemes are summarised in Table 6.1, and have each their own interpretation.
The rating-based clarity model captures how differently a user uses rating values
(regardless of the items the values are assigned to) with respect to the rest of users in
the community. The item-based clarity takes into account which items have been
rated by a user, and therefore, whether she rates (regardless of the rating value) the
most rated items in the system or not. Finally, the item-and-rating-based clarity com-
putes how likely a user would rate each item with some particular rating value, and
compares that likelihood with the probability that the item is rated with some par-
ticular rating value. In this sense, the item-based user model makes the assumption

that some items are more likely to be generated for some users than for others de-
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. Vocabulary X / User Background .
User clarity Context 6 model model Formulation
, Ratings / p(r|u)
Rating-based Non% p(rlu) pe(r) Z p(r|u)log, o0
Item-based Items / (ilw) ) Z p(iJu) log, pllw)
None p Pe - p(@)

Item-and- Ratings / . . Z Dol D 1o p(rlw, )

rating-based Items p(riu, ) P (1) L p(p(riu, Dlog, p(r|D)

Table 6.1. Three possible user clarity formulations, depending on the interpretation of the
vocabulary and context spaces.

pending on their previous preferences. The rating-based model, on the other hand,
captures the likelihood of a particular rating value being assigned by a user, which is
an event not as sparse as the previous one, with a larger number of observations.
Finally, the item-and-rating-based model is a combination of the two previous mod-
els into a unified model incorporating items and ratings. As we mentioned before,
this could be made more explicit by considering the user model p(r,i|u) in the
Equation (6.2b), which would be equivalent to this model under some indepence

assumptions, i.e., when p(r, i|u) = p(r|u, DHp(i).

Ground models for user clarity

We ground the different clarity measures defined in the previous section upon a rat-
ing-oriented probabilistic model very similar to the approaches taken in (Hofmann,
2004) and (Wang et al., 2008a). The sample space for the model is the set U X J X
R, where U stands for the set of all users, J is the set of all items, and R is the set of
all possible rating values. Hence, an observation in this sample space consists of a
user assigning a rating to an item. We consider three natural random variables in this
space: the user, the item, and the rating value, involved in a rating assignment by a
user to an item. This gives meaning to the distributions expressed in the different
versions of clarity as defined in the previous section. For instance, p(r|i) represents
the probability that a specific item i is rated with a value  — by a random user —,
p(i) is the probability that an item is rated — with any value by any user —, and so on.
The probability distributions upon which the proposed clarity models are de-
fined can use different estimation approaches, depending on the independence as-
sumptions one would consider, and the amount of involved information. Back-

ground models are estimated using relative frequency estimators, that is:

{(w,i) e UxT|r(u,i) =1}
{(u,i) € U xT|r(u,i) # 0}

pc(r) = (6.3)
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l{u € Ulr(u, i) # 0}
[{(u,j) € UxT|r(u,j) # 0}
[{u € Ulr(u,i) =7}
l{u € Ulr(u,i) # 0}

I{i € 7|r(u,i) =1}
I{i € 3r(u, i) # 0}

These are maximum likelihood estimations in agreement with the meaning of the

pc(l) =

Pmi (Tli) =

P (rlu) =

random variables as defined above. Starting from these estimations, user models can
be reduced to the above terms by means of different probabilistic expansions and
Bayesian reformulations, which we define next for the three models introduced in
the previous section.

Item based model. The p(ilu) model can be simply expanded through mar-
ginalisation over ratings, but under two different assumptions: the item generated by
the model only depends on the rating value, independently from the user or, on the
contrary, depends on both the user and the rating. These alternatives lead to the fol-

lowing developments, respectively:

pr(ilw) = z P ()P () (6.4)

TER

pur(ilw) = z p(ilu, )y (rlw) (6.5)

TeER
Rating based model. This model assumes that the rating value generated by the
probability model depends on both the user and the item at hand. For this model, we

sum over all possible items in the following way:

POl = > plrlu,dpiw 66
r(wi)=r

where the p(i|u) term can be developed as in the item-based model above. The term

p(rlu, i) requires further development, which we define in the next model.
Item-and-rating based model. Three different models can be derived depend-
ing on how the Bayes’ rule is applied. In these models, item probability is assumed to
be uniform and thus it can be ignored in the computation of the expectation in
Equation (6.2). In the same way as proposed in (Wang et al., 2008a), three relevance
models can be defined, namely a user-based, an item-based, and a unified relevance

model:

pQulr, Dpm (r]i)
Yrer PU|T, Dpp (ri)

pu(rlu,i) = 6.7)
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p (i, r)pm (r|w)
Yrer P(lu, )P (rlw)

pi(rlw i) = (6.8)
p(u,i|r)p.(r)
ZrER p(u; i |r)pc (T)

The first derivation induces a user-based relevance model because it measures by

pur(rlu, i) = (6.9)

p(u|r,i) how probable it is that a user rates item i with a value 7. The item-based
relevance model is factorised proportional to an item-based probability, ie.,
pr(rlu, i) o< p(ilu, r). Finally, in the unified relevance model, we have py; (r|u, i) «
p(u, i|r). These estimations correspond respectively with the Equations 20a, 20b,
and 21 from (Wang et al., 2008a); to make the thesis self-contained and facilitate the
comparison between the different probability models, we present now these equa-
tions from (Wang et al., 2008a):

ulr 1) 1 Z 1 K u—v
plulr,i) = ————= 71 (_) 6.10
ISG, 01, £ AT\ hy 640

1 1 i—j
p(ilu,r) = ——= Z WK(—) (6.11)

15wl jestan M hi
1 1 u—ov\ 1 i—j

p(u, i) = o7 z —7K( ) U K( ) 6.12
ISOT, £ BT\ hy Rk, 642

where K(+) is a Parzen Kernel function (Duda et al., 2001). In this formulation, u
denotes the user u represented as a vector by her ratings in the space of items. Un-
rated items can be filled with the average rating value or with other constant value,
such as 0 or the average rating in the community. Respectively, i represents the item
[ in the user space. hy and h; are the bandwidth window parameter for the user and
item vector, respectively; S(+) denotes the set of observed samples where event (+)
has happened. For example, S(,i) denotes the set of observed samples with event
(R = 1,1 = i). More specifically:

S(r,i)={ueUlr(ui)=r} (6.13)
Str,u) ={i € I|lr(w,i) =1} (6.14)
Sr)y={(w,i) eUxT|r(u,i) =1} (6.15)

In the experiments, we used a Gaussian Kernel function, ie., K(x) =

e x*/2 /[y 2m, and h; = hy,, = 0.9 as suggested in (Wang et al., 2008a).
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User clarity name  User dependent model  Background model
RatUser pu (rlw, 0); pyr (ilw) pc(r)
Ratltem pr(rlu, ); pyg (ilw) pc(r)
ItemSimple pr(ilw) pc (@)
ItemUser pur(ilu) pc (D)
IRUser py (rlu, i) P (D)
IRItem pi(rlu, i) P (D)
IRUserltem py(rlu, i) P (D)

Table 6.2. Different user clarity models implemented.

Finally, different combinations of distribution formulations and estimations re-
sult in a fair array of alternatives. Among them, we focus on a subset that is shown in
Table 6.2, which provide the most interesting combinations, in terms of experimental
efficiency, of user and background distributions for each clarity model. These alter-
natives are further analysed in detail below (with examples) and in Section 6.5.1

where correlations obtained by each model are presented.

Qualitative observation

In order to illustrate the proposed prediction framework and give an intuitive idea of
what user characteristics the predictors are capturing, we show the relevant aspects of
specific users that result in clearly different predictor values, in a similar way to the
examples provided in (Cronen-Townsend et al., 2002) for query clarity. We compare
three user clarity models out of the seven models presented in Table 6.2: one for
each formulation included in Table 6.1. In order to avoid distracting biases on the
clarity scores that a too different number of ratings between users might cause, we
have selected pairs of users with a similar number of ratings. This effect would be
equivalent to that found in Information Retrieval between the query length and its
clarity for some datasets (Hauff, 2010).

Table 6.3 shows the details of two sample users on which we will illustrate the
effect of the predictors. As we may see in the table, U, has a higher clarity value than
uy for the three models analysed. That is, according to our theory, U, is less “am-
biguous” than u,. Figure 6.1 shows the clarity contribution in a term-by-term basis
for one of the item-and-rating-based clarity models — where, in this case, terms are
equivalent to a pair (rating, item) — as analysed in (Cronen-Townsend et al., 2002). In
the figure, we plot p(r|u,i)log,(p(r|u,i)/p(r|i)) for the different terms in the

collection, sorted in descending order of contribution to the user model, ie.,

User | Number of ratings | ItemUser clarity Ratltem clarity  IRUserltem clarity
Uy 51 216.015 28.605 6.853
U, 52 243.325 43.629 13.551

Table 6.3. Two example users, showing the number of ratings they have entered, and
their performance prediction values for three user clarity models.
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Figure 6.1. Term contributions for each user, ordered by their corresponding contribution to
the user language model. IRUserItem clarity model.

p(r|u,i), for each user. For the sake of clarity, only the top 20 contributions are
plotted. We may see how the user with the smaller clarity value receives lower con-
tribution values than the other user. This observation is somewhat straightforward
since the clarity value, as presented in Equation (6.1), is simply the sum of all these
contributions, over the set of terms conforming the vocabulary. In fact, the figures
are analogous for the rest of the models, since one user always obtains higher clarity
value than the other.

Let us now analyse more detailed aspects in the statistical behaviour of the users
that explain their difference in clarity. The IRUserltem clarity model captures how
differently a user rates an item with respect to the community. Take for instance the
top item-rating pairs for users 1 and 2 in the above graphic. The top pair for u, is (4,
“McHale’s Navy”). This means that the probability of u, rating this movie with 4 is
much higher than the background probability (considering the whole user commu-
nity) of this rating for this movie. Indeed, we may see that u; rated this movie with a
3, whereas the community mode rating is 1 — quite farther away from 4. This is the
trend in a clear user. On the other extreme of the displayed values, the bottom term
in the figure for u, is (2, “Donnie Brasco”), which is rated by this user with a 5, and
the community mode rating for this item is 4, thus showing a very similar trend be-
tween both. This is the characteristic trend of a non-clear user.

Furthermore, if we compare the background model with the user model, we ob-
tain more insights about how our models are discriminating distinctive from main-
stream behaviour. This is depicted in Figure 6.2. In this situation, we select those
terms which maximise the difference between the user and background models.
Then, for this subset of the terms, we sort the vocabulary with respect to its collec-
tion probability, and then we plot the user probability model for each of the terms in
the vocabulary.
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Figure 6.2. User language model sorted by collection probability.

These figures show how the most ambiguous user obtains a similar distribution
to that of the background model, while the distribution of the less ambiguous user is
more different. In the rating-based model this effect is clear, since the likelihood of
not so popular rating values (i.e., a ‘5’) is larger for u, than for u;, and at the same
time, the most popular rating value (a ‘4’) is much more likely for u;. The figure
about the ItemUser model is less clear in this aspect, although two big spikes are
observed for u; with respect to the collection distribution, which correspond with
two unpopular movies: ‘Waiting for Guffman’ and ‘Cry, the beloved country’, both
with a very low collection probability. Finally, the figure about the IRUserItem model
successfully shows how u, has more spikes than u,, indicating a clear divergence
from the background model; in fact, u;’s distribution partially mimics that of the

collection. In summary, the different models proposed are able to successfully sepa-
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Item clarity VOCCaO?]Lt'LirtyGX/ nlwtoecrl];I Baﬂ](g(l;g:md Formulation
Rating-based Rath‘nges / p(rld) pe(r) Z p(rli) log, pp( (rrlg)
User-based U’\slce)gse/ p(uli) pe(w) Zu: p(uli) log, pp(zt_lg)
st | R e | wt D ppoii s B

Table 6.4. Three possible item clarity formulations, depending on the interpretation of the
vocabulary and context spaces.

rate information concerning the user and that from the collection, in order to infer

whether a user is different or similar from the collection as a whole.

Item clarity

Alternatively to user-based predictors, we can also consider item-based predictors,
where the performance prediction is made on an item-basis. Item predictors can be
defined analogously as those defined previously for users, the equation for item clar-

ity being as follows:

. p(x]i,6)
Z p(x|i, 0) logzm (6.16)

XEX

clarity(i) = Eq

The formulation of the item predictors we propose is basically equivalent to the
user-based scheme but swapping users and items. That is, we have the three formula-
tions presented in Table 6.4 where the vocabulary now may be either ratings or users,
and the context variable is the user space. Based on these three formulations, and on
derivations analogous to those presented before, we propose the seven item predic-
tors defined in Table 6.5 which are further evaluated in Section 6.5.2.

In some of the instantiations of the item clarity predictor, we may observe that

there are item probability models statistically equivalent to some of the user probabil-

ity models, such as the py (r|i, u) and py (r|u, i). For this reason, we now only spec-

Item clarity name  Item dependent model  Background model
Ratltem pr (rli, w); prg (uli) pe(r)
RatUser py (rli, w); prg (uli) pe(r)
UserSimple pr(uli) pc(wW)
Userltem pir(uli) p.(w)
URItem p;(rli,w) P (W)
URUser py(rli,u) P (W)
URItemUser Py (rli, w) Pou ()

Table 6.5. Different item clarity models implemented.
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ify those probability models which have not been defined before, for the rest of es-
timations see Equation (6.3):

pr(uld) = z P @lT) P (r]0) (6.17)

TER

pir(uli) = Z p(uli, )ppu(rli) (6.18)
TER

P (rli,w) = py (rli, w) (6.19)

6.2.2 Log-based clarity

In this section we adapt some of the previous models proposed for user clarity when
the preference data come in the form of user-item interaction logs. Log data has a
particularity we aim to exploit: the number of times a user consumes (purchased,
listened, browsed, etc.) an item may be higher than one, in contrast with rating-based
preferences, where the relation between a user and an item is summarised as a unique
value, the rating. Moreover, the timestamp of the interactions has a stronger meaning
in the implicit approach, as it informs of the very instant the user decided to use the
item, rather than the time when the user decided to reflect on her quality of experi-
ence with the item (rating time). Specialised recommendation algorithms have been
proposed in the literature that exploit such features in order to obtain better recom-
mendations (Xiang et al., 2010; Lee et al., 2008). Additional alternatives for the defi-
nition of the vocabulary may be proposed, but we shall focus on these two: log co-
occurrences and timestamps.

Specifically, based on Equation (6.2) and the three instantiations of X and 6
shown in Table 6.1, in principle only an instantiation analogous to the second one
(X =7, no context — to which we shall refer as frequency-based clarity) makes sense
here, as there is no rating space. However, it is possible to consider an additional
space, which leads to structurally similar instantiations by taking time as the X vo-
cabulary. The similarity is only syntactic, as the meaning and implications of the re-
sulting magnitude, to which we shall refer as time-based clarity, are quite different
from rating-based clarity — in other words, ratings and time are quite different dimen-

sions —, as we shall describe later below.

Frequency-based clarity

As mentioned above, we may define the following instantiation of the Equation (6.2)

based on frequencies as follows:

ilu
frequency-based clarity(u) = z p(ilw) log, p;(L)) (6.20)
i
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where now the estimations of the user and background models are computed using
directly the frequencies of the co-occurrences of some particular user-item interac-
tion in the data:

@) = freq(i)
PR =S e frea()
. (6.21)
p(ilu) = rea(i u)
2jes, freq(j, u)

An alternative to such estimations is to use transformations from implicit log-
based to explicit ratings, such as the one proposed in (Celma, 2008). In that ap-
proach, any of the predictors based on ratings proposed in the previous section could
be applied, since these transformations give the additional vocabulary space of rat-

ings that was absent in principle in log data.

Time-based clarity

As introduced earlier, the second dimension susceptible to be exploited when log-
based preference data are available is time. The time dimension is being paid increas-
ing attention in Information Retrieval, where, for instance, it has been integrated into
language models as a means to capture some temporal information needs from the
user (Berberich et al., 2010), and the temporal query dynamics are being increasingly
considered in the field (Kulkarni et al., 2011). In fact, temporal query features have
also been used for query performance prediction, showing low or moderate correla-
tion with query performance by themselves, although higher correlation is obtained
when such features are combined with query clarity (Diaz, 2007; Diaz and Jones,
2004).

Furthermore, time has an inherent place in recommendation: recommender sys-
tems take as input (potentially long) histories of user interaction with items (Lathia,
2010; Zimdars et al., 2001; Burke, 2010). Time is an essential dimension in making
sense of the data, and in explaining, analysing and interpreting the motivations be-
hind the actions of users recorded over time. We propose to bring these ideas to
recommender systems, in particular, to adapt the temporal features studied by Diaz
and colleagues on a recommender system dataset. More specifically, we use the tem-
poral Kullback-Leibler divergence described in (Diaz and Jones, 2004) as a starting
point, which we generalise and elaborate upong by considering the instantiation of
Equation (6.2) for a time-based space X, and the space of items as a possible contex-
tual dimension, as presented in Table 6.6. In the following, we define the specific

instantiations of the temporal clarity formulations presented in this table.
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. Vocabulary X / User Background .
User clarity Context 6 model model Formulation
: Time / Z p(tlw)
- tjlw)l
Time-based None p(tlu) p(t) t p(tuw)log, (D)
ltem-and- Time / , . Z (el 1) log, P D
time-based Items p(tlu, ) p(tlD) - pp(ths D log p(tli)

Table 6.6. Two temporal user clarity formulations, depending on the interpretation of the
vocabulary space.

Time based model. We denote as TimeSimple clarity the most direct adapta-
tion for temporal clarity, which does not use any further extension over other dimen-
sions. It simply computes p(t|u) using smoothing (see below) and p.(t) from the
collection frequencies.

Item-and-time based model. Like in the previous section, we develop condi-
tional probabilities into sums with respect to a third variable: the items rated by the
user. Here, we define two temporal clarity predictors depending on the distribution
assumed for the items in the summation. If the distribution is uniform we denote
such predictor as ItemTime clarity and p(i) = 1/|7|. If, on the other hand, we
also want to incorporate the popularity of the item for — which we have more data in
this context and makes more sense than in rating data, since there the interaction
between a user and an item is binary —, we include the prior item probability as
p(i) = p (i), which can be estimated considering the frequency by which i is ac-
cessed based on the interaction log.

The probabilities presented above are estimated as follows:

H{(v,j,t) € LIv e U,j € T}

pc(t) = |L|
< Hw,i,s) e LlveU,s e S}
pc(i) =
|£]
~_ HKwit) e Llveull
P (£10) = {(v,i,s) € L|lv € U,s € S} (6.22)
(tho) = l{(w,j,t) € LI|j € 3}
Prult) =10 j,s) € Lj € 7,5 € S}
P (tlw, 0) UCTDRES!

" {(u,i,s) € L|s € S}

Note that the variable t in (u, i, t) in the above expressions denotes a timestamp
in the discretised time segment (e.g. day, week) represented by t. Furthermore, these
are simple estimations of the distributions; hence, it is also possible to introduce non-
parametric estimations or additional expansions through similar users or items (Wang
et al., 2006a; Wang et al., 2008a). Moreover, distributions can also be modeled by
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other statistical theories or hypothesis (such as Bayesian inversion), and distribution
fitting/modelling from time seties theoty could also be studied (Diaz and Jones,
2004; Wang et al., 2008b).

In particular, we have smoothed these estimations using Jelinek-Mercer as fol-

lows:

p(tli) = A pp (t]D) + (1 —2) p(2)
p(tlu) = A pm (tluw) + (1 = 2) p(t) (6.23)
p(tlw, i) = A ppy (tlu,i) + (1 —2) p(t)

6.3 Predictors based on social topology

Social information is widespread nowadays. As we surveyed in Chapter 2, recom-
mender systems that use social information are proliferating in the research literature,
as well as in the recommender system industry, because of the effectiveness they are
being found to have. It seems therefore sensible to consider social information as a
potentially useful input for predicting the performance of recommendation. The mo-
tivation for this approach is obvious when applied to social recommender systems,
though we will also explore its potential properties in relation to non-explicitly social
recommendation, in order to study whether social topologies may have an indirect
effect on the results of the algorithms for different users.

With this goal in mind, we explore the use of graph-based measures as indicators
of the user strength in the social network, which may in turn correlate with the ease
or difficulty of users as recommendation targets. Graph-based measures developed
from link-analysis theory are straightforward to interpret where they are often used
to understand the structure of communities within a population (De Choudhury
et al., 2010; Albert and Barabasi, 2002). As a basis for user performance prediction
they may thus bring an advantage in terms of explaining the predictions.

More specifically, the utilised indicators of the user strength in the network are
based on the following vertex measures computed over the social network for each
user, where a user is represented as a node in the graph, and the user’s friends corre-

spond with the node’s neighbours:

e Average neighbour degree: mean number of friends of each user’s friend
(Kossinets and Watts, 2000).

e Betweenness centrality: indicator of whether a user can reach others on rela-

tive short paths (Freeman, 1977).

e Clustering coefficient: probability that the user’s friends are friends them-
selves (Watts and Strogatz, 1998).
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¢ Degree: number of the user’s friends in the social network (Milgram, 1967).

¢ Ego components size: number of connected components remaining when

the user and her friends are removed (Newman, 2003).

e HITS: Kleinberg, 1999) defines two complementary measures which assign
recursively a weight to each vertex (user) depending on the topology of the
network. In this way, they define hubs and authorities: a vertex is a hub when it
links to authoritative vertices, and is an authority when it links to hub vertices.
Since the social network used here (see Appendix A.1.3) is undirected, hub and

authority scores are redundant and we only report one, denoted as HITS.

e PageRank score: well-known measure of connectivity relevance within a social
network based on a random walk over the vertices, where a probability

(@ = 0.2 in our experiments) of jumping to any other vertex is introduced
(Brin and Page, 1998).

¢ Two-hop neighbourhood size: count of all the user’s friends plus all the
uset’s friend’s friends (De Choudhury et al., 2010).

6.4 Other approaches

As a reference for comparison, we shall also test further predictors besides the ones
proposed in the thesis, directly drawn from the literature, and not necessarily based
on probabilistic formalisations, but following more loose formalisations, or heuristic
approaches. As a further sanity check, we shall also examine obvious and simple
functions (such as the amount of activity of a user), as a reference for the justification
of elaborate approaches as proposed. Next, we present these predictors which are

evaluated and compared in Section 6.5.

6.4.1 Using rating-based preference data

A fairly simple user predictor against which we would like to compare more elaborate
functions is the count predictor, namely the number of items a user has rated at
some specific moment. This predictor, as we shall see later, can be defined in the
training set and in the test set, and although its rationale is the same, the output has
different implications. Whereas in training this predictor is measuring how much
information a recommender knows about some specific user, in test this value would
be related to the amount of relevance used to obtain the performance metric. Fur-
thermore, as observed in Chapter 4, the amount of relevance would be different de-
pending on the evaluation methodology considered. However, we have to note that,

due to statistical effects, the training count (profile size in training) and test count
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(profile size in test) would probably be related if the training/test split is performed

randomly.

count(u) = |7, | = [{(u,,")} (6.24)

Two additional heuristic predictors can be defined by looking at user statistics
such as the mean and the standard deviation of the user’s ratings. It seems plausi-
ble that such predictors would not be equally powerful for any type of recommender:
it would depend on whether these statistics are used by the recommender. For in-
stance, one might have the intuition that the higher the standard deviation, the lower
the recommendation performance as one may figure out uniform user ratings to be a

somewhat easier target.

1 .
mean(u) = m; r(u, i) (6.25)
1
std(w) = m Z (r(u, i) — mean(u))2 (6.26)
ulier,

Alternatively to these heuristic predictors, we have also experimented with a pre-
dictor defined upon the past observed recommender’s performance. In this way, this
predictor — denoted as training performance from now on — use a validation set (as
a subset of the original training set) to evaluate the performance of each user with
respect to a specific recommender; then, this value is the one returned by the predic-
tor at test time. This approach is inspired in the Machine Learning techniques which
aim to learn a feature (in this case, the user’s performance) by using some training
information. For this predictor, this training information is the performance com-
puted on the validation set.

Additionally, we propose to measure the entropy of the user’s preferences as a
quantification of the uncertainty associated with a probability distribution (Cover and
Thomas, 1991). We may therefore assess the uncertainty involved in the system’s
knowledge about a user’s preferences by the entropy of the item distribution (the
probability to choose an item) given the information in the user profile, using the

ground models presented in Section 6.2.1. Hence, we define this predictor as follows:

entropy(u) = Z p(ilu) log, p(ilw) (6.27)

i€y
Alternative measures from Information Theory could be used to define user-
based predictors, like Information Gain (Bellogin, 2009), but we leave them out of
this analysis because its application to Recommender Systems is neither clear nor
principled and their predictive results are not optimal. Furthermore, other measures

already proposed in the literature such as inverse user frequency (Breese et al., 1998)
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and the analogous inverse item frequency (Bellogin, 2009), and other manipulations
of the same concept, are also ignored here because they are simply transformations
of the previously presented count predictor. Finally, the concept of power users
(Lathia et al., 2008) could also be used as a proxy for well-performing users, but pre-

liminary results have not shown strong predictive power.

6.4.2 Using log-based preference data

As we have observed in the previous section, recommendation performance usually
has obvious predictors, obvious in the sense that they do not involve any interesting
finding or insightful kind of analysis, or anything to learn from. We include in our
analysis some of these obvious predictors, framed as baseline performance predictors
that basically count how many interactions a user has had with the system. In this
sense, these predictors are slightly different to the ones presented in the previous
section, namely because in log-based datasets repetitions of items are allowed in a
uset’s profile. In order to account for this difference, apart from count, mean, and
standard deviation predictors, we propose to normalise the count predictor by the
number of items consumed by each user, that is, we define the average count pre-

dictor as follows:

l{(u,j,s) € L]j € 7,5 € S}
Ij € L: (u,j,s) € L,s € S}

We also test more elaborate predictors based on the temporal dimension, such as

average count(u) = (6.28)

the ones defined in (Diaz and Jones, 2004). First-order autocorrelation (or temporal
self-correlation) can be considered with a reinterpretation of the random variables.
Specifically, this predictor, in contrast with the temporal Kullback-Leibler divergence
where the similarity with the temporal background model is assessed, captures the
structure of the query time series. For instance, a uniform distribution would have an
autocorrelation value of 0, whereas a query time series with strong inter-day (or
whatever segment size is used to build the discrete time series) dependency will ob-
tain a high autocorrelation value.

Thus, we define the autocorrelation user predictor as follows:

=) —1/D (@ + 1jw) — 1/T)
=1 (p(thy) — 1/T)2

where T is the total number of time units in the time interval. We can observe how

autocorrelation(u) = (6.29)

this predictor captures the similarity between two consecutive observations.
Extensions of this predictor could use the probabilities defined in Section 6.2.2,

like p(t|u, i), instead of p(t|u). Similarly, other predictors proposed by Diaz and

Jones in (Diaz and Jones, 2004) and (Jones and Diaz, 2007) such as the kurtosis or
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the burst model could be adapted to recommender systems, but we leave such exten-

sions for future work.

6.5 Experimental results

In this section we provide correlation results where all the predictors — heuristic,

social, and clarity-based — are compared against each other using an array of recom-

mendation methods and evaluation methodologies.

6.5.1 User predictors using rating-based preference data

In this section we compare the correlations obtained for the clarity-based predictors
defined in Section 6.2.1, the user entropy defined in Equation (6.27), and the base-
lines presented in Equations (6.24), (6.25), and (6.26) using the MovieLens 1M data-
set. The A parameter for the language model smoothing was not optimised for this
task and a default value of 0.6 was used in all the models as originally used in
(Cronen-Townsend et al., 2002). Here, we focus on Pearson’s correlation and P@10.
Additional results are reported in Appendix A.4.1.

Table 6.7 shows the correlation values when the AR methodology is used. We
can observe fairly high correlation values for recommenders pLSA, ItemPop, TFL2,
and kNN, comparable to results in the query performance literature. A slightly lower
correlation is found for TFL1, whereas no correlation is found for CB and IB. These
results are consistent when other performance metrics are used such as nDCG, and
at different cutoff points. Spearman’s correlation yields similar values. Here we also

include the count predictor in test, which is obviously not a predictor in strict sense,

Predictor Random | CB IB ItemPop kNN pLSA TFL1 TFL2 | Median Mean
Count (training) 0.135 | 0.164 0.042 0.512 0.424 0.442 0.198 0.644 0.311 0.320
Count (test) 0.135 | 0.172 0.042 0.520 0.431 0.452 0.200 0.647 0.316  0.325
Training performance 0.024 | 0.176  0.258 0.429 0.296 0.357 0.215 0.485 0.277  0.280
Mean 0.019 | 0.067 -0.002 0.015 0.022 0.108 0.026 -0.018 0.021  0.030
Standard deviation 0.008 | 0.008 0.011 -0.029 -0.031 -0.032 0.011 -0.051 -0.011 -0.013
ItemSimple Clarity 0.149 | 0.191 0.046 0.549 0.453 0.489 0.222 0.683 0.338 0.348
ItemUser Clarity 0.134 | 0.166 0.048 0.493 0.416 0.428 0.215 0.634 0.316  0.317
RatUser Clarity 0.135 | 0.160 0.048 0.514 0.442 0.435 0.214 0.651 0.325 0.325
Ratltem Clarity 0.127 | 0.159  0.039 0.475 0.402 0.405 0.203 0.611 0.303  0.303
IRUser Clarity 0.128 | 0.157 0.027 0.486 0.382 0.408 0.182 0.599 0.282  0.296
IRItem Clarity 0.122 | 0.165 0.034 0.446 0.352 0.386 0.188 0.551 0.270  0.281
IRUserltem Clarity 0.128 | 0.158 0.033 0.479 0.379 0.403 0.193 0.594 0.286  0.296
Entropy 0.121 | 0.168 0.025 0.492 0.389 0.483 0.140 0.589 0.279  0.301
Median 0.128 | 0.162 0.037 0.489 0.396 0.418 0.196 0.605
Mean 0.112 | 0.145 0.033 0.413 0.338 0.367 0.166 0.511

Table 6.7. Pearson’s correlation between rating-based user predictors and P@10 for different recommenders using
the AR methodology (MovieLens dataset).
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since it uses a different input than the other predictors, but we include it in our
analysis as a further reference to check behaviours.

As mentioned in Chapter 5, the standard procedure in Information Retrieval for
this kind of evaluation is to compute correlations between the predictor(s) and one
retrieval model (like in (Cronen-Townsend et al., 2002) and (Hauff et al., 2008a)) or
an average of several methods (Mothe and Tanguy, 2005). This approach may hide
the correlation effect for some recommenders, as we may observe from the median
and mean correlation values included in the table, which are still very large despite
the fact that two of the recommenders analysed have much lower correlations.
Nonetheless, these aggregated values, i.e., the mean and the median, provide com-
petitive correlation values when compared with those in the literature.

The difference in correlation for CB and IB recommenders may be explained
considering two factors: the actual recommender performance and the input sources
used by the recommender. With regards to the first factor, as presented in Table 6.8,
the IB algorithm performs pootly (in terms of the considered ranking quality metrics,
such as precision and nDCG) in comparison to the rest of recommenders. It seems
natural that a good predictor for a well performing algorithm (specifically, pLSA is
the best performing recommender in this context) would hardly correlate at the same
time with a poorly performing one.

This does not explain however the somewhat lower correlation with the content-
based recommender, which has better performance than TFL1. The input informa-
tion that this recommender and the predictors take in are very different: the latter
compute probability distributions based on ratings given by users to items, while the
former uses content features from items, such as directors and genres. Furthermore,
the CB recommender is not coherent with the inherent probabilistic models de-
scribed by the predictors, since the events modeled by each of them are different: CB
would be related to the likelihood that an item is described by the same features as
those items preferred by the user, whereas predictors are related to the probability
that an item is rated by a user. Moreover, the predictors’ ground models coherently
fit in the standard collaborative framework (Wang et al., 2008a), which reinforces the
suitability of the user performance predictors presented herein, at least for collabora-
tive filtering recommenders.

It is worth noting to this respect that most clarity-based query performance predic-

Recommender Random CB IB IltemPop kNN pLSA  TFL1  TFL2

AR methodology 0.0025 | 0.0163 0.0001 0.0897 0.0307 0.1454 0.0024 0.0696
1R methodology 0.0099 | 0.0221 0.0074 0.0649 0.0437 0.0836 0.0221 0.0690
U1R methodology [ 0.0100 | 0.0223 0.0068 0.0406 0.0381 0.0718 0.0294 0.0524
P1R methodology [ 0.0101 | 0.0197 0.0208 0.0282 0.0265 0.0604 0.0203 0.0348

Table 6.8. Summary of recommender performance using different evaluation methodologies
(evaluation metric is P@10 with the MovielLens dataset).
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tion methods in Information Retrieval study their predictive power on language model-
ling retrieval systems (Cronen-Townsend et al., 2002; Hauff et al., 2008a; Zhou and
Croft, 2007) or similar approaches (He and Ounis, 2004). This suggests that a well per-
forming predictor should be defined upon common spaces, models, and estimation
techniques as the retrieval system the performance of which is meant to be predicted.
Finally, the correlation values found by the training performance predictors, al-
though sometimes strong, are not as high as those of the baselines predictors — such as
training count — in most situations, in particular, they are always lower except for the
IB and TFL1 recommenders. This highlights the importance of having a more general
model for predicting the performance of a user, since these predictors in fact depend
considerably on the properties of the validation (and test) partition of the data, such as

the amount of sparsity, type of items evaluated and so on.

Unbiased performance prediction

In Chapter 4 we already demonstrated that some methodologies may be biased to-
wards more popular items or sparsity constraints. We can observe in the previous
table that trivial predictors such as count (either in training or in test) obtain signifi-
cant (and positive) correlation, no matter the recommender. We argue whether this is
because these predictors are really capturing an interesting effect or the evaluation
methodology is prone to such effect. In order to overcome this problem, now we
present the same correlation analysis but with the different methodologies presented
in Chapter 4.

In Table 6.9 we show results with the methodology 1R. Here we can observe
that most of the correlation values are lower than in the previous case; interestingly,
the correlation with the Random recommender now is almost 0 for every predictor

(and in particular, for the training and test profile size). This is evidence that per-

Predictor Random CB IB ItemPop kNN pLSA  TFL1 TFL2
Count (training) 0.061 | -0.038 0.092 0.258 0.108 0.303 0.086 0.394
Count (test) 0.063 | -0.033 0.091 0.266 0.115 0312 0.089 0.398
Training performance 0.012 0.332 0.168 0.272 0.266 0.133  0.303 0.240
Mean 0.036 0.082 -0.029 0.028 0.111 0.117 0.145 0.031
Standard deviation -0.010 0.006 0.051 -0.060 -0.116  -0.080 -0.040 -0.114
ItemSimple Clarity 0.066 | -0.033 0.094 0.265 0.115 0.322 0.105 0.409
ItemUser Clarity 0.059 | -0.038 0.087 0.236 0.100 0.287 0.096 0.375
RatUser Clarity 0.057 | -0.054 0.083  0.245 0.130 0.285 0.086 0.372
Ratltem Clarity 0.057 | -0.044 0.069 0.225 0.110 0.268 0.094 0.352
IRUser Clarity 0.056 | -0.020  0.053  0.250 0.069 0.280 0.077 0.364
IRItem Clarity 0.051 | -0.010 0.058  0.205 0.029 0235 0.074 0.310
IRUserltem Clarity 0.056 | -0.020  0.052  0.242 0.066 0.273 0.081 0.357
Entropy 0.091 0.021 0.144  0.354 0.169 0460 0.114 0.543

Table 6.9. Pearson’s correlation between rating-based user predictors and P@10 for different
recommenders using the 1R methodology (MovieL ens dataset).
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Predictor Random CB IB ItemPop kNN pLSA  TFL1  TFL2
Count (training) 0.048 | -0.012  0.237 0.162 0.115 0.140 0.022 0.235
Count (test) 0.049 | -0.001  0.226 0.135 0.110 0.137 0.036  0.213
Mean 0.023 0.051 -0.035 0.009 0.108 0.075 0.155 -0.006

Standard deviation 0.015 0.032 0.023  -0.047 -0.098 -0.038 -0.061 -0.049
ItemSimple Clarity 0.055 | -0.005 0.241 0.166 0.128 0.153 0.042 0.241

ItemUser Clarity 0.046 | -0.009  0.232 0.142 0.109 0.133 0.028 0.216
RatUser Clarity 0.045 | -0.028 0.234 0.155 0.137 0.130 0.022  0.225
Ratltem Clarity 0.043 | -0.025 0.212 0.136 0.119 0.117 0.033  0.203
IRUser Clarity 0.044 0.002  0.180 0.153 0.069 0.134 0.029 0.210
IRItem Clarity 0.036 0.011 0.178 0.114 0.035 0.108 0.014 0.173
IRUserltem Clarity 0.042 0.003 0.178 0.147 0.065 0.130 0.028 0.203
Entropy 0.078 0.044 0.278 0.227 0.169 0.249 0.073 0.321

Table 6.10. Pearson’s correlation between rating-based user predictors and P@10 for different
recommenders using the U1R methodology (MovieLens dataset).

formance results using the AR methodology are higher for users with more items in
their test, independently from the recommendation algorithm complexity (see corre-
lations with Random recommender in Table 6.7). In the same way, the UIR (Table
6.10) and P1R (Table 6.11) methodologies also obtain negligible correlation values
for the Random recommender, which confirms the suitability of these methodologies
for our purposes. We also have to note that we have not applied the training per-
formance predictor in these methodologies because their restrictions do not let to
replicate the same conditions in a validation split. Furthermore, as stated in Chapter
4, both approaches aim to remove the bias towards more popular items. Here, we
can observe how the correlation with respect to the ItemPop recommender is com-
parable to that with the Random recommender with the P1R methodology, confirm-
ing again the ability of this methodology to produce unbiased results (at least, with
respect to popular items).

The main difference in the results obtained between these three methodologies
(1R, U1R, and P1R) seems to be more at the recommender level rather than at the

Predictor Random CB IB ItemPop kNN pLSA  TFL1 TFL2
Count (training) 0.073 | -0.005  0.253 0.088 0.103 0.160 -0.001 0.307
Count (test) 0.076 0.000 0.253 0.093 0.108 0.168 0.003 0.308
Mean 0.034 0.073 -0.033 0.008 0.110 0.085 0.188 -0.026

Standard deviation -0.010 0.009 0.014 -0.058 -0.104 -0.044 -0.061 -0.051
ItemSimple Clarity 0.078 0.000 0.254 0.084 0.111 0.169 0.019 0.313

ItemUser Clarity 0.072 | -0.001  0.249 0.075 0.101 0.156 0.005 0.303
RatUser Clarity 0.071 | -0.016  0.252 0.086 0.128 0.148 0.003 0.297
Ratltem Clarity 0.067 | -0.011  0.234 0.077 0113 0.138 0.016 0.288
IRUser Clarity 0.066 0.002  0.200 0.086 0.066 0.147 0.006 0.274
IRItem Clarity 0.059 0.010 0.192 0.061 0.037 0.123 -0.006  0.242
IRUserltem Clarity 0.066 0.003  0.200 0.082 0.065 0.145 0.006 0.272
Entropy 0.092 0.038  0.286 0.133 0.128 0.266  0.039  0.379

Table 6.11. Pearson’s correlation between rating-based user predictors and P@10 for different
recommenders using the P1R methodology (MovielLens dataset).
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predictor level, in the sense that the trend in predictor effectiveness is similar for
each methodology but the correlations obtained for each recommender vary dra-
matically from one methodology to another. For instance, IB recommender obtains
near zero correlations with 1R but higher (significative) values for UIR and P1R; a
similar situation occurs with the TFL2 recommender, where the correlations are
lower for the UIR methodology and higher for 1R and P1R. Note that the training
and test sets are the same for all the methodologies except for U1IR, which means
that the performance predictors are entirely new for that methodology. Thus, a priori
it would not be clear that such an agreement between the different methodologies
should appear at the predictor level unless they are really capturing the same nuance
about the user, no matter the evaluation methodology used.

It is worth noting that the correlation values of these three methodologies have
been found after a careful examination of the available data, where two different
trends emerged: one where the performance values were more or less uniformly dis-
tributed in the interval [0, 0.1] — recall that 0.1 is the maximum value for the metric
P@10 with the 1R methodology, since there is only one relevant item — ; and a sec-
ond one where a fixed value was obtained. This second trend, against which our pre-
dictors shown no correlation at all (since the performance had a zero standard devia-
tion, and thus the correlation was impossible to calculate) is able to degrade the cor-
relation coefficient almost to negligible values, mainly because it accounts for half of
the number of points. This problem with correlation coefficients, and with Pearson’s
correlation in particular, is well known in the literature of performance prediction
(Hauff, 2010; Pérez Iglesias, 2012). For this reason, we have divided the performance
values and computed two correlations in order to account for these two trends: the
values with respect to the first trend are those presented in the previous tables,
whereas the correlation with respect to the second trend was not computable be-
cause the variable had a zero standard deviation.

In summary, there seems to be no clear winner among the set of performance
predictors proposed. The predictive power of each of them is clearly influenced by
the actual recommender its performance aims to be predicted and the evaluation
methodology in use. Nonetheless, the proposed predictors usually obtain higher
correlation values than baseline predictors such as the mean or the standard de-
viation, evidencing their predictive power independently from the evaluation
methodology. Surprisingly, the ItemSimple clarity predictor obtains very good re-
sults in most of the situations, although more complex predictors like IRUser or

IRUserltem clarity obtain stronger correlations for some recommenders.

6.5.2 Item predictors using rating-based preference data

In the same way we have assessed the predictive power of user predictors, we now

aim to estimate the predictive power of item predictors. However, the true perform-
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Table 6.12. Procedure to obtain ranking for items from user rankings generated by a
standard recommender. * denotes a relevant item, and the numbers are the score
predicted by the recommendation method.

ance value for an item is not straightforward to compute, since the process has to
produce unbiased results in the space of items (as described in Chapter 4) but with
the characteristic that the item dimension is not the main input of the recommenda-
tion process, and thus, sone new approach has to be put in place.

There are basically two possibilities for computing the true performance on an
item: either starting from the results obtained using a standard procedure (obtain a
ranking for each user by recommending items to users), then transposing users and
items (generating, thus, user rankings for each item) and computing the per-ranking
performance as usual; or transpose the original rating matrix in order to effectively
“recommend users” for each item. This would implicitly imply a transposition of the
recommendation task, which may also make sense: find the most suitable users to
recommend an item — this would be the scenario, e.g. in advertisement targeting
when a new product is released on the market. Here, we use the former approach
since the latter does not produce consistent results in our experiments, probably be-
cause the recommendation problem is not completely symmetric and, thus, this
method is not able to properly capture the recommender’s performance for each
item. On the other hand, non-personalised recommenders (such as recommendation
by item popularity) cannot be applied in the symmetric formulation: since the same
item ranking is built for all users, the user ranking for an item would be a global tie
on all users. Table 6.12 shows an example of how we may transpose users and items
from an item ranking for three users. We show that the precision for all the users is
the same, whereas for the items is completely diverse, ranging from zero to perfect
precision.

In our experiments, we have tested the different methodologies already pre-
sented along with a modified version of the UIR evaluation methodology (user-
uniform U1R, or uuU1R). The rationale for the uuU1R design goes as follows: in the
U1R methodology we force the same number of ratings (or, equivalently, users) for
the items in the test set, however, users are freely assigned to each item. Now, when

we transpose users and items this situation may produce a new problem, since there
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Predictor Random CB ItemPop kNN pLSA
Count (training) 0.414 0.060 -0.151  -0.021 -0.269
Count (test)

Mean 0.602 0.125 0.096 0.040 -0.038

Standard deviation -0.313 0.025 -0.006 -0.003 0.075
UserSimple Clarity 0.467 0.080 -0.120  -0.015 -0.240

Userltem Clarity 0.419 0.064 -0.145  -0.018 -0.261
Ratltem Clarity 0.440 0.075 -0.127  -0.015 -0.230
RatUser Clarity 0.451 0.085 -0.103  -0.004 -0.201
URItem Clarity 0.396 0.053 -0.174  -0.026 -0.289
URUser Clarity 0.408 0.072 -0.132  -0.004 -0.243
URItemUser Clarity [ 0.409 0.061 -0.161  -0.021 -0.277
Entropy 0.381 -0.001 -0.216  -0.055 -0.442

Table 6.13. Pearson’s correlation for rating-based item predictors and precision
using the uuU1R methodology (Movielens dataset).

could be users assigned to more items which would bias the ranking’s performance
towards items contained in the test set of heavy raters. Therefore, if we impose a
uniform distribution also on the uset’s dimension, this bias should decrease. We refer
to the reader to Appendix A.3 for more details.

However, despite these efforts, we have not found a reliable methodology to
evaluate the item performance. We present in Table 6.13 the results using the uuUIR
methodology and the predictors defined in Table 6.5 for the precision metric. Recall
that, since we transpose users and items from the generated rankings, to obtain a
similar measure of P@10 we only use the top 10 items from each original ranking
and then compute precision over the whole ranking for each item. We may observe
in the table that the correlations with the Random recommender are very strong,
questioning the validity of such results. Besides, the entropy predictor obtains
stronger correlation than clarity-based in this case, and most of them (except for
URItem) show little difference to training count. Note that it is not possible to com-
pute a correlation with the test count predictor since that predictor has a constant
value with zero standard deviation (see Equation (5.11) for more details on Pearson’s
correlation) since every item has the same number of ratings in the test set in the
uuU1R methodology.

As a conclusion, we have found that a proper evaluation of item performance
is not obvious, mainly because the task of suggesting users to items is not com-
pletely symmetric with respect to the standard task of recommendation. We have
devised different methodologies to estimate the recommendatoin performance of an
item, however the difficulty lies mainly in forming consistent lists of “recommended”
users for items, a difficulty which is not conceptual (ranking target users to whom an
item may be recommended does make sense as a task in many scenarios), but techni-
cal (obtaining balanced result lists that allow for undistorted performance measure-

ments).
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6.5.3 User predictors using log-based preference data

In this section we analyse the correlation obtained between the predictors defined in
Sections 6.2.2 and 6.4.2 and five recommenders using the 1R methodology on two
versions of the Last.fm dataset — one where a temporal partition is performed and
another where the partition is randomly made (more details about the splits in Ap-
pendix A.1.2). No smoothing was used in the language models since preliminary tests
obtained better results with lower values of A. Besides, for compatison purposes, we
also include one of the clarity models proposed for rating-based preference data us-
ing the transformation proposed in Section 6.2.2 to use such predictors with log data
along with the frequency-based clarity proposed in Equation (6.20). Like in the pre-
vious section, Pearson’s correlation with the P@10 evaluation metric is reported; for
additional metrics, see Appendix A.4.2.

First, we can observe in Table 6.14 (temporal split) that ItemPriorTime clarity
obtains strong correlation values, especially for the ItemPop and kNN recommend-
ers. It is interesting to compare the correlations between this predictor and the Item-
Time clarity, which are much lower. This is probably because the ItemPriorTime
clarity predictor, as opposed to ItemTime clarity, incorporates a component that
measures the item popularity, ie., p(i). The TimeSimple and the frequency-based
clarity predictors, on the other hand, obtain strong correlation but negative values for
all the recommenders except the ItemPop for the TimeSimple predictor. Further-
more, the ItemSimple clarity (a predictor based on explicit information) obtains neg-
ligible correlations except for the ItemPop and kNN recommenders.

Table 6.15, on the other hand, shows the results when a random split is used. We
have to note that such split does not preserve the temporal continuity of the user’s
preferences, and thus, any recommender or technique which makes use of temporal
features is not guaranteed to succeed. Here, we can observe that TimeSimple predic-

tor obtains strong correlations for all the recommenders except for the Random

Predictor Random| CB ItemPop kNN pLSA
Average Count 0.027 0.138 0.069 -0.013 0.191
Count 0.046 0.118 -0.058 0.131  0.139
Mean -0.079 | -0.361  0.054 -0.110 -0.376
Standard deviation -0.050 | -0.158 0.082  -0.132 -0.177
Autocorrelation 0.004 0.139 -0.066 -0.105  0.100
TimeSimple Clarity -0.091 | -0.342 0.093 -0.317 -0.354
ItemTime Clarity 0.037 0.078  0.038 0.258  0.064
ItemPriorTime Clarity 0.057 0.154  0.189 0.307 0.154
Frequency-based Clarity| -0.049 | -0.410 -0.221  -0.291 -0.376
ItemSimple Clarity 0.027 0.047 -0.107 0.221  0.029

Table 6.14. Pearson’s correlation between log-based predictors and P@10 for different
recommenders using 1R methodology (Last.fm temporal dataset).
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Predictor Random| CB ItemPop kNN pLSA
Average Count -0.023 | -0.068 -0.170  -0.018 -0.087
Count -0.012 | -0.236 -0.242  -0.086 -0.198
Mean 0.036 0.182  0.100 0.047  0.118
Standard deviation -0.009 0.089  0.079 0.092 0.082
Autocorrelation 0.045 | -0.069 -0.089 -0.012 -0.055
TimeSimple Clarity 0.031 0.274 0.314 0.169  0.240
ItemTime Clarity 0.021 | -0.145 0.004 0.025 -0.053
ItemPriorTime Clarity 0.011 [ -0.057 0.176 0.145  0.083
Frequency-based Clarity| 0.025 0.018 -0.287 -0.182 -0.220
ItemSimple Clarity 0.020 | -0.247 -0.163 -0.068 -0.186

Table 6.15. Pearson’s correlation between log-based predictors and P@10 for different
recommenders using 1R methodology (Last.fm five-fold dataset).

technique. Like before, ItemPriorTime has a high correlation with the ItemPop re-
commender. In contrast with the previous situation, the ItemSimple clarity obtains
strong but negative correlations for the personalised recommenders. Besides, the
frequency-based clarity has negative correlations for all the recommenders except
CB, a consistent situation with the results obtained with the temporal split.

Hence, we may conclude that log-based and time-aware predictors success-
fully predict the performance of the recommendation algorithms, although in
some situations the sign of the prediction is negative. Moreover, frequency-based,
ItemSimple, and TimeSimple clarity obtain consistently strong correlations both in a

temporal split and in a random split of the data, evidencing their predictive power.

6.5.4 User predictors using social-based preference data

In this section we study the correlation between the predictors described in Section
0.3 and several recommenders using the two versions of the CAMRa dataset: social
and collaborative. In this case, we also consider social filtering recommenders in or-
der to analyse whether these predictors are sensitive to the source of information
used by the recommender, and thus, whether they obtain stronger correlations with
social filtering recommenders. Besides, one clarity-based predictor (ItemSimple) and
the baseline rating predictors presented in Section 6.4.1 are also included in the
analysis for comparison purposes. Additionally, for the HITS and PageRank graph
metrics in this experiment we use the implementation developed in the JUNG library
(O’Madadhain et al., 2003).

Table 6.16 shows correlation values obtained when using the AR methodology
in the social version of the dataset. Here, we can observe that most of the correlation
values obtained for the social predictors are negative, representing that the lower the
predictor output, the better the performance, which may seem a little counter-

intuitive, at least for the social filtering recommenders (Personal and PureSocial).
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Among the social-based predictors, degree and two-hop neighbourhood size obtain
better correlations than the rest.

A similar situation is presented in Table 6.17, where the collaborative-social ver-
sion of the dataset is used. Again, most of the correlations with the social-based pre-
dictors are negative, and degree and two-hop neighbourhood size obtain higher cor-
relations (in absolute value). Interestingly, in this situation strong correlations are
obtained with the user-based recommender (kNN), in particular with degree and the
average neighbour degree predictors. Nonetheless, these correlations are lower than
those obtained for the ItemSimple predictor with the collaborative filtering recom-
menders. At the same time, this predictor always obtains worse correlations (in abso-
lute value) than the social-based predictors for the social filtering recommenders, as
expected.

Additionally, note that the number of points used in the correlation computation

is different in each version of the dataset, namely: in the collaborative-social version

Predictor Random | ItemPop kNN pLSA  Personal PureSocial
Count (training) 0.032 0.122 0.113 0.031 0.062 0.111
Count (test) 0.158 0.252 0.382 0.167 0.235 0.174
Mean -0.066 0.033 -0.012 0.023  -0.057 -0.051
Standard deviation 0.034 0.054 -0.020 0.115 0.128 0.183

Avg neighbour degree -0.062 | -0.089 -0.013 0.011  -0.074 -0.106
Betweenness centrality | -0.031 | -0.016 0.027 -0.038 -0.012 -0.079
Clustering coefficient 0.049 | -0.084 -0.023 0.048  -0.027 -0.035

Degree -0.038 | -0.046 0.015  -0.059  -0.147 -0.133
Ego components size -0.058 0.005 0.004 -0.046  -0.056 -0.020
HITS -0.021 | -0.043 0.005 0.061 0.038 0.000
PageRank -0.022 | -0.025 -0.023  -0.039  -0.102 -0.037
Two-hop neighbourhood| -0.080 | -0.082 0.004  -0.054 -0.123 -0.136
ItemSimple Clarity 0.030 0.157 0.130 0.050 0.072 0.126

Table 6.16. Pearson’s correlation between social-based predictors and P@10 for different
recommenders using AR methodology (CAMRa Social).

Predictor Random | ItemPop kNN pLSA  Personal PureSocial
Count (training) 0.012 0.098 0.203  0.107 0.058 0.111
Count (test) 0.096 0.207 0.389  0.179 0.232 0.170
Mean -0.067 0.000 -0.126 -0.024 -0.051 -0.050
Standard deviation 0.082 0.014 -0.029 0.016 0.129 0.182

Avg neighbour degree 0.071 | -0.008 0.152  0.046 -0.073 -0.104
Betweenness centrality -0.007 | -0.008 0.010  -0.005 -0.012 -0.078

Clustering coefficient 0.006 | -0.022 0.152  0.076 -0.032 -0.035
Degree 0.032 0.018 0.164  0.006 -0.143 -0.134
Ego components size 0.026 0.044 0.133  0.002 -0.053 -0.022
HITS -0.011 | -0.034  -0.001  0.061 0.038 0.001
PageRank -0.002 0.021 0.118 0.014 -0.099 -0.040
Two-hop neighbourhood| 0.059 | -0.015 0.130  0.012 -0.121 -0.135
ItemSimple Clarity 0.010 0.120 0.211  0.129 0.070 0.126

Table 6.17. Pearson’s correlation between social-based predictors and P@10 for different
recommenders using AR methodology (CAMRa Collaborative).
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the number of users contained in the test set is twice the number available in the
social version (see Appendix A.1.3), which means that significant correlations can be
achieved with lower values (as described in Chapter 5).

In the results described above, we can observe how, like in the previous sections,
the size of the user profile in test (predictor count in test) obtains significant correla-
tions. This trend, however, is almost neutralised in the collaborative-social dataset
with respect to the Random recommender. Thus, as before, we would attempt to use
the 1R methodology with each dataset in order to obtain unbiased correlations to-
wards users with more ratings in test. However, due to the lack of coverage of Per-
sonal and PureSocial recommenders, this methodology do not obtain sensible results
(for instance, the value of precision at 10 is almost invariably 0.10, that is, the maxi-
mum possible value when only one relevant document — as assumed in the 1R meth-
odology — is retrieved in the top 10, mainly because the recommender is not able to
retrieve most of the not relevant items). This lack of coverage is natural for these
recommenders since they can only suggest items rated by users in the active uset’s
social network (see Appendix A.2 for details on the implementation of the algo-
rithms).

In conclusion, most of the social performance predictors proposed obtain sig-
nificant correlations, however, correlations with the social filtering methods are
not so strong as we would expect. Nonetheless, the ItemSimple clarity does
obtain significant correlations with respect to most of the recommenders, high-
lighting the importance and validity of this predictor even when the main input of

some recommenders (social network) is so different to that of the predictor (ratings).

6.5.5 Discussion

The reported experiments confirm that it is possible to predict a recommender’s per-
formance and obtain strong correlations in this regard. The results show that, in gen-
eral, the proposed predictors (mostly based on Kullback-Leibler divergences over
different language models and other concepts from Social Graphs and Information
Theory such as entropy) obtain significant correlations in the three spaces consid-
ered: ratings, logs, and social networks. More importantly, these correlations are
stronger than those obtained by more simple predictors, such as the profile size of a
user, the standard deviation of her ratings, and the user’s performance using a valida-
tion split. Specifically, for each recommendation input considered we have observed

the following:

e Clarity-based predictors are very powerful for rating-based preferences, in par-
ticular, the ItemSimple, IRUser, and IRUserltem clarity predictors obtain

strong correlations for most of the recommendation methods.
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e The use of the item space as a contextual variable shows strong correlation
values when the AR methodology is used, but these correlations decrease when
we use unbiased methodologies, which may indicate that this new dimension is
in fact capturing the item popularity and, thus, when the popularity bias is neu-
tralised such predictors show less predictive power. We find a similar situation

with the item clarity and the user space used as the contextual dimension.

e Temporal and log-based versions of the clarity predictor show higher predic-

tion power than the rest of predictors.

e Social-based predictors are not the ones with the strongest correlation regard-
ing the social filtering recommenders in this experiment, but the correlation
found is significative and they could serve as a complement to other predictors

based on a different input such as the rating-based.

e The ItemSimple clarity predictor consistently obtains strong correlation values
in most of the datasets where we have analysed it. This is an evidence of the
theoretical power of the user clarity to capture the uncertainty in user’s tastes,
even when the recommender’s input is different (social filtering recommend-
ers) or when we apply some transformation to the data (frequency-based clarity

with transformation from implicit to explicit).

e As described in the Appendix A.4, most of the correlations presented in this
chapter are stable when other evaluation metrics and correlation coefficients

are used.

In the Recommender Systems field there are, however, additional problems due
to subtle differences with respect to the common settings and experimental assump-
tions in Information Retrieval. Since we aim to predict the performance of a recom-
mender, we have to be sure that we are using an unbiased performance metric, and
its subsequent evaluation methodology. As we analysed in Chapter 4 there are at least
two biases in the evaluation of recommender systems which may distort the results:
data sparsity and item popularity. Thus, in this chapter we have computed correla-
tions between the output of the predictors and the evaluation metrics using different
evaluation methodologies, in order to analyse how sensitive the different proposed
predictors are to these biases. Interestingly, although the correlations may change
drastically when different evaluation methodologies are considered, most of the per-
formance predictors still obtain good correlations. In particular, this result evidences
that our proposed predictor are not so prone to the analysed biases like other simple
predictors.

Finally, in Figure 6.3 we summarise the correlations found for the proposed pre-
dictors in each dimension — ratings, logs, and social. We have selected the most rep-

resentative evaluation methodology (AR for rating and social data, and 1R for log
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6.3. Heatmap of the correlation values between a subset of predictors and

recommenders, using the most representative methodologies for the three considered spaces.

data) and a subset of the evaluated predictors and recommenders from each experi-

ment, where the same information presented in Table 6.7, Table 6.14, and Table 6.17

(except for the average and median correlation values) is depicted in a more visual

form. In particular, we may observe that predictors in MovieLens seem to be more

redundant since the correlations are too similar.
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From the figure we may also observe that in Last.fm and CAMRa datasets such
redundancy is much lower and the predictors are quite different. Moreover, the first
column and row (from the bottom) represent the recommender and predictor base-
lines, which serve as references from where the correlations should be analysed. In
the three cases we can observe that most of the predictors obtain larger (darker) val-
ues than the count predictor. In the first case (rating-based predictors), however, it is
clear that the correlation depends more on the recommender and less on the actual

predictor.

6.6 Conclusions

We have proposed adaptations of query performance techniques from ad-hoc In-
formation Retrieval to define performance predictors in Recommender Systems.
Taking inspiration in the query predictor known as query clarity, we have defined and
elaborated in the Recommender Systems domain several predictive models according
to different formulations and assumptions. Furthermore, we propose performance
predictors from theories and models of Information Theory, Social Graph Theory,
and Information Retrieval based on three types of preference data: rating-based, log-
based, and social-based.

We find several effective schemes with a high predictive power for recommend-
er systems performance. We have proposed different ways for the adaptation of the
query clarity predictor to recommender systems depending on the equivalences be-
tween the involved spaces. The clarity formulation is powerful because of its theo-
retical soundness, which is suitable to different domain-oriented adaptations. Hence,
for rating-based preferences we use different expansions which take into account the
rating values and the items rated by the user. For log-based preferences we exploit
the co-occurrences of the items in the user profile and, more importantly, the tempo-
ral dimension, which allows for more principled functions such as the temporal
Kullback-Leibler divergence or the user’s autocorrelation. Finally, for social-based
preferences we exploit the user’s social network and different graph metrics are used
apart from the user clarity based on the ratings. The results, as summarised in the
previous section, are in general positive and provide evidences that the proposed
functions are able to indeed predict the performance of user or items in recom-
mender systems.

Furthermore, by analysising the behaviour of trivial predictors (such as the count
of ratings in training and test) we have been able to uncover noisy biases or sensitiv-
ity to irrelevant variables in the way performance is measured. Irrelevant and uninter-
esting in the sense that it is not clear that the variations due to these variables really

reflect actual differences in quality. As a result, we have used unbiased evaluation
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methodologies where non trivial predictors still obtain positive results with respect to
performance correlation.

As a side-effect, our study introduces an interesting revision of the gray sheep
user concept. A simplistic interpretation of the gray sheep intuition would suggest
that users with a too unusual behavior are a difficult target for recommendations. It
appears however in our study that, on the contrary, users who somewhat distinguish
themselves from the main trends in the community are easier to give well-performing
recommendations. This suggests that perhaps the right characterisation of a gray
sheep user might be one who has scarce overlap with other users. On the other hand,
the fact that a clear user distinguishes herself from the aggregate trends does not
mean that she does not have a sufficiently strong neighbourhood of similar users. In
particular, this seems to indicate that users who follow mainstream trends are more
difficult to be suggested successful items by a recommender system (at least, by a
personalised one). In Information Retrieval, one can observe a similar trend: more
ambiguous (mixture of topics) queries perform worse than higher-coherence queries
(Cronen-Townsend et al., 2002).

In the future we plan to explore further performance predictors. Specifically, we
are interested in incorporating explicit recommender dependence into the predictors,
so as to better exploit the information managed by the recommender, allowing to the
predictor a smoother adaptation to the recommender performance, and increasing
the final correlation between them. Additionally, we are also interested in exploring
alternative item-based predictors apart from those defined in this chapter, and, even-
tually, using other information sources such as log-based preference data and even

the social network of the users who rated a particular item.






Part IV

Applications

It is through science that we prove, but
through intuition that we discover.

Jules Henri Poincaré






Chapter 7

Dynamic recommender

ensembles

Hybrid recommender systems — and recommender ensembles as a particular case —
have become a very popular strategy for making recommendations, since they help
alleviate most of the shortcomings of the individual recommenders combined. They
have, however, specific problems such as the need of deciding which information
sources should be exploited, which recommenders should exploit each of these
sources, and how the combination of recommenders should be configured.

In this chapter we propose a framework to decide how dynamic hybridisation
should be balanced, by estimating its expected improvements on individual recom-
mendations. Furthermore, we provide some requirements to decide when to build
such hybridisation. Within the spectrum of hybrid recommendation approaches, we
focus on those that linearly combine the output from several recommenders, and use
different weights for generating a particular aggregation of the individual recommen-
dations. In the standard approach, these weights are typically fixed regardless of the
user for which recommendations are produced, or the recommended items. In this
context we investigate the use of performance predictors to assign those weights
dynamically depending on the target user or item. We evaluate our approach using
the predictors proposed in the previous chapter. The results obtained show that the
generated dynamic ensembles are capable of outperforming their static counterparts.
Furthermore, they also show that dynamic ensembles can be improved if predictors
with stronger predictive power (higher correlation values as observed in the previous
chapter) are used.

In Section 7.1 we present and formulate the research problem of recommenda-
tion hybridisation. Next, in Section 7.2 we describe our proposed performance pre-
diction framework for dynamic hybrid recommendation. Section 7.3 describes the
experiments conducted and provide an overall discussion of the obtained results.

Finally, in Section 7.4 some conclusions are given.
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7.1 Problem statement

As described in Chapter 2, hybrid recommenders are built by the combination of
different recommendation methods. In the simplest and typical case, hybrid recom-
mendations are produced by weighting and summing the utility values output by
some recommenders, forming a so called recommender ensemble where an arbitrary
number of algorithms of different kinds (content-based, user-based collaborative
filtering, item-based collaborative filtering, social-based, demographics-based, etc.)
can be combined.

Researchers in Machine Learning have known for long that the combination of
classifiers usually achieves better results than each method separately, which is also
true in Recommender Systems — the Netflix prize has been a paradigmatic example
of this, where all the top classified teams used large recommender ensembles. We
focus on weighted hybrid approaches, as an option that begets a simple and general
formulation of the dynamic balance of the combined methods Ry by just setting the
weights A, of each method in the hybrid combination. This approach can be ex-

pressed as follows:

F(u, i) = z,lk * T, (u, 1) sit. Zlk =1 (7.1)
K K

In this chapter we investigate whether the performance predictors proposed in
the previous chapter — where we have already found degrees of correlation between
the ambiguity (clarity) of the user’s preferences and the accuracy of the system’s rec-
ommendations — can be useful for hybridisation. Specifically, we aim to use these
predictors to build dynamic hybrid recommenders in such a way that the weight
Ar depends not only on the recommender but also on the current user U, or poten-
tially other variables such as the item [ or other available context information. We
propose to specify such weights according to the ambiguity of the user’s preferences
or item’s patterns, that is, we aim to use the performance predictors defined in the
Chapter 6 to estimate those weights.

In the next section we propose a framework to perform dynamic hybrid recom-
mendation where we use recommendation performance predictors and we analyse
different requirements related to the adaptation of such predictors to produce
weights in a hybrid recommender combination. After that, three different experi-
ments are presented, where the predictors proposed in Chapter 6 are used as dy-

namic weights in the combination.
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7.2 A performance prediction framework for

ensemble recommendation

Let us simplify Equation (7.1) to the case where only two recommenders R1 and R2
are used. In this situation, only one weighting factor 4 is needed (because of the con-

straint for the weights to sum to one) and we would have the following formulation:

In this case, since the 4 weight is the same for every user u and item I we refer
to such a recommender as a szatic hybrid. However, a single value of the combination
parameter A is not generally the optimal for each (uset, item) pair. Therefore, instead

of Equation (7.2), we may want to consider:

7w, 1) = Yra (W, 1) * Tre (U, ) + yro (U, 0) * T2 (u, i) (7.3)

where Y is the combination parameter which may depend on the current user, item,
or both, and probably also depending on the recommender R. In this case we refer
to such method as a dynansic hybrid.

A suitable assignment of the y(u,i) parameters is a difficult task. In our ap-
proach, however, we propose to use the performance prediction methodology devel-
oped in the previous chapter, whenever the predictors show some correlation with
the performance of a recommender. In this way, since we have some evidence that
the performance predictors are able to estimate in advance the performance of a user
in a user or item basis, we can use such estimations to weight accordingly the ratings
predicted for a given user and item pair by each recommender.

In this context, it is not granted in general to obtain improvements whenever a
performance predictor is used in a dynamic ensemble. We have to devise a set of
conditions in which such predictors may be used; moreover, the ensemble problem
has to be well defined, which is not always true as we shall show. Hence, we define a
framework for dynamic hybrid recommendation based on recommendation per-
formance predictors, characterised by some prerequisites, a specific normalisation
strategy, and a weighting distribution among recommenders. In this framework, the
weights yp are obtained by transformations of the values obtained by a performance
predictor, in a similar way as the work presented in (Yom-Tov et al., 2005b) on rank

aggregation in Information Retrieval, but in the context of Recommender Systems.

7.2.1 Requirements

A first requirement to use a performance predictor for weighting the recommenders

of an ensemble, is that it should correlate positively with the performance of not all
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but some of such recommenders, or with the performance of all the recommenders
but to different degrees. If a performance predictor correlates positively with all the
recommenders in an ensemble to a similar extent, it does not provide a discriminative
criteria to weight the recommenders any differently.

A predictor should be used to assign weights to those recommenders of the en-
semble with which it correlates for performance. These assignments also alter the
weights of the uncorrelated recommenders, since the weights of all the recommend-
ers in the ensemble need to sum to 1. However, this should not affect the overall
performance contribution of these recommenders, as the resulting weight should
correspond randomly with their performance (hence the unpredicted recommenders’
weight can be expected to change for good as much as for bad, whereas the weight
of predicted recommenders should change more often for good).

Figure 7.1 shows which correlations can be considered valid according to the
statements presented above, for an ensemble with two recommenders R1 and R2.
The horizontal axis depicts the correlation with respect R1 and the vertical axis with
R2. Hence, the dotted area represents those situations where a predictor’s correlation
for R1 is higher than for R2, and thus, the predictor should weight R1. Analogously,
the striped area represents the candidate situations where the predictor should weight
R2. Furthermore, when correlations with R1 and R2 are too similar (diagonal) no
weighting assignment is preferred, and thus, if a predictor lies in the white area it
should be used for weighting neither R1 nor R2 for the reasons described above.

Another requirement is that a recommender should not have an always superior
or always inferior performance to those of the rest of the ensemble’s recommenders.
Otherwise the problem is distorted by the fact that the best weight is the one that
gets closest to 0 for the recommenders that systematically perform worse (or 1 for
the best), regardless of how excellent or terribly bad is the applied strategy, or the
predictive power of the approach, since a biased predictor (either towards 0 or 1,
depending on which recommender (the worst or the best) such predictor is weight-
ing) would obtain very good results. This issue is recognised in (van Setten, 2005)
where the author presents the situation where all recommenders produce item sug-
gestions that are all too low or all too high with respect to the true user’s preferences,
and then the recommender ensemble is less accurate than the best individual recom-
mender. In summary, underperforming recommenders are useless in an ensemble to
begin with, or equivalently, the over performing one(s) should be used alone, and

thus, there is no true weighting problem to solve.
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Figure 7.1. Valid predictor correlation regions for a recommender ensemble of size 2.

7.2.2 Predictor normalisation

The output of a predictor is required to correlate with the performance of a recom-
mender, but it is not necessarily by itself a good value for weighting the recom-
mender in an ensemble, as already pointed out in (Hauff et al., 2009). In order to
generate appropriate weights, the predictor output should be transformed by a
monotonic function into values on a comparable scale, such as simply [0,1]. We shall
call this transformation “normalisation.”

In this context, different transformations can be applied. Mapping the minimum
value to 0 and the maximum to 1 is the simplest transformation, also known as mzn-
max score normalisation (Renda and Straccia, 2003). Another common approach is
to map (named rank-sim by Renda and Straccia, 2003) the predictor scores onto
evenly distributed points in the [0,1], preserving their order. Min-max preserves the
original predictor score distribution, while rank-sim maps it onto a uniform distribu-
tion. There is no obvious a priori reason to decide which case is preferable, to pre-
serve the original distribution, or to equalise it somehow, and in fact more complex

normalisation techniques could be used, like the one proposed in (Fernandez et al.,

2006b).

7.2.3 Weight distribution among recommenders

Once the predictor output has been normalised, it still needs a final adjustment to

ensure, among other things, that the sum of the weights assigned to the ensemble’s
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recommenders is 1. How this step is done depends, mainly, on how many recom-

menders are weighted by predictors, more specifically on whether all or only some of

the combined recommenders are treated by performance predictors. Hence, we con-
sider two options for the distribution of the weights among the recommenders:

a) Only some of the recommenders in the ensemble are given dynamic weights.
The rest of the recommenders receive the same weight, ensuring the weights of
the ensemble’s recommenders sum up to 1. This can be done in different ways:

e Assigning a weight of 0.5 to the unpredicted recommenders, and dividing
all weights by the total sum. This strategy is named as fixed weight or FW.

e Assigning the dynamic weights to the corresponding recommenders, if we
assume that their sum is < 1, then we divide 1 minus the sum of dynamic
coefficients equally among the unpredicted recommenders. We denote
this strategy as ome minus or OM. If the sum is greater than 1, we have to
divide by the total sum and normalise it by the total number of predictors.

b) All recommenders are weighted using a specific predictor per recommender.
This is not easy to grant in general, as there may not be predictors for all the re-
commenders combined. In case this option is taken, the weights can be simply
normalised by the sum of weights.

Furthermore, if the output of each recommender has a different range, it would
be necessary to apply an additional normalisation step to the recommender scores.

The most usual strategies are the ones described in the previous section: score or

rank normalisation (Renda and Straccia, 2003).

7.3 Experimental results

We next report experiments assessing the usefulness of the proposed predictors for
adjusting the weights of a recommender ensemble, once their predictive power has
been confirmed against the recommenders’ actual performance, as reported in the
previous chapter. We identify the combinations of recommenders that meet the con-
ditions stated in the previous section for the dynamic combination problem to make
sense and select the performance predictors to be applied based on their observed
correlation with the performance of the recommenders (as reported in Section 6.5),
and the requirements proposed in this chapter, ie., that one recommender in the
ensemble should have a positive correlation with the predictor, and the other should
have an opposite or near neutral correlation. Then, we compare dynamic against
static ensembles.

Among the different ways to set up static ensembles of two recommenders we
take as baselines a) the best performing one in test, and b) the best theoretical static

one without prior information, i.e., one with A = 0.5. Intuitively, an even weighting
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is the optimum over the — theoretical — set of all recommender ensembles: if say
Ag = 0.3 was the best weight for the combination of two recommenders R1+R2,
then A = 0.3 should be faitly bad for the permutation R24R1 (A =1-0.3 = 0.7
being best). If we assume that performance loss is convex with respect to |1 — Ag| —
it can be seen that otherwise the hybrid may underperform its constituents —, then
A = 0.5 is the best compromise for R1+R2 and R2+R1. Since the set of all possible

ensembles includes all the permutations of the combined recommenders, A = 0.5 is
the best (theoretical) overall weight.

We also take as “skylines” (upper bound baselines) an oracle performance pre-
dictor consisting of the performance of the recommender itself. We shall refer to this
method as ‘perfect correlation’, where the true performance of both recommenders
is used as a weight for hybridisation (hence, such predictor would have a correlation
of 1.0 with the recommendet’s performance), whereas we shall refer to it as ‘PC-OM’
and PC-FW’ when the performance of only one recommender is used (the same
recommender being weighted by the predictors) along with the one minus or the
fixed weight strategy for weight distribution (see Section 7.2.3). In all cases we apply
a rank normalisation technique on the recommenders’ scores.

In the subsequent sections we present three experiments conducted to evaluate
the proposed performance predictors. In the first experiment we use the rating-based
predictors and test both user- and item-based performance predictors presented in
Section 0.2.1. We use the MovieLens dataset, and compare the results with four of
the evaluation methodologies presented in Chapter 4, i.e., AR, 1R, P1R, and U1IR. In
the second experiment we use predictors based on log data. We evaluate the predic-
tors presented in Section 6.2.2 on the two versions of the Last.fm dataset using the
1R methodology. Finally, in the third experiment we test the social-based predictors
presented in Section 6.3 on the CAMRa dataset and the AR methodology.

7.3.1 Dynamic recommender ensembles on rating data

As a first instantiation of our framework for building dynamic recommender ensem-
bles described in Section 7.2, we first have to identify the recommenders to combine,
that is: one of the recommenders should have a positive correlation with the predic-
tor, while the other should have an opposite or near neutral correlation; besides, they
should not perform very differently.

According to the correlation results presented in Section 6.5.1, we identify the
pairs of recommenders presented in Table 7.1 as combinations meeting the condi-
tions stated above. The first three ensembles are combinations of a collaborative
filtering with a content-based recommendation method. The last ensemble combines
a user-based collaborative filtering method with a non-personalised method, and the

rest of the ensembles are combinations of two collaborative filtering methods. Al-
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R1 R2
HRU1 | TFL1 CB
HRU2 | TFL2 CB
HRU3 kNN CB
HRU4 kNN IB
HRU5 kNN pLSA
HRUG kNN ItemPop

Table 7.1. Selected recommenders for building dynamic ensemble using user performance
predictors that exploit rating-based information (MovieLens dataset).

though some of these combinations have not been typical in the recommender sys-
tems literature, in our study they serve as a proof of concept to check whether the
proposed dynamic recommender ensemble framework is useful in general or not. We
refer the reader to Appendix A.2 for more details about the implementation of the
recommenders.

The first two rows of Table 7.2, Table 7.3, Table 7.4, and Table 7.5 show the
P@10 values for each of the combined recommenders obtained using the AR, 1R,
U1R, and P1R methodologies, respectively. In Appendix A.5.1 we report results with
other evaluation metrics. Note that, as mentioned in Chapter 4, in the AR methodol-
ogy the absolute values are not meaningful since they depend on the amount of rele-
vant information in test; on the other hand, for the 1R related methodologies (i.e.,
1R, U1R, and P1R) the precision at 10 metric has an upper bound on 0.1, since there
is only one relevant item in each ranking.

In these tables we may observe that among the six considered ensembles, there
are cases where the first recommender (with respect to which the performance is
predicted) performs better, worse, or similarly to the second recommender. This
situation changes accross methodologies and provides for a comparison of the result-
ing effects when the stated requirements are not met. Analogously, the predictors’
correlations may change depending on the evaluation methodology followed, as ob-
served in Section 6.5.1. Specifically, the recommenders presented in Table 7.1 where
chosen according to the correlation results obtained for the AR methodology, and
we may observe that some of the conditions stated above do not hold for some of
the selected cases, for instance, correlation between most of the predictors and kNN
recommender is negligible in the 1R, U1IR, and P1R methodologies, in contrast with
the results found for the AR methodology.

In the tables we may also observe that the best static ensemble is different de-
pending on the evaluation methodology and the combined recommenders. The per-
formance values of the best static ensembles, on the other hand, show an interesting
situation that does depend on the specific considered ensemble, namely, whether the
(best) static ensembles outperform or not both recommenders. For the AR method-
ology (Table 7.2), in the case of HRU1, HRU3, HRU5, and HRUG, the best static
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HRULI HRU2 HRU3 HRU4 HRU5  HRU6
R1 (A=1.0) 0.0024  0.0696  0.0307 0.0307 0.0307  0.0307
R2 (1=0.0) 0.0163 0.0163  0.0163  0.0001  0.1454  0.0897
Baseline (A=0.5) | 0.0106  0.0473  0.0363  0.0008  0.1142  0.0808
Best static 0.0180 0.0668  0.0392  0.0078  0.1475  0.0937
(best 1) (0.1) (0.9) (0.9) (0.9) (0.1) (0.2)
Perfect correlation | 0.0189  0.0732  0.0401  0.0311  0.1469  0.0980
PC-OM 0.0176  0.0721  0.0434  0.0091  0.1489  0.0958
PC-FW 0.0177 0.0541  0.0379  0.0025 0.1478  0.0958
Entropy-OM 0.0110Y 0.068554 0.0388] 0.0069Y 0.1126Y 0.0791y
ItemSimple-OM 0.0170y 0.06854 0.0390 0.0072y 0.14964 0.09197
ItemUser-OM 0.0172] 0.06804 0.03867 0.0068] 0.15134 0.0924]
RatUser-OM 0.01777 0.06874 0.03933 0.0072y 0.15354 0.0931
Ratltem-OM 0.01787 0.06745 0.03897 0.0066] 0.15424 0.0928
IRUser-OM 0.0169] 0.0668, 0.0387] 0.0066Y 0.14874 0.0922)
IRItem-OM 0.0172] 0.0655] 0.0378] 0.0061Y 0.15004 0.0918]
IRUser ltem-OM 0.0170Y 0.06657 0.0388] 0.0066Y 0.14984 0.0916)
Entropy-FW 0.0111y 0.0528] 0.0369Y 0.0027Y 0.1156] 0.0807Y,
ItemSimple-FW 0.0156] 0.05297 0.0369Y 0.0027Y 0.1433] 0.0908]
ItemUser-FW 0.0166Y 0.05297 0.0368Y 0.0028Y 0.1468] 0.0915)
RatUser-FW 0.0170y 0.0528] 0.0370Y 0.0028Y 0.14984  0.0919]
Ratltem-FW 0.0170y 0.05297 0.0369Y 0.0027Y 0.14994 0.0918]
IRUser-FW 0.0161y 0.0526] 0.0371Y 0.0029Y 0.1420] 0.0912)
IRItem-FW 0.0163] 0.0525] 0.0367Y 0.0027Y 0.14597 0.0909)
IRUserltem-FW 0.0164Y 0.0527Y 0.0372Y 0.0028Y 0.14527 0.0908Y

Table 7.2. Dynamic ensemble performance values (P@10) using AR _methodology and user
predictors (MovielLens dataset). Improvements over the baseline are in bold, the best result
for each column is underlined. The value a of each dynamic hybrid is marked with aj,
where x and y indicate, respectively, statistical difference with respect to the best static
(upper, x) and with respect to the baseline (lower, y). Moreover, A and A indicate,
respectively, significant and non-significant improvements over the corresponding
recommender. A similar convention with ¥ and V indicates values below the recommender
performance. Statistical significance is established by paired Wilcoxon p < 0.05 in all cases.

outperforms both recommenders, but this is not observed for HRU2 nor for HRU4.
In the latter scenarios, thus, it seems hybridisation would not be so useful for combi-
nation.

Additionally, regarding the normalisation of the predictor’s output we evaluate
two normalisation techniques: rank and score normalisation. Since there is no prior
information about which normalisation technique would provide better results, we
test both, and report the best results in each situation, which are usually achieved by
the rank-sim normalisation technique. Finally, the weigh strategy is also included as a
parameter of the experiments. Since we only have a predictor for one of the recom-
menders in the ensemble (denoted as R1), as we explained in Section 7.2.3, we may
weight the unpredicted recommender as one minus the predictor value (OM), or as

0.5 and then divide the weights of the two recommenders by the sum of weights

(FW).
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HRUL HRU2 HRU3 _ HRU4 HRU5 HRU6
R1 (A=1.0) 00221 00690 00437 00437 00437 00437
R2 (1=0.0) 00221 00221 00221 00074 00836  0.0649
Baseline (:=0.5) | 0.0338  0.0536  0.0469  0.0327 0.0749  0.0658
Best static 0.0338 00720 00514 00455 0.0856  0.0696
(best ) (0.4) (0.9) (0.8) (0.9) (0.1) (0.2)
Perfect correlation | 0.0370  0.0715  0.0553  0.0458  0.0840  0.0723
PC-OM 0.0358 00683 00507 00353 00811  0.0709
PC-FW 0.0343 00592 00482 00344 00803  0.0699
Entropy-OM 0.0332y 0.0662] 0.0472Y 0.0382] 0.0709y 0.0626y
ltemSimple-OM | 0.0304Y 0.0666] 0.0473] 0.0384] 0.0844] 0.0681)
ltemUser-OM 0.03057 0.0660] 0.0471Y 0.0381] 0.0847] 0.0680]
RatUser-OM 0.0307y 0.0666] 0.0478] 0.0386] 0.0850] 0.0680)
Ratltem-OM 0.0305y 0.0663] 0.0475] 0.0385] 0.0849] 0.0678
IRUser-OM 0.03047 0.0655] 0.0470Y 0.0381] 0.0839] 0.0675]
IRItem-OM 0.02987 0.0644Y 0.0457y 0.0370] 0.0839] 0.0671]
IRUserltem-OM | 0.0305% 0.0655] 0.0471Y 0.0381] 0.0841] 0.0674]
Entropy-FW 0.03394 0.0594) 0.0472Y 0.0356] 0.0686y 0.0650%
ltemSimple-FW | 0.0321Y 0.0596] 0.0473] 0.0358] 0.0837] 0.0684]
ltemUser-FW 0.0320y 0.0594Y 0.0471Y 0.0356] 0.0843] 0.0683]
RatUser-FW 0.0321y 0.0596 0.0475] 0.0359] 0.0848] 0.06847
Ratltem-FW 0.0321y 0.0595] 0.0473] 0.0358] 0.0847] 0.06847
IRUser-FW 0.0320y 0.0592 0.0471Y 0.0356] 0.0834) 0.0680]
IRItem-FW 0.0318) 0.0588] 0.0465y 0.03497 0.0835] 0.06747
IRUseritem-FW | 0.03203 0.0592] 0.0471Y 0.0356] 0.0837] 0.0678)

Table 7.3. Dynamic ensemble performance values (P@10) using 1R _methodology and user
predictors (MovielLens dataset).

Table 7.2 shows the results obtained following the AR methodology. We may
observe how, except in three cases, dynamic ensembles outperform the baseline.
Interestingly, for HRUS5, the best performing method is not the one obtained with
the ‘perfect correlation’ approach, as we may expect, but with our dynamic ensem-
bles based on the user clarity performance predictors. This is due to the fact that the
corresponding predictor for the first recommender (P@10 values for kNN) also has
a strong correlation with the performance of the second recommender (pLSA), and
thus, it does not satisfy the requirement that the correlation values should not be too
similar for both recommenders.

Table 7.3 shows the results obtained with the 1R methodology. Note that in this
case the correlations were consistently lower than those obtained with the AR meth-
odology. In particular, this is emphasised in the results of the dynamic ensemble
HRUI1, which do not outperform the baseline for almost any predictor. This can be
explained with the results reported in Table 6.9, where the TFL1 recommender ob-
tains a near-zero correlation, and thus, the correlation requirement of our framework
is not satisfied. Specifically, this fact highlights the importance of the strength in the
correlation between the predictor and the recommender performance, as stated in

Section 7.2.1. Furthermore, we may observe in the table that for two combinations
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HRUL HRU2 HRU3 HRU4 HRU5  HRUG6
R1 (A=1.0) 0.0294 00524 00381 00381 00381 0.0381
R2 (1=0.0) 00223 00223 00223 0.0068 00718  0.0406
Baseline (:=0.5) | 0.0345 0.0440  0.0396  0.0283 0.0639  0.0493
Best static 00351 00536 0.0424 0.0384 00732  0.0493
(best 1) (0.6) (0.9) 0.7) (0.9) (0.1) (0.5)
Perfect correlation | 0.0389  0.0552  0.0493  0.0396  0.0742  0.0559
PC-OM 00373 00485 0.0471 00332 00732 0.0548
PC-FW 0.0355 00459 0.0429 0.0307 00722  0.0535
Entropy-OM 0.0345Y 0.0518] 0.0404] 0.0337] 0.0615y 0.0471y
ltemSimple-OM | 0.0333y  0.0519] 0.0403] 0.0339] 0.0723]  0.0444y
ltemUser-OM 0.0334y 0.0517] 0.0403] 0.0336] 0.0726] 0.0438Y
RatUser-OM 0.0335y 0.0521) 0.0410] 0.0341Y 0.0728] 0.0435y
Ratltem-OM 0.0334y 0.0516] 0.0406] 0.0341Y 0.0726] 0.0434y
IRUser-OM 0.0333y 0.0511) 0.0401Y 0.0336] 0.0718] 0.0440y
IRItem-OM 0.03267 0.0504) 0.0388y 0.0325] 0.0714) 0.0430y
IRUserltem-OM | 0.0334Y 0.0511Y 0.0401Y 0.0336] 0.0719] 0.0437¥
Entropy-FW 0.0347] 0.0472] 0.0402] 0.0308] 0.0636y 0.0486
ltemSimple-FW | 0.03427 0.0473] 0.0402] 0.0309] 0.0720] 0.04677
ltemUser-FW 0.03427 0.0471) 0.0401Y 0.0308] 0.0724] 0.0467y
RatUser-FW 0.0343Y 0.0474Y 0.0405Y 0.0310] 0.0727] 0.0469y
Ratltem-FW 0.03427 0.0472] 0.0403] 0.0309] 0.07257 0.0469y
IRUser-FW 0.0341y 0.0470] 0.0401Y 0.0308] 0.0714Y 0.0469y
IRItem-FW 0.0338) 0.0467] 0.0393Y 0.0302] 0.0712) 0.0464Y
IRUserltem-FW | 0.0341Y 0.0471Y 0.0401 0.0308] 0.0716] 0.04697

Table 7.4. Dynamic ensemble performance values (P@10) using the U1R methodology and
user predictors (Movielens dataset)

(HRU2 and HRU5) the best performance results are not obtained by dynamic ap-
proaches, but by the best static approaches in contrast with what we found for the
AR methodology. This situation is different to the one obtained when we evaluate
using MAP@10 (see Appendix A.4.1), where the best results are always obtained by
dynamic ensembles.

Table 7.4 and Table 7.5 show the performance values obtained with the unbiased
methodologies proposed in Chapter 4, that is, UIR and P1R. Following the UIR
methodology (Table 7.4) we obtain similar results to those obtained in the 1R meth-
odology except for HRUG. In contrast, with the P1R methodology (Table 7.5) our
framework does not show improvements over any baseline. We may see that the
‘perfect correlation’ methods are able to obtain better, although very close, values
than those of the best static ensemble. This means that there is room for improve-
ment in this methodology, and that the performance of the dynamic recommender

ensembles could be improved if better performance predictors were found.
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HRUL HRU2 HRU3 HRU4 HRU5  HRUG6
R1 (A=1.0) 0.0203 00348 0.0265 0.0265 0.0265 0.0265
R2 (A=0.0) 0.0197 00197 0.0197 0.0208  0.0604  0.0282
Baseline (:=05) | 0.0470  0.0579  0.0539  0.0269  0.0763  0.0560
Best static 0.0470 0.0593 0.0541 0.0278  0.0796  0.0560
(best 1) (0.5) (0.6) (0.6) 0.7) (0.4) (0.5)
Perfect correlation | 0.0464  0.0579  0.0546  0.0314  0.0767  0.0564
PC-OM 0.0425 00554 0.0528 0.0296 0.0746  0.0537
PC-FW 0.0429 00542 0.0504 0.0282 0.0764  0.0522
Entropy-OM 0.0431y 0.0564y 0.0502y 0.0261y 0.0698y 0.0521y
ltemSimple-OM | 0.0358Y 0.0509y 0.04297 0.0261y 0.0689y 0.04417
ltemUser-OM 0.0361y 0.05127 0.0431y 0.0261y 0.0675%7 0.0444y
RatUser-OM 0.0362y 0.05147 0.04367 0.02637 0.06637 0.0446Y
Ratltem-OM 0.0361y 0.0511y 0.0432y 0.02627 0.0661% 0.0444Y
IRUser-OM 0.0365% 0.05137 0.0435% 0.02637 0.0687% 0.04473
IRItem-OM 0.0357y 0.05047 0.0421y 0.0257%7 0.0669% 0.04397
IRUserltem-OM | 0.0365y 0.05137 0.0434Y 0.02637 0.06757 0.04477
Entropy-FW 0.0457y 0.0577y 0.0524y 0.0265y 0.07457 0.05467
ltemSimple-FW | 0.0410y 0.05403 0.0475y 0.0266] 0.07203  0.0498Y
ltemUser-FW 0.0409Y 0.05387 0.04737 0.0265y 0.0706% 0.0497¥
RatUser-FW 0.04103 0.05407 0.0477% 0.0267%7 0.0691% 0.04997
Ratltem-FW 0.0411y 0.0541y 0.04767 0.0266F 0.0688% 0.04997
IRUser-FW 0.04103 0.05387 0.0474Y 0.0266% 0.0721%7 0.04967
IRItem-FW 0.04067 0.0534Y 0.0467%7 0.0263y 0.06997 0.0491¥
IRUserltem-FW | 0.04097 0.05387 0.0474%7 0.0266y 0.07067 0.0496)

Table 7.5. Dynamic ensemble performance values (P@10) using the PLR _methodology and
user predictors (MovielLens dataset).

In summary, the results show that our methods significantly outperform
static ensembles for different recommender combinations in most of the
evaluation methodologies. Moreover, in most cases our methods also achieve the
best results for each ensemble, let aside the performance of the oracle performance
prediction (perfect correlation) and best static approaches, which use groundtruth
(test) information, differently to the clarity- and entropy-based performance predic-
tors.

Nevertheless, we observe that in those cases where the dynamic ensembles do
not perform better than the static ensembles, the best static approaches use values of
A close to 0.5. We hypothesise that our framework may be biased towatds favouring
those ensembles whose recommender combination is highly unbalanced. Interest-
ingly, although the predictors only weight one of the recommenders (not always the
better performing one) a dynamic ensemble is usually able to find the optimal com-
bination in the unbalanced cases. In particular, this could help to answer why our
dynamic ensembles underperform static approaches for the UIR and P1R method-

ologies, since the best static in these cases seem to be often very close to 0.5.
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R1 R2
HRI1 | pLSA CB
HRI2 | pLSA kNN
HRI3 | ItemPop CB
HRI4 | ItemPop kNN

Table 7.6. Selected recommenders for building dynamic ensembles using item predictors that
exploit rating data (MovieLens dataset).

Using item-based predictors

As we noted in Section 6.5.2, item-based predictors could also be valuable since they
also obtain high correlations with respect to item perfomance. Table 7.6 shows the
selected recommenders that satisfy the correlation requirements with item predictors.
Table 7.7, Table 7.8, and Table 7.9 show the results obtained when these recom-
mender combinations are evaluated and compared against dynamic versions (using
our proposed item predictors), and using the 1R, UIR, and uuU1R methodologies.
In this case, ensemble predictions are computed by means of Equation (7.3) with
values y(u, i) only depending on the current item, that is, y (0).

When measuring the performance of dynamic ensembles that use item-based
performance predictors, we do not compute the perfect correlation predictors be-

cause we do not have a standard metric for item performance. Apart from that, the

HRIL HRI2 HRI3 HRI4
R1 (A=1.0) 0.0836  0.0836  0.0649  0.0649
R2 (1=0.0) 00221  0.0437 00221  0.0437
Baseline (=0.5) | 0.0909  0.0924  0.0886  0.0907
Best static 0.0909  0.0924  0.0886  0.0907
(best 1) (0.5) (0.5) (0.5) (0.5)
Entropy-OM 0.0708y  0.0858y  0.0684y  0.0831y
UserSimple-OM | 0.0761y  0.0905y  0.07237  0.0837%
Userltem-OM 0.07767  0.0903y  0.0749Y7  0.0843y
Ratltem-OM 00751y  0.0893y  0.07127  0.08247
RatUser-OM 0.07597  0.0892Y  0.0674y  0.07897
URItem-OM 0.07767  0.0911y  0.0797%7  0.0885y
URUser-OM 00781y  0.0906Y  0.0721y  0.08207
URItemUser-OM | 0.07773  0.0909y  0.0777%  0.08697
Entropy-FW 0.0798y  0.0923y  0.0771y  0.0895y
UserSimple-FW | 0.09464  0.09794  0.09164  0.09494
Userltem-FW 0.09494  0.0980A  0.09204  0.09504
Ratltem-FW 0.09444  0.09794  0.09134  0.09484
RatUser-FW 0.09464  0.09784  0.09084  0.09424
URItem-FW 0.09404  0.09814  0.09234  0.09584
URUser-FW 0.09464  0.09784  0.09124  0.09454
URItemUser-FW | 0.09444  0.09804  0.09214  0.09544

Table 7.7. Dynamic ensemble performance values (P@10) using 1R methodology with item
predictors (MovielLens dataset).
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rest of the experimental settings is the same as those described above for dynamic
hybrids with user-based performance predictors.

Table 7.7 shows the results obtained by using item-based predictors and the 1R
methodology. We may observe that if the predictors are weighted using the FW
strategy, dynamic ensembles outperform static combinations in every situation, ex-
cept for the Entropy predictor. It is interesting to note that, differently to user-based
predictors, the dynamic ensembles are able to outperform the best static ensemble
even when they are close to the baseline with A = 0.5. The reader may compate Ta-
ble 7.4 and Table 7.7 to observe these differences.

In Table 7.8, where the methodology U1R is used, a very similar situation occurs,
although not all dynamic ensembles outperform the static approach with the FW
strategy. Specifically, the dynamic hybrid weighted by the URItem clarity predictor
clearly obtains better performance than the rest of the dynamic and static ensembles,
in particular the HRI3 and HRI4 combinations.

Finally, the performance results found for the uuU1R methodology are pre-
sented in Table 7.9, in which the test ratings — i.e., the users — are uniformly distrib-
uted over the items, items previously uniformly distributed in the test (like in the
U1R methodology). In this experiment, the performance of the dynamic ensemble is
much better than in the previous experiments, since all the rating-based item pre-
dictors (except for the Entropy predictor) outperform the static baseline no

matter the weighting strategy in three out of four recommender combinations.

HRI1 HRI2 HRI3 HRI4
R1 (A=1.0) 0.0718 0.0718 0.0406 0.0406
R2 (A=0.0) 0.0223 0.0381 0.0223 0.0381
Baseline (A=0.5) 0.0764 0.0812 0.0630 0.0689
Best static 0.0764 0.0812 0.0630 0.0689
(best 2) (0.5) (0.5) (0.5) (0.5)
Entropy-OM 0.0571y  0.0652y  0.04357  0.0508y
UserSimple-OM 0.0657y  0.07167  0.03997  0.0450y
Userltem-OM 0.0671y  0.0721y  0.04257  0.0462§
Ratltem-OM 0.0645y  0.0699y  0.03927  0.0435y
RatUser-OM 0.0620y  0.0671y  0.03357  0.0382y
URItem-OM 0.0705y  0.0757y  0.04967  0.0532§
URUser-OM 0.0650y  0.0699y  0.03727  0.0414y
URItemUser-OM | 0.0690y  0.0741y  0.0462y  0.0500%
Entropy-FW 0.0668y  0.0757y  0.05187  0.0595y
UserSimple-FW 0.08404 0.08864  0.0601y  0.0658%
Userltem-FW 0.08444 0.08874  0.0609y  0.0663y
Ratltem-FW 0.08394 0.08834  0.05987  0.0653y
RatUser-FW 0.08314 0.08764  0.05737y  0.0630y
URItem-FW 0.08514 0.08974  0.06424  0.0698%
URUser-FW 0.08364  0.08814  0.05857  0.0642y
URItemUser-FW | 0.08484  0.08934  0.0625y  0.0680%

Table 7.8. Dynamic ensemble performance values (P@10) using ULR methodology with item
predictors (MovielLens dataset).
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HRIL HRI2 HRI3 HRI4
R1 (A=1.0) 0.0536  0.0536  0.0225  0.0225
R2 (1=0.0) 00198 00275 00198  0.0275
Baseline (A=0.5) | 0.0374  0.0440  0.0239  0.0256
Best static 0.0491 00502  0.0239  0.0271
(best 1) (0.9) (0.9) (0.6) (0.2)
Entropy-OM 0.0324y  0.0385y  0.0236Y  0.02804
UserSimple-OM | 0.05102  0.05484  0.0237Y  0.02824
Userltem-OM 0.05144  0.05474  0.0236Y  0.02804
Ratltem-OM 0.05164  0.05474  0.0237Y  0.02814
RatUser-OM 0.05234  0.05514 0.0237Y  0.02824
URItem-OM 0.04984  0.05364 0.0234Y  0.02804
URUser-OM 0.05184  0.05514  0.0234y  0.02794
URItemUser-OM | 0.05054  0.05424  0.0235y  0.02804
Entropy-FW 0.0344y  0.0410y  0.02412  0.02754
UserSimple-FW | 0.04352  0.050352  0.02444  0.02764
Userltem-FW 0.0435]  0.05012  0.02454  0.02754
Ratltem-FW 0.0436]  0.05044  0.02444  0.02754
RatUser-FW 0.0440]  0.05094  0.02454  0.02764
URItem-FW 0.0429]  0.04944  0.02444  0.0273%
URUser-FW 0.0438]  0.05064  0.02454  0.02744
URItemUser-FW | 0.0432)  0.0498%2  0.02454  0.02744

Table 7.9. Dynamic ensemble performance values (P@10) using uuU1R methodology with
item predictors (MovieLens dataset).

In the other combination (HRI3) the best strategy is FW, the same as with the other

evaluation methodologies.

7.3.2 Dynamic recommender ensembles on log data

In this section we present experiments in which log-based predictors are used to dy-
namically weight an ensemble’s recommenders. As with rating-based information, in
this case we first have to select suitable recommenders to combine according to the
requirements established in our framework. Hence, we choose the combinations
HL1, HL.2 and HL3 presented in Table 7.10, where, as before, the performance pre-
dictors weight the recommender denoted as R1.

The Last.fm dataset contains timestamped log-based information. As noted in
Chapter 4, for efficiency reasons, we only use the 1R methodology in this dataset.
Table 7.11 shows the results obtained with a temporal split of the data, and Table
7.12 shows the results obtained with a random split (five-fold) of the data.

R1 R2
HL1 kNN CB
HL2 kNN ItemPop
HL3 pLSA kNN

Table 7.10. Selected recommenders for building dynamic ensembles using performance
predictors that exploit log-based information (Last.fm dataset).
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HL1 HL2 HL3
R1 (A=1.0) 0.0603 0.0603 0.0926
R2 (1=0.0) 0.0916 0.0797 0.0603
Baseline (A=0.5) 0.0852 0.0755 0.0820
Best static 0.0914 0.0812 0.0925
(best 1) (0.2) (0.2) (0.9)
Perfect correlation 0.0890 0.0783 0.0863
PC-OM 0.0869 0.0771 0.0851
PC-FW 0.0849 0.0751 0.0826
ItemSimple-OM 0.0904Y 0.0804Y 0.0901Y
Autocorrelation-OM 0.08157 0.07227 0.0781y
TimeSimple-OM 0.0905Y 0.0789Y 0.08987
ItemTime-OM 0.0906Y 0.0804Y 0.0902Y
ItemPriorTime-OM 0.0885Y 0.0778Y 0.0863Y
ItemSimple-FW 0.0903Y 0.0802Y 0.0891Y
Autocorrelation-FW 0.0842Y 0.0746y 0.0809y
TimeSimple-FW 0.0901Y 0.0785Y 0.0884Y
IltemTime-FW 0.0904Y 0.0800Y 0.0891Y
ItemPriorTime-FW 0.0883Y 0.0775Y 0.0855Y

Table 7.11. Dynamic ensemble performance values (P@10) using the 1R methodology with
the log-based user predictors (Last.fm, temporal split).

HL1 HL2 HL3
R1 (A=1.0) 0.0204 0.0204 0.0836
R2 (1.=0.0) 0.0828 0.0767 0.0204
Baseline (A=0.5) 0.0764 0.0643 0.0704
Best static 0.0818 0.0767 0.0837
(best 1) (0.2) (0.1) (0.9)
Perfect correlation 0.0818 0.0760 0.0829
PC-OM 0.0816 0.0755 0.0823
PC-FW 0.0815 0.0745 0.0811
ItemSimple-OM 0.07991 0.0730% 0.0771Y
Autocorrelation-OM 0.0717Y7 0.0596y 0.0686Y
TimeSimple-OM 0.08147 0.07627 0.05185
ItemTime-OM 0.08061 0.07341 0.0761Y
ItemPriorTime-OM 0.0770Y 0.0658Y 0.07437
ItemSimple-FW 0.08041 0.07261 0.0739Y
Autocorrelation-FW 0.0756y 0.0631y 0.06977
TimeSimple-FW 0.08147 0.0753] 0.0579
ItemTime-FW 0.0808] 0.07281 0.0732Y
ItemPriorTime-FW 0.0783Y 0.0671Y 0.07197

Table 7.12. Dynamic ensemble performance values (P@10) using the 1R methodology with
log-based user predictors (Last.fm, five-fold random split).

We can see that the results of both tables are analogous. The dynamic ensem-
bles weighted by the log-based performance predictors outperform the base-
line static ensemble in all cases, except with the Autocorrelation predictor.
This result is consistent with the correlations presented in Table 6.14 and Table 6.15,
where autocorrelation obtained the lowest (absolute) correlation value for the kNN
recommender on both versions of the dataset. Regarding the pLLSA recommender (in

the combination HL3), the Autocorrelation and TimeSimple predictors obtain com-
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R1 R2
HS1 Personal pLSA
HS2 Personal kNN

HS3 PureSocial pLSA
HS4 PureSocial kNN

Table 7.13. Selected recommenders for building dynamic ensembles using social-based
user predictors (CAMRa dataset).

parable correlations with the combined recommenders, yet the performance of the
corresponding dynamic ensembles is very different, thus suggesting that, although we
have found a dependence between the predictors’ power in terms of correlation, and
their effectiveness in weighting hybrids, this is not a strict necessary condition to
obtain improvements over the static ensembles.

The best performance values were achieved either by single recommenders or by
the best static ensembles. When the best results are obtained by single recommenders
emphasises the fact that no hybridisation is required for that combination (like in
HL1 and HL3 for the temporal split, and HL.1 and HL.2 for the random split). In the
other case, when the best results are achieved by the best static ensembles, it may
restrict the usefulness of our approach, although our proposed dynamic ensembles
significantly outperform the baseline static ensembles for some predictors such as
TimeSimple and ItemSimple. We have to recall that the best static ensembles are in
fact optimised using the test set, which is clearly not a fair comparison. The results of
the perfect correlation ensembles in the random split are always better than those
obtained by the performance predictors, confirming that predictors with stronger
correlations should obtain better performance results when used for dynamic en-

sembles.

7.3.3 Dynamic recommender ensembles on social data

In the third experiment we exploit the social information available in the CAMRa
dataset to combine collaborative and social filtering recommenders using social-
based performance predictors. Table 7.13 shows the recommender combinations
selected based on the correlations obtained in Section 6.5.4. Here, we present 4 en-
sembles where the two social filtering recommenders, Personal and PureSocial, are
combined with two collaborative filtering recommenders, pLSA and kNN. We saw
in Section 6.5.4 that most of the social-based predictors obtained higher correlations
with the social filtering recommenders, and lower or negligible correlations with the
collaborative filtering recommenders, at least for the social version of the dataset
(Table 6.16). The situation for the collaborative-social version was not so clear, but
for the sake of coherence, we use the same set of ensembles in both versions of the

dataset.
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HS1 HS2 HS3 HS4
R1 (A=1.0) 0.1732 0.1732 0.1760 0.1760
R2 (1=0.0) 0.1110 0.0473 0.1110 0.0473
Baseline (A=0.5) 0.1813 0.1821 0.2006 0.1929
Best static 0.1842 0.1899 0.2012 0.1952
(best 1) (0.7) (0.8) (0.4) (0.6)
Perfect correlation 0.2018 0.1929 0.2089 0.1979
PC-OM 0.1872 0.1875 0.2048 0.1946
PC-FW 0.1863 0.1869 0.2042 0.1994

AvgNeighDeg-OM | 0.1795Y  0.18967  0.19737  0.1804y
BetCentrality-OM 0.1744Y  0.1804Y  0.18337  0.1777%

ClustCoeff-OM 0.1786Y  0.1786Y  0.1836]  0.1753y
Degree-OM 0.1738Y  0.1839Y  0.1976Y  0.17657
EgoCompSize-OM | 0.1756Y  0.18337  0.1967Y  0.1827%
HITS-OM 0.1774Y 019112  0.18137  0.1798Y
PageRank-OM 0.1762Y  0.18427  0.1917Y  0.18017

TwoHopNeigh-OM | 0.1756Y  0.1851Y7  0.1964Y  0.1777¥
AvgNeighDeg-FW | 0.1807%  0.1896]  0.2003Y  0.1914Y
BetCentrality-FW 0.1801Y  0.18727  0.2024%  0.1929Y

ClustCoeff-FW 0.1804Y  0.1875]  0.2003%Y  0.1890Y
Degree-FW 0.1798Y  0.1887]  0.2000Y  0.1929Y
EgoCompSize-FW | 0.1789Y  0.1896]  0.20097  0.1938Y
HITS-FW 0.1801Y  0.19022  0.1997Y  0.1926Y
PageRank-FW 0.1810Y  0.18757  0.2003Y  0.1923Y

TwoHopNeigh-FW 0.1801Y  0.19054 0.2000Yy  0.1926Y

Table 7.14. Dynamic ensemble performance values (P@10) using the AR methodology with
social-based user predictors (CAMRa, social dataset).

As we mentioned in Section 6.5.4, due to the lack of coverage of the social filter-
ing recommenders, the only methodology that provides sensible results is the AR
methodology. In this section we present the results obtained using this methodology
on the two available versions of the CAMRa dataset: social and collaborative-social.

Table 7.14 shows the results obtained on the social version of the CAMRa data-
set. We see that only for one out of the four recommender combinations, the dy-
namic ensembles consistently outperform the baseline static ensemble. However, it is
interesting to note that the best value is always achieved by the perfect correlation
ensemble, which means that further improvements could be possible if we were able
to find predictors with stronger correlations.

In the collaborative-social version of the dataset (Table 7.15) the results are simi-
lar, except that now for HS2, the best result is obtained by the best static ensemble.
Moreover, a larger number of dynamic ensembles outperform the baseline static en-
semble HS3, whereas at least one dynamic ensemble outperforms the baseline HS1,
which is a better result than the one shown in the previous Table 7.14. We hypothe-
sise this is because on this version of the dataset the individual recommenders display
a more similar performance to each other (compare the differences between R1 and
R2 in Table 7.14 and Table 7.15).
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Furthermote, some of the correlations obtained for the CAMRa collaborative
dataset are more discriminative between the combined recommenders, in the sense
that, for instance, the correlations between the two-hop neighbourhood predictor
and the Personal recommender were -0.123 and -0.121 in the social and collabora-
tive-social datasets, respectively. However, the correlations between the two-hop
neighbourhood predictor and kNN were 0.004 and 0.130, that is, in the second data-
set the relative distance in correlation between these two recommenders is larger,
according to the correlation with respect to the predictor. This change in the correla-
tions may explain the fact that in Table 7.15 some of the dynamic ensembles outper-
form the perfect correlation ensemble, which does not take the relative correlation
into account with respect to each individual recommender, as noted in 7.3.1.

In general, the HITS predictor obtains the best results among the dynamic
ensembles for some of the tested combinations. Other predictors such as the
betweenness centrality and the ego components size produce more competi-
tive ensembles in the social version of the dataset, whereas the degree and the
average neighbour degree preditors provide better results for more than one combi-
nation in the CAMRa collaborative dataset.

HS1 HS2 HS3 HS4
R1 (A=1.0) 0.1066 0.1066 0.1072 0.1072
R2 (1.=0.0) 0.1007 0.0226 0.1007 0.0226
Baseline (1=0.5) 0.1509 0.1142 0.1599 0.1219
Best static 0.1524 0.1200 0.1632 0.1219
(best 1) (0.4) (0.7) (0.3) (0.5)
Perfect correlation 0.1608 0.1188 0.1640 0.1237
PC-OM 0.1202 0.1164 0.1254 0.1199
PC-FW 0.1189 0.1143 0.1263 0.1219
AvgNeighDeg-OM 0.1489Yy  0.1195Y 0.1599Y 0.1131%§
BetCentrality-OM 0.14437  0.1132Y 0.1487y 0.1114y
ClustCoeff-OM 0.1465Y  0.1123Y 0.1483y7 0.1108y
Degree-OM 0.1472Yy  0.1154Y7 0.1614Y 0.1107%
EgoCompSize-OM 0.1461Yy  0.1158Y 0.1596Yy 0.11407
HITS-OM 0.1485Y  0.1200, 0.1467y 0.1134§
PageRank-OM 0.1471y  0.1167Y 0.1579Y 0.1123§
TwoHopNeigh-OM 0.1478Y  0.1171Y 0.1585Y 0.11187
AvgNeighDeg-FW 0.1518Y  0.11917 0.1623Y 0.1204y
BetCentrality-FW 0.1491Y  0.11807 0.1577Y 0.1213§
ClustCoeff-FW 0.1500Yy  0.11827 0.1566y 0.1189y
Degree-FW 0.1489Y  0.11917 0.16277 0.1208y
EgoCompSize-FW 0.1489Y  0.11937 0.1618Y 0.1210§
HITS-FW 0.1482y  0.11957 0.1564y 0.1202y
PageRank-FW 0.1491Y  0.11867 0.1610Y 0.1211§
TwoHopNeigh-FW 0.1500y  0.11957 0.1619Y 0.1211§

Table 7.15. Dynamic ensemble performance values (P@10) using the AR methodology
with social-based user predictors (CAMRa, collaborative dataset).




160 Chapter 7. Dynamic recommender ensembles

7.3.4 Discussion

The analysis of the results presented in this chapter shows that ensembles can indeed
benefit from a dynamic weighting of their recommenders. In particular, we have seen
that when these weights come from performance predictors, which previously had
shown significant correlation with the performance of individual recommenders, the
resulting dynamic ensemble tends to outperform static combinations of the recom-
menders. In this context, in order to obtain successful hybridisations, we have to take
several variables into account, which correspond to three stages proposed in our
framework: the correlation between the predictor and the combined recommenders,
the relative performance of such recommenders, the strategy to normalise the predic-
tor’s values, and the weight distribution among recommenders.

The relative performance of the recommenders has proven to be decisive, since
in some cases, hybridisation does not make sense to begin with, when the difference
in performance between the recommenders is significant and systematic, and thus,
dynamic ensembles cannot obtain the best performance result, although they may
outperform static ensembles. Performance prediction normalisation and weight dis-
tribution, on the other hand, do make a difference in the results. Although no explicit
results are presented in this work regarding different normalisation approaches, pre-
viously conducted experiments showed us that score normalisation produce worse
results than rank normalisation. Finally, the weight distribution strategy is not as
critical as other stages of our framework, but helps to obtain much better results,
specifically, when the one minus strategy (OM) is used.

The obtained results have also shown that more complex formalisations and
probability models do not necessarily lead to better results, with respect to the adap-
tation and definition of the user and item clarity performance predictors. In this ad-
aptation, various configurations were available, and we experimented with further
extensions of different language models for the same clarity model, using rating and
log-based information. Additionally, several graph-based metrics were tested, where
the concept of the user’s strength in a social network is modelled in different ways.

We find that different formulations for the user-based performance clarity pre-
dictor consistently obtain the best results in different situations for rating-based pref-
erence information. We also experimented with item-based predictors, and found
that the Userltem, URItem, and RatUser predictors were noticeably better than the
rest of the formulations. When log-based information is exploited, the ItemTime and
TimeSimple predictors obtained better results than other predictors not based on the
clarity concept, such as the Autocorrelation function. Moreover, regarding the social-
based ensembles, the HITS, two-hop neighbourhood, and average neighbour degree
approaches clearly outperform the ensemble weighted by the rest of the predictors

and, in most of the cases, also outperform the baseline static ensemble.



7.4 Conclusions 161

These results are, in general, consistent with the correlation values between the
predictors’ output values and the recommenders’ performance values. Figure 7.2
shows a summary of the results presented in this and previous chapters, where the
difference in correlation is plotted against the gain (or loss) in performance with re-
spect to the baseline. For this figure, the best and worst dynamic ensembles were se-
lected from Table 7.2, Table 7.11 and Table 7.15. In the figure we may observe the
trend that the larger the difference in correlation, the better the improvement over the
baseline, which is in concordance with the requirement that both correlations should
not be very similar. These results provide some insights in order to understand which
features may help configure well performing dynamic recommender ensembles, where

performance predictors have emerged as a clear useful characteristic.

7.4 Conclusions

In this chapter we have explored how the performance of a recommender ensemble
can be improved by dynamically assigning the weights of its recommenders, by ana-
lysing the performance correlation between the values of a performance predictor
and the performance of an individual recommender. In this way, we have proposed a
dynamic hybrid framework that let decide when and how dynamic hybridisation
should be done.

Drawing from the performance predictors proposed in the previous chapter, we

have conducted several experiments in order to assess whether recommender en-
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Figure 7.2. For each best and worst dynamic ensemble in Table 7.2, Table 7.11 and Table 7.15,
this graph plots the difference in correlation between each predictor and a recommender
against the difference in performance between the ensemble and the baseline.
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sembles can benefit from dynamic weights according to such predictors. The results
obtained in our experiments indicate that a strong correlation with performance
tends to correspond with enhancements in ensembles by using the predictor for
weight adjustment. The dynamic ensembles usually outperformed the baseline static
ensemble for different recommender combinations, supporting their effectiveness in
different situations.

In future work we aim to evaluate our framework with more than two recom-
menders in an ensemble, and more than one performance predictor, eventually, one
for each recommender. We also plan to test different normalisation strategies of the
predictor’s values, where several assumptions about the ideal weight distribution can
be verified, such as whether the uset’s rating distribution or the recommender’s out-
put are beneficial for the final performance of the ensemble. Moreover, Machine
Learning approaches could also be used to learn the best weights in a user (or item)
basis. Despite being more time consuming, these techniques may also achieve good
results in terms of performance of the dynamic ensemble, although they are usually

more prone to overfit the learned weights.



Chapter 8

Neighbour selection and
weighting in user-based

collaborative filtering

User-based recommender systems suggest interesting items to a user relying on simi-
lar-minded people called neighbours. The selection and weighting of the input from
these neighbours characterise different variants of the approach. Thus, for instance,
while standard user-based collaborative filtering strategies select neighbours based on
user similarities, trust-aware recommendation algorithms rely on other aspects indica-
tive of user trustworthiness and reliability.

In this chapter we restate the user-based recommendation problem, generalising it
in terms of performance prediction techniques. We investigate how to adopt this gen-
eralisation to define a unified framework where we conduct an objective analysis of the
effectiveness (predictive power) of neighbour scoring functions. We evaluate our ap-
proach with several state-of-the-art and novel neighbour scoring functions on two
publicly available datasets. The notion of performance takes here a different nuance
from previous chapters. More precisely, we consider the notion of neighbour perform-
ance, for which we propose several measures and new predictors. In an empirical
comparison involving four neighbour quality metrics and thirteen performance predic-
tors, we find a strong predictive power for some of the predictors with respect to cer-
tain metrics. This result is then validated by checking the final performance of recom-
mendation strategies where predictors are used for selecting and/or weighting user
neighbours. As a result, we are able to anticipate which predictors will perform better
in neighbour scoring powered versions of a user-based collaborative filtering algo-
rithm.

In Sections 8.1 and 8.2 we present a unified formulation and the proposed
framework for neighbour selection and weighting in user-based recommendation, and
in Section 8.3 we describe how the different neighbour scoring functions proposed in
the literature fit into the framework. Finally, in Section 8.4 we present an experimental

evaluation of the framework, and in Section 8.5 we provide conclusions.
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8.1 Problem statement

We focus on user-based collaborative filtering algorithms, one type of memory-based
approaches that explicitly seek people — commonly called neighbours — having pref-
erences (and/or other characteristics of interest) in common with the target user, and
use such preferences to predict item ratings for the user. User-based algorithms are
built on the principle that a particular user’s rating records are not equally useful to
all other users as input to provide them with item suggestions (Herlocker et al.,
2002). Therefore, as stated in Chapter 2, central aspects to these algorithms are a)
how to identify which neighbours form the best basis to generate item recommenda-
tions for the target user, and b) how to properly make use of the information pro-
vided by them. Once the target user’s neighbours are selected, the more similar a
neighbour is to the user, the more her preferences are taken into account as input to
produce recommendations.

A common user-based recommendation approach consists of predicting the
relevance of an item for the target user by a linear combination of her neighbours’
ratings, which are weighted by the similarity between the target user and her
neighbours, as presented in Equation (2.3). For the sake of clarity, and since we shall

later elaborate from it, we reproduce here the above equation:

F) =@ +C Y sim@v)(r@i) - @) &)
VEN (u,0)

User similarity has been the central criterion for neighbour selection in most of
the user-based collaborative filtering approaches (Desrosiers and Karypis, 2011).
Nonetheless, recently it has been suggested that additional factors could have a valu-
able role to play on this point. For instance, two users with a high similarity value
may no longer be reliable predictors for each other at some point because of a diver-
gence of tastes over time (O’Donovan and Smyth, 2005). Thus, in the context of
user-based collaborative filtering, more complex methods have been proposed in
order to effectively select and weight useful neighbours (O’Donovan and Smyth,
2005; Desrosiers and Karypis, 2011). In this context a particularly relevant dimension
relates the above additional factors with the general concept of trust (trustworthiness,
reputation) on a user’s contribution to the computation of recommendations. Hence,
a number of trust-aware recommender systems have been proposed in the last dec-
ade (Hwang and Chen, 2007; O’Donovan and Smyth, 2005; Golbeck, 2009).

Most of these systems focus on the improvement of accuracy metrics, such as
the Mean Average Error, by defining different heuristic trust functions, which, in
most cases, are applied either as additional weighting factors in the neighbourhood-
based formulation, or as a component of the neighbour selection criteria. The way

trust is measured is considerably diverse in the literature. In fact, the notion of trust
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has embraced a wide scope of neighbour aspects, spanning from personal trust on
the neighbour’s faithfulness, to trust on her competence, confidence in the correct-
ness of the input data, or the effectiveness of the recommendation resulting from the
neighbour’s data. More specifically, in trust-aware recommender systems, a trust
model is defined and, typically, introduced into the Resnick’s equation (Equation
(8.1)) either as an additional weight or as a filter for the potential user’s neighbours.
Moreover, depending on the nature of their input, different types of trust-aware rec-
ommendation approaches can be distinguished: rating-based approaches, and social-
based approaches (using a trust network).

One of the first works that proposed rating-based trust metrics between users is
(O’Donovan and Smyth, 2005). In that work O’Donovan and Smyth propose to
modify how the “recommendation partners” (neighbours) are weighted and selected
in the user-based collaborative filtering formula. They argue that the trustworthiness
of a particular neighbour should be taken into account in the computed recommen-
dation score by looking at how reliable her past recommendations were. Trust values
are computed by measuring the amount of correct recommendations in which a user
has participated as a neighbour, and then they are used for weighting the influence
(along with computing the similarity), and selecting the target user’s neighbours.
Weng et al. (2006) propose an asymmetric trust metric based on the expectation of
other users’ competence in providing recommendations to reduce the uncertainty in
predicting new ratings. The metric is used in the standard collaborative filtering for-
mula instead of the similarity value. Two additional metrics are defined in (Kwon
et al., 2009) based on the similarity between the ratings of a neighbour and the rat-
ings from the community. Finally, Hwang and Chen (2007) define two trust metrics
(local and global) by averaging the prediction error of co-rated items between a user
and a potential neighbour.

Social-based trust metrics make use of explicit trust networks of users, built upon
friendship relations (Massa and Avesani, 2004; Massa and Bhattacharjee, 2004) and
explicit trust scores between individuals in a system (Ma et al., 2009; Walter et al,,
2009). These metrics and, to some extent, their inherent meanings, are different with
respect to rating-based metrics. Nonetheless, Ziegler and Lausen (2004) conduct a
thorough analysis that shows empirical correlations between trust and user similari-
ties, suggesting that users tend to create social connections with people who have
similar preferences. Once such a correlation is proved, techniques based on social-
based trust can be applicable. Golbeck and Hendler (2006) propose a metric called
TidalTrust to infer trust relationships by using recursive search. Inferred trust values
are used for every user who has rated a particular item in order to select only those
users with high trust values. Then, a weighted average between past ratings and in-

ferred trust values provides the predicted ratings. Massa and Avesani (2007b) ex-
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periment with local (MoleTrust) and global (PageRank) trust metrics, showing that
trust-based recommenders are very valuable for cold start users.

The research presented here seeks to provide an algorithmic generalisation for a
significant variety of notions, computational definitions, and roles of trust in
neighbour selection. Specifically, we aim to provide a theoretical framework for
neighbour selection and weighting in which trust metrics can be defined and evalu-
ated in terms of improvements on a final recommender’s performance. We cast the
rating prediction task — typically based, as described above, on the aggregation of
neighbour preferences — into a framework for dynamic combination of inputs, from
a performance prediction perspective, borrowing from the methodology for this area
in the Information Retrieval field. The application of this perspective is not trivial,
and requires a definition of what the performance of a neighbour means in this con-
text. Hence, restated the problem in these terms, we propose to adapt and exploit
techniques and methodologies developed in Information Retrieval for predicting
query performance; in our case the target uset’s neighbours are equivalent to the que-
ries, and our goal is to predict which of these neighbours will perform better for the
target user.

Furthermore, since our framework provides an objective measure of the
neighbour scoring function efficiency, we would be able to obtain a better under-
standing of the whole recommendation process. For instance, if the results obtained
when a particular function is introduced in a recommender are not consistent with
the (already observed) objective performance measures, it would mean that the cho-
sen strategy is not the most appropriate, suggesting to experiment with further
strategies, providing such a function has already shown some predictive power.

Therefore, the main contribution of our framework is that it provides a formal
setting for the evaluation of neighbour selection and weighting functions, while, at
the same time, enables to discriminate whether recommendation performance im-
provements are achieved by the neighbour scoring functions, or by the way these
functions are used in the recommendation computation. Besides, our framework
provides an unification of state-of-the-art trust-based recommendation approaches,
where trust metrics are casted as neighbour performance predictors. As a result, in
this chapter, we shall propose four neighbour quality metrics and thirteen perform-
ance predictors, defined upon a specific neighbour (user-based), a neighbour and the
current user (user-user), or a neighbour and the current item (user-item). We shall
generalise the different strategies proposed in the literature to introduce trust into
collaborative filtering. Moreover, thanks to the proposed formulation, we will define

and evaluate new strategies.
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8.2 A performance prediction framework for

neighbour scoring

8.2.1 Unifying neighbour selection and weighting in user-

based Recommender Systems

From the observation that most of the methods for neighbour selection and weight-
ing are elaborated upon the standard Resnick’s scheme (Equation (8.1)), we propose
a unified formulation as follows. Let us suppose, for the sake of generality, that we
have a neighbour scoring function s(u, v, ) that may depend on the target user u, a
neighbour v, and a target item . This function outputs a higher value whenever the
user, neighbour, item, or a combination of them, is more trustworthy (in the case of
trust models), or is expected to perform better as a neighbour according to the in-
formation available in the system, such as other ratings and external information, like

a social network. Using this function we generalise Equation (8.1) to:

F(u,i) = 7(u) + C z 299 (s(u, v, D), sim(w, ) (r(, ) = 7)) (g 5
vefnetgh(y,i:k;s)

where the function f™9" denotes the selection of the set of neighbours, and f*99
is an aggregation function combining the output of s and the user similarity into a
single weight value. In this way, we integrate the neighbour scoring function s into
the Resnick’s formula in order to: a) select the neighbours to be considered, instead
of or in addition to the most similar users (via function f™9") and b) provide a
general weighting scheme by introducing an aggregation function f*99 between the
actual neighbour score and the similarity between the target user and her neighbours.
Note that it is not required that s is bounded, since a constant C would normalise the
output rating value. The function s is thus a core component in the generalisation of
the user-based collaborative filtering techniques. It may embody similarity in itself (in
such case {99 may just return its first input argument), but sim and f%99 are left to
simplify the connection with the original similarity-only formulation, and to suit par-
ticular cases where S applies other principles distinct to similarity.

The aggregation function f%99 can take different definitions, some examples of
which can be found in the literature. For instance, O’Donovan and Smyth (2005)
initially propose to use the arithmetic mean of the neighbour score (x) and the simi-
larity (y; henceforth denoted as f;"?), and end up using the harmonic mean (f,"99)
because of its better robustness to large differences in the inputs. In (Bellogin and
Castells, 2010), on the other hand, we use the product function (f3agg). Moreover,
Hwang and Chen (2007) propose to directly use the neighbour score as the weight
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given to neighbours, that is, they use the projection function f, 79 (x,y) = x. Obvi-
ously, the original Resnick’s formulation can be expressed as the symmetric projec-
tion function foagg (x,y) =y.

The neighbourhood selection embodied in function f™W9" also generalises Res-
nick’s approach — the latter corresponds to the particular case foneigh(u, L k;s) =
Ny (u, i), where the neighbour scoring function is ignored, and only similarity is used.
The general form admits different instantiations. In (Golbeck and Hendler, 2006)
only the users with the highest trust values are selected as neighbours. In
(O’Donovan and Smyth, 2005), on the other hand, those users whose trust values
exceed a certain threshold are taken into consideration. This threshold is empirically
defined as the mean across all the obtained values for each pair of users. The latter

strategy can be formulated as follows:
; 1
nelgh i ks s) = fveN,(wi):s(uv,i)>th 1= 77— Z s(u,v,i)
£ ¢ (w0 Ly

There are, nonetheless, some considerations to take into account when using
specific combinations of neighbour weighting and neighbour selection functions.

. .- pa . . neigh
First, if f, 99 is used together with f;"“*

— only considering the most similar users
in the neighbourhood —, then less reliable users (with low ff‘gg) who are very similar
to the current user would be penalised, and more reliable neighbours but less similar

to the current user are ignored, since they do not belong to the neighbourhood. Sec-

ond, when using foagg together with flneigh, neighbours are weighted by their simi-
larities with the target user. These similarities, however, could be very low, and thus,
non-similar but reliable neighbours would be penalised. Finally, if f4agg is used with
flneigh, the similarity weight will not be considered at any point in the recommenda-
tion process.

Some of these configurations may deserve further investigation, and are consid-

ered in Section 8.4, along with other combinations not listed here.

8.2.2 Neighbour selection and weighting as a

performance prediction problem

Neighbour scoring and selection can be seen as a task of predicting the effectiveness
of neighbours as input for collaborative recommendations. In this section we elabo-
rate and adapt the performance prediction framework presented in Chapter 5 to the
problem of neighbour selection and weighting.

The same as performance prediction in Information Retrieval, which has been
used to optimise rank aggregation (Yom-Tov et al., 2005a), in our proposed frame-

work each user’s neighbour can be considered as a retrieval subsystem (or criterion)
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whose output is combined to form a final system’s output (the recommendations) to
the user.

For user-based collaborative filtering algorithms, the estimation 7(u, i) of the
preference of the target user u for a particular item i can be formulated as an aggre-

gation function of the ratings of some other users V/:

7(u, ) o aggryep (sim(u, v); r(v,0); 7 (W); F(v) (8.3)
where V denotes the selected neighbours for a particular user U according to func-
tion fM¢W9R (see Equation (8.2)). As observed in (Adomavicius and Tuzhilin, 2005),
different aggregation functions can be defined, but the most typical one is the
weighted average function presented in the previous section.

In the previous function the term 7(u, i) can be seen as a retrieval function that
aggregates the outputs of several utility subfunctions r(v,i) — 7(v), each corre-
sponding to a recommendation obtained from a neighbour of the target user. The
combination of utility values is defined as a linear combination (translated by 7(u))
of the neighbours’ ratings, weighted by their similarity sim(u, v) with the target user.
Hence, the computation of utility values in user-based filtering is equivalent to a typi-
cal rank aggregation model of Information Retrieval, where the aggregated results
may be enhanced by predicting the performance of the combined recommendation
outputs. In fact, the similarity value can be seen as a prediction of how useful a
neighbour’s advice is expected to be for the target user, which has proved to be a
quite effective approach. The question is whether other performance factors beyond
user similarity can be considered in a way that further enhancements can be drawn,
as research on user trust awareness has attempted to prove in the last years.

The Information Retrieval performance prediction view provides a methodo-
logical approach, which we propose to adapt to the neighbour selection problem.
The approach provides a principled path to drive the formulation, development and
evaluation of effective neighbour selection and weighting techniques, as we shall see.
In the proposed view, the selection/weighting problem is expressed as an issue of
neighbour performance, as an additional factor (besides user similarity) to automati-
cally tune the neighbours’ contribution to the recommendations, according to the
expected goodness of their advice. As summarised in Section 5.1, there are three core
concepts in the performance prediction problem as addressed in the Information
Retrieval literature: performance predictor, retrieval quality assessment, and predictor
quality assessment. Since we are dealing with the prediction of which users may per-
form better as neighbours, the above three concepts can respectively be translated
into neighbour performance predictor, neighbour quality, and neighbour predictor quality. For the
sake of simplicity, let us assume we can define a performance predictor as a function
that receives as input a user profile u (in general, it could receive other users or items

as well), the set of items J,, rated by that user, and the collection S of ratings and
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items (or any other user preference and item description information) available in the
system. Then, following the notation given used in Chapter 5, we define a neighbour

performance prediction function as:

A <y W7, ). (8.4)

The function y can be defined in different ways, for instance, by taking into ac-
count the rating distribution of each user, the number of ratings available in the sys-
tem, and the (implicit or explicit) relations made by that user with the rest of the
community. Essentially, the neighbour performance predictor is intended to estimate
the true neighbour quality metric, denoted as p(u), which is typically measured using
groundtruth information about whether the neighbour’s influence is positive. The
application of this perspective is not trivial, and requires, in particular, a definition of
what the performance of a neighbour means in this context — where no standard
metric for neighbour performance is yet available in the literature.

Once the estimated neighbour performance prediction values fi(u,) are com-
puted for all users, the quality of the prediction can be measured as presented in Sec-
tion 5.4.2, that is, either by measuring the correlation between the estimations and
the real values u(u,), or by using classification accuracy metrics such as the F-
measure. Since in this case we are interested in providing a ranking of users, this re-
lates more with the traditional query performance task, and not with query difficulty
(see Section 5.4.1), where the latter metrics are used. In other words, the neighbour

predictor quality metric is defined as the following correlation:

q(y) = corr([aCuy), -, Alu,)], [nuy), -, uCuy)D). (8.5)

Similarly to the situation in Information Retrieval, this correlation provides an
assessment of the prediction accuracy (Carmel and Yom-Tov, 2010); the higher its
(absolute) value, the higher the predictive power of y. Moreover, the sign of q(y)
represents whether the two involved variables — neighbour prediction and neighbour
quality — are directly or inversely correlated.

Besides validating any proposed predictor by checking the correlation between
predicted outcomes and objective metrics, we may further test the effectiveness of
the defined predictors by introducing and testing a dynamic variant of user-based
collaborative filtering. In this variant, the weights of neighbours are dynamically ad-
justed based on their expected effectiveness, along with the decision of which users
belong to each neighbourhood, as in the general formulation presented in Equation
(8.2). We propose to define the neighbour scoring function s(u, v,i) based on the
values computed from each neighbour performance predictors.

Hence, the basic idea of the framework presented here is to formally treat the
neighbour selection and weighting in memory-based recommendation as a perform-
ance prediction problem. The performance prediction framework provides a princi-

ple basis to analyse whether the predictors are capturing some valuable, measurable
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characteristic known to be useful for prediction, independently from their latter use
in a recommendation strategy. Furthermore, if a neighbour scoring function with
strong predictive power is introduced into the recommendation process and the per-
formance is not improved, then, new ways of introducing such predictor into the
rating estimation should be tested (either for selection or weighting), since we have
some confidence that this function captures interesting user’s characteristics, valuable

for recommendation.

8.3 Neighbour quality metrics and performance
predictors

The performance prediction research methodology requires a means to compare the
predicted performance with the observed performance. This comparison is typically
conducted in terms of some one-dimensional functional values, where the perform-
ance is assessed by some specific metric and the prediction can be translated to a
certain numeric value. This value quantifies the expected degree of effectiveness,
providing, thus, a relative magnitude.

Whereas in the context of performance prediction in IR, standard metrics of sys-
tem effectiveness in response to a query are used for this purpose, in the case of pre-
dicting the performance of a neighbour for recommendation we would require to use
metrics that measure how effective a neighbour is. In this section we propose several
neighbour quality metrics and performance predictors which we shall evaluate in
Section 8.4.

8.3.1 Neighbour quality metrics

The purpose of effectiveness predictors in our framework is to assess how useful
specific neighbour profiles are as a basis for predicting ratings for the target user.
Each predictor has to be contrasted to a measure of how “good” the neighbour’s
contribution is to the global community of users in the system. In contrast with
query performance prediction, where a well established array of metrics are used to
quantify query performance, to the best of our knowledge, in the literature there is
not an equivalent function for neighbours used in user-based collaborative filtering.
We therefore need to introduce and propose some sound candidate metrics.

Ideally, in the proposed framework, a quality metric should take the same argu-
ments as the predictor, and thus, if we have, for instance, a user-item predictor, we
should also be able to define a quality metric that depends on users and items. In
general, we shall focus on user-based predictors, but it would be possible to explore
item-based alternatives. Furthermore, we shall consider metrics taking neighbours as

single input, independently from which neighbourhood is involved (i.e., independ-
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ently from the target user), and which item is recommended. At the end of this sec-
tion, nonetheless, we shall introduce a neighbour quality metric suitable for the user-
user scenario, where both the target user and neighbour are taken into account.

Now, we propose three different neighbour quality metrics. The first two metrics
had a different intended use by their authors, but we found they could be useful to
evaluate how good a user is as a neighbour. The third metric was proposed by us in
(Bellogin and Castells, 2010), where the problem of neighbour performance was ex-
plicitly addressed.

Rafter et al. (2009) propose two metrics in order to examine whether the
neighbours have any influence in the recommendation accuracy. Both metrics are
based on the comparison between true ratings and a neighbour’s estimation of the
ratings, as a way to measure the direction of the neighbour estimation and the aver-
age absolute magnitude of the shift produced by this estimation. Thus, the larger the
neighbour’s influence, the better her performance, according to our definition of a

“good” neighbour. In this context we use those metrics as follows:

1 1 . .
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where § is a binary function whose output is 1 if its arguments are true, and 0 othet-
wise. Metric [y represents the absolute error deviation of a particular user, and U,
is the sign of error deviation. Note that N (v; i) denotes an inverse neighbour-
hood, which represents those users for whom v is a neighbour, and T;, denotes the
items rated by user v in the test set. We can observe how each of these metrics
represents a different method to measure how accurate the user v is as a neighbour.
In (Bellogin and Castells, 2010) we proposed a metric named neighbour good-
ness, which is defined as the difference in performance of the recommender system
when including vs. excluding the user (i.e., her ratings) from the dataset. For instance,
based on the mean average error standard metric, neighbour goodness can be instan-

tiated as:

1
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where 7y (v,1) represents the predicted rating computed using only the data in X.

This metric quantifies how much a user affects (contributes to or detracts from) the
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total amount of mean average error of the system, since it is computed in the same
way as that metric, but leaving out the user of interest — in the first term, the user is
completely omitted; in the second term, the user is only involved as a neighbour. In
this way we measure how a user contributes to the rest of users, or put informally,
how better or worse the “wotld” is in the sense of how well recommendations work
with and without the user. Hence, if the error increases when the user is removed
from the dataset, it is considered as a good neighbour.

Based on the same idea of the previous metric, we propose a user-user quality
metric that measures how one particular user affects to the error of another user

when acting as her neighbour:

e = p(u,v) = CEy\my(w) — CEy (u)
We call this metric user-neighbour goodness. It quantifies the difference in
user U’s error when neighbour v is not in the system against the error when such

neighbour is present, that is, it measures how much each neighbour contributes to

reduce the error of a particular user.

8.3.2 Neighbour performance predictors

Having formulated neighbour selection in memory-based recommendation as a task
of neighbour effectiveness prediction, and having proposed effectiveness metrics to
compare against, the core of an approach to this problem is the definition of effec-
tiveness predictors. For this purpose, similarity functions and trust models such as
those mentioned in Section 8.1 can be directly used, since in trust-aware recommen-
dation, trust metrics aim at measuring how reliable a neighbour is when introduced in
the recommendation process (O’Donovan and Smyth, 2005). Interestingly, some of
them only depend on one user (global trust metrics), and others depend on a user
and an item or another user (local trust metrics). Furthermore, other authors have
proposed different indicators for selecting good neighbours, mainly based on the
overlap between the user and her neighbour, without considering the concept of
trust.

We thus distinguish three types of neighbour performance predictors: user pre-
dictors — equivalent to the global trust metrics —, user-item predictors, and user-
user predictors — equivalent to the local trust metrics. Note that, although trust met-
rics could now be interpreted as neighbour performance predictors, the proposed
performance prediction framework let us to provide an inherent value to these met-
rics (identified as performance predictors), independently from whether they im-
prove a recommender’s performance when used for selecting or weighting in the
specific collaborative filtering algorithm. This is due to the fact that it is possible to
empirically check the quality of the prediction by analysing their correlation with re-

spect to the neighbour performance metric, prior to the integration in any collabora-
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tive filtering method. Thus, each predictor would obtain an explicit score that repre-
sents its predictive power, related to our @ priori confidence on whether such predic-
tor is capturing the neighbour’s reliability or trustworthiness.

In the following we propose an array of neighbour effectiveness prediction
methods, by adapting and integrating trust functions from the literature into our

framework, and we also propose novel prediction functions.

User Predictors

User predictors are performance predictors that only depend on the target
neighbour. When that neighbour is predicted to perform well, her assigned weight in
the user-based collaborative filtering formulation is high.

One of the first user trust metrics proposed in the literature is the profile-level
trust (O’Donovan and Smyth, 2005), which is defined as the percentage of correct
recommendations in which a user has participated as a neighbour. If we denote the

set of recommendations in which a user has been involved as
RecSet(u) = {(v,i):u € Ny (v;1)},
then the predictor is defined as follows:

|CorrectSet(v)|
|RecSet(v)| ’

i, v, i) =y =
where the definition of correct recommendations depends on a threshold €:

CorrectSet(u) = {(cy, ix) € RecSet(u):Correct(iy, u, cy; 1)}
Correct(i,u, ;1) = 6(Jr(w, i) —r(v, )| < € 1),
8(a; b) being a binary function like before whose output is a value b if the predicate
a is true, and O otherwise. That is, the recommendations considered as correct are
those in which the user was involved as a neighbour, and her ratings were close (up
to a distance of €) to the actual ratings.

A similar trust metric, called expertise trust, is presented in (Kwon et al., 2009),
where the concept of ‘correct recommendation’ is also used. In that work Kwon and
colleagues introduce a compensation value for situations in which few raters are
available. Specifically, the correct recommendation function only outputs a value of 1
when there are enough raters for a particular item (more than 10 in the paper). Oth-
erwise, an attenuation factor is introduced by dividing the number of raters by 10, in
the same way as significance weighting is introduced in Pearson’s correlation in
(Herlocker et al., 2002). More formally, the predictor is defined as:

v,(u,v,i) =yw) = Z;ez Zweu T z z Correct(j v, W; A(]))

JET, wel;
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where A(j) is 1 when item j has more than 10 raters, and U; denotes the users who
rated item i. In the same paper the authors propose another trust metric called
trustworthiness, which is equivalent to the absolute value of the similarity between
the target user’s ratings and the average ratings given by the community (denoted as
R). The authors introduce the significance weighting factor f as in (Herlocker et al.,
2002), in a way that S(v) is 1 when user v has more than 50 ratings; otherwise, f8 is
computed as the uset’s ratings divided by 50. Once the f factor is computed, the

predictor is defined as follows:

Zjeﬂv(r(v:j) —7())F() —R)
(B0 = 7))’ Sjer, 7 — R?

Hwang and Chen (2007) present a global trust metric, which we call global trust

ys(u,v,i) =y() = (v) x

deviation, defined as an average of local (user-to-user) trust deviations. This metric
makes use of the predicted rating for a user—item pair by using only one user as

neighbour:

Flu, )~ 7(u,i;v) =7(u) + (r(v, i) — F(v))
where user v is the considered neighbour. The predictor is then computed by averag-
ing the prediction error of co-rated items between each user, and normalising the

error according to the rating range R, (e.g. in a typical 1 to 5 rating scale, R, = 4):

Yawv, i) =y(w) = _r z _1 z [1 _Fwjsw) —r, )l
s |N; (W) |7, N T, | R,
WEN (v) j

S

Finally, a performance predictor inspired by the clarity score defined for query
performance (Cronen-Townsend et al., 2002) was proposed in (Bellogin and Castells,
2010), considering its adaptation to predict neighbour performance in collaborative
filtering. In the same way query clarity captures the lack of ambiguity in a query, user
clarity is expected to capture the lack of ambiguity in a user’s preferences. Thus, the
amount of uncertainty involved in a user’s profile is assumed to be a good predictor
of her performance; and the larger the following value, the lower the uncertainty and
the higher the expected performance:

D =y0) = KD IUN G = Y powiv)log, Be

weU\{v}
The probabilistic models defined in that work are based on smoothing estima-
tions and conditional probabilities over users and items. Specifically, a uniform dis-
tribution is assumed for users and items, whereas the user-user probability is defined

by an expansion through items as follows:
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POl = ) p@lDpGihy).
IETy,

Conditional probabilities are linearly smoothed with the user’s probabilities and
the maximum likelihood estimators, which finally depend on the rating given by the
user towards an item; i.e., Py (i|w) o r(u, i).

It is interesting to note that this predictor (and the probability model in which is
grounded) does not correspond with any of the adaptations of the clarity score pro-
posed in Chapter 6, since relations between users are not considered in any of the
rating-based probability models presented.

In addition to the integration of the above methods in the role of neighbour ef-
fectiveness predictors in our framework, we propose two novel predictors based on
well known quantities measured over the probability models of (Bellogin and Castells,
2010): the entropy and the mutual information. Entropy, as an information-theoretic
magnitude, measures the uncertainty associated with a probability distribution (Cover
and Thomas, 1991). Borrowing the definition of user entropy from Chapter 6, we
hypothesise that the uncertainty in the system’s knowledge about a uset’s preferences
may be a relevant signal in the effectiveness of a user as a potential neighbour, which

could be captured by the entropy of the item distribution as follows:

v vi) = y@) = =HE,) = ) p(l) log, p(jlv).
J€Ty

Note that uncertainty, measured in this way, can be due to the system’s knowl-
edge about the user’s tastes, or may come from the user herself (e.g. some users may
have strong preferences, while others may be more undecided), and both causes may
similarly affect the neighbour effectiveness. In either case the predictor can be inter-
preted as the lack of ambiguity in a user profile.

The second information-theoretic magnitude we propose to use over the prob-
ability models presented above is the mutual information. To be precise, the mutual
information is a quantity computed between two random variables that measure the
mutual dependence of the variables, or, in other terms, the reduction in uncertainty
about one variable provided some knowledge about the other (Cover and Thomas,
1991). Here, we propose to adapt this concept, and compute the mutual informa-
tion between the neighbour and the rest of the community in order to assess the
uncertainty involved in the neighbour’s preferences. For this purpose, instead of
computing the mutual information over all the events in the sample space for both
variables (users), we fix one of them (for the current neighbour), and move along the
other dimension:

Ye(u,v,i) =y(w) = MI(v; U\ {u}) = z p(w|v) logzm-
W p(w)p(w)
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User-1tem Predictors

User-item predictors consist of performance predictors that depend on a user-item
pair. More specifically, they are defined upon the active neighbour and the target
item. This type of predictor is more difficult to apply because of its higher vulnerabil-
ity to data sparsity. In a bi-dimensional user-item input space less observations can be
associated to each input data point, whereby the confidence on the predictor out-
come is lower, as it can be biased to outliers or unusual users or items.

A local trust metric based on the target user and item is proposed in
(O’Donovan and Smyth, 2005). This metric is called item-level trust, and aims to
discriminate reliable neighbours depending on the current item, since the same user
may be more trustworthy for predicting ratings for certain items than for others. The
formulation of this predictor can be seen as a particularisation of ¥4, but constraining

the recommendation set only to the pairs in which the current item is involved:

l{(ck, i) € CorrectSet(v): i, = i}|
[{(ck, ix) € RecSet(v): i), = i}|

Ys(u,v,i) =y(,i) =

User-User Predictors

The user-user predictors take as inputs two users: the active user and the current
neighbour. User-user predictors based on local trust metrics have been studied fur-
ther than user-item predictors in the literature, since the former are able to represent
how much a user can be trusted by another, and let for different interpretations of
the relation between users. These metrics have been often researched in the scope of
social networks, and the users’ explicit links in this context (Ziegler and Lausen,
2004; Massa and Avesani, 2007a), along with several trust metrics based on ratings, as
we shall show below. In this way, although social-based metrics could be smoothly
integrated in our framework, here we focus on a complementary view on trust where
predictors are defined based on ratings. We leave other type of predictors as future
work.

A first simple neighbour reliability criterion one may consider is the amount of
common experience with the target user, that is, the amount of information upon
which the two users can be compared. If we define “user experience” as the set of
items the user has interacted with, we may define a predictor embodying this princi-

ple as:

Yo(u, v, 1) = y(w,v) = |7, N T,l.
We shall refer to this predictor as user overlap. This predictor will serve as a ba-
sis for subsequent predictors, since most of them will depend on the items rated by
both users. For instance, it has a clear use in assessing the reliability of the inter-user

similarity assessments, which has been applied in the literature under a more practi-
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cal, ad-hoc manner. Specifically, Herlocker et al. (2002) proposed the introduction of
a weight on the similarity function, where the latter is devalued when it has been
based on a small number of co-rated items. We may formulate Herlocker’s signifi-
cance weighting predictor as follows:

|7, N 7,1

Yiow, v, i) = y(u,v) = — if |7, N 7,| < ng; 1 otherwise,
H

where ny is the minimum number of co-rated items that two users should have in
common in order to avoid similarity penalisation. A value of ny = 50 was proved
empirically to work effectively.

A variation of the previous scheme was proposed in (McLaughlin and Herlocker,

2004), to which we shall refer as McLaughlin’s significance weighting:

max (|7, N T,|,ny.)

Y, i) =yv) =
Npyc

This predictor is aimed to be equivalent to the Herlocker’s significance weighting
(Y10) formulation when ny, = ny. However, we note that y;9 and ;1 represent
different concepts, and are not fully equivalent. For instance, as noted in (Ma et al.,
2007), Y11 may return values larger than 1 when |7, N J,| > ny, while y;, by defi-

nition, always returns a value in the (0,1] interval.

Alternatively, the following variant can be drawn from (Ma et al., 2007), which is
just a more compact reformulation of yyq:
min(|7, N 7|, ny)
ny '

)/12 (ul vl l) = )/(u: U) =

A more elaborated predictor was proposed in (Weng et al., 2006). The rationale
behind such predictor is to consider two situations depending whether or not user u
takes into account the recommendation made by neighbour v. In this sense trustwor-
thiness is defined as the reduction in the proportion of incorrect predictions of going
from the latter situation to the former. The definition of this predictor, denoted as

user’s trustworthiness, is the following:

1 n(u, v; x,v)?
D Rl S
Yis(w,v, ) =y, v) RE = Son(e v x)? IR| 0.2 WG v 2 n(uw,v; x,7)

In this formulation |R]| represents the number of allowed rating values in the
system (e.g. in a 1 to 5 rating scale, |[R| = 5), the function n(u, v; x,y) represents
the number of co-rated items on which ¥’s ratings have the value y while ©’s ratings
are x, that is, n(u, v; x,y) = |{(u,-, x)} 0 {(v,, ¥)}| when each rating tuple is repre-
sented as (@, b, ¢), given a user @, an item b, and a rating value c. In the same way,

n(u,v; x,r) = Xyn(u,v;x,y) represents all the co-rated items between u and v
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rated with any rating value by user v, and, analogously, n(u, v; -, y) = X, n(u,v; x,y).
In this case, the assumed hypothesis is that trust is one’s expectation of other’s com-
petence in reducing its uncertainty in predicting new ratings.

Finally, a user-user predictor can be defined based on the global trust deviation
predictor defined above (y,). In fact, Hwang and Chen (2007) define trust deviation

by ignoring the average along users as follows:

, 1 17 (u, j; v) — r(u,j)l
Yis(u,v, ) =y(w,v) = 77l Z [1 - R
wWT e, r

This predictor identifies effective neighbours mainly based on how many trustworthy

(understood as “accurate”) recommendations a user has received from another.

8.4 Experimental results

In this section we report experiments in which the proposed neighbour effectiveness
prediction framework is tested. First, we check the existing correlations between the
user-based predictors defined in Section 8.3.2 and the neighbour performance met-
rics proposed in Section 8.3.1, as a direct test of their predictive power. For the user-
item predictors we cannot analyse their correlation because we have no neighbour
performance metric depending on both the target user and an item available.

Moreover, we test the usefulness of the predictors to enhance the final perform-
ance of memory-based algorithms, by using the predictors’ values in the selection and
weighting of neighbours, that is, by taking the predictors as the scoring function in
Equation (8.2).

Our experiments were conducted on two versions of the Moviel.ens dataset,
namely the 100K and 1M versions, described in Section 3.4.1 and Appendix A.1. For
the user-based collaborative filtering method, we used Pearson’s correlation as the
similarity measure between users, and a varying neighbourhood size (k), which is a

parameter with respect to which the results were examined.

8.4.1 Correlation analysis

We analyse the correlation between neighbour quality metrics and neighbour per-
formance predictors in terms of the Pearson and Spearman’s correlation metrics.
Correlation provides a measure of the predictive power of the neighbour effective-
ness prediction approaches: the higher the (absolute) correlation value, the better the
predictor estimates the positive neighbour effect on the recommendation accuracy.
The sign of the correlation coefficient represents whether the two involved variables
— neighbour quality metric and neighbour performance predictor — are directly or

inversely correlated.
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Absolute error deviation | Neighbour goodness | Sign of error
() ts (+) 2 (+)
Clarity -0.21 +0.17 +0.14
Entropy -0.18 +0.18 +0.12
Expertise -0.62 +0.03 +0.25
Global Trust Deviation -0.35 -0.01 +0.08
Mutual Information -0.20 +0.17 +0.12
Profile Level Trust +0.62 -0.04 -0.24
Trustworthiness -0.21 +0.03 +0.20

Table 8.1. Pearson’s correlation between the proposed neighbour quality metrics and
neighbour performance predictors in the MovieLens 100K dataset. Next to the metric
name, an indication about the sign of the metric — direct(+) or inverse(-) — is included.
Not significant values for a p-value of 0. 05 are denoted with an asterisk (*).

Absolute error deviation | Neighbour goodness | Sign of error
t () ps (+) B (+)
Clarity -0.30 +0.16 +0.21
Entropy -0.22 +0.17 +0.15
Expertise -0.65 +0.02 +0.30
Global trust deviation -0.38 -0.03 +0.11
Mutual Information -0.25 +0.16 +0.17
Profile Level Trust +0.65 -0.02 -0.30
Trustworthiness -0.24 +0.03 +0.25

Table 8.2. Spearman’s correlation between quality metrics and performance predictors
in the MovieLens 100K dataset.

Table 8.1 and Table 8.2 show the correlation values obtained on the Moviel.ens
100K dataset for the user-based predictors. We associate a sign to each quality metric
indicating whether the metric is direct (denoted as ‘+’) or inverse (denoted with ‘-’),
according to the expected sign of the correlation with the predictor, i.e., a metric is
direct if the higher its value, the better the true neighbour performance. We can ob-
serve that the Spearman’s correlation values are consistent, but slightly higher than
Pearson’s, thus evidencing a non-linear relationship between the quality metrics and
the performance predictors.

The absolute error deviation (M) metric presents higher values when the
neighbour’s prediction is less accurate, being thus an inverse neighbour metric. The
other two metrics, sign of error (l;) and neighbour goodness (l3), are, by definition,
direct neighbour metrics, since the former indicates how many times a recommenda-
tion from the neighbour has been made in the right direction, whereas the latter
represents the change in error between excluding a particular user in the neighbour-
hood or including her, and thus, the larger this error, the “better” neighbour this

user.
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Absolute error deviation | Neighbour goodness | Sign of error
t (5) us (+) Ho (+)
Clarity -0.14 +0.40 +0.02
Entropy -0.07 +0.39 -0.08
Expertise -0.95 -0.06 +0.70
Global Trust Deviation -0.55 -0.24 +0.36
Mutual Information -0.17 +0.30 +0.13
Profile Level Trust +0.83 +0.04 -0.55
Trustworthiness -0.27 +0.03 +0.36

Table 8.3. Pearson’s correlation between quality metrics and performance predictors in
the MovieLens 1M dataset. All the values are significant for a p-value of 0.05.

Absolute error deviation | Neighbour goodness | Sign of error
t () s (+) Ha (+)
Clarity -0.16 +0.35 +0.04
Entropy -0.03 +0.37 -0.10
Expertise -0.94 -0.09 +0.69
Global trust deviation -0.54 -0.25 +0.39
Mutual information -0.16 +0.31 +0.04
Profile level trust +0.94 +0.09 -0.69
Trustworthiness -0.25 +0.02 +0.37

Table 8.4. Spearman’s correlation between quality metrics and predictors in the
MovieLens 1M dataset.

We can observe in Table 8.1 that, except for some of the predictors that obtain
very low absolute values (< 0.10), the four quality metrics are consistent with each
other. This consistency is evidenced by the way the predictors correlate with the dif-
ferent metrics: some of the predictors obtain the correct correlations in every situa-
tion, that is, positive correlation with direct metrics and negative correlation with the
inverse metric (like the clarity predictor), while other predictors obtain opposite val-
ues for all the metrics, that is, positive correlations with the inverse metric and nega-
tive correlations with direct metrics (such as the profile level trust predictor).

Also in Table 8.1 and Table 8.2 we see that each metric captures a different no-
tion of neighbour quality because they show different correlation values with respect
to the predictors. In this way, although consistent correlation results are obtained for
direct and inverse metrics, each of them is actually detecting a different nuance of
how a neighbour should behave in order to perform well.

Table 8.3 and Table 8.4 show the correlation values obtained on the Movie-Lens
1M dataset. We can observe that the trend in correlation is very similar to the behav-
ior observed on the 100K dataset, and thus, similar conclusions can be drawn from
it. There are, however, some changes in the absolute values of the correlation scores

for some combinations of performance predictor and quality metric. For instance,
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the clarity predictor and the neighbour goodness metric obtain larger values in this
dataset, while the correlation between entropy and absolute error deviation is smaller.

It is important to note that the number of points used to compute the correla-
tion values is different in the two datasets; there are less than 1,000 points in
MovieLens 100K (with 943 users), and more than 6,000 points in MovieLens 1M
dataset. This difference affects the significance of the correlation results, as already
described in Section 5.4.2, where we observed how the confidence test for a Pear-
son’s (and Spearman’s) correlation depends on the size of the sample, and thus, the
significance of a correlation value may change for different sample sizes.

In our experiments, for MovieLens 100K, the correlations are significant for a p-
value of 0.05 when r > 0.05, and in the 1M dataset when r > 0.02. Hence, in Ta-
ble 8.1, there is only one non-significant correlation value (denoted with an asterisk),
whereas in Table 8.3, all the results are statistically significant.

Analysing in more detail the reported results for both datasets, we observe that
the profile level trust predictor consistently obtains direct correlation values with
inverse metrics, whereas inverse cottrelation values are obtained with direct metrics.
This predictor seems to give higher scores to neighbours with larger deviations in
their accuracy error, which would result on bad performance prediction because
these values are not in the same direction than the performance metrics. The exper-
tise and global trust deviation predictor obtain strong inverse correlations with the
absolute error deviation metric, although their correlations with respect to the
neighbour goodness metric are negligible, especially for the first predictor, in both
datasets. At the other end of the spectrum, the clarity, entropy, and mutual informa-
tion predictors obtain strong correlation values with the neighbour goodness, and
moderate correlations with the rest of metrics, which make these predictors good
candidates for successful neighbour performance predictors. Finally, the trustworthi-
ness predictor obtains a significant amount of correlation with respect to the absolute
error deviation and sign of error metrics, although its correlation with respect to the
neighbour goodness is very low. This predictor thus seems to be useful on estimating
how accurate the neighbour may be in terms of the error in a user basis, but probably
not as a global metric.

Table 8.5 shows the correlations obtained for user-user neighbour predictors and
the proposed user-neighbour clarity metric. Due to the high dimensionality of the
vectors involved in this computation, we have considered only those users that have
at least one item in common. Despite this fact, correlations are almost negligible,
except for the Mclaughlin’s significance weighting predictor and the Spearman’s
coefficient, which evidences a non-linear relation between this predictor and the met-
ric. In the next section we shall show that this function is one of the best performing
predictors among the evaluated neighbour scoring functions. This result confirms the

usefulness of the proposed neighbour performance metric since it is able to discrimi-
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Movielens 100K Movielens 1M
Pearson Spearman Pearson Spearman
Herlocker 0.02 0.03 0.01 0.02
McLaughlin 0.01 0.12 0.01 0.11
Trust Deviation 0.01 0.01 0.01 0.01
User Overlap 0.02 0.03 0.02 0.02
User’s Trustworthiness -0.02 -0.02 -0.01 -0.01

Table 8.5. Correlation between the user-neighbour goodness and user-user predictors
in the two datasets evaluated.

nate which neighbour performance predictors are able to capture interesting proper-
ties between the user and her neighbours.

In summary, we have observed that most of the performance predictors agree
with respect to the different performance metrics, and in general, the correlations
computed between neighbour quality metrics and neighbour performance predictors

are statistically significant.

8.4.2 Performance analysis

The results reported in the previous section show that some of the studied predictors
have the ability to capture neighbour performance, and because of that we hypothe-
sise that they could be used to improve the accuracy of a recommendation model.
This hypothesis, nonetheless, has to be checked since the metric against which we
measure the neighbour goodness is not the same as the final recommendation per-
formance metric we aim to optimise. With the experiments we report next we aim to
confirm the usefulness of the proposed predictors, the validity of the proposed met-
rics as useful references to assess the power of the predictive methods, and the use-
fulness of the overall framework as a unified approach to enhance neighbourhood-
based collaborative filtering.

In order to achieve this we test the integration of the neighbour predictors into a
neighbour selection and weighting scheme for user-based collaborative filtering, as
described in Section 8.2.1. Besides testing the effectiveness of the predictors, this
experiment provides for observing to what extent the correlations obtained in the
previous section correspond with improvements in the final performance of those
predictors.

We provide recommendation accuracy and precision results on the MovieLens
1M dataset. Those obtained on the MovieLLens 100K dataset are not reported here
since they had similar trends. Figure 8.1 and Figure 8.2 show the Root Mean Square
Error (RMSE) of the Resnick’s collaborative filtering adaptation proposed in Equa-
tion (8.2) when used for different neighbour selection and weighting approaches. The

curves at the top of the figures represent the values obtained when neighbour per-
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Neighbour weighting
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Figure 8.1. Performance comparison for user-based predictors and different neighbourhood
sizes.

formance predictors are used for neighbour weighting, that is, when the standard

neighbour selection strategy is used (f¢9" = fonagh in Equation (8.2)). Note that
since the lines represent errors, the lower these values, the better the performance.
Besides, Figure 8.3 presents the results found with the precision at 10 (P@10) rank-
ing metric of a subset of the proposed methods, where in this case the higher the
values, the better the performance.

A different aggregation function is used in each approach, depending on whether
the harmonic mean between the predictor score and the similarity value (function
f99 = £,%99 on the right), or the projection function (£%99 = £,"99 on the left)

are used, in the latter case in order to ignore the similarity. The curves at the bottom
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Figure 8.2. Performance comparison using user-item and user-user predictors for different
neighbourhood sizes.
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flnelg

of the figures show the neighbour selection approach (f¢¥9" = in Equation

(8.2)) along with the same neighbour weighting functions described above (i.e., fzagg
on the right and f4agg on the left). The rest of the aggregation functions, such as
average (flagg) and product (]%agg), were also evaluated for neighbour selection and
weighting, but provided results equivalent to those of the harmonic mean. For this
reason, they have been omitted in the figures to avoid cluttering them. We believe
this equivalence may be due to the normalisation factor included in the collaborative
filtering formulation, since it would cancel out the weights obtained by the harmonic,

average, and product functions in the same way.
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RMSE RMSE
Resnick 1.174 Resnick 1.174
Clarity 1.181 Herlocker 1.175
Entropy 1.175 Item-level Trust 1.264
Expertise 1.171 McLaughlin 1.174
Global Trust Deviation | 1.173 Trust Deviation 1.173
Mutual Information 1.180 User Overlap 1.175
Profile Level Trust 1.177 User’s Trustworthiness | 1.175
Trustworthiness 1.175

Table 8.6. Detail of the accuracy of baseline vs. recommendation using neighbour
weighting; here, performance predictors are used as similarity scores (50 neighbours).

RMSE RMSE
Resnick 1.174 Resnick 1.174
Clarity 1.172 Herlocker 1.156
Entropy 1.189 Item-level Trust 1.843
Expertise 1.139 McLaughlin 0.581
Global Trust Deviation | 1.158 Trust Deviation 1.168
Mutual Information 1.171 User Overlap 1.146
Profile Level Trust 1.310 User’s Trustworthiness | 1.174
Trustworthiness 1.162

Table 8.7. Detail of the accuracy of baseline vs recommendation using neighbour
selection; here, performance predictors are used for filtering (50 neighbours).

Figure 8.1 shows the accuracy results when only user-based neighbour predictors
are evaluated. We observe that, independently from the neighbourhood size, using
performance predictors as similarity scores does not lead to large differences with

respect to the baseline. These results are compatible with those presented in (Weng
et al., 2006), where the improvement in RMSE is not very high (AMAE < 0.05 in

that work). For the sake of clarity, in Table 8.6 and Table 8.7 we show the error val-
ues for a horizontal cut of the left curves; specifically, when the neighbourhood size
is 50. We can observe that some predictors do improve Resnick’s accuracy. Regard-
ing the use of the harmonic mean as aggregation function (curves on the right), simi-
lar results are obtained except for very large neighbourhood sizes, for which some of
the performance predictors produce worse results than the baseline, probably due to
the amount of noise created by considering too many neighbours.

The curves at the bottom of the figures represent the accuracy results for
neighbour selection strategies. In this case some of the predictors lead to worse per-
formance than the baseline, particularly the profile level trust (y;). This situation is
consistent with the correlations observed in the previous section, since this predictor

obtained inverse correlations with the different metrics, i.e., direct correlation values
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Figure 8.3. Performance comparison using ranking-based metrics for both user and user-
user neighbour predictors using the AR and 1R evaluation methodologies.

with inverse metrics, and inverse values with direct metrics. Moreover, as predicted
by the correlation analysis, trustworthiness (y3), mutual information (yg), and clarity
(¥s) result in some of the best performing recommenders (with strong correlations),
as shown in the figures and in Table 8.7, along with expertise (¥,) and global trust
deviation (), which obtained more moderated correlation values.

In Figure 8.2 we can see how user-item and user-user neighbour predictors affect
the performance of collaborative filtering recommenders. The curves in the top show
that most of the predictors obtain a similar performance to that of the baseline, ex-
cept for the item-level trust (Yg), the performance of which is much worse than Res-
nick’s. Table 8.6 shows the specific error values for these recommenders. It is inter-
esting to note that the performance of this predictor is drastically improved when
using the harmonic mean as the aggregation function (shown on the right side of the
figure). Similarly to user-based neighbour predictors (Figure 8.1), some of the user-
item and user-user predictors decrease their accuracy with large neighbourhoods; in
this case, user’s trustworthiness (y;13) and McLaughlin’s significance weighting (y15)

are the more representative examples.
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A different conclusion results when neighbour selection is analysed (curves at
the bottom). Two of the predictors are characterised by a much better (McLaughlin’s
significance weighting, ¥;,) or worse (item-level trust, yg) final performance, inde-
pendently from the weighting aggregation function. Table 8.7 shows the specific er-
ror values obtained for each of these predictors. It is interesting how the McLaugh-
lin’s predictor, despite its inability to boost good neighbours (see top figures), seems
to be very useful for neighbour selection. This effect, nonetheless, is attenuated when
the neighbourhood increases, since in that situation, selection methods have to deal
with too many users in each neighbourhood. We believe the reason why this predic-
tor is very good for neighbour selection is because it gives higher scores to those
neighbours that have more items in common with the target user, and thus the con-
fidence in the computation of the similarity values between the neighbour and the
target user is higher. It is worth noting that, to the best of our knowledge, this func-
tion has never been used for neighbour selection, since its original motivation was to
penalise the similarity value whenever it has been based on a small number of co-
rated items. However, by plugging this function into our framework, and measuring
its predictive power for user-neighbour performance, a novel application naturally
emerges and provides very good results.

Finally, in Figure 8.3 we can observe that a similar trend is found with P@10 for
both user-based predictors (top curves), and user-item and user-user predictors (bot-
tom curves). In the figure we only present the results of the neighbour selection and
weighting approaches for less than 200 neighbours, since the results of the rest of the
approaches and neighbourhoods are very similar. It is worth noting that the two
methodologies evaluated — AR and 1R — agree on the order of the best and worst
performing dynamic approaches, although as already observed in the previous chap-
ter, the absolute performance values obtained with each methodology may be very
different — e.g. the maximum P@10 value with 1R is 0.1, which is reached by several
recommendation methods with the AR methodology. More interestingly, these re-
sults show consistency between the performance of some dynamic approaches using
error- and ranking-based metrics, since the best and worst predictors according to
RMSE and P@10 are the same; McLaughlin’s significance weighting and item-level
trust, respectively. Moreover, the entropy and clarity user-based predictors show
worse performance in small neighbourhoods, but outperform the baseline signifi-
cantly in larger neighbourhoods, something different to what we observed in the
previous experiment with error-based metrics.

In summary, we have been able to validate both the proposed user-user
neighbour performance metrics, and the different evaluated user-user neighbour per-
formance predictors. We have obtained positive results when this type of predictors
has been introduced and compared against the baseline in the different aggregation

strategies and configurations, and these results are consistent with the correlations
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obtained between the predictors and the performance metrics. In particular,
McLaughlin’s significance weighting obtains an improvement up to 55% in both
accuracy (i.e., error decrease) and precision (i.e., precision improvement) when this
predictor is used to select the neighbours which will further contribute to the rating
prediction. Besides, the (Spearman’s) correlation for this predictor is positive and
strong, in contrast to the values obtained for the rest of user-user predictors, which
did not improve the accuracy of the baseline. In this context, a possible drawback of
the conducted analysis is that we have not been able to define neighbour perform-
ance metrics based on user-item pairs, and thus the user-item neighbour performance
predictors are out of the scope of the developed correlation analysis. Nevertheless,
the obtained results showed that the only user-item neighbour performance predictor
defined here — the item-level trust — is not able to outperform the baseline recom-
mender. We believe this fact, which is in contradiction with what was reported in
(O’Donovan and Smyth, 2005), may be caused by the different variables taking place
in our evaluation, such as the dataset (Moviel.ens 1M instead of Moviel.ens 100K),
the neighbourhood size (not specified in the original paper), and the several aggrega-

tion functions and combinations used across our experiments.

8.4.3 Discussion

The reported experiment results provide empiric evidence of the usefulness of the
proposed framework, and the specific proposed predictors, as an effective approach
to enhance the accuracy of memory-based collaborative filtering. As described in the
preceding sections, the methodology comprises two steps, one in which the predic-
tive power of neighbour predictors is assessed, and one in which the predictors are
introduced in the collaborative filtering scheme to enhance the effectiveness of the
latter. Our experiments confirm a strong correlation for some of the predictors —
both user predictors and user-user predictors —, and this has been found to corre-
spond with final accuracy enhancements in the recommendation strategy: the predic-
tors that obtain strong direct correlations with the performance metrics are the best
performing dynamic strategies; the profile level trust predictor, which obtains inverse
correlation values with respect to the neighbour performance metrics, is the worst
performing dynamic strategy.

In light of these results, it could be further investigated whether the actual corre-
lation values between neighbour performance predictors and neighbour performance
metrics could be used to infer how each predictor should be incorporated into a
memory-based collaborative filtering method as a neighbour scoring function, since
there is no obvious link between the ranking of the best performing scoring func-
tions and the strength of their corresponding correlations. As a starting point, only
the sign of the correlation could be considered, using either the raw neighbour pre-

dictor score (for positive correlations) or its inverse (for negative values). Then, this
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rationale could be further elaborated and evaluated in order to check whether the
performance improvements are consistent.

Research on finding functions with strong correlation power with respect to
neighbour performance metrics could be an interesting area by itself, since it could
have different final applications. We have experimented here with variations in
neighbour selection and weighting for user-based collaborative filtering, but those
predictors (functions) could also be used, for instance, for active learning (Elahi,
2011), or for providing more meaningful explanations (Marx et al., 2010), depending

ot based on the predicted performance of a particular user’s neighbours.

8.5 Conclusions

We have shown in this chapter that performance prediction does not only serve to
aggregate entire recommender systems, but also to aggregate subcomponents of re-
commender algorithms — in this case, neighbour related terms in collaborative filter-
ing. We propose a theoretical framework for neighbour selection and weighting in
user-based recommender systems, which is based on a performance prediction ap-
proach drawn from the query performance methodology of the Information Retrieval
field. By viewing the neighbourhood-based collaborative filtering rating prediction
task as a case of dynamic output aggregation, our approach places user-based col-
laborative filtering in a more general frame, linking to the principles underlying the
formation of ensemble recommenders, and rank aggregation in Information Re-
trieval. By doing so, it is possible to draw concepts and techniques from these areas,
and vice versa. Our study thus provides a comparison of different state-of-the-art
rating-based trust metrics and other neighbour scoring techniques, interpreted as
neighbour performance predictors, and evaluated under this new angle. The frame-
work lets an objective analysis of the predictive power of several neighbour scoring
functions, integrating different notions of neighbour performance into a unified view.
Thus, the proposed methodology discriminates which neighbour scoring functions are
more effective in predicting the goodness of a neighbour, and thus identifies which
weighting functions are more effective in a user-based collaborative filtering algo-
rithm.

Drawing from different state-of-the-art neighbour scoring functions — cast as
user, user-user, and user-item neighbour performance predictors —, we have reported
several experiments in order to, first, check the predictive power of these functions,
and second, validate them by comparing the final performance of neighbour-scoring
powered memory-based strategies with that of the standard collaborative filtering
algorithm. We also evaluate different ways to introduce these functions in the rating
prediction formulation, namely for neighbour weighting, neighbour selection, and

combinations thereof. In this context, methods where neighbour scoring functions
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were integrated outperform the baseline for different values of neighbourhood size
and predictor type.

We have also proposed several neighbour performance metrics that capture dif-
ferent notions of neighbour quality. The evaluated performance predictors show
consistent correlations with respect to these metrics, and some of them present par-
ticularly strong correlations. Interestingly, a correspondence is confirmed between
the correlation analysis and the final performance results, in the sense that the corre-
lation values obtained between neighbour performance predictors and neighbour
performance metrics anticipate which predictors will perform better when intro-
duced in a memory-based collaborative filtering algorithm.

This research opens up the possibility to several research lines for the integration
of other types of predictors and trust metrics into our framework. For instance, pet-
formance predictors defined upon social data, such as those defined in Chapter 6
based on uset’s trust network, could be smoothly integrated into our framework and
analysed in the future. Furthermore, alternative neighbour performance metrics may
be defined to check the predictive power of user-user and user-item predictors.
These metrics may help better understand which characteristics of the neighbour
performance such predictors are capturing, although based on a smaller amount of
information since in rating-based systems users only rate items once. In particular,
our framework would allow for different interpretations of the user’s performance,
by modelling different neighbour performance metrics, which may be oriented to
accuracy (using error metrics as in this chapter), ranking precision, or even alternative
metrics such as diversity, coverage and serendipity (Shani and Gunawardana, 2011).
Additionally, other predictors based on item information could be defined similar to
those proposed in (Weng et al., 2006; Ma et al., 2007), and easily incorporated into

our framework using item-based algorithms instead of user-based.






Part 'V

Conclusions

Not everything that can be counted connts,
and not everything that counts can be counted.
Albert Einstein






Chapter 9

Conclusions and future work

In this thesis we have investigated how to measure and predict the performance of
recommender systems. We have analysed and proposed an array of methods based on
the adaptation of performance predictors from Information Retrieval — mainly the
query clarity predictor, which captures the ambiguity of a query with respect to a given
document collection. We have defined several language models according to various
probability spaces to capture different aspects of the users and items involved in rec-
ommendation tasks. In this context, we have proposed and evaluated novel ap-
proaches drawing from Information Theory and Social Graph Theory for different
recommender input spaces, using information-theoretic properties of the uset’s prefer-
ences and graph metrics such as PageRank over the uset’s social network.

Moreover, since we aimed to predict the performance of a particular recom-
mender system, we required a clear recommender evaluation methodology against
which performance predictions can be constrasted. Hence, in this thesis we ad-
dressed the evaluation methodology as part of the problem, where we have identified
statistical biases in the recommendation evaluation — namely the sparsity and popu-
larity biases — which may distort the performance assessments, and therefore may
confound the apparent power of performance prediction methods. We have analysed
in depth the effect of such biases, and have proposed two experimental designs that
are able to neutralise the popularity bias: a percentile-based approach and a uniform-
test approach. The systematic analysis of the evaluation methodologies and the new
proposed variants have enabled a more complete and precise assessment of the ef-
fectiveness of our performance prediction methods.

On the other hand, we have exploited the proposed performance prediction
methods in two applications where they are used to dynamically weight different
components of a recommender system, namely the dynamic adjustment of weighted
hybrid recommendations, and the dynamic weighting of neighbours’ preferences in
user-based collaborative filtering. Through a series of empirical experiments on sev-
eral datasets and experimental designs, we have found a correspondence between the
predictive power of our performance predictors and performance enhancements in
the two tested applications.

In this chapter we present the main conclusions obtained in our research work.
In Section 9.1 we provide a summary and a discussion of our contributions, and in
Section 9.2 we provide research directions that could be addressed in future work.
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9.1 Summary and discussion of contributions

In the next subsections we summarise and discuss the main contributions of this
thesis, addressing the research goals stated in Chapter 1. These contributions are
organised according to the three main objectives addressed. First, we analysed how
to properly evaluate recommender systems in order to obtain unbiased measure-
ments of a recommender system’s performance. Second, we proposed performance
predictors that aim to estimate the performance of a recommendation method. And
third, we used our performance predictors to dynamically combine components of a

recommender system.

9.1.1 Analysis of the definition and evaluation of

performance in recommender systems

We have analysed different experimental designs existing in the literature about re-
commender systems, oriented in particular to ranking-based evaluation, and have
shown that assumptions and conditions underlying the Cranfield paradigm are
not granted in usual recommendation settings. Specifically, we have detected
statistical confounders (biases) that arise in applying that paradigm to the evaluation
of recommender systems. We have shown that the specific value of the evaluation
metric has a use for comparative purposes, but has no particular absolute meaning by
itself. We have shown that precision decreases linearly with the sparsity of relevant
items (sparsity bias) in the AR evaluation methodology, whereas it does not suffer
from such bias in the 1R approach.

We have also observed that a non-personalised recommender based on item
popularity obtains high performance values, and have shown and analysed in detail
how this is due to a popularity bias in the experimental methodology. To address
these issues, we have proposed novel experimental approaches that effectively

neutralise the popularity bias.

9.1.2 Definitions and adaptations of performance

predictors for recommender systems

We have defined and elaborated performance predictors in the context of rec-
ommendation, usually taking the user as the object of the prediction, but also con-
sidering items as an alternative prediction input. Specifically, we have adapted the
query performance predictor known as guery clarity by taking different assumptions
and formulations into several variations of user clarity predictors. We have also used
information theoretical related concepts such as entropy, graph metrics like central-

ity, PageRank, and HITS, and other domain-specific, heuristic approaches. We have
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defined these predictors upon three input spaces of user preferences: ratings, logs,
and social networks. On ratings and logs we have defined several language models
and vocabulary spaces in such a way that our adaptations of clarity would capture
different aspects of the user in a unified formulation for both input spaces. Within
the same framework, we have introduced the temporal dimension on log-based pref-
erence data, drawing and elaborating time-based performance predictors proposed in
prior work in the IR field for ad-hoc search.

Additionally, we have defined item-based predictors when rating-based prefer-
ences are used, which aim to estimate the performance of the items under considera-
tion (to be more precise, the performance of a recommender system in suggesting
those items). Here, the main problem is how to define the true performance metric
that the predictor is aimed to estimate, since the items are not the main input of the
recommendation process. For this reason, we have developed novel methodologies
where the performance of an item can be measured, also considering possible biases
arising from heavy raters that may distort the results just for statistical reasons.

We have assessed the predictive accuracy of our methods by computing the cot-
relation between estimated and true performance, following standard practice in the
IR performance prediction literature. In doing so, we used the unbiased methodolo-
gies analysed throughout the thesis to compare how the predictors behave when
the sparsity and popularity biases have been neutralised. We have found strong
correlation values confirming that our approaches result in a significant predictive

power.

9.1.3 Dynamic weighting in recommender ensembles

Prevalent in the Recommender Systems literature we find combination of recom-
menders into the so-called recommender ensembles, which are a special type of hy-
brid recommendation methods where several recommenders are combined, and
which are currently very common in the field as represented by current competitions
(Bennett and Lanning, 2007; Dror et al.,, 2012). Collaborative Filtering, one of the
major techniques used among the array of available recommendation strategies, can
also be seen as a combination of several utility subfunctions, each corresponding to
one neighbour (in user-based CF). In the same way performance prediction in In-
formation Retrieval has been used to optimise rank aggregation, we have investigated
the use of recommendation performance predictors to dynamically aggregate the
output of recommenders and neighbours.

We have defined a dynamic hybrid framework where recommender ensembles
can benefit from dynamic weights according to performance predictors with which
strong correlations have been found. Our results indicate that high correlation with
performance tends to 