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Abstract 

Personalised recommender systems aim to help users access and retrieve relevant 

information or items from large collections, by automatically finding and suggesting 

products or services of likely interest based on observed evidence of the users‟ pref-

erences. For many reasons, user preferences are difficult to guess, and therefore re-

commender systems have a considerable variance in their success ratio in estimating 

the user‟s tastes and interests. In such a scenario, self-predicting the chances that a 

recommendation is accurate before actually submitting it to a user becomes an inter-

esting capability from many perspectives. Performance prediction has been studied in 

the context of search engines in the Information Retrieval field, but there is little if 

any prior research of this problem in the recommendation domain. 

This thesis investigates the definition and formalisation of performance predic-

tion methods for recommender systems. Specifically, we study adaptations of search 

performance predictors from the Information Retrieval field, and propose new pre-

dictors based on theories and models from Information Theory and Social Graph 

Theory. We show the instantiation of information-theoretical performance predic-

tion methods on both rating and access log data, and the application of social-based 

predictors to social network structures. 

Recommendation performance prediction is a relevant problem per se, because 

of its potential application to many uses. Thus, we primarily evaluate the quality of 

the proposed solutions in terms of the correlation between the predicted and the 

observed performance on test data. This assessment requires a clear recommender 

evaluation methodology against which the predictions can be contrasted. Given that 

the evaluation of recommender systems is an open area to a significant extent, the 

thesis addresses the evaluation methodology as a part of the researched problem. We 

analyse how the variations in the evaluation procedure may alter the apparent behav-

iour of performance predictors, and we propose approaches to avoid misleading ob-

servations. 

In addition to the stand-alone assessment of the proposed predictors, we re-

search the use of the predictive capability in the context of one of its common appli-

cations, namely the dynamic adjustment of recommendation methods and compo-

nents. We research approaches where the combination leans towards the algorithm 

or the component that is predicted to perform best in each case, aiming to enhance 

the performance of the resulting dynamic configuration. The thesis reports positive 

empirical evidence confirming both a significant predictive power for the proposed 

methods in different experiments, and consistent improvements in the performance 

of dynamic recommenders employing the proposed predictors. 

 





 

 

 

Resumen 

Los sistemas de recomendación personalizados tienen como objetivo ayudar a los 

usuarios en el acceso y recuperación de información u objetos relevantes en vastas 

colecciones mediante la sugerencia automática de productos o servicios de potencial 

interés, basándose en la evidencia observada de las preferencias de los usuarios. Las 

preferencias de usuario son difíciles de predecir por muchos motivos y, por tanto, los 

sistemas de recomendación tienen una variabilidad considerable en su tasa de acierto 

al intentar estimar los gustos e intereses de cada usuario. En este escenario la auto-

predicción de las probabilidades de que una recomendación sea acertada antes de 

proporcionarla al usuario se convierte en una capacidad interesante desde múltiples 

perspectivas. La predicción de eficacia ha sido estudiada en el contexto de los moto-

res de búsqueda en el campo de la Recuperación de Información, pero apenas se ha 

investigado en el dominio de la recomendación. 

Esta tesis investiga la definición y formalización de métodos de predicción de 

eficacia para sistemas de recomendación. Concretamente, se estudian adaptaciones de 

predictores de eficacia de búsqueda en el campo de la Recuperación de Información, 

y se proponen nuevos predictores basados en modelos y técnicas de la Teoría de la 

Información y la Teoría de Grafos Sociales. Se propone la instanciación de métodos 

de teoría de información para predicción de eficacia tanto en datos de valoraciones 

de usuario explícitas como en registros de accesos, así como la aplicación de predic-

tores sociales sobre estructuras de red social. 

La predicción de eficacia de recomendación es un problema relevante per se da-

dos sus múltiples usos y aplicaciones potenciales. Por ello, en primer lugar se evalúa la 

calidad de las soluciones propuestas en términos de la correlación entre la eficacia 

estimada y la observada en los datos de test. Esta valoración requiere una metodología 

clara de evaluación de sistemas de recomendación con la que las predicciones puedan 

ser contrastadas. Dado que la evaluación de los sistemas de recomendación es aún un 

área de investigación en buena medida abierta, la tesis aborda la metodología de eva-

luación como parte del problema a investigar. Se analizan entonces cómo las variacio-

nes en el procedimiento de evaluación pueden alterar la percepción del comporta-

miento de los predictores de eficacia, y se proponen aproximaciones para evitar ob-

servaciones engañosas. 

Además de las valoraciones independientes de los predictores propuestos, inves-

tigamos el uso de su capacidad predictiva en el contexto de una de sus aplicaciones 

comunes, a saber, el ajuste dinámico de métodos híbridos para combinar algoritmos 

y componentes de recomendación. Se investigan aproximaciones donde la combina-

ción se inclina hacia el algoritmo o la componente que se predice va a tener mejor 

eficacia en cada caso, a fin de mejorar la eficacia de la configuración dinámica resul-

tante. La tesis presenta resultados empíricos positivos que confirman tanto un poder 

predictivo significativo para los métodos propuestos, como consistentes mejoras en la 

eficacia de recomendaciones dinámicas que utilizan los predictores propuestos.
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Part I 

I Introduction and context

Antes de nada has de saber  

que no soy recomendable. 

Ismael Serrano 





 

 

Chapter 1 

1 Introduction 

In this chapter we present a general overview of the thesis. In Sections 1.1 and 1.2 

we provide the motivations and research goals of our work. In Section 1.3 we sum-

marise the main contributions of the thesis, and in Section 1.4 we list the publica-

tions resulting from our research. Finally, in Section 1.5 we describe the structure of 

this document. 
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1.1 Motivation 

Information Retrieval (IR) technologies have gained outstanding prevalence in the 

last two decades with the explosion of massive online information repositories, and 

much in particular the World Wide Web. IR systems are researched and designed in 

ways that seek to maximise the degree of satisfaction of certain objective conditions, 

typically – though not necessarily only – user satisfaction. IR research and develop-

ment have revolved around the definition of models and algorithms that best achieve 

this goal, methodologies and metrics that let assess how well the goal is achieved by 

different systems, and sound theories providing a solid ground and orientation in the 

development of IR algorithms and their consistent evaluation. Among many new 

trends stemming from this main stream of research and developments, a new re-

search goal started to be considered by the early 2000‟s: is it possible to predict how 

good a result returned by an IR system is going to be, before presenting it to the 

user, or even, before running the IR system at all (Cronen-Townsend et al., 2002)? 

This question has given rise to a fertile strand of research on so-called performance 

prediction in IR. 

Performance prediction has many potential uses in IR. From the user‟s perspec-

tive it may provide valuable feedback that can be used to direct a search, from the 

system‟s perspective it may help to distinguish poorly performing queries, and from 

the system administrator‟s perspective it may let identify queries related to a specific 

subject that are difficult for the search engine. Performance prediction approaches 

are based on the analysis and characterisation of the evidence used by an IR system 

to assess the relevance (utility, value, etc.) of retrieval objects (documents, goods, 

etc.) at execution time (Cronen-Townsend et al., 2002). The most classic and basic 

retrieval scenario involves a user query and a collection of documents as the basic 

input to form a ranked list of search results, but other additional elements can be 

taken into account to select and rank results (Baeza-Yates and Ribeiro-Neto, 2011). 

Any information the retrieval system takes as input can be taken as input for the per-

formance prediction as well, and often the prediction methods use additional infor-

mation beyond that. The user context (current tasks, query logs, preferences, etc.), 

global properties of the document collection, comparisons with respect to other ref-

erence elements such as historic data, and the output from other systems, among 

others, are some examples of the different sources of information that a predictor 

may draw evidence from. 

Predicting the performance of a subsystem, module, function, or input by con-

trasting the performance estimation for a query for each component, enables an array 

of dynamic optimisation strategies that select at runtime the option which is pre-

dicted to work best or, when larger systems or hybrid approaches are used, allows for 

adjusting on the fly the participation of each module. The IR field is pervaded with 
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cases where information relevance, retrieval systems, models, and criteria are based 

on a fusion or combination of sub-models. Personalised retrieval systems (including 

techniques such as personalised search, recommender systems, collaborative filtering, 

and retrieval in context) are clear examples where performance prediction can be 

applied since such systems combine several sources of evidence for relevance as-

sessment, such as explicit queries, search history, explicit user ratings, social informa-

tion, user feedback, and context models. 

Performance prediction finds additional motivation in personalised recommen-

dation, inasmuch these applications may decide to produce recommendations or 

hold them back, delivering only the sufficiently reliable ones. Furhermore, current 

Recommender Systems (RS) are characterised by an increasing diversification of the 

types and sources of data, content, evidence and methods, available to make deci-

sions and build their output. In such context, predicting the performance of a spe-

cific recommendation approach or component becomes an appealing problem, as it 

lets properly combine the available alternatives, and make the most of them by dy-

namically adapting the recommendation strategy to the situation at hand. The ques-

tion gains increasing relevance today, with the proliferation of hybrid recommenda-

tion techniques to improve the accuracy of the methods – the Netflix prize was a 

paradigmatic example of the use of this, where all the top ranked participants used 

combinations of large sets of recommendation methods. This calls for the research 

of hybrid approaches with a level of dynamic self-adjustment mechanisms, in order 

to optimise the resulting effectiveness of the recommendation systems, by opportu-

nistically taking advantage of high-quality data when available, but avoiding sticking 

to fixed strategies when they can be predicted to yield poor results under certain 

conditions. 

Performance prediction in IR is typically assessed in terms of the correlation be-

tween a predictor‟s scores and a system‟s performance values on a per-query basis. 

This requires reliable performance evaluation metrics and methodologies, which have 

been thoroughly analysed, and are currently well established in the IR field, mostly 

oriented to ad-hoc search. In contrast, evaluation in the RS field is more open, and 

the variability in evaluation approaches and experimental configurations is significant. 

How to measure the performance of a recommender system is a key issue in our re-

search since the system quality measurements may be influenced by statistical proper-

ties of the measurement approach and/or the experimental design. Throughout this 

thesis we shall focus on the accuracy of the system, where we have to avoid that if a 

metric – i.e., precision – is biased towards some form of noise along with the recom-

mender‟s quality, then a predictor capturing only that noise would appear as an 

(equivocal) effective performance predictor. Hence, statistical biases (noises) of the 

evaluation methodologies should be well understood in order to enable a meaningful 

assessment of performance predictors. 
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Drawing from the state of the art on performance prediction in IR as a starting 

point, the present work restates the problem in the field of Recommender Systems 

where it has barely been addressed so far. We research meaningful definitions of per-

formance in the context of RS, and the elements to which it can sensibly apply, in-

vestigating the statistical biases that may arise when adapting the IR evaluation 

framework into RS. In doing so, we take as a driving direction the application of per-

formance prediction to achieve improvements in two specific combination problems 

in the RS field, namely, the dynamic combination of recommendation methods in 

hybrid recommendation systems, and the dynamic aggregation of neighbours‟ signals 

in user-based collaborative filtering. 

1.2 Research goals 

The main objective of the research presented here is to find predictive methods for 

the performance of specific components in recommender systems, and to improve 

the performance of combined recommendation methods, based on the dynamic, 

automatic analysis and prediction of the expected performance of the constituents of 

the composite methods, whereupon the relative participation of each constituent is 

adjusted, in accordance to its predicted effectiveness. To address these problems, this 

work has the following specific research objectives: 

RG1: Analysis and formalisation of how retrieval performance is defined 

and evaluated in recommender systems. We need to develop an in-depth study 

on how recommender systems can be reliably evaluated in terms of numeric metric 

values, since we aim to predict their performance. Moreover, we have to investigate 

whether there is any bias on the way the systems are evaluated – either by the evalua-

tion methodologies or metrics, since any bias in the evaluation process would lead to 

inconclusive or misleading results about the predictive power of the performance 

prediction methods proposed. If these biases do exist, we aim to precisely under-

stand them and develop methodologies to isolate them; then, we shall check the ef-

fectiveness of the predictors against well-known baselines and whether it changes 

when unbiased methodologies are used. 

RG2: Adaptation and definition of performance prediction techniques for 

recommender systems. We aim to study the potential of performance prediction in 

specific problems and settings in the area of Recommender Systems. We shall inves-

tigate the definition of a formal framework where performance predictors can be 

integrated. As a starting point, we aim to explore the adaptation of specific effective 

predictors from Information Retrieval such as query clarity (Cronen-Townsend et al., 

2002) to recommender systems. Complementarily to the adaptation of known tech-

niques, we aim to research the definition of new predictors based on models from 

Information Theory and Social Graphs, besides other heuristic, domain-specific ap-
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proaches. Once we have defined some recommendation performance predictors, we 

shall assess the effectiveness of such predictors in terms of their correlation to per-

formance metrics to estimate the predictive power of the performance predictors. 

RG3: Application of performance predictors to hybrid and compound re-

commender systems. We aim to identify and integrate the proposed predictors into 

combined recommendation methods, in order to achieve an actual improvement in 

the performance of the combined methods. With this goal in mind, we shall consider 

problems where an aggregation of recommendation methods is needed, and shall 

analyse how to apply the performance predictors mentioned above in such problems. 

Besides, a methodological study for the experimental approach, setup, and metrics 

should be performed in such a way that appropriate baseline methods and experi-

mental designs are used. Finally, we shall assess the improvements and benefits of 

the combined methods when the performance predictors are applied. 

1.3 Contributions 

This thesis is devoted to the problem of estimating the performance of recom-

mender systems for particular users and items. The main contributions of this thesis 

are related to the evaluation of the performance of a recommender system, and the 

prediction of such performance, where we have addressed several issues regarding 

both topics and we have proposed novel models and methods, which have been ap-

plied into two applications as we shall see next. 

As a first step, this thesis analyses the Cranfield paradigm of Information Re-

trieval evaluation since recommender systems are usually considered as a particular 

problem of information filtering, and, thus, of information retrieval at large (Belkin 

and Croft, 1992). In Chapter 4 we discuss the differences involved in the ex-

perimental design alternatives from the common assumptions made in the 

Cranfield paradigm, which result in substantial statistical biases arising in Re-

commender Systems, and we propose different methods to neutralise these 

biases. Additionally, the following related contributions have been addressed: 

 We propose a precise and systematic characterisation of design alternatives in 

the adaptation of the Cranfield paradigm to recommendation tasks. We iden-

tify assumptions and conditions underlying the Cranfield paradigm that are not 

granted in usual recommendation experiments. 

 We detect and characterise resulting statistical biases, namely test sparsity and 

item popularity, which do not arise in common test collections from IR, but do 

interfere in recommendation experiments. 



8 Chapter 1. Introduction 

 

 We propose two novel experimental designs in order to neutralise these biases. 

We observe that a percentile-based evaluation considerably reduces the margin 

for the popularity bias, whereas a uniform-test approach removes any statistical 

advantage provided by having more positive test ratings. Furthermore, we find 

that both approaches discriminate well between pure popularity-based recom-

mendation and an efficient personalised recommendation algorithm. 

Additionally, in this thesis we show how query performance prediction tech-

niques developed in Information Retrieval can be adapted to Recommender 

Systems, and result in effective predictors in this domain. We present these per-

formance predictors in Chapter 6, where we propose different adaptations of the 

query clarity predictor based on different interpretations of the underlying language 

models along with models from Information Theory and Social Graphs. Further-

more, in the same chapter we assess the effectiveness of such predictors by 

measuring the correlation with respect to performance metrics, where we also 

test the methods proposed in Chapter 4 to neutralise biases on evaluation. Specific 

contributions regarding performance prediction for recommendation are summarised 

as follows: 

 We define and elaborate several predictive models in the Recommender Sys-

tems domain according to different formulations and assumptions, and based 

on three types of preference data: rating-based, log-based, and social-based.  

 Formulations for rating preferences are based on adaptations of query clarity 

from IR and concepts from Information Theory such as entropy. In this adap-

tation we propose different probability estimations, where Bayesian derivations 

and non-parametric estimations are developed. 

 We also exploit temporal features when defining log-based predictors. Specifi-

cally, we use a time-aware version of the Kullback-Leibler divergence, along 

with other time series concepts such as a user‟s autocorrelation. 

 We use graph-based metrics from Graph Theory to define predictors leverag-

ing social network structures, and correlations between topological properties 

of users and the success of recommendations delivered to them. 

 We find strong correlations between the outputs of the predictors and the per-

formance metrics, thus finding empirical evidence of the predictive power of 

the proposed approaches. Furthermore, when unbiased evaluation methodolo-

gies are used, the predictors still obtain good correlation values, evidencing that 

our proposed predictors are not just capturing and benefitting from the ana-

lysed biases, especially when we compare them against other trivial predictors. 

Finally, Chapters 7 and 8 present two applications of performance predictors on 

Recommender Systems. In Chapter 7 we propose several linearly weighted hy-
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brids where the weights are dynamically adjusted based on the predictors’ 

output. We observe that the correlations obtained in Chapter 6 help decide which 

are the best combinations to experiment with. More importantly, the correlation 

between the predictor and the recommender tends to anticipate well when a 

hybrid will outperform its baseline. Besides, Chapter 8 presents a unified 

framework where the performance predictors are used to select and weight 

nearest neighbours in a standard user-based collaborative filtering algorithm. 

The standard methodology from performance prediction is adapted and translated 

into this problem, where novel neighbour performance metrics are defined and the 

predictive power of the predictors is assessed. 

The contributions related to the application part of the thesis are, in summary: 

 We propose a dynamic hybrid framework to automatically decide when and 

how dynamic hybridisation should be done, depending on different conditions, 

namely the correlations between the recommenders and the predictors, and the 

relative performance level of the combined recommenders. 

 In several experiments with the aforementioned performance predictors, our 

results indicate that a strong correlation with performance tends to correspond 

with enhancements in dynamic hybrid recommendation when the predictors 

are used for the adjustment of the combination weights. 

 We propose a theoretical framework for neighbour selection and weighting in 

user-based recommender systems. This framework is based on performance 

prediction by casting the neighbourhood-based rating prediction task as a case 

of dynamic output aggregation. 

 We compare several state-of-the-art rating-based trust metrics and other pro-

posed neighbour scoring techniques, interpreted as neighbour performance 

predictors. We also propose several neighbour performance metrics that cap-

ture different notions of neighbour quality. 

1.4 Publications related to the thesis 

In the following international journal and conference papers we presented descrip-

tions, results and conclusions related to this thesis: 

Performance prediction and evaluation 

1. Bellogín, A., Cantador, I., Díez, F., Castells, P., and Chavarriaga, E. (2012). 

An empirical comparison of social, collaborative filtering, and hybrid recom-

menders. ACM Transactions on Intelligent Systems and Technology, to appear. 
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2. Bellogín, A., Castells, P., and Cantador, I. (2011). Predicting the Performance 

of Recommender Systems: An Information Theoretic Approach. In Amati, 

G. and Crestani, F., editors, ICTIR, volume 6931 of Lecture Notes in Computer 

Science, pages 27–39, Berlin, Heidelberg. Springer Berlin / Heidelberg. 

3. Bellogín, A., Castells, P., and Cantador, I. (2011). Self-adjusting hybrid re-

commenders based on social network analysis. In Proceedings of the 34th interna-

tional ACM SIGIR conference on Research and development in Information, SIGIR ‟11, 

pages 1147–1148, New York, NY, USA. ACM. 

4. Bellogín, A., Castells, P., and Cantador, I. (2011). Precision-oriented evalua-

tion of recommender systems: an algorithmic comparison. In Proceedings of the 
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19. Campos, P. G., Bellogín, A., Díez, F., and Cantador, I. (2012). Time Feature 

Selection for Identifying Active Household Members. In Proceedings of the 21st 

ACM international conference on Information and knowledge management, CIKM ‟12, 

New York, NY, USA. ACM (to appear). 
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These publications are related to the contents of this thesis as follows. In [4] we 

analyse different evaluation methodologies available in the recommendation literature 

(Chapters 3 and 4). In [2], [5], and [6] we define the formulations for the concept of 

user clarity based on ratings (Chapter 6), whereas in [1] and [3] we define the social-
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based predictors (again, Chapter 6). Besides, in [1] and [3] we also investigate the use 

of performance predictors for dynamic hybrid recommendation (Chapter 7). More-

over, in [5] and [6] we address the problem of neighbour weighting based on 

neighbour performance predictors (Chapter 8). 

Additionally, during the course of the thesis, the research presented here has mo-

tivated a number of publications that address broader topics in the field, such as con-

tent-based recommendation [7-11], collaborative filtering [12-17], social filtering 

techniques [18], time-aware recommendation [19-21], hybrid recommender systems 

[22-24], and recommendation evaluation [25, 26]. These publications have resulted in 

the use and construction of datasets, the development of algorithms and the research 

and use of some evaluation methodologies and metrics that appear in this thesis. 

Additional publications 

Preliminary work towards the approaches presented in this thesis was published in 

my Master‟s Thesis entitled “Performance prediction in recommender Systems: Ap-

plication to the dynamic optimisation of aggregative methods” (Bellogín, 2009); spe-

cifically, the concept of performance prediction for recommendation is proposed in 

such work. Apart from that, the motivation, potential impact, and initial main results 

of our research were published as contributions in two international doctoral sympo-

siums: 

 Bellogín, A. (2011). Predicting performance in recommender systems. Doctoral 

Symposium. In Proceedings of the fifth ACM conference on Recommender systems, Rec-

Sys ‟11, pages 371–374, New York, NY, USA. ACM. 

 Bellogín, A. (2011). Performance Prediction in Recommender Systems. Doc-

toral Symposium. In Konstan, J., Conejo, R., Marzo, J., and Oliver, N., editors, 

User Modeling, Adaption and Personalization, volume 6787 of Lecture Notes in Com-

puter Science, pages 401–404, Berlin, Heidelberg. Springer Berlin / Heidelberg. 

Furthermore, the following submissions are under revision, some of them 

closely related to the topics of the thesis: 

 Bellogín, A., Castells, P., and Cantador, I. Statistical Biases in IR Metrics for 

Recommender Systems: A Methodological Framework for the Adaptation of 

the Cranfield Paradigm. Under review. 

 Bellogín, A., Castells, P., and Cantador, I. Neighbour Selection and Weighting 

in User-Based Recommender Systems: A Performance Prediction Approach. 

Under review. 

 Parapar, J., Bellogín, A., Castells, P., and Barreiro, Á. Relevance-Based Lan-

guage Modelling for Recommender Systems. Under review. 
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1.5 Structure of the thesis 

The thesis is divided into six parts. The first part introduces and motivates the prob-

lem addressed, along with a survey of the Recommender Systems field, where this 

thesis is framed. The second part describes the different evaluation techniques used 

in the recommender systems literature and provides an analysis of the design alterna-

tives and statistical biases that may arise. The third part gives background knowledge 

and a literature survey on performance prediction, proposes translations of this con-

cept into the recommender system space, and evaluates the predictive power of these 

approaches. The fourth part provides two applications of the proposed recom-

mender performance predictors. The fifth part concludes and summarises the main 

contributions of this thesis. Additional information and details are provided in the 

last part. 

In more detail, the contents of this thesis are distributed as follows: 

Part I. Introduction 

 Chapter 1 presents the motivation, research goals, contributions and publica-

tions related to the thesis. 

 Chapter 2 provides an overview of the state of the art in recommender sys-

tems, considering a classification of the main types of recommendation ap-

proaches. We also describe the weaknesses of the different recommendation 

techniques and present a broader class of hybrid recommenders that aim to 

overcome these limitations. 

Part II. Evaluating Performance in Recommender Systems 

 Chapter 3 describes the main evaluation metrics and methodologies used in 

the recommender systems field. The public datasets commonly used in the 

field are also described. 

 Chapter 4 provides an analysis and formalisation of the different evaluation 

methodologies reported in the literature. First, we present a systematic charac-

terisation of the experimental design alternatives. Next, we identify and analyse 

specific statistical biases arising when some methodologies are applied to rec-

ommendation, and propose two alternative experimental designs that effec-

tively neutralise such biases to a large extent. 

Part III. Predicting Performance in Recommender Systems 

 Chapter 5 presents the problem of performance prediction in Information Re-

trieval, surveys the main research works in that area, both in the definition of 

(query) performance predictors and also in the predictor evaluation in order to 

infer their predictive power. 
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 Chapter 6 states the problem of performance prediction in recommender sys-

tems. We define several performance predictors based on three recommenda-

tion input spaces where we qualitative analyse the predictive power of the pre-

dictors. 

Part IV. Applications 

 Chapter 7 proposes a framework where recommender performance predictors 

are used to build dynamic hybrid recommender systems. We evaluate these re-

commenders in the three input spaces previously considered for the definition 

of performance predictors and using different experimental design alternatives 

where some statistical biases are neutralised. 

 Chapter 8 restates the user-based recommendation problem, providing a gen-

eralisation as a performance prediction problem. We investigate how to adopt 

this generalisation to define a unified framework where we conduct an objec-

tive analysis of the effectiveness (predictive power) of neighbour scoring func-

tions. 

Part V. Conclusions 

 Chapter 9 concludes with a summary of the main contributions of this thesis, 

and a discussion about future research lines. 

Part VI. Appendices 

 Appendix A provides details about the methods proposed in this thesis: con-

figuration of the recommendation algorithms and parameters of the experi-

mental designs used in the evaluation. Detailed statistics about the datasets 

used in the experiments are provided, complementary to those given in previ-

ous chapters. 

 Appendix B contains the translation into Spanish of Chapter 1. 

 Appendix C contains the translation into Spanish of Chapter 9. 

 





 

 

Chapter 2 

2 Recommender systems 

The aim of recommender systems is to assist users in finding their way through huge 

databases and catalogues, by filtering and suggesting relevant items taking into ac-

count or inferring the users‟ preferences (i.e., tastes, interests, or priorities). 

Three types of recommender systems are commonly recognised according to 

how recommendations are made, namely content-based filtering (CBF), collaborative 

filtering (CF), and social filtering (SF) systems. A CBF system suggests a user items 

similar to those she preferred or liked in the past, a CF system suggests a user items 

that people with similar preferences liked in the past, and a SF system suggests items 

according to the preferences of the user‟s social contacts in a social network. Each of 

these types of recommendations has its own strengths and weaknesses. In order to 

address and compensate particular shortcomings, combinations of different recom-

mendation approaches are usually developed, forming the so called hybrid filtering 

(HF) systems. 

In this chapter we provide an overview of terminology, techniques, and limita-

tions related to the above types of recommender systems. In Section 2.1 we formalise 

the problem of recommendation, and introduce the different types of recommenda-

tion approaches. Next, in Section 2.2 we describe content-based recommendation 

approaches, rating- and log-based recommendation approaches – as special cases of 

collaborative filtering –, and social-based recommendation approaches. In Section 

2.3 we then explain generic hybrid filtering approaches. Finally, in Section 2.4 we 

present particular limitations of each type of recommender systems. 
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2.1 Formulation of the recommendation problem 

Collaborative filtering can be considered as the first proposed recommendation ap-

proach. The term was coined in the mid 90‟s by Goldberg and colleagues when de-

veloping an automatic filtering system for electronic mail (Goldberg et al., 1992), 

although sometimes the stereotypes defined in (Rich, 1979) have been considered as 

an earlier reference. Collaborative filtering has been classed as part of the Informa-

tion Retrieval area by several authors (Belkin and Croft, 1992; Foltz and Dumais, 

1992), who have considered recommender systems as a particular case of informa-

tion filtering. However, only a few recent attempts have been made at bringing re-

commender systems and information retrieval models together, by establishing 

equivalences between them (Wang et al., 2008b; Wang et al., 2008a; Bellogín et al., 

2011b). Instead, recommender systems have been traditionally investigated from a 

different perspective, such as preference prediction and Machine Learning (Breese 

et al., 1998), upon which the main prediction models and evaluation metrics have 

been developed. 

In this context distinct formulations and notations have been proposed. The 

overview by Adomavicius and Tuzhilin (2005) are among the most cited. In that 

work the recommendation problem is defined as follows. Let   be a set of users, and 

let   be a set of items. Let       R, where R is a totally ordered set, be a utility 

function such that        measures the gain of usefulness of item   for user  . Then, 

for each user    , we aim to choose items         , unknown to the user, which 

maximise the utility function  , that is: 

                    
   

       

Depending on the exploited source of user preference information, and the way 

in which the utility function   is estimated for different users, the following two 

main types of recommender systems are commonly distinguished: 1) content-based 

recommender systems, in which a user is suggested items similar to those she liked or 

preferred in the past, and 2) collaborative filtering systems, in which a user is sug-

gested items that people with similar preferences liked in the past. We extend this 

classification by also considering social recommender systems, i.e., systems in which 

a user is suggested items that friends – e.g. in an online social network – liked in the 

past. These systems are related but significantly different from collaborative filtering 

systems. Moreover, we distinguish two types of collaborative filtering systems, based 

on the form of their input: systems that exploit explicit user ratings (rating-based 

systems), and systems that exploit implicit user preference information (log-based 

systems). The rating assigned to an item by a particular user is typically interpreted as 

the true utility of that item for the user. There are systems, however, where no ex-

plicit ratings are available, but where user interests can be inferred from implicit 
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feedback information. In order to provide item recommendations in such systems, 

two plausible approaches do exist: 1) directly exploiting implicit preference data 

(Wang et al., 2008b; Deshpande and Karypis, 2004; Das et al., 2007; Hu et al., 2008; 

Linden et al., 2003), and 2) transforming implicit preference data into explicit ratings 

to be exploited by standard CF strategies (Celma, 2010; Jawaheer et al., 2010; Adams, 

2007). 

Other types of recommender systems have been considered in the literature, al-

though they will not be described in detail herein; these are knowledge-based, utility-

based, and demographic-based recommender systems.They use, respectively, seman-

tic descriptions of the user preferences and item characteristics, an utility function 

over the items that describes the users‟ preferences, and demographic information 

about the users. For further descriptions and examples of these techniques, see 

(Burke, 2002) and (Ricci et al., 2011). 

For any of the above mentioned types of recommender systems, models can be 

combined to improve their separate performance, or other characteristic of interest, 

such as the capability of providing more diverse and novel recommendations, and 

offering better explanations of recommendations. When such a combination is per-

formed, the recommendation approach is considered a hybrid recommender (or hy-

brid filtering) system (Burke, 2002). 

2.2 Recommendation techniques 

As mentioned above, the main goal of a recommender system is to provide users 

with the most useful items according to their preferences. For such purpose, differ-

ent strategies may be used, which can be categorised based on the type of data ex-

ploited, namely content-based, rating- and log-based collaborative filtering, and social 

recommendation strategies. In this section we formalise these strategies. We shall use 

the following notation. Letters   and   will be reserved for users (     ), whereas 

  and   will denote items (     ),   and   being, respectively, the set of users and 

items in the system. Besides,     will denote a particular rating value, and   will be 

the set of possible rating values, either discrete (typically,              ) or con-

tinuous (e.g.        ). Finally,    shall denote a rating prediction (as opposed to 

observed ratings denoted by  ). 

2.2.1 Content-based recommenders 

Content-based filtering (CBF, or simply content-based) techniques recommend items 

similar to those previously liked by a user. An extensive survey of this type of tech-

niques can be found in (Lops et al., 2011; Pazzani and Billsus, 2007), and 
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(Adomavicius and Tuzhilin, 2005). In this section we briefly discuss some of the 

main approaches proposed in the field. 

Content-based recommendation algorithms build a user‟s profile based on the 

features of the objects rated by the user, which are assumed to reflect the user‟s con-

tent-based interests (Lops et al., 2011). In general, a CBF technique can be classified 

according to whether a model is built from underlying data, commonly based on 

Machine Learning techniques (Lops et al., 2011; Pazzani and Billsus, 1997; 

de Gemmis et al., 2008), or use a heuristic function to compute item scores, mainly 

inspired on Information Retrieval methods (Diederich and Iofciu, 2006; Balabanovic 

and Shoham, 1997; Cantador et al., 2010). 

Probabilistic methods in general and the naïve Bayes approach in particular gen-

erate a probabilistic model based on previously observed data. The naïve Bayes 

model estimates the a posteriori probability        of document   belonging to class 

 , based on the a priori probability      for the class, the probability      of observ-

ing the document, and the probability        of observing the document given the 

class (Lops et al., 2011), as follows: 

       
          

    
 

In recommendation the naïve Bayes method is used to estimate the probability 

that a document (an item) is either relevant or irrelevant (class  ), based on the in-

formation available for each user, that is, documents already rated are used to build 

the        probabilities. This approach has been used by many different authors 

(Mooney and Roy, 2000; Semeraro et al., 2007; de Gemmis et al., 2008; Lops et al., 

2011). 

Alternative methods for classifying the items in a system as relevant or irrelevant 

for each user include decision trees and neural networks (Pazzani and Billsus, 1997). 

These techniques, similarly to the naïve Bayes method, estimate in which class each 

(unrated or unobserved) item fits best with the user‟s profile. 

Techniques based on Information Retrieval methods are specified by the way 

users and items are represented and the similarity function used between them. Typi-

cally they use a vector space model where each feature is weighted in a particular 

way. For instance, instead of using the frequency of each feature in a user/item pro-

file, more complex functions from the Information Retrieval field may be used, such 

as TF-IDF and BM25 (Cantador et al., 2010). Furthermore, many different feature 

spaces have been considered in the literature: keywords (Lieberman, 1995; Pazzani 

et al., 1996), tags (Diederich and Iofciu, 2006; Michlmayr and Cazer, 2007), and se-

mantic concepts enriched by different techniques (Magnini and Strapparava, 2001; 

Eirinaki et al., 2003; Cantador, 2008). 
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Regarding the feature vector similarity, the most common measure is the cosine 

similarity, even though the standard dot product between two vectors has also been 

used (Cantador et al., 2010): 

 
                     

 

 (2.1) 

 

              
             

     
 

      
 

 

 
(2.2) 

where     is the weight assigned (by any of the techniques mentioned before) to the 

feature   in document  . 

In recommender systems items are suggested by decreasing order of similarity 

with the user, whose profile is represented in the same form of the documents (that 

is, in the space of features under consideration). The similarities are computed as the 

feature vector similarity between each (unrated or unobserved) document in the col-

lection and the user‟s vector. 

2.2.2 Rating-based recommenders 

Collaborative filtering (CF) techniques match people with similar preferences, or 

items with similar choice patterns from users, in order to make recommendations. 

Unlike CBF, CF methods aim to predict the utility of items for a particular user ac-

cording to the items previously evaluated by other like minded users. These methods 

have the interesting property that no item descriptions are needed to provide rec-

ommendations, since the methods merely exploit information about past ratings. 

Compared to CBF approaches, CF also has the salient advantage that a user may 

benefit from other people‟s experience, thereby being exposed to potentially novel 

recommendations beyond her own experience (Adomavicius and Tuzhilin, 2005). 

In this section we focus on those CF techniques based on explicit numeric rat-

ings, which are the most common in the literature. For additional references, see 

(Desrosiers and Karypis, 2011; Koren and Bell, 2011) and (Adomavicius and Tuz-

hilin, 2005). Most of our discussion nonetheless applies to log-based recommenders 

alike. In fact, as we shall show in the next section, most of the rating-based tech-

niques can be used when no ratings are available (although the equivalence intro-

duces additional assumptions). 

In general, CF approaches are commonly classified into two main categories: 

model-based and memory-based. Model-based approaches build statistical models 

of user/item rating patterns to provide automatic rating predictions. Some ap-

proaches learn such models by performing some form of dimensionality reduction in 

order to uncover latent factors between users and items, e.g. by such techniques as 
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Singular Value Decomposition (SVD) for matrix factorisation (Billsus and Pazzani, 

1998; Koren et al., 2009), probabilistic Latent Semantic Analysis (pLSA), or Latent 

Dirichlet Allocation (LDA) (Hofmann, 2003; Blei et al., 2003). Other approaches use 

probabilistic models where the recommendation task is modelled by user and item 

probability distributions (Wang et al., 2006b; Wang et al., 2008a), e.g. by learning a 

probabilistic model with a maximum entropy estimation (Pavlov et al., 2004; Zitnick 

and Kanade, 2004), Bayesian networks (Breese et al., 1998), and Boltzmann machines 

(Salakhutdinov et al., 2007). A graph-based model that exploits positive and negative 

preference data is proposed in (Clements et al., 2009). Besides, other Machine Learn-

ing techniques have also been proposed, such as artificial neural networks (Billsus 

and Pazzani, 1998) and clustering strategies (Kohrs and Merialdo, 1999; Cantador 

and Castells, 2006). 

Memory-based approaches, on the other hand, make rating predictions based on 

the entire rating collection (Adomavicius and Tuzhilin, 2005; Desrosiers and Karypis, 

2011). These approaches can be user- and item-based strategies. User-based strate-

gies are built on the principle that a particular user‟s rating records are not equally 

useful to all other users as input for providing personal item suggestions (Herlocker 

et al., 2002). Central aspects to these algorithms are thus a) how to identify which 

neighbours form the best basis to generate item recommendations for the target user, 

and b) how to properly make use of the information provided by them. Typically, 

neighbourhood identification is based on selecting those users who are more similar 

to the target user according to a similarity metric (Desrosiers and Karypis, 2011). The 

similarity between two users is generally computed by a) finding a set of items that 

both users have interacted with, and b) examining to what degree the users displayed 

similar behaviors (e.g. rating, browsing and purchasing patterns) on these items. This 

basic approach can be complemented with alternative comparisons of virtually any 

user feature a system has access to, such as personal demographic and social network 

data. It is also common practice to set a maximum number of neighbours (or a 

minimum similarity threshold) to restrict the neighbourhood size either for computa-

tional efficiency, or in order to avoid noisy users who are not similar enough. Once 

the target user‟s neighbours are selected, the more similar a neighbour is to the user, 

the more her preferences are taken into account as input to produce recommenda-

tions. For instance, a common user-based approach consists of predicting the rele-

vance of an item for the target user by a linear combination of her neighbours‟ rat-

ings, weighted by the similarity between the target user and such neighbours. 

In the following equations we present two versions of a user-based CF tech-

nique; in the first one rating deviations from the user‟s and neighbour‟s rating means 

are considered (Resnick et al., 1994), whereas in the second one the raw scores given 

by each neighbour are used (Aggarwal et al., 1999; Shardanand and Maes, 1995): 
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 (2.3) 

 

                        

         

 (2.4) 

where   is a normalisation factor (different in each formulation) and         is a 

neighbourhood of size  , which may use information of the target item  . As stated 

in (Adomavicius and Tuzhilin, 2005), these techniques simply use a different function 

to aggregate the ratings from the neighbourhood. Note that in this case the utility 

function        is assumed to be equivalent to the predicted rating        , although 

alternative transformations could be applied if required. Additionally, the similarity 

between two users is generally computed by means of the Pearson‟s correlation coef-

ficient or the cosine similarity between the vectors representing each user‟s prefer-

ences (Adomavicius and Tuzhilin, 2005): 
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Note that these similarities are equivalent when the data is centered on the mean. 

Nonetheless, some authors have reported that the performance of recommenders 

based on Pearson‟s similarity is superior to that of cosine‟s (Breese et al., 1998; Her-

locker et al., 1999). Moreover, other similarity measures and modifications on how 

the neighbours are selected and weighted have been proposed, either by modifying 

the similarity measure (McLaughlin and Herlocker, 2004; Ma et al., 2007), by using 

clustering methods to compute a user‟s neighbourhood (O‟Connor and Herlocker, 

1999; Xue et al., 2005), or by learning the best interpolation weights for rating predic-

tion (Bell and Koren, 2007; Koren, 2008). Additionally, in the context of trust-based 

recommendation, the neighbours are weighted (and selected) according to their im-

portance from the target user‟s point of view (O‟Donovan and Smyth, 2005; Weng 

et al., 2006; Kwon et al., 2009; Hwang and Chen, 2007). 

Item-based strategies, on the other hand, recognise patterns of similarity be-

tween the items themselves, instead of between user choices like user-based ap-

proaches do. In general item-based recommenders look at each item on the target 

user‟s list of chosen/rated items, and find other items that seem to be “similar” to 

that item (Shardanand and Maes, 1995; Sarwar et al., 2001). The item similarity is 

usually defined in terms of rating correlations between users, although cosine-based 

or probability-based similarities have also been proposed (Deshpande and Karypis, 
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2004). As stated in (Sarwar et al., 2001), adjusted cosine similarity has been proved to 

obtain better performance than other item similarities. This similarity subtracts the 

user‟s average rating from each co-rated pair in the standard cosine formulation: 

 

          
                              

                
 

                 
 

 

 
(2.7) 

The rating prediction computed by item-based strategies is generally estimated as 

follows (Sarwar et al., 2001): 

 

                        

    

 (2.8) 

We have to note that the set of more similar items    is generally replaced by    

– the set of items rated by user   – since for any other item, the rating provided by 

the user is assumed to be zero, and thus, it does not contribute to the summation. 

2.2.3 Log-based recommenders 

Different methods have been proposed to use implicit evidence of user preferences. 

The work of Oard and Kim (1998) represents one of the first attempts to exploit 

implicit user feedback to estimate future ratings in a recommender system. In general 

most of recent approaches have used formal models (generally probabilistic) in order 

to introduce implicit data for recommendation, although some approaches using ad-

hoc techniques can be found. For example, Linden et al. (2003) use a simple vector 

representation, where each component represents purchased items, and recommen-

dations are obtained by ranking each item according to how many similar users pur-

chased it. Bernhardsson (2009) proposes a graph item-based algorithm that finds the 

closest tracks for a given track using probabilistic LSA (pLSA), and then derives the 

recommendations using heuristic and model-based probabilities, by brute force. 

Additionally, several formal algorithms have been proposed to use implicit user 

feedback from log data: namely matrix factorisation, such as SVD (Hu et al., 2008) 

and pLSA (Das et al., 2007), and language models and other probabilistic approaches 

(Wang et al., 2006a; Wang, 2009; Wang et al., 2008b; Deshpande and Karypis, 2004). 

These algorithms aim to capture the user‟s preferences by considering the consumed 

(purchased, listened, browsed, etc.) items as evidence of positive relevance for the 

user. This fact often leads to binary models in which the number of times the user 

has consumed each item is not taken into consideration. Nevertheless, a benefit of 

using binary data is that it allows to better account for the fact that ratings are not 

missing at random – or equivalently, that users choose deliberately which items to 

rate (Marlin et al., 2007). Besides this a general concern about negative preferences 

has arisen. For instance, in (Lee and Brusilovsky, 2009), (Wang et al., 2008c), and 
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(Xin and Steck, 2011) the authors attempt to incorporate negative preferences in-

ferred from implicit data. 

Other authors have proposed different transformations in order to obtain ex-

plicit ratings from implicit feedback. The most naive approach is to make a corre-

spondence between the existence of an item in a log record and a (frequency-

independent) rating. For example, the algorithm proposed in (Ali and van Stam, 

2004) cannot distinguish an explicit +1 rating from the rating inferred from implicit 

data. This is the same procedure that can be found in (Lee et al., 2008), but with 

other transformations based on the time in which an item was entered in the system 

and consumed. 

In (Baltrunas and Amatriain, 2009), based on (Celma, 2010) and (Celma, 2008), 

the authors use a more elaborate mapping where the number of times a user listened 

to an artist (or track) is taken into account, in such a way that the artists (tracks) lo-

cated in the 80-100% interquintile range of the user‟s playcount distribution receive a 

rating of value 5 (in a five point scale), the next interquintile range is mapped to a 

rating of value 4, and so on. This technique has also been used in other works, such 

as (Vargas and Castells, 2011). A similar technique is presented in (Jawaheer et al., 

2010), where three methods are proposed in order to calculate the preference of a 

user for an artist: i) absolute, where the raw count of the number of times that artist 

has been played is used; ii) normalised, where the preference is inferred by the ratio 

between the counts for an artist and the total number of artists played by the user; 

and iii) logarithmic, similar to the previous one but smoothing the preference values 

by applying a logarithmic transformation. 

Finally, Adams (2007) proposes a complete ad-hoc formula that takes several pa-

rameters into consideration, such as the number of times the current track has been 

played and skipped, the number of seconds when it was skipped, and the number of 

days since it was last played. 

In conclusion, there is no definitive unique method for transforming implicit 

into explicit data. Moreover, it is unclear to what extent the mapping is reliable (Hu 

et al., 2008), since it inherently represents different information gathered from the 

user – for instance, negative preferences can only be fetched using explicit data. 

However, a recent study reported a strong relation between the amount of times 

users listen to an album, and the rating they provide to the album (Parra and Ama-

triain, 2011). 

2.2.4 Social-based recommenders 

Recommender systems that exploit social information, such as contacts and interac-

tions between users, have started to be developed in recent years. We shall hence-

forth refer to this type of recommendation approaches as Social Filtering (SF) sys-

tems. Recommendations by SF approaches have the interesting property that they 
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are generally easier to explain than user-based CF approaches. Recommendations 

through friends are indeed easy to interpret by end-users. They also help dealing with 

the cold start problem, where new users are more difficult to provide recommenda-

tions for as long as it is not possible to reliably compute their similarity with other 

users for lack of data (Golbeck, 2006; Arazy et al., 2009). 

Shepitsen et al. (2008) propose a personalisation approach for recommendation 

in folksonomies that relies on hierarchical tag clusters. The approach suggests the 

most similar items to the user‟s closest cluster by means of the cosine similarity 

measure. Other approaches focus on graph based techniques for finding the most 

relevant items for a particular user through hybrid networks involving people, items, 

and tags (Konstas et al., 2009; Clements et al., 2010). In this context alternative 

methods have been proposed to deal with data sparsity. Besides, prediction accuracy 

is improved by means of factor analysis based on probabilistic matrix factorisation, 

employing both the users‟ social network information and rating records (Ma et al., 

2008). Ma et al. (2009) combine the recommendations made by trusted friends with 

those generated by a matrix factorisation algorithm. In a similar way, Jamali and Ester 

(2009) propose to perform a random walk on the trust network, considering the 

similarity of users in the termination condition; then, the top rated items are recom-

mended. Both approaches are competitive in cold start situations. 

Complementarily, simpler algorithms (referred to as “pure” social recommenders 

henceforth) have also been proposed in (Liu and Lee, 2010) and (Bellogín et al., 

2012). In (Liu and Lee, 2010) an adaptation of the user-based CF technique is pro-

posed, where the set of nearest neighbours is replaced by the target user‟s (explicit) 

friends. That is: 

 
                               (2.9) 

This lets easily incorporate social information into the CF prediction equation, 

building a straightforward technique that enables a direct interpretation of the sug-

gestions, namely those items recommended by friends. Similarly, based on a recom-

mender proposed in (Barman and Dabeer, 2010), where the items suggested to a user 

are the most popular among her set of similar users, in (Bellogín et al., 2012) we pro-

posed a friends‟ popularity recommender that suggests the target user those items 

most popular for her set of friends. A score is generated by transforming the item 

position with the following equation, once a ranking has been generated using the 

score       : 

 
                                                

            
        

 
 

(2.10) 

where          represents the position of item   in the top-  recommended list for 

user  . We may trim the returned list at some level  , or assume   to be exactly the 
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length of the generated recommendation list. Obviously, the computed scores cannot 

be interpreted as ratings, but as a utility or ranking score. In (Bourke et al., 2011) 

Bourke and colleagues also make use of the social graph of a user to build the 

neighbourhood, analysing the perceived trust, which is found to be higher when the 

users are given the opportunity to manually select the neighbourhood to be used for 

computing recommendations. 

Ben-Shimon et al. (2007) propose a recommendation approach based on the dis-

tances between users in the social graph. The approach uses Breadth-First Search to 

build a social tree for each user   denoted as       , where   is the maximum 

number of levels taken into consideration in the algorithm, and   is an attenuation 

coefficient of the social network that determines the extent of the effect of       , 

that is, the impact of the distance between two users in the social graph (e.g. by using 

an algorithm that computes the distance between two nodes in a graph, such as the 

Dijkstra‟s algorithm (Dijkstra, 1959). Hence, when     the impact is constant, and 

the resulting ranking is sorted by the popularity of the items. Furthermore, for that 

value of  , no expansion is applied and only directly connected users are involved in 

the score computation. Once the value of   is chosen, a rating score is generated 

according to the following equation: 

 
                      

        

 (2.11) 

An alternative way of introducing social information into a recommender system 

is by the so called trust-based recommendation approaches, even though social rela-

tionships and trust relationships do not model exacly the same concept (Ma et al., 

2011). Trust-aware recommenders, in contrast with those defined in Section 2.2.2, 

make use of trust networks, where users express a level of trust on other users 

(Massa and Avesani, 2007a). These recommenders need a trust network and a trust 

metric, so that trustworthiness of every user can be computed. Depending on the 

available data, we would have to infer a plausible trust network, from the information 

we already know about users, such as social interactions among users or explicit trust 

relations. Typically, uniform trust values from each user are assumed, since no dis-

tinction can be made among a user‟s contacts. For example, a user with 4 friends 

would have a trust level of 0.25 for each friend, whereas a user with 2 friends would 

have such trust level of 0.5. 

Once the trust network is defined, either explicitly or implicitly, we can set dif-

ferent definitions for the trust metrics depending on whether they are global (a global 

reputation value is calculated for each user) or local (a trust score is computed be-

tween a source user on a target user). Social-based trust metrics make use of explicit 

trust networks of users, built upon friendship relationships (Massa and Bhattacharjee, 

2004) and explicit trust scores between individuals in a system (Ma et al., 2009; Wal-
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ter et al., 2009). These metrics and, to some extent, their inherent meanings, are dif-

ferent with respect to rating-based metrics. Nonetheless, Ziegler and Lausen (2004) 

conduct a thorough analysis that shows empirical correlations between trust and user 

similarity, suggesting that users tend to create social connections with people who 

have similar preferences. Once such a correlation is proved, techniques based on 

social-based trust are applicable. 

Golbeck and Hendler (2006) propose a metric called TidalTrust to infer trust re-

lationships by recursive search. Inferred trust values are used for every user who has 

rated a particular item in order to select only those users with high trust values. Then, 

a weighted average between ratings and trust provides the predicted ratings. A similar 

algorithm is used in (Walter et al., 2009), where the prediction is based on the ratings 

of the trusted neighbours. Different integrations of the trust metric into the recom-

mendation process are proposed in (Massa and Avesani, 2007a), along with two met-

rics: PageRank and MoleTrust. The former is considered as a global metric based on 

the well-known PageRank algorithm (Brin and Page, 1998); the latter is a local metric 

based on a Depth-First graph traversal algorithm with an adjustable trust propagation 

horizon (Massa and Avesani, 2007a). 

Finally, as proposed in (Massa and Avesani, 2007a), two ways to incorporate 

these trust metrics into the recommendation models can be considered. The first one 

makes use of the trust metric instead of the similarity metric in the standard user-

based CF formula. The second one, on the other hand, computes the average be-

tween Pearson‟s similarity and the trust metric when both values are available; other-

wise it uses the only available value, thus overcoming the natural data sparsity. Re-

cently, Guo et al. (2012) propose to merge the ratings from the trusted neighbours in 

order to decrease sparsity prior to the computation of the predicted rating. 

2.3 Combining recommender systems 

The proliferation of new recommendation strategies is giving rise to an increasing 

variety of available options for the development of recommender systems. Research 

in Machine Learning has long shown that the combination of methods usually 

achieves better results than each method separately, which is also true in Recom-

mender Systems – the Netflix prize has been a paradigmatic example of this, where 

all the top classified teams used large recommender ensembles, which can be consid-

ered as a case of hybrid filtering approaches. 

In such a hybrid approach the most important decision is how to combine the 

information. First, however, it has to be decided what kind of information is going to 

be used in the ensemble. The standard approach in the literature is to combine CBF 

and CF recommenders, overcoming the sparsity and restricted feature problems of 

individual recommenders, as we shall see in the next section. However, other types 
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and sources of information, such as social contacts and timestamps, have been re-

cently integrated into the classical formulation of standard recommendation tech-

niques. 

In (Burke, 2002) a detailed taxonomy of hybrid recommender systems is pre-

sented, classifying existing approaches into the following types: 

 Cascade: the recommendation is performed as a sequential process in such a 

way that one recommender refines the recommendations given by the other. 

 Feature augmentation: the output from one recommender is used as an addi-

tional input feature for other recommender. 

 Feature combination: the features used by different recommenders are inte-

grated and combined into a single data source, which is exploited by a single 

recommender. 

 Meta-level: the model generated by one of the recommenders is used as the 

input for other recommender. As stated in (Burke, 2002): “this differs from 

feature augmentation: in an augmentation hybrid, we use a learned model to 

generate features for input to a second algorithm; in a meta-level hybrid, the 

entire model becomes the input.” 

 Mixed: recommendations from several recommenders are available, and are 

presented together at the same time by means of certain ranking or combina-

tion strategy. 

 Weighted: the scores provided by the recommenders are aggregated using a 

linear combination or a voting scheme. 

 Switching: a special case of the previous type considering binary weights, in 

such a way that one recommender is turned on and the others are turned off. 

The use of a specific type of hybrid recommendation method depends on the fi-

nal application, but, more importantly, on the type of recommenders being com-

bined. Indeed, Burke (2002) presents an analysis of the possible hybrids, their limits 

and incompatibilities, based on a representative subset of the recommendation tech-

niques available nowadays. Moreover, the author notes that some combinations turn 

out to be redundant because of the symmetry in the hybridisation process for some 

of the techniques listed above: weighted, mixed, switching, and feature combination. 

Incompatible combinations arise for the feature combination and meta-level tech-

niques, where in some situations one of the recommenders is not able to use the 

model or the features generated by the other recommender. 

Burke (2002) focuses on hybrid techniques where the information being com-

bined consists of ratings (to be used by CF recommenders), content features (to be 

used by CBF, knowledge-based, and utility-based recommenders), and demographic 
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information. In the following, we survey hybrid recommenders where inputs in the 

form of social information, collaborative (either ratings or logs), and content features 

have been used. In the next section we analyse the limitations of these types of tech-

niques, together with the benefits that hybridisation may bring. 

Among these possibilities, the most popular combination (probably due to its 

inherent interest) consists of blending content-based and collaborative filtering re-

commenders. In fact, one of the first proposed hybrid techniques (Balabanovic and 

Shoham, 1997) makes use of these two recommendation approaches by suggesting 

items similar to the user‟s profile (using content-based profiles) and those items 

highly rated by a user with a similar profile, by means of a collaborative formulation 

where neighbours are determined using a content-based similarity. In a similar way, 

Pazzani (1999) combines content-based, demographic, and collaborative information 

using two techniques: by plugging content-based similarity functions into collabora-

tive methods and by combining the final rankings produced by each recommender 

seeking a consensus, that is, how many systems recommend each item, and in what 

ranking position are both considered to build the final ranking. 

In (Rojsattarat and Soonthornphisaj, 2003) a technique to derive a less sparse 

pseudo rating matrix is proposed. More specifically, a pseudo user-ratings vector for 

every user is built with the item ratings provided by user   when available, or the 

ratings predicted by a content-based recommender otherwise. Gunawardana and 

Meek (2009) propose to combine content and collaborative information in a coher-

ent manner by using a specific type of probabilistic models, Boltzmann machines. 

These models let encoding the above sources of information as features, and then, 

weights are learned to reflect how each feature helps predict the user ratings. Other 

probabilistic models for combining these sources of information have been proposed 

in (Yu et al., 2003), where a hierarchical Bayesian model learns a prior distribution by 

using probabilistic Support Vector Machines (SVMs). 

Also from a machine learning perspective, an ensemble technique known as 

stacking is used in (Bao et al., 2009), which learns multiple classifiers for different 

prediction levels: at the first level, the recommendation techniques (a user-based CF, 

an item-based CF, and a CBF algorithm) output a rating prediction, which may be 

combined at the second level by a meta-learning algorithm that uses the predictions 

as meta-features. 

Alternatively, the same model can also be combined with itself using different 

parameter values. For instance, in (Gantner et al., 2010) different factor models are 

combined, where each model may have different regularisation parameters, stop 

conditions and dimensionality values. Jahrer et al. (2010) combine a set of diverse CF 

recommenders by using different machine learning techniques such as linear regres-

sion, neural networks, and a combination of bagging and gradient boosting trained 

with decision trees. 
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Furthermore, hybrid models have been proposed combining social and content 

or collaborative information. In (Konstas et al., 2009) a Random Walk algorithm is 

applied to a graph comprising of tags, social information, and implicit feedback from 

users. In this way, more elaborate patterns and rules than the standard correlation 

measure between users are provided. A similar approach can be found in (Liu et al., 

2010) for tag recommendation. The approach defined in (Clements et al., 2010) im-

proves search and recommendation by combining tags and ratings, and integrating 

them into the user‟s social network also using a Random Walk algorithm. Hotho et 

al. (2006) exploit social information along with tag content by converting a folkso-

nomy into a graph and then applying a weight-spreading algorithm for folksonomies 

called FolkRank (similar to the well-known PageRank algorithm (Brin and Page, 

1998). Finally, Jamali and Ester (2009) combine information from the social network 

(in terms of trust between users) and ratings (collaborative) in order to alleviate the 

cold-start problem. In that work, the authors make use of the collaborative informa-

tion as a termination condition of a random walk performed over the trust network 

by considering the similarity of users; additionally, the authors also combine those 

two sources for computing two sets of neighbours and, then, merging the items pro-

duced from those similar users. 

2.4 General limitations of recommender systems 

Each type of recommendation technique has strengths and weaknesses, well known 

in the field. We have already noted the main characteristics of each technique, which 

are largely dependent on the source of information being used. In this section we 

analyse the main limitations of each technique. Furthermore, although ideally hybrid 

recommendation techniques would overcome the problems of the combined tech-

niques, there are certain limitations that are inherent to the recommendation prob-

lem, and thus, have to be addressed indepedently. Besides, by combining different 

methods, additional problems, along with more limitations, arise. 

2.4.1 Limitations of single recommendation algorithms 

In this section we describe the different limitations identified in the literature for the 

main types of recommenders described in the previous sections. 

The main limitations of CBF approaches are the following (Adomavicius and 

Tuzhilin, 2005; Pazzani and Billsus, 2007; Cantador, 2008): 

 Restricted content analysis. Content-based recommendations depend on the 

available features explicitly associated with the items. These features should be 

in a form that can be automatically parsed by a computer, or manually ex-
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tracted somehow, which, depending on the domain, could be unfeasible or 

very difficult to maintain. 

 New user. A user has to show some preference (ratings) for a sufficient num-

ber of items before a recommender can build a reliable content-based user pro-

file. 

 Overspecialisation. Since content-based recommenders only retrieve items 

similar to what the user has already rated, recommendations are very similar 

and, probably, well known to the user, providing little (or none) novelty from 

the user perspective. 

 Portfolio effect. Related to the previous limitation, sometimes the recom-

mended items are very similar among them, leading to a set of insufficiently di-

verse or too redundant item suggestions. 

CF approaches have the following general weaknesses: 

 Rating data sparsity. The number of observed user-item interactions (e.g. rat-

ings) is generally very small compared to the number of all user-item pairs. 

This fact may cause CF algorithms to produce unreliable recommendations, 

since they have been inferred from insufficient data. 

 Grey sheep. Since collaborative recommendations rely on the tastes of similar 

people to suggest new items, when a user has very specific or unusual prefer-

ences, it will be more difficult for the system to find good neighbours, and 

thus, to recommend interesting items. 

 New item. Until a new item has been rated by a substantial number of users, a 

recommender system may not be able to recommend it; hence, popular items 

tend to have advantage in this kind of systems. 

 New user. Like in the content-based approaches, until a user has not provided 

with enough ratings, the system is unable to recommend her interesting un-

known items. 

In addition to these weaknesses, log-based CF techniques have other limitations. 

Specifically, they are not able to capture negative preferences from the user since 

unobserved items cannot be inferred as unliked items (they may represent items un-

known for the user). In contrast, it is easier to capture this type of information be-

cause it is less expensive for the user than providing a rating. Furthermore, although 

the problem of ratings missing not at random is ubiquitous and inherent to any re-

commender system – since users typically rate only a small fraction of the available 

items – log-based recommenders, and more specifically, the binary data inferred 

from these implicit interactions, have the theoretical advantage that they are able to 

exploit implicit preferences since the items observed by the users are deliberately 
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selected by them. Thus, potentially more useful information about the user can be 

gathered (Koren and Bell, 2011). 

Regarding CF in general, memory-based approaches achieve lower performance 

than model-based approaches. However, as stated in (Desrosiers and Karypis, 2011) 

and (Koren and Bell, 2011), good prediction accuracy does not guarantee an effective 

and satisfying user experience. Hence, the main advantages of memory-based re-

commenders are simplicity, justifiability, efficiency, and stability. 

Finally, SF approaches have other limitations, as we describe next: 

 Social sparsity. Social filtering methods need that every user has to be con-

nected through at least one contact in the social network to be able to produce 

recommendations, which is not a typical situation for most of the users in a 

system. 

Problem Description CBF CF SF 

Restricted  
content analysis 

Items to be recommended must have available data 
related to their features. This data is often unavailable 

or incomplete. 

Yes No No 

Overspecialisation 
CBF recommenders are trained with the content fea-

tures of the items. All the recommended items are 

similar to those already rated. 

Yes No No 

Portfolio effect 
CBF recommenders suggest items based on the item 

features. An item is recommended even if it is too 

similar to a previously rated item. 

Yes No No 

New user 
A user has to rate enough items in order to infer their 
preferences. When a new user enters into the system 

she has no ratings. 

Yes Yes No 

New item 
Items have to be rated by a substantial number of 
users for being recommended. Recently incorporated 

items have none or insufficient ratings. 

No Yes No 

Grey sheep 
A user has to be similar to others in the community to 
receive recommendations. Users whose tastes are 

unusual may not receive useful suggestions. 

No Yes No 

Rating data sparsity 
Ratings are used to train user and item models. The 
number of available ratings is usually small. 

No Yes No 

Social  

sparsity 

Social connections are used to build social models. 

The number of connections per user may be small. 
No No Yes 

New social  

connection 

A user has to be connected with someone else to 

receive recommendations. When the user is new, she 

may not have any social connections. 

No No Yes 

Social similarity 
Similarity based on social connections is used in SF 

recommenders. Two users socially connected may or 

may not have interests in common. 

No No Yes 

Table 2.1. List of common problems in CBF, CF, and SF systems. 
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 New social connection. Recommendations may get biased if a user has a very 

small social network, up to the point that if she has only one connection, every 

social recommendation would be generated based on the activity of just one 

user. 

 Social similarity. The fact that two users share some kind of connection in a 

social network does not necessarily mean that these users have similar interests. 

Although some studies have shown some correlation between both (Ziegler 

and Lausen, 2004), the misuse of this similarity may lead to bad recommenda-

tions, even though the user‟s experience may be improved in terms of diversity 

and serendipity. 

As a summary, Table 2.1 shows a comparison of the main limitations for the 

three types of recommendation algorithms described. 

2.4.2 Limitations of recommender ensembles 

As we have explained in the previous section, each type of recommendation – CBF, 

CF, and SF – has its own limitations. Hybrid filtering systems are normally out of 

this analysis since they compensate the shortcomings of one approach by the 

strengths of the other, unless both suffer from the same problem, as in the case of a 

new user when we combine CBF and CF approaches. 

In general, hybrid recommenders are useful for alleviating the individual limita-

tions of the combined recommenders. However, recommender ensembles do not 

always outperform individual recommenders. Van Setten (2005) describes the situa-

tion where all recommenders produce predictions that are “on the same side of the 

rating the user would give, all too low or all too high.” In this situation the ensemble 

would be less accurate than the best individual recommender. Additionally, when a 

particular recommender always obtains superior/inferior performance than the rest 

of recommenders in the ensemble, the corresponding recommender ensemble may 

not be useful. In that case the underperforming recommenders are useless from the 

beginning, whereas the over performing one should be used alone, and there is no 

point in combining them.  

The above issues assume that a particular metric is aimed to be optimised. Need-

less to say that the use of multiple recommenders may provide better results with 

respect to other evaluation properties, such as diversity, novelty, and serendipity, 

probably at the expense of a lower quality or accuracy of the recommendations 

(Shani and Gunawardana, 2011). 

Additionally, the recommender ensemble problem is similar to that of combining 

classifiers in the Machine Learning field, a well studied research problem in that 

community (Kuncheva, 2004). In such context, the diversity in the classifier outputs 

is known to be a requirement for the combination to be effective. Thus, whenever 
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some classifiers in an ensemble fail, these errors should be made on different objects, 

in order to let a final performance improvement with the ensemble. In (Kuncheva, 

2004) and (Kuncheva and Whitaker, 2003) Kuncheva and Whitaker present a num-

ber of diversity metrics, and analyse the relation of such metrics with respect to the 

accuracy of a recommender ensemble, although they do not provide a systematically 

formulation of such relation. As stated by the authors, the problem of classifier com-

bination and its relation with diversity may rise from the underlying meaning of di-

versity: whether it is a characteristic of the set of classifiers, or it is more complex and 

a mixture of the characteristics of the set of classifiers, the combiner, and the errors. 

Finally, although many different hybrid filtering approaches have been proposed 

for recommender systems, there is a lack of a similar analysis to the one performed in 

Machine Learning, where the different characteristics of the datasets and individual 

recommenders have been investigated and assessed. A preliminary analysis was per-

formed in (Bellogín et al., 2010), but an in-depth and larger-scale study would benefit 

the community, considering different evaluation perspectives and, probably, borrow-

ing from the Machine Learning research on this topic. 

2.5 Summary 

Along over two decades of research and commercial development, recommender 

systems have proved to be a successful technology to overcome the information 

overload that burdens users in modern online media. The inherent possibility of deal-

ing with diverse sources of information, such as the content of the items and the 

collaborative and social interactions among users and between users and a system, 

has enabled the development of rich strategies based on each of these evidences, 

deriving content-based, collaborative, and social filtering recommendation ap-

proaches. Furthermore, as each particular type of recommendation technique has its 

own limitations and weaknesses, hybrid strategies have been proposed that combine 

the suggestions generated by different techniques in different ways. The success of 

ensemble approaches has been recently evidenced in the Netflix prize, where the top 

classified teams used different forms of recommender ensembles. 

There are, however, general limitations remain unsolved, and are still considered 

as open research problems in the field. We have mentioned the sparsity of the infor-

mation (either in the forms of content-based attributes, collaborative ratings, and 

social connections), and the new user problem, but other problems, not related to an 

specific recommendation technique, have been identified in the literature, and de-

serve special attention by themselves, such as the need of contextualisation, the ex-

planation of the recommendations, and the efficiency in computing recommenda-

tions (Adomavicius and Tuzhilin, 2005).  
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II Evaluating performance 

in recommender systems

If you cannot measure it, you cannot improve it. 

William Thomson (Lord Kelvin) 





 

 

Chapter 3 

3 Evaluation of  recommender 

systems 

The evaluation of recommender systems has been, and still is, the object of active 

research in the field. Since the advent of the first recommender systems, recommen-

dation performance has been usually equated to the accuracy of rating prediction, 

that is, estimated ratings are compared against actual ratings, and differences between 

them are computed by means of the mean absolute error and root mean squared error met-

rics. In terms of the effective utility of recommendations for users, there is however 

an increasing realisation that the quality (precision) of a ranking of recommended 

items can be more important than the accuracy in predicting specific rating values. 

As a result, precision-oriented metrics are being increasingly considered in the field, 

and a large amount of recent work has focused on evaluating top-N ranked recom-

mendation lists with the above type of metrics. 

In this chapter we provide a survey of different evaluation metrics, protocols, 

and methodologies in the recommender systems field. In Section 3.1 we provide a 

preliminary overview of how recommender systems are evaluated, presenting the 

main (online and offline) evaluation protocols and dataset partitioning methods. 

Next, in Section 3.2 we present the most common evaluation metrics, classified into 

error-based and precision-based metrics, and in Section 3.3 we describe different 

dataset partition strategies used in the experimental configurations. Finally, in Section 

3.4 we present some evaluation datasets which are commonly used by the research 

community, and that were used in the experimental work of this thesis. 
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3.1 Introduction 

The evaluation of recommender systems has been a major object of study in the field 

since its earliest days, and is still a topic of ongoing research, where open questions 

remain (Herlocker et al., 2004; Shani and Gunawardana, 2011). Two main evaluation 

protocols are usually considered (Gunawardana and Shani, 2009): online and offline. In 

this thesis we focus on offline evaluation, which lets compare a wide range of candi-

date algorithms at a low cost (Shani and Gunawardana, 2011). For a review of the 

different tasks and protocols for online recommendation evaluation, see (Shani and 

Gunawardana, 2011), (Pu et al., 2012), and (Kohavi et al., 2009). 

Drawing from methodological approaches common to the evaluation of classifi-

cation, machine learning and information retrieval algorithms, offline recommender 

system evaluation is based on holding out from the system a part of the available 

knowledge of user likes (test data), leaving the rest (training data) as input to the algo-

rithm, and requiring the system to predict such preferences, so that the goodness of 

recommendations is assessed in terms of how the system‟s predictions compare to 

the withheld known preferences. In the dominant practice, this comparison has been 

oriented to measure the accuracy of rating prediction, computing error-based met-

rics. However, in terms of the effective utility of recommendations for users, there is 

an increasing realisation that the quality (precision) of the ranking of recommended 

items can be more important than the accuracy (error) in predicting specific rating 

values. As stated in (Herlocker et al., 2004), the research community has moved from 

the annotation in context task (i.e., predicting ratings) to the find good items task (i.e., pro-

viding users with a ranked list of recommended items), which better corresponds to 

realistic settings in working applications where recommender systems are deployed. 

As a result, precision-oriented metrics are being increasingly considered in the field. 

Yet there is considerable divergence in the way such metrics are applied by different 

authors, as a consequence of which the results reported in different studies are diffi-

cult to put in context and be compared. 

In the classical formulation of the recommendation problem, user preferences 

for items are represented as numeric ratings, and the goal of a recommendation algo-

rithm consists of predicting unknown ratings based on known ratings and, in some 

cases, additional information about users, items, and the context. In this scenario, the 

accuracy of recommendations has been commonly evaluated by measuring the error 

between predicted and known ratings, using metrics such as the Mean Absolute Er-

ror (MAE), and the Root Mean Squared Error (RMSE). Although dominant in the 

literature, some authors have argued this evaluation methodology is detrimental to 

the field since the recommendations obtained in this way are not the most useful for 

users (McNee et al., 2006). Acknowledging this, recent work has evaluated top-N 

ranked recommendation lists with precision-based metrics (Cremonesi et al., 2010; 
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McLaughlin and Herlocker, 2004; Jambor and Wang, 2010b; Bellogín et al., 2011b), 

drawing from evaluation well studied methodologies in the Information Retrieval 

field. 

Precision-oriented metrics measure the amount of relevant and non-relevant re-

trieved (recommended) items. A solid body of metrics, methodologies, and datasets 

has been developed over the years in the Information Retrieval field. Recommenda-

tion can be naturally stated as an information retrieval task: users have an implicit 

need with regards to a space of items which may serve the user‟s purpose, and the 

task of the recommender system is to select, rank and present the user a set of items 

that may best satisfy her need. The need of the user and the qualities or reasons why 

an item satisfies it cannot be observed in full, or described in an exact and complete 

way, which is the defining characteristic of an information retrieval problem, as op-

posed to data retrieval tasks or logical proof. It is thus natural to adapt relevance-

based Information Retrieval evaluation methodologies here, which mainly consist of 

obtaining manual relevance labels of recommended items with respect to the user‟s 

need, and assessing, in different ways, the amount of relevant recommended items.  

Recommendation tasks and the available data for their evaluation, nonetheless, 

have specific characteristics, which introduce particularities with respect to main-

stream experience in the Information Retrieval field. In common information re-

trieval experimental practice, driven to a significant extent by the TREC campaigns 

(Voorhees and Harman, 2005), relevance knowledge is typically assumed to be (not 

far from) complete – mainly because in the presence of a search query, relevance is 

simplified to be a user-independent property. However, in recommender systems it is 

impractical to gather complete preference information for each user in a system. In 

datasets containing thousands of users and items, only a fraction of the items that 

users like is generally known. The unknown rest are, for evaluation purposes, as-

sumed to be non-relevant. This is a source of – potentially strong – bias in the meas-

urements depending on how unknown relevance is handled. In the next chapter we 

cover in detail these problems, along with an analysis of the different experimental 

design alternatives available in the literature. 

In the reminder of this chapter we present some of the most common evaluation 

metrics. We classify them into error-based and precision-based metrics, accounting 

for the two tasks previously described – rating prediction and item ranking, respec-

tively. After that, we describe the main methodologies used in the area to partition 

datasets and to select the candidate items in the latter task. Finally, we introduce the 

datasets used in this thesis to evaluate different recommendation algorithms. 
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3.2 Evaluation metrics 

The evaluation of recommender systems should take into account the goal of the 

system itself (Herlocker et al., 2004). For example, in (Herlocker et al., 2004) the au-

thors identify two main user tasks: annotation in context and find good items. In these 

tasks the users only care about errors in the item rank order provided by the system, 

not the predicted rating value itself. Based on this consideration, researchers have 

started to use precision-based metrics to evaluate recommendations, although most 

works also still report error-based metrics for comparison with state of the art ap-

proaches. Moreover, other authors, such as Herlocker and colleagues (Herlocker 

et al., 2004), encourage considering alternative performance criteria, like the novelty 

of the suggested items and the item coverage of a recommendation method. We de-

scribe the above types of evaluation metrics in the subsequent sections. 

3.2.1 Error-based metrics 

A classic assumption in the recommender systems literature is that a system that pro-

vides more accurate predictions will be preferred by the user (Shani and Gunawar-

dana, 2011). Although this has been further studied and refuted by several authors 

(McNee et al., 2006; Cremonesi et al., 2011; Bollen et al., 2010), the issue is still 

worth being analysed. 

Traditionally, the most popular metrics to measure the accuracy of a recom-

mender system have been the Mean Absolute Error (MAE), and the Root Mean 

Squared Error (RMSE): 
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where    and   denote the predicted and real rating, respectively, and    corresponds 

to the test set. The RMSE metric is usually preferred to MAE because it penalises 

larger errors. 

Different variations of these metrics have been proposed in the literature. Some 

authors normalise MAE and RMSE with respect to the maximum range of the 

ratings (Goldberg et al., 2001; Shani and Gunawardana, 2011) or with respect to the 

expected value if ratings are distributed uniformly (Marlin, 2003; Rennie and Srebro, 

2005). Alternatively, per-user and per-item average errors have also been proposed 

in order to avoid biases from the error (or accuracy) on a few very frequent users or 

items (Massa and Avesani, 2007a; Shani and Gunawardana, 2011). For instance, the 

user-average MAE is computed as follows: 
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A critical limitation of these metrics is that they do not make any distinction be-

tween the errors made on the top items predicted by a system, and the errors made 

for the rest of the items. Furthermore, they can only be applied when the recom-

mender predicts a score in the allowed range of rating values. Because of that, log-

based, and some content-based and probabilistic recommenders cannot be evaluated 

in this way, since         would represent a probability or, in general, a preference 

score. Hence, these methods can only be evaluated by measuring the performance of 

the generated ranking using precision-based metrics. 

3.2.2 Precision-based metrics 

These metrics can be classified into three groups: metrics that only use one ranking, 

metrics that compare two rankings (typically, one of them is a reference or ideal 

ranking), and metrics from the Machine Learning field. 

Metrics based on one ranking 

Examples of these metrics are precision, recall, normalised discounted cumulative 

gain, mean average precision, and mean reciprocal rank. Each of these metrics cap-

tures the quality of a ranking from a slightly different angle. More specifically, preci-

sion accounts for the fraction of recommended items that are relevant, whereas re-

call is the fraction of the relevant items that has been recommended. Both metrics 

are inversely related, since an improvement in recall typically produces a decrease in 

precision. They are typically computed up to a ranking position or cutoff  , being 

denoted as     and    , and defined as follows (Baeza-Yates and Ribeiro-Neto, 

2011): 
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where Rel  represents the set of relevant items for user  , and Rel    is the num-

ber of relevant recommended items up to position  .  

Recall has also been referred to as hit-rate in (Deshpande and Karypis, 2004). 

Hit-rate has also been defined as the percentage of users with at least one correct 

recommendation (Bellogín et al., 2012), corresponding to the success metric (or first 

relevant score), as defined by TREC (Tomlinson, 2005). 
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Furthermore, the mean average precision (MAP) metric provides a single 

summary of the user‟s ranking by averaging the precision figures obtained after each 

new relevant item is obtained, as follows (Baeza-Yates and Ribeiro-Neto, 2011): 
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where           outputs the ranking position of item   in the user‟s   list; hence, 

precision is computed at the position where each relevant item has been recom-

mended. 

Normalised discounted cumulative gain (nDCG) uses graded relevance that 

is accumulated starting at the top of the ranking and may be reduced, or discounted, 

at lower ranks (Järvelin and Kekäläinen, 2002): 
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where the discount function                   is usually defined as           

                or simply                  if    ,  dis        oth-

erwise, depending on the emphasis required on retrieving highly relevant items (Croft 

et al., 2009).      
  denotes the score obtained by an ideal or perfect ranking for 

user   up to position  , which acts as a normalisation factor in order to compare 

different users and datasets. Besides,    denotes the maximum number of items 

evaluated for each user; which is typically assumed to be a cutoff  , the same for all 

the users. In that situation, this metric is denoted as       .  

Using a different discount function, the rank score or half-life utility metric 

(Breese et al., 1998; Herlocker et al., 2004; Huang et al., 2006) can be obtained as 

follows: 
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where   is the default ranking, and   is the half-life utility that represents the rank of 

the item on the list such that there is a 50% chance that the user will view that item. 

In (Breese et al., 1998) the authors use a value of   in their experiments, and note 

that they did not obtain different results with a half-life of   . 

Mean reciprocal rank (MRR) favours rankings whose first correct result occurs 

near the top ranking results (Baeza-Yates and Ribeiro-Neto, 2011). It is defined as 

follows: 
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where       is a function that returns the position of the first relevant item obtained 

for user  . This metric is similar to the average rank of correct recommendation 

(ARC) proposed in (Burke, 2004) and to the average reciprocal hit-rank (ARHR) 

defined in (Deshpande and Karypis, 2004). 

It is important to note that since its early days, there has been a concern in the 

Information Retrieval field for the value and validity of the standard precision and 

recall metrics in interactive contexts (Su, 1992; Belkin and Croft, 1992). Nonetheless, 

precision-based metrics such as precision and recall, and more in general, metrics 

that measure the quality of the item ranking returned by a recommender have been 

frequently used in the field, despite they often lead to uncomparable results (Bellogín 

et al., 2011a). 

Metrics based on two rankings 

Additionally, specific metrics have been defined in the context of recommender 

evaluation that take as inputs two rankings (ideal vs estimated) instead of just one. A 

first example is the normalised distance-based performance measure (NDPM), 

used in (Balabanovic and Shoham, 1997), and proposed in (Yao, 1995). This metric 

compares two different weakly ordered rankings, and is formulated as follows 

(Herlocker et al., 2004; Shani and Gunawardana, 2011): 
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where    is the number of pairs of items for which the real ranking (reference rank-

ing using the ground truth) asserts an ordering, i.e., the items are not tied. Besides, 

  
    denotes the number of discordant item pairs between the method‟s ranking and 

the reference ranking, and   
    represents the number of pairs where the reference 

ranking does not tie, but where the method‟s ranking does. This metric is comparable 

across datasets since it is normalised with respect to the worst possible scenario (de-

nominator). Furthermore, it provides a perfect score of   to systems that correctly 

predict every preference relation asserted by the reference, and a worst score of   to 

methods that contradict every reference preference relation. Besides, a penalisation 

of     is applied when a reference preference relation is not predicted, whereas pre-

dicting unknown preferences (i.e., they are not ordered in the reference ranking) re-

ceives no penalisation. 

As the previous metric, rank correlation metrics such as Spearman‟s   and 

Kendall‟s   have also been proposed to directly compare the system ranking to a 

preference order given by the user. These correlation coefficients are later defined 

and analysed (Chapter 5). Here we only indicate that they provide scores in the range 
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of    to  , where   denotes a perfect correlation between the two above rankings, 

and    represents an inverse correlation.  

These two metrics, along with NDPM, suffer from the interchange weakness 

(Herlocker et al., 2004), that is, interchanges at the top of the ranking have the same 

weight that interchanges at the bottom of the ranking. 

Metrics from Machine Learning 

Finally, some other metrics from the Machine Learning literature have also been 

used, although they are not very popular. For instance, the receiving operating 

characteristic (ROC) curve and the area under the curve (AUC) have been used in 

(Herlocker et al., 1999), (Schein et al., 2001), (Schein et al., 2002), and (Rojsattarat 

and Soonthornphisaj, 2003), among others. Metrics based on the ROC curve provide 

a theoretically grounded alternative to precision and recall (Herlocker et al., 2004). 

The ROC model attempts to measure the extent to which an information filtering 

system can successfully distinguish between signal (relevant items) and noise. Starting 

from the origin of coordinates at (0,0), the ROC curve is built by considering, at each 

rank position, whether the item is relevant or not for the user; in the first case, the 

curve goes one step up, and in the second, one step right. 

A random recommender is expected to produce a straight line from the origin to 

the upper right corner; on the other hand, the more leftwards the curve leans, the 

better is the performance of the system. These facts are related to the area under the 

ROC curve, a summary metric that is expected to be higher when the recommender 

performs better, where the expected value of a random recommender is    , corre-

sponding to a diagonal curve in the unit square. 

In (Schein et al., 2001) the authors discriminate between the Global ROC 

(GROC) curve and the Customer ROC (CROC) curve, where the former assumes 

that only the most certain recommendations are made where some users may receive 

no recommendation at all; thus, the number of recommendations could be different 

for each user. The CROC curve is more realistic in the sense that every user receives 

the same amount of recommended items. However, for this curve a perfect recom-

mender would not necessarily obtain an AUC of  , and thus, it is required to com-

pute the associated value of a perfect ROC curve in order to provide a fair compari-

son and normalise accordingly. 

3.2.3 Other metrics 

As different applications have different needs, additional characteristics of recom-

mendations could be taken into consideration, and thus alternative metrics beyond 

accuracy and precision may be measured. In this context, it is important to under-

stand and evaluate the possible trade-offs between these additional characteristics 
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and their effect on the overall recommendation performance (Shani and Gunawar-

dana, 2011). For instance, some algorithms may provide recommendations with high 

quality or accuracy, but only for a small proportion of users or items, probably due to 

data sparsity. This effect can be quantified by measuring the coverage of the re-

commender system. Two types of coverage can be defined: user coverage (proportion 

of users to whom the system can recommend items) and item or catalog coverage (pro-

portion of items the system can recommend). In (Shani and Gunawardana, 2011) 

two metrics are proposed for measuring item coverage: one based on the Gini‟s in-

dex, and another based on Shannon‟s entropy. In (Ge et al., 2010) the authors pro-

pose simple ratio quantities to measure such metrics, and to discriminate between the 

percentage of the items for which the system is able to generate a recommendation 

(prediction coverage), and the percentage of the available items that are effectively ever 

recommended (catalog coverage). A similar distinction is considered in (Herlocker et al., 

2004) and (Salter and Antonopoulos, 2006). In (Herlocker et al., 2004) it is acknowl-

edged that item coverage is particularly important for the tasks of find all good items 

and annotation in context. Besides, a system with low coverage is expected to be less 

valuable to users and the authors propose to combine coverage with accuracy meas-

ures to yield an overall “practical accuracy” measure for the system, in such a way 

that coverage is raised only because recommenders produce bogus predictions. 

Beyond coverage, two recommendation characteristics have become very popu-

lar recently: novelty and diversity. Already a large amount of work has focused on 

defining metrics for measuring such characteristics (Lathia et al., 2010; Shani and 

Gunawardana, 2011; Vargas and Castells, 2011; Zhang and Hurley, 2009), and de-

signing algorithms to provide novel and/or diverse recommendations (Jambor and 

Wang, 2010b; Onuma et al., 2009; Weng et al., 2007; Zhou et al., 2010).  

Novel recommendations are those that suggest the user items she did not know 

about prior to the recommendation (Shani and Gunawardana, 2011), referred to as 

non-obvious items in (Herlocker et al., 2004; Zhang et al., 2002). Novelty can be 

directly measured in online experiments by directly asking users whether they are 

familiar with the recommended item (Celma and Herrera, 2008). However, it is also 

interesting to measure novelty in an offline experiment, so as not to restrict its 

evaluation to costly and hardly reproducible online experiments. 

Novelty can be introduced into recommendations by using a topic taxonomy 

(Weng et al., 2007), where items containing novel topics are appreciated. Typically, 

novel topics are obtained by clustering the previously observed topics for each user. 

In (Lathia et al., 2010), novelty measures the amount of new items appearing in the 

recommended lists over time. In (Onuma et al., 2009) a technique based on graphs is 

introduced to suggest nodes (items) well connected to older choices, but at the same 

time well connected to unrelated choices. 
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Metrics based on Information Theoretic properties of the items being recom-

mended have also been proposed by several authors. In (Bellogín et al., 2010) the 

entropy function is used to capture the novelty of a recommendation list, in (Zhou 

et al., 2010) the authors use the self-information of the user‟s top recommended 

items, and in (Filippone and Sanguinetti, 2010) the Kullback-Leibler divergence is 

used. 

In Information Retrieval, diversity is seen as an issue of avoiding redundancy and 

finding results that cover different aspects of an information need (Radlinski et al., 

2009). In that context, most of the proposed methods and metrics make use of (ex-

plicit or inferred) query aspects (topics or interpretations) to rank higher the most 

likely results (Demidova et al., 2010), or diversify a prior result set (Clarke et al., 2008; 

Agrawal et al., 2009; Chandar and Carterette, 2010; Radlinski et al., 2008; Rafiei et al., 

2010). 

In recommender systems diversity has been typically defined in an ad-hoc way, 

often mixing concepts such as diversity, novelty and coverage. For example, in (Salter 

and Antonopoulos, 2006) the authors make use of the catalog coverage defined 

above as a measure of recommendation diversity. A similar assumption is done in 

(Kwon, 2008). In (Zhou et al., 2010) the authors show that by tuning appropriately a 

hybrid recommender it is possible to obtain simultaneous gains in both accuracy and 

diversity, which is measured as the inter-list distance between every pair of users in 

the collection. Zhang and Hurley (2008) measure the novelty of an item by the 

amount of diversity it brings to the recommendation list, which is computed using a 

distance or dissimilarity function. 

More formal definitions for diversity have also been proposed. In (Lathia et al., 

2010) the authors propose to analyse diversity of top-N lists over time by comparing 

the intersection of sequential top-N lists. A statistical measure of diversity is pro-

posed in (Zhang and Hurley, 2009), where the authors consider a recommendation 

algorithm to be fully diverse if it is equally likely to recommend any item that the user 

likes. In (Jambor and Wang, 2010b), the introduction of the covariance matrix into 

the optimisation problem leads to promote items in the long tail. A similar result is 

obtained in (Celma and Herrera, 2008), where the items with fewer interactions 

within the community of users (long tail) are assumed to be more likely to be un-

known. Based on item similarities and focused on content-based algorithms, the au-

thors in (Bradley and Smyth, 2001) propose a quality metric which considers both the 

diversity and similarity obtained in the recommendation list. A definition based on 

the entropy of the probability distributions of each recommender with respect to the 

items is proposed in (Bellogín et al., 2010), and the Gini‟s index is used in (Fleder and 

Hosanagar, 2009). 

Finally, in (Vargas and Castells, 2011) a formal framework for the definition of 

novelty and diversity metrics is presented, where several previous metrics are unified 
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by identifying three ground concepts at the roots of novelty and diversity: choice, 

discovery, and relevance. 

Other metrics such as serendipity, privacy, adaptivity, confidence, and scalability 

have been less explored in the literature, but their importance and application to re-

commender systems have already been discussed, making clear their relation with the 

user‟s experience and satisfaction, which is the ultimate goal of a “good” recom-

mender system (Herlocker et al., 2004; McNee et al., 2006; Shani and Gunawardana, 

2011). 

3.3 Experimental setup 

An important decision in the experimental configuration of a recommender evalua-

tion is the dataset partition strategy. How the datasets are partitioned into training 

and test sets may have a considerable impact on the final performance results, and 

may cause some recommenders to obtain better or worse results depending on how 

this partition is configured. Although an exhaustive analysis of the different possibili-

ties to choose the ratings/items to be hidden is out of the scope of this thesis, we 

briefly discuss now some of the most well-known methods used. 

First, we have to choose whether or not to take time into account (Gunawardana 

and Shani, 2009). Time-based approaches naturally require the availability of user 

interaction data timestamps. A simple approach is to select a time point in the avail-

able interaction data timeline to separate training data (all interaction records prior to 

that point) and test data (dated after the split time point). The split point can be set 

so as to, for instance, have a desired training/test ratio in the experiment. The ratio 

can be global, with a single common split point for all users, or user-specific, to en-

sure the same ratio per user. Time-based approaches have the advantage of more 

realistically matching working application scenarios, where “future” user likes (which 

would translate to positive response to recommendations by the system) are to be 

predicted based on past evidence. As an example, the well-known Netflix prize pro-

vided a dataset where the test set for each user consisted on her most recent ratings 

(Bennett and Lanning, 2007). 

If we ignore time, there are at least the following three strategies to select the 

items to hide from each user: a) sample a fixed number (different) for each user; b) 

sample a fixed (but the same for all) number for each user, also known as given n or all 

but n protocols; c) sample a percentage of all the interactions using cross-validation. The 

most usual protocol is the last one (Goldberg et al., 2001; Sarwar et al., 2001), al-

though several authors have also used the all but n protocol (Breese et al., 1998; Wang 

et al., 2008a). The MovieLens datasets provide random splits following a five-fold 

cross validation strategy, as we shall see in the next section. 
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Nonetheless, independently from the dataset partition, it is recognised that the 

goals for which an evaluation is performed may be different in each situation, and 

thus, a different setting (and partition protocol) should be developed (Herlocker 

et al., 2004; Gunawardana and Shani, 2009). If that is not the case, the results ob-

tained in a particular setting would be biased and difficult to use in further experi-

ments, for instance, in an online experimentation. 

Furthermore, as mentioned earlier, in order to evaluate ranked recommendations 

for a target user  , it is required to select two sets of items, namely relevant and not 

relevant. In the next chapter, we describe different possibilities explored in the litera-

ture, along with a detailed analysis of these alternatives and the possible biases that 

may appear. 

3.4 Evaluation datasets 

In this section we present three datasets that were used in the experimental parts of 

this thesis. The datasets correspond to different domains: movie recommendation, in 

which user preferences are provided in the form of ratings, and music recommenda-

tion, where user preferences are derived from implicit (log-based) evidence. Fur-

thermore, one of the datasets includes social information that can be exploited by 

social filtering algorithms. 

3.4.1 MovieLens dataset 

The GroupLens research lab1 has released different datasets obtained from user in-

teraction in the MovieLens recommender system. At the time of writing, there are 

three publicly available MovieLens datasets of different sizes: 

 The 100K dataset, containing 100,000 ratings for 1,682 movies by 963 users. 

 The 1M dataset, with one million ratings has 6,040 users and 3,900 movies. 

 The 10M dataset, with 10 million ratings consists of almost 71,600 users and 

10,700 movies, and 100,000 tag assignments. 

Although there are larger public datasets (such as the one provided for the well-

known competition organised by Netflix2 between 2006 and 2009), the first two 

MovieLens datasets are currently, by far, the most used in the field. 

The ratings range on a 5-star scale in all three datasets; the 100K and 1M ver-

sions only use “integer” stars, and 10M uses “half star” precision (ten discrete rating 

values). Every user has at least 20 ratings in any of the datasets. 

                                                
1 GroupLens research lab, http://www.grouplens.org 

2 Netflix site, http://www.netflix, and Netflix Prize webpage, http://www.netflixprize.com  

http://www.grouplens.org/
http://www.netflix/
http://www.netflixprize.com/
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3.4.2 Last.fm dataset 

Last.fm is a social music website. At the moment, the site has more than 40 million 

users (claimed 30 million active in 20093) in more than 190 countries. Several authors 

have analysed and used this system for research purposes; special mention deserves 

those who have made their datasets public, such as (Konstas et al., 2009), (Celma, 

2010), and (Cantador et al., 2011). 

In 2010, Òscar Celma released two datasets collected using the Last.fm API. The 

first one (usually referred to as 360K) contains the number of plays (called scrobblings 

in the platform) of almost 360,000 users, counted on music artists, amounting to 

more than 17 million of (user, artist, playcounts) tuples. The second dataset (named 

1K) contains fewer users (nearly 1,000) but, in contrast to the previous one, the 

whole listening history of each user is collected as tuples (user, timestamp, artist, mu-

sic track) for up to 19 million tuples. 

3.4.3 CAMRa dataset 

In 2010 the 1st Challenge on Context-aware Movie Recommendation (CAMRa 20104) 

was held at the 4th ACM conference on Recommender Systems (RecSys 2010). The 

challenge organisers released four datasets that were used in three different challenge 

tracks (Adomavicius et al., 2010). These tracks were focused on temporal recom-

mendation (weekly recommendation), recommendation based on mood (Moviepilot track), 

and social recommendation (Filmtipset track). Two different datasets were provided 

for the first track, whereas the second and third tracks were assigned a different data-

set each (Said et al., 2010). 

These datasets were gathered from the Filmtipset5 and Moviepilot6 communities, 

and, depending on the track, contained social links between users, movie ratings, 

movie reviews, review ratings, comments about actors and movies, movie directors 

and writers, lists of favourite movies, moods, and links between similar movies. Film-

tipset is the largest online social community in the movie domain in Sweden, with 

more than 90,000 registered users and 20 million ratings in its database. Moviepilot, 

on the other hand, is the leading online movie and TV recommendation community 

in Germany; it has over 100,000 registered users and a database of over 40,000 mov-

ies with roughly 7.5 million ratings (Said et al., 2010). 

Further editions of this challenge have also released datasets related to recom-

mendation tasks (focused on group recommendation in 2011 (Said et al., 2011) and 

                                                
3 Announcement, http://blog.last.fm/2009/03/24/lastfm-radio-announcement  
4 CAMRa site, http://2010.camrachallenge.com/  

5 Filmtipset site, http://www.filmtipset.se  
6 Moviepilot site, http://www.moviepilot.de  

http://blog.last.fm/2009/03/24/lastfm-radio-announcement
http://2010.camrachallenge.com/
http://www.filmtipset.se/
http://www.moviepilot.de/
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on additional context information in 2012). However, they were not used in this the-

sis, and thus, they are not described in detail here. 

3.5 Summary 

In the Recommender Systems literature several evaluation metrics, protocols, and 

methodologies have been defined. It remains unclear the equivalence between them 

and the extent to which they would provide comparable results. 

The problem of evaluating recommender systems has been a major object of 

study and methodological research in the field since its earliest days. Error-based 

metrics have widely dominated the field, and precision-based metrics have started to 

be adopted more recently. Other metrics from the Machine Learning field have been 

proposed but they are not widely used in the community yet. Moreover, metrics for 

additional dimensions such as novelty or diversity have also started to be researched 

in the last few years. 

There are, still, important characteristics of the evaluation methodologies and 

metrics that remain unexplored. In contrast to the Information Retrieval community, 

where statistical analysis and eventual biases in the evaluation as a whole have been 

studied (Buckley et al., 2006; Aslam et al., 2006; Soboroff, 2004), there is a lack of 

such an analysis for recommender systems. This raises a key issue for our research 

which shall be analysed in depth in the next chapter, where we propose some alterna-

tive methodologies to overcome some of the possible biases that may arise. 

 



 

 

Chapter 4 

4 Ranking-based evaluation of  

recommender systems: 

experimental designs and biases 

There is an increasing consensus in the Recommender Systems community that the 

dominant error-based evaluation metrics are insufficient, and to some extent inade-

quate, to properly assess the practical effectiveness of recommendations. Seeking to 

evaluate recommendation rankings – which largely determine the effective accuracy 

in matching user needs – rather than predicted rating values, Information Retrieval 

metrics have started to be applied to evaluate recommender systems. 

In this chapter we analyse the main issues and potential divergences in the appli-

cation of Information Retrieval methodologies on recommender system evaluation, 

and provide a systematic characterisation of experimental design alternatives for this 

adaptation. We lay out an experimental configuration framework upon which we 

identify and analyse specific statistical biases arising in the adaptation of Information 

Retrieval metrics to recommendation tasks, which considerably distort the empirical 

measurements, hindering the interpretation and comparison of results across experi-

ments. We propose two experimental design approaches that effectively neutralise 

such biases to a large extent. We support our findings and proposals through both 

analytical and empirical evidence. 

We start the chapter by introducing the problem of (un)biased evaluation in re-

commender systems. The reminder of the chapter follows by revisiting the principles 

and assumptions underlying the Information Retrieval evaluation methodology: the 

Cranfield paradigm (Section 4.2). After that, in Section 4.3 we elaborate a formal 

synthesis of the main approaches to the application of Information Retrieval metrics 

to recommendation. In Sections 4.4 and 4.5 we analyse, respectively, the sparsity and 

popularity biases of Information Retrieval metrics on recommendation tasks. We 

present and evaluate two approaches to avoid these biases in Section 4.6,and end 

with some conclusions in Section 4.7.  
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4.1 Introduction 

There seems to be a raising awareness in the Recommender Systems (RS) community 

that important – or even central – open questions remain to be addressed concerning 

the evaluation of recommender systems. As we mentioned in the previous chapter, 

the error in predicting held-out user ratings has been by far the dominant offline 

evaluation methodology in the RS literature (Breese et al., 1998; Herlocker et al., 

2004). The limitations of this approach are increasingly evident, and have been exten-

sively pointed out (Cremonesi et al., 2010). The prediction error has been found to 

be far from enough or even adequate to assess the practical effectiveness of a re-

commender system in matching user needs. The end users of recommendations re-

ceive lists of items rather than rating values, whereby recommendation accuracy met-

rics – as surrogates of the evaluated task – should target the quality of the item selec-

tion and ranking, rather than the numeric system scores that determine this selection. 

For this reason, researchers are turning towards metrics and methodologies from 

the Information Retrieval (IR) field (Barbieri et al., 2011; Cremonesi et al., 2010; Her-

locker et al., 2004), where ranking evaluation has been studied and standardised for 

decades. Yet, gaps remain between the methodological formalisation of tasks in both 

fields, which result in divergences in the adoption of IR methodologies, hindering the 

interpretation and comparability of empirical observations by different authors. The 

use of IR evaluation techniques involves the adoption of the Cranfield paradigm 

(Voorhees and Harman, 2005), and common metrics such as precision, mean average 

precision (MAP), and normalised Discounted Cumulative Gain (nDCG) (Baeza-

Yates and Ribeiro-Neto, 2011). Given the natural fit of top-n recommendation in an 

IR task scheme, the adoption of IR methodologies would seem straightforward. 

However, recommendation tasks, settings, and available datasets for offline evalua-

tion involve subtle differences with respect to the common IR settings and experi-

mental assumptions, which result in substantial biases to the effectiveness measure-

ments that may distort the empiric observations and hinder comparison across sys-

tems and experiments. 

Furthermore, how to measure the performance of a recommender system is a key 

issue in our research. The variability in the experimental configurations, and the ob-

served statistical biases of the evaluation methodologies should be well understood, 

since we aim to predict the performance of a system. We should avoid the situation 

where a metric shows some source of noise together with the recommender‟s quality, 

since then a predictor capturing only that noise would appear as an (equivocal) effec-

tive performance predictor. 

Taking up from prior studies on the matter (Cremonesi et al., 2010; Herlocker 

et al., 2004; Shani and Gunawardana, 2011; Steck, 2011), we revisit the methodologi-

cal assumptions underlying IR metrics, and analyse the differences between Recom-
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mender Systems and Information Retrieval evaluation settings and their implications. 

Upon this, we identify two sources of bias in IR metrics on recommender systems: 

data sparsity and item popularity. We characterise and study the effect of these two 

factors both analytically and empirically. We show that the value range of common 

IR metrics is determined by the density of the available user preference information, 

to such an extent that the measured values per se are not meaningful, except for the 

purpose of comparison within a specific experiment. Furthermore, we show that the 

distribution of ratings among items has a drastic effect on how different algorithms 

compare to each other. Finally, we propose and analyse two approaches to mitigate 

popularity biases on the measured ranking quality, providing theoretical and empiri-

cal evidence of their effectiveness. 

4.2 Cranfield paradigm for recommendation 

Information Retrieval evaluation methodologies have been designed, studied, and 

refined over the years under the so-called Cranfield paradigm (van Rijsbergen, 1989; 

Voorhees, 2002b). In the Cranfield paradigm, as e.g. typically applied in the TREC 

campaigns (Voorhees and Harman, 2005), information retrieval systems are evaluated 

on a dataset comprising a set of documents, a set of queries – referred to as topics and 

consisting of a description or representation of user information needs –, and a set of 

relevance judgments by human assessors – referred to as ground truth. The assessors 

manually inspect queries and documents, and decide whether each document is rele-

vant or not for a query. Theoretically, each query-document pair should be assessed 

for relevance, which, for thousands or millions of documents, is obviously unfeasi-

ble. Therefore, a so-called pooling approximation is applied, in which the assessors 

actually inspect and judge just a subset of the document collection, consisting of the 

union of the top-n documents returned by a set of systems for each query. These 

systems for pooling are commonly the ones to be evaluated and compared, and n is 

called the pooling depth, typically ranging around 100 documents. While this procedure 

obviously misses some relevant documents, it has been observed that the degree of 

incompleteness is reasonably small, and the missing relevance does not alter the em-

piric observations significantly, at least up to some ratio between the pooling depth 

and the collection size (Buckley et al., 2007). 

Whereas in a search system users may enter multiple queries, the recommenda-

tion task – in its classic formulation – typically considers a single “user need” per 

user, that is, a user has a set of cohesive preferences which defines her main interests. 

In this view a natural fit of recommendation in the Cranfield paradigm would take 

users – as an abstract construct – as the equivalent of queries in ad-hoc retrieval (the 

user need to be satisfied), and items as equivalent to documents (the objects to be 

retrieved and ranked), summarised in Table 4.1. A first obvious difference is that 
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queries are explicit representations of specific information needs, whereas in the rec-

ommendation setting, user profile records are a global and implicit representation of 

what the user may need or like. Still, the query-user mapping is valid, inasmuch as 

user profiles may rightfully fit in the IR scheme as “vague queries.” 

The definition of ground truth is less straightforward. User ratings for items, as 

available in common recommendation datasets, are indeed relevance judgments of 

items for user needs. However, many recommendation algorithms (chiefly, collabora-

tive filtering methods) require these “relevance judgments” as input to compute rec-

ommendations. The rating data withholding evaluation approach, pervasive in RS 

research, naturally fits here: some test ratings can be held out as ground truth and the 

rest be left as training input for the systems. Differently from TREC, here the “que-

ries” and the relevance assessments are both entered by the same people: the end-

users. Furthermore, how much data are taken for training and for ground truth is left 

open to the experiment designers, thus adding a free variable to be watched over as it 

significantly impacts the measurements. 

On the other hand, whereas in the IR setting all the documents in the collection 

are candidate answers for all queries, the set of target items on which recommender 

systems are tested for each user need not be necessarily the same. As already de-

scribed in the previous chapter, in general, the items with a test rating are included in 

the candidate set for the raters, though not necessarily in a single run (Cremonesi 

et al., 2010). Moreover, it is common to select further non-rated target items, but not 

necessarily all the items (Bellogín et al., 2011a). Furthermore, the items rated by a 

user in the training set are generally excluded from the recommendation to this user. 

The way these options are configured has a drastic effect on the resulting measure-

ments, with variations in orders of magnitude (Bellogín et al., 2011a). 

In addition to this, the coverage of user ratings is inherently much smaller in re-

commender systems‟ datasets compared to TREC collections. The amount of un-

Task element TREC ad-hoc retrieval task Recommendation task 

Information need expression Topic (query and description) User profile 

Candidate answers 

All documents in the collection Target item set 

Same for all queries 
One or more per user, 

commonly different 

Document data available as 

system input 
Document content 

Training ratings,  

item features 

Relevance Topical, objective Personalised, subjective 

Ground truth Relevance judgments Test ratings 

Relevance assessment Editorial assessors End users 

Relevance knowledge  

coverage 

Reasonably complete  

(pooling) 

Highly incomplete 

(inherently to task) 

Table 4.1. Fitting the recommendation task in the Cranfield IR evaluation paradigm 
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known relevance – which in TREC is assumed to be negligible – is pervasive in rec-

ommendation settings (it is in fact intrinsic for the task to make sense), to a point 

where some assumptions of the IR methodology may not hold, and the gap between 

measured and real metric values becomes so significant that a metric‟s absolute mag-

nitude may just lose any meaning. Still, such measurements may support comparative 

assessments between systems, as far as the bias is system-independent. 

Finally, the distribution of relevance in the retrieval space displays popularity pat-

terns that are absent in IR datasets. The number of users who like each item is very 

variable (typically long-tailed) in recommendation datasets, whereas in TREC collec-

tions very few documents are relevant for more than one query. We shall show that 

this phenomenon has a very strong effect not only on metric values, but more im-

portantly on how systems compare to each other.  

In order to provide a formal basis for our study we start by elaborating a system-

atic characterisation of design alternatives for the adaptation of IR metrics to re-

commender systems, taking into account prior approaches described in the literature, 

such as those presented in the previous chapter. This formal framework will help us 

to analyse and describe the measurement biases in the application of IR metrics to 

recommender systems, and study new approaches to mitigate them. 

4.3 Experimental design alternatives 

The application of Information Retrieval metrics to recommender systems evaluation 

has been studied by several authors in the field (Barbieri et al., 2011; Breese et al., 

1998; Cremonesi et al., 2010; Herlocker et al., 2004; Shani and Gunawardana, 2011). 

We elaborate here an experimental design framework that aims to synthesise com-

monalities and differences between studies, encompassing prior approaches and sup-

porting new variants upon a common methodological grounding. We formalise the 

different methodologies presented in the previous chapter, and provide an equiva-

lence between both formulations. 

In the following, given a rating set split into training and test rating sets, we say 

an item     is relevant for a user     if   rated   positively, and its correspond-

ing rating falls in the test set. By positive rating we mean a value above some design-

dependent threshold. All other items (non-positively rated or non-rated) are consid-

ered as non-relevant. Like in the previous chapter, recommender systems are re-

quested to rank a set of target items    for each user. Such sets do not need to be the 

same for each user, and can be formed in different ways. In all configurations    

contains a combination of relevant and non-relevant items, and the different ap-

proaches are characterised by how these are selected, as we describe next. 
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4.3.1 Target Item Sampling 

We identify three significant design axes in the formation of the target item sets: can-

didate item selection, relevant item selection, and irrelevant item sampling. We con-

sider two relevant alternatives for each of these axes, summarised in Table 4.2, which 

we describe next. 

We shall use      and       to denote the set of all and positively rated items 

by user  , respectively, and     ,       to denote the respective size of those sets. 

With the subscripts “    ” and “     ” we shall denote the part of such sets (or their 

sizes) contained on the corresponding side of a data split. An equivalent notation 

    ,      , and so on, will be used for the ratings of an item, and when no user or 

item is indicated, the total number of ratings is denoted. This notation and the rest to 

be used along the chapter are summarised in Table 4.3. 

Let                 be the non-relevant target items for  . As a general 

rule, we assume non-relevant items are randomly sampled from a subset of candidate 

items    , the choice of which is a design option. We mainly find two significant 

alternatives for this choice:     (e.g. (Shani and Gunawardana, 2011)) and 

               (e.g. (Bellogín et al., 2011a; Vargas and Castells, 2011)). The first 

one, which we denote as AI for “all items”, matches the typical IR evaluation setting, 

where the evaluated systems take the whole collection as the candidate answers. The 

second, to which we shall refer as TI (“test items”) is an advisable condition to avoid 

certain biases in the evaluation of RS, as we shall see. 

Once   is set, for each user we select a set                         . 

   can be sampled randomly for a fixed size      (we call this option NN for “N 

non-relevant”), or all candidate items can be included in the target set,      

                    (we refer to this as AN for “all non-relevant”). Some authors 

have even used             (Basu et al., 1998; Jambor and Wang, 2010a; Jambor 

and Wang, 2010b), but we discard this option as it results in a highly overestimated 

precision (Bellogín et al., 2011a). The size of    is thus a configuration parameter of 

Design settings Alternatives 

Base candidate items 
AI     

TI                 

Item selection 

Relevant 
AR              

1R    
               

Non-relevant 
AN                          

NN Fixed     , random sampling 

Table 4.2. Design alternatives in target item set formation. 
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the experimental design. For instance, in (Cremonesi et al., 2010) the authors pro-

pose      = 1,000, whereas in (Bellogín et al., 2011a) the authors consider    

                                , among other alternatives. To the best of 

our knowledge, the criteria for setting this parameter have not been analysed in detail 

in the literature, leaving it to common sense and/or trial and error. It is worth noting 

nonetheless that in general      determines the number of calls to the recommenda-

tion algorithms, whereby this parameter provides a handle for adjustment of the cost 

of the experiments. 

Regarding the relevant item selection, two main options are reported in the lit-

erature, to which we shall refer as AR for “all relevant”, and 1R for “one relevant.” 

In the AR approach all relevant items are included in the target set, i.e.,    

          (Bellogín et al., 2011a). In the 1R approach, for user  , several target item 

sets   
  are formed, each including a single relevant item (Cremonesi et al., 2010). 

This approach may be more sensitive to the lack of recommendation coverage, as we 

shall observe later on. The choice between an AR or a 1R design involves a differ-

ence in the way the ranking quality metrics are computed, as we shall discuss in the 

next section. 

Symbol Meaning 

      Set of all users | all items | candidate items 

               Nr. of all | test | training ratings  

                  Nr. of all | test | training positive ratings 

                        Set of all | test | training items rated by    

                           Set of all | test | training items liked by   

           … Nr. of items rated | liked | … by    

           … Nr. of users who rated | like | … item   

     
   Set of target items for   in AR | 1R  

     
   Non-relevant items added to build    |   

   

  
             of item set    as ranked by   for   

    
         Top   items in    as ranked by   for   

  
        Position of   in     as ranked by   for   

  
   

   
     

  The item ranked  -th in    |   
  by   for   

    Split ratio:         

       
 

                             
  

    “Average” target set size:                 

    Relevance density in target sets:            

Table 4.3. Notation summary. 
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4.3.2 AR vs. 1R Precision 

Essentially, the way metrics are defined in AR and 1R differs in how they are aver-

aged. In AR the metrics are computed on each target set    in the standard way as in 

IR, and then averaged over users (as if they were queries). As a representative and 

simple to analyse metric, we shall use     henceforth, but similar properties to all 

the ones discussed here are observed for other metrics such as MAP and nDCG. The 

mean AR precision of a recommender system   can be expressed as: 

     
 

   
 

 

 
     

                  

   

 

where     
        denotes the top   items in    ranked by   for  .  

In the 1R design, drawing from (Cremonesi et al., 2010), we compute and aver-

age the metrics over the   
  sets, as follows: 

 

                    
 

      
    

      
  

         

      

 (4.1) 

where   
      

   is the standard precision of   
  for  . This form to express the 

metric is equivalent to the original formulation in (Cremonesi et al., 2010), but lets a 

straightforward generalisation to any other IR metric such as MAP and nDCG, by 

just using them in place of   
    in Equation (4.1). We shall intentionally use the 

same symbol   to refer both to 1R and AR precisions when there is no ambiguity. 

Whenever there may be confusion, or we wish to stress the distinction, we shall use 

1RP to explicitly denote 1R precision. 

AR precision basically corresponds to the standard precision as defined in IR, 

whereas 1R precision, while following essentially the same principle, departs from it 

in the formation of runs, and the way to average values. Additionally, note that the 

maximum value of 1RP@n is 1/n as we shall see in the next section, mainly since 

each run has only one relevant item. Besides, in Section 4.4 we shall establish a for-

mal relation between both ways to compute precision. 

4.3.3 Preliminary Test 

In order to illustrate the effects of the different described alternatives, we show their 

results on three common collaborative filtering algorithms, based respectively on 

probabilistic Latent Semantic Analisys (pLSA) (Hofmann, 2004), matrix factorisation 

(MF) (Koren et al., 2009), and user-based nearest-neighbours (kNN) (Cremonesi 

et al., 2010). As additional baselines, we include recommendation by popularity and 

random recommendation. We use two datasets: the 1M version of MovieLens, and 
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an extract from Last.fm published by Ò. Celma (Celma and Herrera, 2008). Details 

about the implementation and datasets partition are provided in Appendix A.  

Figure 4.1 shows the P@10 results with AR and 1R configurations. For 1R we 

shall always use TI-NN, with      = 100. This is a significantly lower value than      

= 1,001 reported in (Cremonesi et al., 2010), but we have found it sufficient to en-

sure statistical significance (e.g. Wilcoxon    0.001 for all pairwise differences be-

tween the recommenders in Figure 4.1), at a considerably reduced execution cost. We 

adopt the TI policy in 1R to avoid biases that we shall describe later. In the AR con-

figuration we show TI-AN and AI-AN for MovieLens, though we shall generally 

stick to TI-AN in the rest of the chapter. In Last.fm we use only TI-NN and a tem-

poral split, with      = 2,500 for efficiency reasons, since     = 176,948 is consid-

erably large in this dataset. We set the positive relevance rating threshold to 5 in 

MovieLens, as in (Cremonesi et al., 2010), whereas in Last.fm, we take any number 

above 2 playcounts as a sign of positive preference. We have experimented with 

other thresholds for positive ratings, obtaining equivalent results to all the ones that 

are reported here – the only difference is discussed in Section 4.6. 

It can be seen that pLSA consistently performs best in most experimental con-

figurations, closely followed by popularity, which is the best approach in Last.fm 

with AR, and that MF is generally superior to kNN. Some aspects strike our atten-

tion. First, even though P@10 is supposed to measure the same thing in all cases, the 

range of the metric varies considerably across configurations and datasets, and even 

the comparison is not always consistent. For instance, in AR popularity ranges from 

0.08 on MovieLens to 0.35 on Last.fm; and AR vs. 1R produces some disagreeing 

comparisons on Last.fm. It may also be surprising that popularity, a non-personalised 

method, fares so well compared to other algorithms. This effect was already found 

recently in (Cremonesi et al., 2010) and (Steck, 2011). We also see that TI and AI 

produce almost the same results. This is because                 in MovieLens; 

differences become noticeable in configurations where              is significantly 

 

Figure 4.1. Precision of different recommendation algorithms on MovieLens 1M and 

Last.fm using AR and 1R configurations. 
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smaller than  , as we shall see in Section 4.6.2. As mentioned before, note that in this 

case, the upper bound of P@10 for the 1R methodology is 0.10. 

Some of this variability may reflect actual strengths and weaknesses of the algo-

rithms for different datasets, but we shall show that a significant part of the observed 

variations is due to statistical biases arising in the adaptation of the Cranfield meth-

odology to recommendation data, and are therefore meaningless with respect to the 

assessment of the recommenders‟ accuracy. Specifically, we have found that the met-

rics are strongly biased to test data sparsity and item popularity. We shall analyse this 

in detail in Sections 4.4 and 4.5, but before that we establish a relation between AR 

and 1R precision that will help in this analysis. 

4.3.4 Relation between AR and 1R 

We have seen that AR and 1R precisions produce in general quite different values, 

and we shall show they display different dependencies over certain factors. We find 

nonetheless a direct relation between the two metrics. Specifically, 1R precision is 

bound linearly by NN-AR precision, that is,               , as we show next. 

Lemma. Let us assume the irrelevant item sampling in 1R is done only once for all 

the test ratings of a user, that is, we select the same set of non-relevant items 

  
     in the   

  target sets. If we denote                 – in other words, 

      
 

  –, we have: 

 
       

      
        

     
           

        
 (4.2) 

with                 , where      is the NN-AR precision computed with 

the target sets     . 

Proof. Let   
  be the relevant item included in   

 , and let   
       denote the ranking 

position assigned to   by   for   within a set  , where    . Since   
    , we have 

that   
    

    
     

    
     . This means that if   

  is ranked above   in   , then it is 

also above   in its target set   
 . Hence       

    
                        

    

     
                  . Summing on  , and dividing by   and        we prove 

the first inequality of Equation (4.2). 

On the other hand, it is easy to see that   
    

    
     

    
                

 . Thus, if   
  is ranked above   in   

 , then it is above                  in 

  . Thus       
    

                        
         

                    

           . And the second inequality of Equation (4.2) follows again by sum-

ming on  , and dividing by   and       .  
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Note that the assumption   
     in the lemma is mild, inasmuch as the statis-

tical advantage in taking different   
  for each   is unclear. Even in that case,      

and            
          should be reasonably stable with respect to the ran-

dom sampling of   
 , and thus Equation (4.2) tends to hold. Figure 4.2 illustrates the 

relation between the AR bounds and the 1R values. The empiric observation suggests 

they provide similar while not fully redundant assessments. We also see that the 

bounding interval reduces progressively as      is increased (right), and even faster 

with test data sparsity (left) – in sum, the metric converges to its bounds as      

                        . 

4.3.5 Limitations of error-based metrics 

The analysis presented in (Bellogín et al., 2011a) leads to question again the suitability 

of error metrics. As in (McLaughlin and Herlocker, 2004), we found that there is no 

direct equivalence between results with error- and precision-based metrics. Common 

sense suggests that putting more relevant items in the top-N is more important for 

real recommendation effectiveness than being accurate with predicted rating values, 

which are usually not even shown to real users. Our study confirms that measured 

results differ between these two perspectives. An online experiment, where real us-

ers‟ feedback is contrasted to the theoretic measurements, may shed further light for 

an objective assessment and finer analysis of which methodology better captures user 

satisfaction. 

Furthermore, the use of error-based metrics may not be applicable depending on 

the dataset or the recommender evaluated. For instance, log-based datasets and 

probabilistic (e.g. pLSA) or popularity-based recommenders cannot be evaluated 

using error-based metrics because no real ratings are available in the first case, and in 

 

Figure 4.2. Empiric illustration of Equation (4.2). The curves show 1RP@10 and its bounds, 

for pLSA and kNN over MovieLens 1M. The light and dark shades mark the distance to the 

upper and lower bounds, respectively. The left side shows the evolution when progressively 

removing test ratings, and the right side displays the variation with      ranging from 100 to 

1,000. 
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the second case because such recommenders do not necessarily predict a rating, not 

even a score in the range of ratings (Cremonesi et al., 2010). 

The application of ranking-based metrics to recommendation, nonetheless, is far 

from being trivial. Firstly, there are obvious differences between the Cranfield para-

digm and a standard recommendation context, as described in Section 4.2. Secondly, 

the evaluation methodology may be sensitive to any statistical bias which may appear 

in the process. In the next sections we shall analyse two of these sources of bias: 

sparsity and popularity. 

4.4 Sparsity bias 

As mentioned earlier, we identify two strong biases in precision metrics when applied 

to recommendation. The first one is a sensitivity to the ratio of the test ratings vs. the 

added non-relevant items. We study this effect by an analysis of the expected preci-

sion for non-personalised and random recommendations in the AR and 1R settings. 

4.4.1 Expected Precision 

Let   
       be the item ranked at position   in the recommendation output for   

by a recommender system  , and let   be the ratio of test data in the training-test 

data split. In an AR setup the expected precision at   (over the sampling space of 

data splits with ratio  , the sampling of   , and any potential non-determinstic as-

pect of the recommender system – as e.g. in a random recommender) is: 

 

           
   

 
 

 
         

         

 

   

   

where            denotes the probability that item   is relevant for user  , i.e., the 

probability that            . Now we may write         
            

           
             

       , where we have        
            

        

        . On the other hand,            
             

                    

    
                       

      , since              in the AR methodol-

ogy. If   is a non-personalised recommender then   
   

 and   are mutually independ-

ent, and it can be seen that               
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where                  – if    have all the same size, then       . As all rele-

vant items for each user are included in her target set, we have         
     

           
         . If ratings are split at random into test and training, this is equal 

to        
        . Hence, we have: 

 

        
    

       
    

   
      

    

 

   

 (4.3) 

Now, if items were recommended at random, we would have        
        

      , and therefore: 

 

                    
    

     
     (4.4) 

where   is the average density of known relevance – which depends on how many 

preferences for items the users have conveyed, and the size of the target test item 

sets. 

On the other hand, in a 1R evaluation setup, we have: 

 

          
 

        
           

          
  

 

   

         

      

  

where   
        

  denotes the item ranked at position   in   
 . For random recom-

mendation, we have         
            

       
         since all target sets have 

the same size, whereby we have: 

 
                          (4.5) 

4.4.2 Test Sparsity Bias 

The above results for the expected random precision provide a formal insight on 

strong metric biases to characteristics of the data and the experimental configuration. 

In both Equations (4.4) for AR and (4.5) for 1R, we may express the expected ran-

dom precision as                   , where    is the ratio of positively 

rated items by   in    (or   
 , for that matter), and        , or      , depending 

on the experimental approach. In the AR approach the density  , and thus the   

ratio, are also inversely proportional to  . Precision in this methodology is therefore 

sensitive to (grows linearly with)   and   , and is inversely proportional to  , 

whereas 1R is only sensitive (inversely proportional) to  . The expected precision of 

random recommendation naturally provides a lower bound for any acceptable re-

commender. Note that in any configuration of AR and 1R, the total precision of any 

system is                    , since as all systems are required to return 
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(recommend) all items in the target sets    (or   
 ), that is, the total precision does 

not depend on the ranking. At lower cutoffs, we expect to have      

            . In other words, the lower bound – and so the expected range – for 

the     of recommender algorithms grows with the average ratio of relevant items 

per target item set. 

The   ratio – hence the random precision – thus depends on several aspects of 

the experimental setup (the experimental approach, the split ratio  , the number of 

non-relevant items in the target sets), and the test collection (the number of ratings, 

the number of users). Therefore, since   and the random precision can be adjusted 

arbitrarily by how the test sets are split, constructed, etc., we may conclude that the 

specific value of the metric has a use for comparative purposes, but has no 

particular meaning by itself, unless accompanied by the corresponding aver-

age relevance ratio   of the target test sets. This is naturally in high contrast to 

common IR datasets, where both the document collection and the relevance infor-

mation are fixed and not split or broken down into subsets. In fact, the metric values 

reported in the TREC campaigns have stayed within a roughly stable range over the 

years (Armstrong et al., 2009a; Armstrong et al., 2009b). Note also that the sparsity 

bias we analyse here is different from the impact of training data sparsity in the per-

formance of collaborative filtering systems. What we describe is a statistical bias 

caused by the sparsity of test data (as a function of overall data sparsity and/or test 

data sampling), and its effect does not reflect any actual variation whatsoever in the 

true recommendation accuracy. 

The sparsity bias explains the precision range variations observed earlier in Fig-

ure 4.1. The empirically obtained values of random precision match quite exactly the 

 

Figure 4.3. Evolution of the precision of different recommendation algorithms on 

MovieLens 1M, for different degrees of test sparsity. The x axis of the left and center 

graphics shows different amounts of removed test ratings. The x axis in the right graphic is 

the size of the target item sets. 
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theoretically expected ones. To what extent the random recommendation analysis 

generalises to other algorithms can be further analysed empirically. Figure 4.3 illus-

trates the bias trends over rating density and target set size, using the experimental 

setup of Section 4.3.3 (with TI-AN in AR, and TI-NN in 1R). We show only the 

results in MovieLens – they display a similar effect on Last.fm. In the left and center 

graphics, we simulate test sparsity by removing test ratings. In the right graphic we 

vary        in a 1R configuration. We observe that the empirical trends confirm 

the theoretical analysis: precision decreases linearly with density in the AR methodol-

ogy (left graphic, confirming a linear dependence on  ), whereas precision is inde-

pendent from the amount of test ratings in the 1R approach (center), and shows in-

verse proportionality to t (right). It can furthermore be seen that the biased behavior 

analytically described for random recommendation is very similarly displayed by the 

other recommenders (only differing in linear constants). This would confirm the 

explanatory power of the statistical trend analysis of random recommendation, as a 

good reference for similar biases in other recommenders. On the other hand, even 

though the precision values change drastically in magnitude, it would seem that the 

comparison between recommenders is not distorted by test sparsity. We find other 

biases in precision measurements, however, which do affect the comparison of re-

commenders, as we study in the next section. 

4.5 Popularity bias 

Sparsity is not the only bias the metric measurements are affected by. The high ob-

served values for a non-personalised method such as recommendation by popularity 

raise the question of whether this really reflects a virtue of the recommender, or 

some other bias in the metric. We seek to shed some light on the question by a closer 

study. 

4.5.1 Popularity-Driven Recommendation 

Even though they contradict the personalisation principle, the good results of popu-

larity recommendation can be given an intuitive explanation. By averaging over all 

users, precision metrics measure the overall satisfaction of the user population. A 

method that gets to satisfy a majority of users is very likely to perform well under 

such metrics. In other words, average precision metrics tend to favour the satisfac-

tion of majorities, regardless of the dissatisfaction of minorities, whereby algorithms 

that target majority tastes will expectably yield good results on such metrics. This 

implicitly relies on the fact that on a random item split, the number of test ratings for 

an item correlates with its number of training ratings, and its number of positive rat-

ings correlates with the total number of ratings. More formally, the advantage of 
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popularity-oriented recommendation comes from the fact that in a random rating 

split,                                           , which means that the items 

with many training ratings will tend to have many positive test ratings, that is, they 

will be liked by many users according to the test data. We analyse this next, more 

formally and in more detail. 

In a popularity recommender   
     

 is the  -th item in the target set with most 

ratings in the training set – i.e., the system ranks items by decreasing order of 

         
      . This ranking is almost user-independent (except for those, statistically 

negligible, user items already in training which are excluded from the ranking) and 

therefore, for an AR experimental design, Equation (4.3) applies. Since we have 

      
       

              
     

    (as far as                        for a 

random training-test split), the popularity recommendation is the best possible non-

personalised system, maximising        . Popularity thus achieves a considerably 

high precision value, just for statistical reasons. 

For a 1R experimental design, using Equation (4.2) (lemma) we have: 

          

      
           

       
          

        
 

Now, since      and   
     above are computed by AR, we may elaborate from 

Equation (4.3) for a non-personalised recommender, and we get: 

   

      
    
   

      
    

 

   

           
   

      
    
   

      
    

  

   

 

This experimental approach is thus equally biased to popular items, since the latter 

optimise       
     

   . 

Note that the advantage of popularity over other recommenders is highly de-

pendent on the skewness in the distribution of ratings over items: if all items were 

equally popular, the popularity recommender would degrade to random recommen-

dation – in fact slightly worse, as                                   , so popu-

lar items would have fewer positive test ratings. On the other extreme, if a few items 

(less than  ) are liked by most users, and the rest are liked by very few, then popular-

ity approaches the maximum precision possible. 

4.5.2 Popularity Distributions 

In order to illustrate how the dependence between the popularity precision and the 

background popularity distribution evolves, we simulate different degrees of skewness 

in rating distributions. As a simulated distribution pattern we use a shifted power law 

                  , where   determines the skewness (e.g.     1.4 for 

MovieLens 1M). Figure 4.4 (left) shows the shape of generated distributions ranging 
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from uniform (  = 0) to a very steep long-tailed popularity distribution (  = 2), and 

(center) how the measured precision evolves in this range. The artificial data are cre-

ated with the same number of users, items, and ratings (therefore the same rating den-

sity) as in MovieLens 1M, setting    and    by a fit to this dataset, and enforcing these 

constraints by adjusting  . The rating values are assigned randomly on a 1-5 scale, also 

based on the prior distribution of rating values in Movie-Lens. 

The results in Figure 4.4 (center) evidence the fact that the precision of popular-

ity-based recommendation is heavily determined by the skewness of the distribution. 

It benefits from steep distributions, and degrades to slightly below random (0.0077 

vs. 0.0100) when popularity is uniform. This slightly below-random performance of 

popularity recommendation at   = 0 is explained by the fact that              

                              is inverse to the popularity ranking by           

when      is uniform, as predicted at the end of the previous section. kNN and MF 

stay essentially around random recommendation. This is because the data are devoid 

of any consistent preference pattern (as collaborative filtering techniques would as-

sume) in this experiment, since the ratings are artificially assigned at random, and the 

results just show the “pure” statistical dependency to the popularity distribution. 

pLSA does seem to take advantage of item popularity, as it closely matches the effec-

tiveness of popularity recommendation. We show only the 1R design, but the effect 

is the same in AR. 

This observation also explains the difference between datasets from IR and 

those from recommendation with regards to the popularity bias. Figure 4.4 (right) 

shows the cumulative distribution of positive user interaction data per item in three 

 

Figure 4.4. Effect of popularity distribution skewness on the popularity bias. The left 

graphic shows the cumulated popularity distribution of artificial datasets with simulated 

ratings, with skewness ranging from   = 0 to 2. The x axis represents items by popularity 

rank, and the y axis displays the cumulative ratio of ratings. The central graphic shows the 

precision of different recommendation algorithms on each of these simulated datasets. The 

right graphic shows the cumulative distribution of positive ratings in real datasets. 
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datasets: Netflix, MovieLens, and Last.fm (the dataset in Section 4.3.3). The shapes 

of the curves are typical of long-tailed distributions, where a few popular items ac-

cumulate most of the preference data (Celma, 2010; Celma and Cano, 2008). This 

contrasts with the distribution of positive relevance judgments over documents in 

TREC data (same figure) – where we have aggregated 30 individual tracks, filtering 

out the documents that are not relevant to any query, and obtaining a set of 703 que-

ries, 129,277 documents, and 149,811 positive judgments. The TREC distribution is 

considerably flatter, not far from uniform: 87.2% of documents are relevant to just 

one query, and the maximum number of positive assessments per document is 25 

(3.6% of queries), whereas the top popular item in Netflix, MovieLens, and Last.fm, 

is liked by 20.1%, 32.7% and 73% of users, respectively. 

Several reasons account for this difference between retrieval and recommender 

datasets. First, in IR queries are selected by design, intending to provide a somewhat 

varied testbed to compare retrieval systems. Hence, including similar queries with 

overlapping relevance would not make much sense. Second, queries in natural search 

scenarios are generally more specific and narrower than global user tastes for rec-

ommendation, whereby the corresponding relevant sets have much less intersection. 

Furthermore, the TREC statistics we report are obtained by aggregating the data of 

many tracks, in order to seek any perceptible popularity slant. The typical TREC ex-

periments are actually run on separate tracks comprising typically 50 queries, where 

very few documents, if any, are relevant to more than one query. Note also that even 

though we have filtered out over 0.7 million non-relevant plus nearly 5 million unla-

beled documents in the TREC statistics, the non-relevant documents actually remain 

as input to the systems, contrarily to experiments in the recommender domain, thus 

making up an even flatter relevance distribution. Moreover, in the usual IR evalua-

tion setting, the systems have no access to the relevance data – thus, they have no 

means to take a direct bias towards documents with many judgments –, whereas in 

recommendation, this is the primary input the systems (particularly collaborative fil-

tering recommenders) build upon. The popularity phenomenon has therefore never 

been an issue in IR evaluation, and neither the metrics nor the methodologies have 

had to even consider this problem, which arises now when bringing them to the rec-

ommendation setting – where the overlap between user preferences is not only 

common, but actually needed by collaborative filtering algorithms. 

4.6 Overcoming the popularity bias 

After analysing the effects of popularity in precision metrics, the issue remains: to 

what extent do the good results of popularity recommendation reflect only a statisti-

cal bias in a metric, or any degree of actual recommendation quality? The same ques-

tion should be raised for pLSA, which seems to follow the popularity trends quite 
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closely. We address the question by proposing and examining alternative experimen-

tal configurations, where the statistical role of popularity gets reduced, as we propose 

next. 

4.6.1 Percentile-Based Approach (P1R) 

We propose a first approach to neutralise the popularity bias, which consists in parti-

tioning the set of items into   popularity percentiles     , breaking down the 

computation of accuracy by such percentiles, and averaging the   obtained values. 

By doing so, in a common long-tailed popularity distribution, the margin for the 

popularity bias is considerably reduced, as the difference    in the number of posi-

tive test ratings per item between the most and least popular items of each percentile 

is not that high. The popularity recommender is forced to recommend as many un-

popular as popular items, thus leveling the statistical advantage to a significant extent. 

It remains the optimal non-personalised algorithm, but the difference – and thus the 

bias – is considerably reduced. The technique is illustrated in Figure 4.5a. 

A limitation of this approach is that it restricts the size of the target sets by 

          . For instance, for   = 10 in MovieLens 1M, this imposes a limit of 

       370, which seems acceptable for 1R. The restriction can be more limiting in 

the AR approach, e.g. the TI and AI options cannot be applied (except within the 

percentiles). For this reason, we will only apply the percentile technique in the 1R 

design, a configuration to which we shall refer as P1R. 

 

 

Figure 4.5. Rating splits by a) a popularity percentile partition (left), and b) a uniform 

number of test ratings per item (right). On the left, the red dashed split curve represents 

             – i.e., the random split ratio needs not be applied on a per-item basis – whereas 

on the right it does represent          . 
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4.6.2 Uniform Test Item Profiles (UAR, U1R) 

We now propose a second technique consisting of the formation of data splits where 

all items have the same amount of test ratings. The assumption is that the items with 

a high number of training ratings will no longer have a statistical advantage by having 

more positive test ratings. That is, the relation                        described in 

Section 4.5.1 breaks up. The approach consists of splitting the data by picking a set   

of candidate items, and a number   of test ratings per item so that         . For 

this to be possible, it is necessary that                  , where   is a mini-

mum ratio of training ratings per item we consider appropriate. In particular, in order 

to allow for  -fold cross-validation, we should have      . The selection of   can 

be done in several ways. We propose to do so in a way that it maximises    , i.e., to 

use as many different target test items as possible, avoiding a biased selection to-

wards popular items. If we sort      by popularity rank, it can be seen that this is 

achieved by picking              with   

                         , so that              . Figure 4.5b illustrates 

this procedure. 

The expected effect of this approach is that the statistical relation              

      no longer holds, and neither should hold now, as a consequence, the rationale 

described in Section 4.5.1 for popularity being the optimum non-personalised re-

commender. In fact, since                           for any    , and 

         , it can be seen that if     (TI policy) Equation (4.3) for AR yields: 

        
   

      
    

   
 
     

    

    
    

 

   

 

for any non-personalised recommender. If the ratio      
        

      of positive 

ratings does not depend on  , we have                      . This means 

that popularity recommendation may get some advantage over other recommenders 

only if – and to the extent that – popular items have a higher ratio of positive ratings 

than unpopular items, and popularity recommendation will degrade to random preci-

sion otherwise. On the other hand, it can be seen that if     (i.e., the TI policy is 

not adhered to), then           would get reduced by a factor of        .  

For a non-personalised recommender in a 1R design, elaborating from Equa-

tions (4.2) and (4.3) we get: 
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an equivalent situation where the measured precision of popularity recommendation 

is bound by the potential dependence between the ratio of positive ratings and popu-

larity. 

Figure 4.6 shows this ratio as            with respect to the item popularity 

rank in MovieLens 1M. It can be seen that indeed the ratio grows with popularity in 

this dataset, which does lend an advantage for popularity recommendation. Even so, 

we may expect the bias to be moderate – but this has to be tested empirically, as it 

depends on the dataset. Note also that in applications where all ratings are positive 

(as e.g. in our Last.fm setup), popularity – and any non-personalised recommender – 

would drop exactly to random precision (            in AR and     in 1R).  

A limitation of this approach is that the formation of   may impose limits on the 

value of  , and/or the size of  . If the popularity distribution is very steep,   may 

turn out small and therefore biased to a few popular items. Moreover, there is in gen-

eral a solution for   only up to some value of   – it is easy to see (formally, or just 

visually in Figure 4.5) that as     there is no item for which                 

 , unless the popularity distribution was uniform, which is never the case in practice. 

We have however not found these limitations to be problematic in practice, and 

common configurations turn out to be feasible without particular difficulty. For in-

stance, in MovieLens 1M we get     = 1,703 for    0.2 with   = 0.2 (allowing for a 

5-fold cross-validation), resulting in   = 118 test ratings per item.  

This method can be used, as noted, in both the AR and 1R approaches. We shall 

refer to these combinations as UAR and U1R respectively, where „U‟ stands for the 

“uniform” number of item test ratings. In U1R it is important to set     in order 

to sample non-relevant items within   (i.e.,     , for the TI policy). Otherwise, 

popularity would have a statistical advantage over other recommenders, as it would 

systematically rank irrelevant items in      below any relevant item in  , whereas 

 

Figure 4.6. Positive ratings ratio vs. popularity rank in MovieLens 1M. The graphic plots 

          , where items are ordered by decreasing popularity. We display averaged values 

for 100 popularity segments, for a smoothed trend view. 
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other algorithms might not. The same can be considered in UAR, unless the experi-

mental setup requires         , as e.g. in the AI design. In that case a slight popu-

larity bias would arise, as we shall see next. 

4.6.3 Experimental Results 

Figure 4.7 compares the results measured by 1R, AR and their corresponding popu-

larity-neutralising variants. The setup is the same as in previous sections, except that 

for AR, we take TI-NN with      = 1,700, to level with UAR in random precision. 

All the results correspond to MovieLens 1M except Last.fm where indicated. It can 

be seen that P1R, U1R and UAR effectively limit the popularity bias. The techniques 

seem to be more effective on 1R than AR: U1R and (even more) P1R actually place 

the popularity algorithm by the level of random recommendation, whereas the meas-

ured popularity precision decreases in UAR, but remains above kNN. The advantage 

of popularity over randomness in U1R and P1R is explained by the bias in the ratio 

of positive ratings in popular items (Figure 4.6). This ratio is constant in Last.fm, 

whereby popularity drops to random in U1R, as predicted by our analysis in the pre-

vious section, proving that the popularity bias remaining in the uniform-test ap-

proach is caused by this factor. This residual bias is higher in U1R than P1R, because 

in the former,    is sampled over a larger popularity interval (    = 1,703 vs.     / 

10 = 370 items), giving a higher range for advantage by popularity, which also ex-

plains why the latter still overcomes kNN in UAR. We may observe the importance 

of using the TI policy in UAR, without which (in AI-UAR) a higher bias remains. We 

also show the effect of removing the 10% most popular head items from the test 

data (and also from  , i.e., they are excluded from    sampling) in 1R, as a simple 

strategy to reduce the popularity bias (Cremonesi et al., 2010). We see that this tech-

nique reduces the measured precision of popularity, but it is not quite as effective as 

the proposed approaches. 

It is finally worth emphasising how the percentile and uniform-test ap-

proaches discriminate between pure popularity-based recommendation and 

an algorithm like pLSA, which does seem to take popularity as one of its signals, 

but not the only one. The proposed approaches allow uncovering the difference, 

neutralising popularity but not pLSA, which remains the best algorithm in all con-

figurations. 

As we mentioned in Section 4.3, we have taken precision as a simple and com-

mon metric for our study, but all the presented analysis and proposed alternatives 

straightforwardly generalise to other standard IR metrics, such as MAP, nDCG, and 

Mean Reciprocal Rank (MRR). Their application is direct in the AR setting; and they 

can be applied in 1R by simply introducing them in place of precision in the internal 

summation of Equation (4.1). Figure 4.7 shows results for nDCG, where we see that 

the analysed patterns hold just the same. The AR approach provides room for a 
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slightly wider metric variety than 1R, in the sense that some metrics reduce to each 

other in 1R. For instance, for a single relevant item, MAP is equivalent to Mean Re-

ciprocal Rank (        where   is the rank of the first relevant item). And 

nDCG is insensitive to relevance grades in 1R (the grade of the single relevant item 

cancels out), whereas grades do make a difference in AR. 

4.7 Conclusions 

The application of Information Retrieval methodologies to the evaluation of recom-

mender systems is not necessarily as straightforward as it may seem. Hence, it de-

serves close analysis and attention to the differences in the experimental conditions, 

and their implications on the explicit and implicit principles and assumptions on 

which the metrics build. We have proposed a systematic characterisation of design 

alternatives in the adaptation of the Cranfield paradigm to recommendation tasks, 

aiming to contribute to the convergence of evaluation approaches. We have identi-

fied assumptions and conditions underlying the Cranfield paradigm which are not 

granted in usual recommendation experiments. We have detected and examined re-

sulting statistical biases, namely test sparsity and item popularity, which do not arise 

in common test collections from IR, but do interfere in recommendation experi-

 

 

Figure 4.7. Precision and nDCG of recommendation algorithms on MovieLens 1M (and 

Last.fm only where indicated) using the 1R, U1R, P1R (  = 10 percentiles), AR, and UAR 

methodologies. The “-10% head” bars show the effect of removing the 10% most popular 

items from the test data (Cremonesi et al., 2010). 
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ments. Sparsity is clearly a noisy variable that is meaningless with respect to the value 

of a recommendation. Whether popularity is in the same case is less obvious; we 

propose experimental approaches that neutralise this bias, leaving way to an unbiased 

observation of recommendation accuracy, isolated from this factor. With a view to 

their practical application, we have identified and described the pros and cons of the 

array of configuration alternatives and variants analysed in this study. 

In general, we have found that evaluation metrics computed in AR and 1R ap-

proaches differ in how they are averaged. This means, more specifically, that precision 

obtained by approaches following a 1R design is bound linearly by precision of AR 

approaches. Moreover, we have observed that a percentile-based evaluation considera-

bly reduces the margin for the popularity bias, although the main limitation of this ap-

proach is that it specifies a constraint on the size of the possible target sets. Addition-

ally, a uniform-test approach removes any statistical advantage provided by having 

more positive test ratings. Furthermore, we have found that both approaches discrimi-

nate between pure popularity-based recommendation and an algorithm like pLSA. 

The main goal of our research addresses a second-order problem: we aim to pre-

dict the accuracy of the predictions of recommendation algorithms. As we shall see, 

the (second-order) evaluation of our researched methods relies on the (first-order) 

evaluation metrics and methodologies by which the recommendation algorithms‟ 

accuracy is measured. In order to consistently evaluate our methods, the primary 

recommendation evaluation has to be reliable and well-understood. Any bias in the 

process would lead to inconclusive or misleading results about the predictive power 

of our methods. For this reason, the results presented in this chapter are a necessity 

for the main goal of this thesis, but the outcome can be of more general use. Specifi-

cally, in the following chapters we shall compare how the different methodologies 

(with and without neutralised biases) may impact the observations on the predictive 

power of our predictors. 

The popularity effects in recommender systems have started to be reported in 

recent work (Cremonesi et al., 2011; Cremonesi et al., 2010; Steck, 2011). Our re-

search complements such findings by seeking principled theoretical and empirical 

explanations for the biases, and providing solutions within the frame of IR evaluation 

metrics and methodology – complementarily to the potential definition of new spe-

cial-purpose metrics (Steck, 2011). The extent to which popularity is a noisy signal 

may be further analysed by developing more complete metric schemes incorporating 

gain and cost dimensions, where popular items would expectably score lower. Such 

metrics may e.g. account for the benefits (to both recommendation consumers and 

providers) drawn from novel items in typical situations (Vargas and Castells, 2011), 

as a complement to plain accuracy. Online tests with real users should also be valu-

able for a comparative assessment of offline observations, and the validation of ex-

perimental alternatives. 
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III Predicting performance 

in recommender systems

You can never get a cup of tea large enough or 

a book long enough to suit me. 

Clive Staples Lewis 





 

 

Chapter 5 

5 Performance prediction in 

Information Retrieval 

Information retrieval performance prediction has been mostly addressed as a query 

performance issue, which refers to the performance of an information retrieval sys-

tem in response to a specific query. It also relates to the appropriateness of a query as 

an expression of the user‟s information needs. In general, performance prediction 

methods have been classified into two categories depending on the used data: pre-

retrieval approaches, which make the prediction before the retrieval stage using query 

features, and post-retrieval approaches, which use the rankings produced by a re-

trieval engine. In particular, the so-called clarity score predictor – of special interest 

for this thesis – has been defined in terms of language models, and captures the am-

biguity of a query with respect to the utilised document collection, or a specific result 

set. 

In this chapter we provide an overview of terminology, techniques, and evalua-

tion related to performance prediction in Information Retrieval. In Section 5.1 we 

introduce terminology and foundamental concepts of the performance prediction 

problem. In Section 5.2 we describe the different types of performance prediction 

approaches, which are mainly classified in the two categories mentioned above: pre-

retrieval and post-retrieval approaches. Then, in Section 5.3 we provide a thorough 

analysis on the use of clarity score as a performance prediction technique, including 

examples, adaptations, and applications found in the literature. Finally, in Section 5.4 

we introduce the general methodology used to evaluate performance predictors, 

along with the most common methods to measure their quality.  
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5.1 Introduction 

Performance prediction has received little attention, if any, to date in the Recom-

mender Systems field. Our research, however, finds a close and highly relevant refer-

ence in the adjacent Information Retrieval discipline, where performance prediction 

has gained increasing attention since the late 90‟s, and has become an established 

research topic in the field. Performance prediction finds additional motivation in 

personalised recommendation, inasmuch the applications they are integrated in may 

decide to produce recommendations or hold them back, delivering only the suffi-

ciently reliable ones. Moreover, the ability to predict the effectiveness of individual 

algorithms can be envisioned as a strategy to optimise the combination of algorithms 

into ensemble recommenders, which currently dominate the field – rarely if ever are 

individual algorithms used alone in working applications, neither are they found indi-

vidually in the top ranks of evaluation campaigns and competitions (Bennett and 

Lanning, 2007). 

In Information Retrieval performance prediction has been mostly addressed as a 

query performance problem (Cronen-Townsend et al., 2002). Query performance 

refers to the performance of an information retrieval system in response to a particu-

lar query. It also relates to the appropriateness of a query as an expression of a user‟s 

information needs. Dealing effectively with poorly-performing queries is a crucial 

issue in Information Retrieval since it could improve the retrieval effectiveness sig-

nificantly (Carmel and Yom-Tov, 2010). 

In general, performance prediction techniques can be useful from different per-

spectives (Zhou and Croft, 2006; Yom-Tov et al., 2005a): 

 From the user‟s perspective, it provides valuable feedback that can be used to 

direct a search, e.g. by rephrasing the query or suggesting alternative terms. 

 From the system‟s perspective, it provides a means to address the problem of 

information retrieval consistency. The consistency of retrieval systems can be 

addressed by distinguishing poorly performing queries. A retrieval system may 

invoke different retrieval strategies depending on the query, e.g. by using query 

expansion or ranking functions based on the predicted difficulty of the query. 

 From the system administrator‟s perspective, it may let identify queries related 

to a specific subject that are difficult for the search engine. According to such 

queries, the collection of documents could be extended to better answer insuf-

ficiently covered topics. 

 From a distributed information retrieval‟s perspective, it can be used to decide 

which search engine (and/or database) to use, or how much weight give to dif-

ferent search engines when their results are combined. 
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Specifically, the performance prediction task in Information Retrieval is formal-

ised based on the following three core concepts: performance predictor, retrieval 

quality assessment, and predictor quality assessment. In this context, the per-

formance predictor is defined as a function that receives the query (and the result list 

   retrieved by the system, the set of relevant documents   , collection statistics  , 

etc.), and returns a prediction of the retrieval quality for that query. Then, by means 

of a predictor quality assessment method, the predictive power of the performance 

predictor is estimated. 

Based on the notation given in (Carmel and Yom-Tov, 2010), the problem of 

performance prediction consists of estimating a true retrieval quality metric      

(retrieval quality assessment) of an information retrieval system for a given query  . 

Hence, a performance predictor       has the following general form: 

                    (5.1) 

The prediction methods proposed in the literature establish different functions 

 , and use a variety of available data, such as the query‟s terms, its properties with 

respect to the retrieval space (Cronen-Townsend et al., 2002), the output of the re-

trieval system – i.e.,    and    – (Carmel et al., 2006), and the output of other sys-

tems (Aslam and Pavlu, 2007). 

According to whether or not the retrieval results are used in the prediction proc-

ess, such methods can be classified into pre-retrieval and post-retrieval approaches, 

which are described in Sections 5.2.1 and 5.2.2, respectively. Another relevant dis-

tinction is based on whether the predictors are trained or not, but this classification is 

less popular, and will not be considered here. 

Moreover, the standard methodology to measure the effectiveness of perform-

ance prediction techniques (that is, the predictor quality assessment method) consists 

of comparing the rankings of several queries based on their actual precision – in 

terms of a an evaluation metric such as MAP – with the rankings of those queries 

based on their performance scores, i.e., their predicted precision. In Section 5.4 we 

detail this methodology, along with several techniques for comparing the above rank-

ings. 

5.1.1 Notion of performance in Information Retrieval 

In order to identify good performance predictors, validating or assessing their poten-

tial, we first have to define metrics of actual performance. Performance metrics and 

evaluation have been a core research and standardisation area for decades in the In-

formation Retrieval field. In this section we introduce and summarise the main per-

formance metrics and evaluation methodologies developed in the field. 

The notion of performance in general, and in Information Retrieval in particular, 

leads itself to different interpretations, views and definitions. A number of methods 



82 Chapter 5. Performance prediction in Information Retrieval 

 

for measuring performance have been proposed and adopted (Hauff et al., 2008a; 

Hauff, 2010), the most prominent of which will be summarised herein; see (Baeza-

Yates and Ribeiro-Neto, 2011) for an extended discussion. 

As a result of several decades of research by the Information Retrieval commu-

nity, a set of standard performance metrics has been established as a consensual ref-

erence for evaluating the goodness of information retrieval systems. These metrics 

generally require a collection of documents and a query (or alternative forms of user 

input such as item ratings), and assume a ground truth notion of relevance – tradi-

tional notions consider this relevance as binary, while others, more recently pro-

posed, consider different relevance degrees. 

One of the simplest and widespread performance metrics in Information Re-

trieval is precision, which is defined as the ratio of retrieved documents that are 

relevant for a particular query. In principle, this definition takes all the retrieved 

documents into account, but can also consider a given cut-off rank as the precision 

at n or P@n, where just the top-n ranked documents are considered. Other related 

and widespread metric is recall, which is the fraction of relevant documents retrieved 

by the system. These two metrics are inversely related, since increasing one generally 

reduces the other. For this reason, usually, they are combined into a single metric – 

e.g. the F-measure, and the Mean Average Precision or MAP –, or the values of 

one metric are compared at a fixed value of the other metric – e.g. the precision-

recall curve, which is a common representation that consists of plotting a curve of 

precision versus recall, usually based on 11 standard recall levels (from 0.0 to 1.0 at 

increments of 0.1). 

An inherent problem of using MAP for poorly performing queries, and in gen-

eral of any query-averaged metric, is that changes in the scores of better-performing 

queries mask changes in the scores of poorly performing queries (Voorhees, 2005b). 

For instance, the MAP of a baseline system in which the effectiveness is 0.02 for a 

query A, and 0.40 for a query B, is the same as the MAP of a system where query A 

doubles its effectiveness (0.04) and query B decreases a 5% (0.38). In this context, in 

(Voorhees, 2005a) two metrics were proposed to measure how well information re-

trieval systems avoid very poor results for individual queries: the %no measure, 

which is the percentage of queries that retrieved no relevant documents in the top 10 

ranked results, and the area measure, which is the area under the curve produced by 

plotting MAP(X) versus X, where X ranges over the worst quarter queries. These 

metrics were shown to be unstable when evaluated in small sets of 50 queries 

(Voorhees, 2005b). A third metric was introduced in (Voorhees, 2006): gmap, the 

geometric mean of the average precision scores of the test set of queries. This metric 

emphasises poorly performing queries while it minimises differences between larger 

scores, remaining stable in small sets of queries (e.g. 50 queries) (Voorhees, 2005b). 
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Nonetheless, despite the above metrics and other efforts made to obtain better 

measures of query performance, MAP, and more specifically the Average Precision 

per query, are still widely used and accepted. See (Carmel et al., 2006; Cronen-

Townsend et al., 2002; Hauff et al., 2008b; He and Ounis, 2004; He et al., 2008; 

Kompaoré et al., 2007; Zhao et al., 2008; Zhou and Croft, 2006; Zhou and Croft, 

2007), among others. 

Almost as important as the performance metric is the query type, which can be 

related to the differerent user information needs (Broder, 2002). Most work on per-

formance prediction has focused on the traditional ad-hoc retrieval task where query 

performance is measured according to topical relevance (also known as content-

based queries). Some work – such as (Plachouras et al., 2003) and (Zhou and Croft, 

2007) – has also addressed other types of queries such as named page finding queries, 

i.e., queries focused on finding the most relevant web page assuming the queries con-

tain some form of the “name” of the page being sought (Voorhees, 2002a).  

When documents are timed (e.g. a newswire system), we can also distinguish two 

main types of queries that have been only partially exploited in the literature (Diaz 

and Jones, 2004; Jones and Diaz, 2007): those queries that favour very recent docu-

ments, and those queries for which there are more relevant documents within a spe-

cific period in the past. 

Finally, we note that most of the research ascribed to predict performance has 

been focused not on predicting the “true” performance of a query (whatever that 

means), but on discriminating those queries where query expansion or relevance 

feedback algorithms have proved to be efficient from those where these algorithms 

fail, such as polisemic, ambiguous, and long queries. These are typically called bad-to-

expand queries (Cronen-Townsend et al., 2006), illustrating the implicit dependence 

on their final application. 

5.1.2 A taxonomy of performance prediction methods 

Existing prediction approaches are typically categorised into pre-retrieval methods 

and post-retrieval methods (Carmel and Yom-Tov, 2010). Pre-retrieval methods 

make the prediction before the retrieval stage, and thus only exploit the query‟s terms 

and statistics about these terms gathered at indexing time. In contrast, post-retrieval 

methods use the rankings produced by a search engine, and, more specifically, the 

score returned for each document along with statistics about such documents and 

their vocabulary. 
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Pre-retrieval performance predictors do not rely on the retrieved document 

set, but on other information mainly extracted from the query issued by the user, 

such as statistics computed at indexing time (e.g. inverse term document frequen-

cies). They have the advantage that predictions can be produced before the system‟s 

response is even started to be elaborated, which means that predictions can be taken 

Category Sub-category Performance predictor (name and reference) 

Pre-retrieval Linguistics Morphological, syntactic, semantic: 

 (Mothe and Tanguy, 2005), (Kompaoré et al., 2007) 

Statistics Coherency:  

 coherence (He et al., 2008);  

 term variance (Zhao et al., 2008) 

Similarity: 

 collection query similarity (Zhao et al., 2008) 

Specificity: 

 IDF-based (Plachouras et al., 2004), (He and Ounis, 2004); 

 query scope (He and Ounis, 2004), (Macdonald et al., 2005);  

 simplified clarity: (He and Ounis, 2004) 

Term relatedness: 

 mutual information (Hauff et al., 2008a) 

Post-retrieval Clarity Clarity (Cronen-Townsend et al., 2002), 

 (Cronen-Townsend et al., 2006) 

Improved clarity (Hauff, 2010) (Hauff et al., 2008b) 

Jensen-Shannon Divergence (Carmel et al., 2006) 

Query difficulty (Amati et al., 2004) 

Robustness Cohesion: 

 clustering tendency (Vinay et al., 2006);  

 spatial autocorrelation (Diaz, 2007);  

 similarity (Kwok et al., 2004), (Grivolla et al., 2005) 

Document perturbation: 

 ranking robustness (Zhou and Croft, 2006);  

 document perturbation (Vinay et al., 2006) 

Query perturbation: 

 query feedback (Zhou and Croft, 2007);  

 autocorrelation (Diaz and Jones, 2004) (Jones and Diaz, 2007);  

 query perturbation (Vinay et al., 2006);  

 sub-query overlap (Yom-Tov et al., 2005a) 

Retrieval perturbation: (Aslam and Pavlu, 2007) 

Score analysis Normalised Query Commitment: (Shtok et al., 2009) 

Standard deviation of scores: (Pérez-Iglesias and Araujo, 2009), 

 (Cummins et al., 2011) 

Utility Estimation Framework: (Shtok et al., 2010) 

Weighted Information Gain: (Zhou and Croft, 2007) 

Table 5.1. Overview of predictors presented in Section 5.2 categorised according to the 

taxonomy presented in (Carmel and Yom-Tov, 2010). 
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into account to improve the retrieval process itself. However, they have a potential 

handicap with regards to their accuracy on the predictions, since extra retrieval effec-

tiveness cues available with the system‟s response are not exploited (Zhou, 2007). 

Pre-retrieval query performance has been studied from two main perspectives: based 

on probabilistic methods (and more generally, on collection statistics), and based on 

linguistic approaches. Most research on the topic has followed the former approach. 

Some researchers have also explored inverse document frequency (IDF) and related 

features as predictors, along with other collection statistics 

Post-retrieval performance predictors, on the other hand, make use of the re-

trieved results. Broadly speaking, techniques in this category provide better predic-

tion accuracy compared to pre-retrieval performance predictors. However, many of 

these techniques suffer from high computational costs. Besides, they cannot be used 

to improve the retrieval strategies without a post-processing step, as the output from 

the latter is needed to compute the predictions in the first place. In (Carmel and 

Yom-Tov, 2010) post-retrieval methods are classified as follows: 1) clarity based 

methods that measure the coherence (clarity) of the result set and its separability 

from the whole collection of documents; 2) robustness based methods that estimate 

the robustness of the result set under different types of perturbations; and 3) score 

analysis based methods that analyse the score distribution of results. 

Table 5.1 shows a number of representative approaches on performance predic-

tion, which will be described in the next section. These approaches are categorised 

according to the taxonomy and sub-categories proposed in (Carmel and Yom-Tov, 

2010). In the table we can observe that the statistics category has been the most 

popular approach for pre-retrieval performance prediction. Several predictors have 

been categorised in the robustness category, probably due to its broad meaning 

(query, document, and retrieval perturbation). Finally, we note that recent effort from 

the community has been focused on the score analysis category. 

5.2 Query performance predictors 

In this section we explain the distinct performance predictors proposed in the litera-

ture. As mentioned before, based on whether or not retrieval results are needed to 

compute performance scores, predictors can be classified into two main types: pre-

retrieval and post-retrieval predictors. In the following we summarise some of the 

approaches of each of the above types. For additional information, the reader is re-

ferred to (Carmel and Yom-Tov, 2010), (Hauff, 2010), and (Pérez Iglesias, 2012). 
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5.2.1 Pre-retrieval predictors 

Pre-retrieval performance predictors do not rely on the retrieved document set, and 

exploit other collection statistics, such as the inverse document frequency (IDF). In 

this context, performance prediction has been studied from three main perspectives: 

based on linguistic methods, based on statistical methods, and based on probabilistic 

methods. 

Linguistic methods 

In (Mothe and Tanguy, 2005) and (Kompaoré et al., 2007) the authors consider 16 

query features, and study their correlation with respect to average precision and re-

call. These features are classified into three different types according to the linguistic 

aspects they model: 

 Morphological features: 

o Number of words. 

o Average word length in the query. 

o Average number of morphemes per word, obtained using the CELEX7 
morphological database. The limit of this method is the database coverage, 
which leaves rare, new, and misspelled words as mono-morphemic. 

o Average number of suffixed tokens, obtained using the most frequent 
suffixes from the CELEX database (testing if each lemma in a topic is eli-
gible for a suffix from this list). 

o Average number of proper nouns, obtained by POS (part-of-speech) 
tagger‟s analysis. 

o Average number of acronyms, detected by pattern matching. 

o Average number of numeral values, also detected by pattern matching. 

o Average number of unknown tokens, marked by a POS tagger. Most 
unknown words happen to be constructed words such as “mainstream-
ing”, “postmenopausal” and “multilingualism.” 

 Syntactic features: 

o Average number of conjunctions, detected through POS tagging. 

o Average number of prepositions, also detected through POS tagging. 

o Average number of personal pronouns, again detected through POS 
tagging. 

o Average syntactic depth, computed from the results of a syntactic ana-
lyser. It is a straightforward measure of syntactic complexity in terms of 

                                                
7 CELEX, English database (1993). Available at www.mpi.nl/world/celex 



5.2 Query performance predictors 87 

hierarchical depth; it simply corresponds to the maximum number of 
nested syntactic constituents in the query. 

o Average syntactic links span, computed from the results of a syntactic 
analyser; it is the average pairwise distance (in terms of number of words) 
between individual syntactic links. 

 Semantic features: 

o Average polysemy value, computed as the number of synsets in the 
WordNet8 database that a word belongs to, and averaged over all terms of 
the query. 

In the above papers the authors investigated the correlation between these fea-

tures, and precision and recall over datasets with different properties, and found that 

the only feature that positively correlated with the two performance metrics was the 

number of proper nouns. Besides, many variables did not obtain significant correla-

tions with respect to any performance metric. 

Statistical methods 

Inverse document frequency is one of the most useful and widely used magnitudes in 

Information Retrieval. It is usually included in the information retrieval models to 

properly compensate how common terms are. Its formulation usually takes an ad 

hoc, heuristic form, even though formal definitions exist (Roelleke and Wang, 2008; 

Aizawa, 2003; Hiemstra, 1998). The main motivation for the inclusion of an IDF 

factor in a retrieval function is that terms that appear in many documents are not 

very useful for distinguishing a relevant document from a non-relevant one. In other 

words, it can be used as a measure of the specificity of terms (Jones, 1972), and thus 

as an indicator of their discriminatory power. In this way, IDF is commonly used as a 

factor in the weighting functions for terms in text documents. The general formula 

of IDF for a term   is the following: 

 
           

 

  
 (5.2) 

where   is the total number of documents in the system, and    is the number of 

documents in which the term   appears. 

Some research work on performance prediction has studied IDF as a basis for 

defining predictors. He and Ounis (2004) propose a predictor based on the standard 

deviation of the IDF of the query terms. Plachouras et al. (2004) represent the qual-

ity of a query term by a modification of IDF where instead of the number of docu-

ments, the number of words in the whole collection is used (inverse collection term 

                                                
8 WordNet, lexical database for the English language. Available at http://wordnet.princeton.edu/ 
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frequency, or ICTF), and the query length acts as a normalising factor. These IDF-

based predictors displayed moderate correlation with query performance. 

Other authors have taken the similarity of the query into account. Zhao et al. 

(2008) compute the vector-space based query similarity with respect to the collection, 

considered as a large document composed of concatenation of all the documents. 

Then, different collection query similarity predictors are defined based on the 

SCQ values (defined below) for each query term, by summing, averaging, or taking 

the maximum values: 

                            (5.3) 

The similarity of the documents returned by the query has also been explored in 

the field. The inter-similarity of documents containing query terms is proposed in 

(He et al., 2008) as a measure of coherence, by using the cosine similarity between 

every pair of documents containing each term. Additionally, two predictors based on 

the pointwise mutual information (PMI) are proposed in (Hauff et al., 2008a). The 

PMI of two terms is computed as follows: 

 
              

        

          
 (5.4) 

where these probabilities can be approximated by maximum likelihood estimations, 

that is, based on collection statistics, where          is proportional to the number 

of documents containing both terms, and      TF   . In that paper a first predic-

tor is defined by computing the average PMI of every pair of terms in the query, 

whereas a second predictor is defined based on the maximum value. The predictive 

power of these techniques remains competitive, and is very efficient at run time. 

Probabilistic methods 

These methods measure characteristics of the retrieval inputs to estimate perform-

ance. He and Ounis (2004) propose a simplified version of the clarity score (see 

next section) in which the query model is estimated by the term frequency in the 

query: 

 
                 

        

      
 

 (5.5) 

 
          

   

  
         

     

   
  

where     is the number of occurrences of a query term   in the query,    is the 

query length,       is the number of occurrences of a query term in the whole col-

lection, and     is the total number of terms in the collection.  
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Despite its original formulation, where the clarity score can be considered as a 

pre-retrieval predictor (Cronen-Townsend et al., 2002), Cronen-Townsend and col-

leagues use result sets to improve the computation time. For this reason, it is typically 

classified as a post-retrieval predictor (Zhou, 2007; Hauff et al., 2008a), and thus, we 

describe it with more detail in the next sections. 

Kwok et al. (2004) build a query predictor using support vector regression, by 

training classifiers with features such as document frequencies and query term fre-

quencies. In the conducted experiments they obtained a small correlation between 

predicted and actual query performances. He and Ounis (2004) propose the notion 

of query scope as a measure of the specificity of a query, which is quantified as the 

percentage of documents that contain at least one query term in the collection, i.e., 

         , being    the number of documents containing at least one of the query 

terms, and   the total number of documents in the collection. Query scope has 

shown to be effective in inferring query performance for short queries in ad hoc text 

retrieval, but very sensitive to the query length (Macdonald et al., 2005). 

5.2.2 Post-retrieval predictors 

Post-retrieval performance predictors make use of the retrieved results, in contrast to 

pre-retrieval predictions. Furthermore, computational efficiency is usually a problem 

for many of these techniques, which is balanced by better prediction accuracy. In the 

following we present the most representative approaches of each of the different 

sub-categories described in Section 5.1.2: clarity, robustness, and score analysis. 

Clarity-based predictors 

Cronen-Townsend et al. (2002) define query clarity as a degree of (the lack of) 

query ambiguity. Because of the particular importance and use of this predictor in the 

findings of this thesis, we shall devote a whole section (Section 5.3) for a thorough 

description and discussion about it. It is worth noting that the concept of query clar-

ity has inspired a number of similar techniques. Amati et al. (2004) propose the 

query difficulty predictor to estimate query performance. In that work query per-

formance is captured by the notion of the amount of information (InfoDFR) gained 

after the ranking. If there is a significant divergence in the query-term frequencies 

before and after the retrieval, then it is assumed that the divergence is caused by a 

query that is easy to respond to. InfoDFR showed a significant correlation with average 

precision, but did not show any correlation between this predictor and the effective-

ness of query expansion. The authors hence concluded that although the perform-

ance gains by query expansion in general increase as query difficulty decreases, very 

easy queries hurt the overall performance. 
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Adaptations of the query clarity predictor such as the one proposed in (Hauff 

et al., 2008b) will be discussed later in Section 5.3. Additionally, apart from the Kull-

back-Leibler divergence, the Jensen-Shannon Divergence on the retrieved document 

set and the collection also obtains a significant correlation between average precision 

and the distance measured (Carmel et al., 2006). 

Robustness-based predictors 

More recently, a related concept has been coined: ranking robustness (Zhou and 

Croft, 2006). It refers to a property of a ranked list of documents that indicates how 

stable a ranking is in the presence of uncertainty in its documents. The idea of predict-

ing retrieval performance by measuring ranking robustness is inspired by a general 

observation in noisy data retrieval. The observation is that the degree of ranking ro-

bustness against noise is positively correlated with retrieval performance. This is be-

cause the authors assumed that regular documents also contain noise, if noise is inter-

preted as uncertainty. The robustness score performs better than, or at least as well 

as, the clarity score. 

Regarding document and query perturbation, Vinay et al. (2006) propose four 

metrics to capture the geometry of the top retrieved documents for prediction: the 

clustering tendency as measured by the Cox-Lewis statistic, the sensitivity to 

document perturbation, the sensitivity to query perturbation, and the local in-

trinsic dimensionality. The most effective metric was the sensitivity to document 

perturbation, which is similar to the robustness score. Document perturbation, how-

ever, did not perform well for short queries, for which prediction accuracy dropped 

considerably when alternative state-of-the-art retrieval techniques (such as BM25 or a 

language modelling approach) were used instead of the TF-IDF weighting (Zhou, 

2007). 

Several predictors have been defined based on the concept of query perturba-

tion. Zhou and Croft (2007) propose two performance predictors are defined based 

on this concept specifically oriented for Web search. First, the Weighted Informa-

tion Gain predictor measures the amount of information gained about the quality of 

retrieved results (in response to a query) from an imaginary state that only an average 

document (represented by the whole collection) is retrieved to a posterior state that 

the actual search results are observed. This predictor was very efficient and showed 

better accuracy than clarity scores. The second predictor proposed in that work is the 

Query Feedback, which measures the degree of corruption that results from trans-

forming   to   (the output of the channel when the retrieval system is seen as a 

noisy channel, i.e., the ranked list of documents returned by the system). The authors 

designed a decoder that can accurately translate   back into a new query   , where-

upon the similarity between the original query   and the new query    is taken as a 

performance predictor, since the authors interpreted the evaluation of the quality of 
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the channel as the problem of predicting retrieval effectiveness. The computation of 

this predictor requires a higher computational cost than the previous one, being a 

major drawback of this technique. 

Additionally, in (Diaz and Jones, 2004) and (Jones and Diaz, 2007) the authors 

exploited temporal features (time stamps) of the document retrieved by the query. 

They found that although temporal features are not highly correlated to perform-

ance, using them together with clarity scores improves prediction accuracy. Similarly, 

Diaz (2007) proposes to use the spatial autocorrelation as a metric to measure spatial 

similarities between documents in an embedded space, by computing the Moran‟s 

coefficient over the normalised scores of the documents. This predictor obtained 

good correlations results, although the author explicitly avoided collections such as 

question-answering and novelty related under the hypothesis that documents with 

high topical similarity should have correlated scores and, thus, in those collections 

the predictor would not work properly. 

Other predictor was proposed in (Jensen et al., 2005), where visual features such 

as document titles and snippets are used from a surrogate document representation 

of retrieved documents. Such predictor was trained on a regression model with 

manually labelled queries to predict precision at the top 10 documents in Web search. 

The authors reported moderate correlation with respect to precision. 

In (Yom-Tov et al., 2005a) two additional performance predictors are proposed. 

The first predictor builds a histogram of the overlaps between the results of each 

sub-query that agree with the full query. The second predictor is similar to the first 

one, but is based on a decision tree (Duda et al., 2001), which again uses overlaps 

between each sub-query and the full query. The authors apply these predictors to 

selective query expansion detecting missing content, and distributed information 

retrieval, where a search engine has to merge ranks obtained from different datasets. 

Empirical results showed that the quality of the prediction strongly depends on the 

query length.  

The following predictors have been based on the cohesion of the retrieved 

documents. Kwok et al. (2004) propose predicting query performance by analysing 

similarities among retrieved documents. The main hypothesis of this approach is that 

relevant documents are similar to each other. Thus, if relevant documents are re-

trieved at the top ranking positions, the similarity between top documents should be 

high. The preliminary results, however, were inconclusive since negligible correla-

tions were obtained. A similar approach is proposed in (Grivolla et al., 2005), where 

the entropy and pairwise similarity among top results are investigated. First, the en-

tropy of the set of the   top-ranked documents for a query was computed. In this 

case it was assumed that the entropy should be higher when the performance for a 

given query is bad. Second, the mean cosine similarity between documents was pro-

posed, using the base form of TF-IDF term weighting to define the document vec-
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tors. Correlation between average precision and the proposed predictors was not 

consistent along the different systems used in the experiment, although the predic-

tors could still be useful for performance prediction, especially when used in combi-

nation. 

Predictors based on score analysis 

Finally, the last family of post-performance predictors analyses the score distribu-

tions of the results for each query. We have to note that the Weighted Information 

Gain predictor (Zhou and Croft, 2007) explained above is sometimes categorised 

into this group. In the following we present other predictors where the retrieved 

scores are explicit in the predictor computation.  

For instance, the Normalised Query Commitment (NQC) predictor (Shtok 

et al., 2009) measures the standard deviation of the retrieval scores, and applies a 

normalisation factor based on the score of the whole collection: 

 

       
                 

 

    

      
 

(5.6) 

where    is the mean score of results in    (the retrieved set of documents for a 

query  ). This predictor measures the divergence of results from their centroid, a 

“pseudo non-relevant document” that exhibits a relatively high query similarity 

(Carmel and Yom-Tov, 2010). 

The utility estimation framework (UEF) was proposed in (Shtok et al., 2010) 

to estimate the utility of the retrieved ranking. In this framework three methods have 

to be specified to derive a predictor: a sampling technique for the document sets, a 

representativeness measure for relevance-model estimates, and a measure of similar-

ity between ranked lists. Other authors have proposed approaches where standard 

deviation does not need to be computed for all the document scores in the retrieved 

results. Pérez-Iglesias and Araujo (2009) use a cutoff to decide how many documents 

are considered in the standard deviation computation. Moreover, Cummins et al. 

(2011) use different strategies to automatically select such cutoff. 

Recently, Cummins (2012) has used Monte Carlo simulations to understand the 

correlations between average precision and the standard deviation of the scores in 

the head of a ranked list. The author found that the standard deviation of the list is 

positively correlated with the mean score of relevant documents, which in turn is 

positively correlated with average precision. 
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5.3 Clarity score 

Cronen-Townsend et al. (2002) defined clarity score for Web retrieval as a measure 

of the lack of ambiguity of a particular query. More recently, it has been observed 

that this predictor also quantifies the diversity of the result list (Hummel et al., 2012). 

In this section we provide a deep analysis of this performance predictor since we 

shall use it along the rest of this thesis. We also describe examples and adaptations of 

the clarity score. 

5.3.1 Definition of the clarity score 

The clarity score predictor is defined as a Kullback-Leibler divergence between the 

query and the collection language model. It estimates the coherence of a collection 

with respect to a query   in the following way, given the vocabulary   and a subset 

of the document collection    consisting of those documents that contain at least one 

query term: 

 
                      

      

      
   

 (5.7) 

                    

 
               

    

  

 
                    

    

  

                               

The clarity value can thus be reduced to an estimation of the prior        (col-

lection language model), and the posterior        of the query terms   (query lan-

guage model) using        over the documents      and based on term frequen-

cies and smoothing. It should be emphasised that if the set    is chosen as the whole 

collection  , then this technique could be classified as a pre-retrieval performance 

predictor, since no information about the retrieval would be used. The importance of 

the size of the relevance set    (or number of feedback documents) has been studied 

in (Hauff et al., 2008b), where an adaptation of the predictor was proposed in order 

to automatically set the number of documents to consider. 

As first published in (Cronen-Townsend et al., 2002) and (Cronen-Townsend 

et al., 2006), query ambiguity is defined as “the degree to which a query retrieves 

documents in the given collection with similar word usage.” Cronen-Townsend and 
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colleagues found that queries whose highly ranked documents are a mix of docu-

ments from disparate topics receive lower scores than if they result in a topically-

coherent retrieved set, and reported a strong correlation between the clarity score 

and the performance of a query. Because of that, the clarity score method has been 

widely used in the area for query performance prediction.  

Some applications and adaptations of the clarity score metric include query ex-

pansion (anticipating poorly performing queries that should not be expanded), im-

proving performance in the link detection task (more specifically, in topic detection 

and tracking by modifying the measure of similarity of two documents) (Lavrenko 

et al., 2002), and document segmentation (Brants et al., 2002). More applications can 

be found in Section 5.3.3. 

Zhou (2007) provides a complementary formulation of the clarity score by re-

writing the formulation used above as follows: 

 

                             
                 

      
       

 (5.8) 

In this way, Zhou emphasises, among other issues, the differences between the 

query clarity and the Weighted Information Gain predictor. Indeed, the author pro-

poses the following generalisation of both formulations (for WIG and clarity). Spe-

cifically, the clarity formulation presented in Equations (5.7) and (5.8) is unified as 

follows: 

 
                              

      

      
       

 (5.9) 

where   is a feature space, and    is a (ranked) document list. Besides this,   

     must be comparable somehow with elements    , in order to make sensi-

ble functions             and       . In this context, the query clarity as defined 

in (Cronen-Townsend et al., 2002) is an instantiation of Equation (5.9) where the 

following three aspects are considered: 

 The feature space   is the whole vocabulary, consisting of single terms. 

 The weight function is defined as                         . 

 The function        is defined as                  
, that is, it uses a 

document model averaged over all documents in the ranked list. 

These observations help to discriminate between the underlying models used by 

these two predictors. In particular, for the query clarity, they also contribute to cap-

ture not so obvious divergences between a query and the collection, as we shall see in 

the next section. 
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5.3.2 Interpreting clarity score in Information Retrieval 

Aiming to better understand how the clarity score predictor behaves in Information 

Retrieval, and to what extent it is able to capture the difficulty or ambiguity of que-

ries, in this section we summarise examples reported in the literature that let a clear 

interpretation of the predictor‟s values. 

In a seminal paper (Cronen-Townsend et al., 2002) Cronen-Townsend and col-

leagues present the example shown in Table 5.2, which provides the clarity scores of 

a number of related queries that share some of their terms. These queries are related 

to each other in the sense that a particular query is formed by extending other query 

with an additional term, starting with an initial query formed by a single term, „train‟ 

in the example. According to the queries of the table, we can observe that the term 

„train‟ has different meanings for the largest queries; it refers to „teach‟ in the query 

„train dog‟, to the „locomotive vehicle‟ in the query „railroad train‟, and can refer to 

any of both meanings in the query „railroad train dog.‟ The clarity scores capture the 

ambiguity of the queries (due to their different meanings for the term „train‟), inde-

pendently from their length. In fact, the middle rightmost query „railroad train dog‟ 

receives the lowest clarity score, corresponding to the most ambiguous query where 

the two considered meanings of „train‟ are involved. 

In the same paper, Cronen-Townsend and colleagues present the distribution of 

the language models for two queries, a clear query and a vague query (see Figure 2 in 

(Cronen-Townsend et al., 2002)). Each distribution is presented by plotting 

                        against the query terms  . The authors show that the 

distribution of the values of this function for the clear query dominates the distribu-

tion of the values of the vague query. This makes sense since the clarity score is 

computed by summing the probability values in the distribution of every term in the 

collection. Additionally, the authors show that the clear query presents spikes in its 

query language model when        is plotted against the terms, and compared with 

the collection probability       . Hence, some of the terms with high contribution 

from the query language model (i.e., with high        values) obtain low collection 

train (0.33) 

train dog (0.65) 
obedience train dog (2.43) 

railroad train dog (0.67) 

railroad train (0.73) 
railroad train caboose (1.46) 

Table 5.2. Examples of clarity scores for related queries. 
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probabilities (      ), thus evidencing a query that is different to the collection in 

its term usage (i.e., it is a non ambiguous query). 

The above examples involve the (implicit) assumption known as homogeneity as-

sumption, which specifies that the clarity score is higher if the documents in the con-

sidered collection are topically homogeneous. Hauff (2010) analyses the sensitivity of 

results with respect to that assumption. Specifically, the author computes the clarity 

score for three different ranked document lists: the relevant documents for a query, a 

non-relevant random sample, and a collection-wide random sample. The difference 

between the last two lists is that the second one is derived from documents judged as 

non-relevant, whereas the third one could contain any document in which at least 

one query term. Hauff shows how the clarity score is different depending on the 

origin of ranked document list, leading to a higher (lower) score by using relevant 

(non-relevant) documents for such list. However, we have to note that, as stated by 

Hauff, the quality in the separation of the clarity scores computed by each document 

list is different depending on the utilised dataset and queries. 

The clarity score has been analysed in detail in Information Retrieval, mainly be-

cause its predictive power is superior to other performance predictors (in fact, it is 

one of the best performing post-retrieval predictors according to the overview pre-

sented in (Hauff, 2010)), but also because it provides interpretable results and high 

explanatory power in different IR processes, as we shall describe in the next section. 

Apart from that, the interest in this predictor is clear because of its probabilistic for-

mulation and tight relationship with Language Models (Ponte and Croft, 1998). 

5.3.3 Adaptations and applications of the clarity score 

Cronen-Townsend and colleagues showed in (Cronen-Townsend et al., 2002) that 

clarity is correlated with performance, proving that the result quality is largely influ-

enced by the amount of uncertainty involved in the inputs a system takes. In this 

sense, queries whose highly ranked documents belong to diverse topics receive lower 

scores than queries for which a topically-coherent result set is retrieved. Several au-

thors have exploited the clarity score functionality and predictive capabilities 

(Buckley, 2004; Townsend et al., 2004; Dang et al., 2010), supporting its effectiveness 

in terms of performance prediction and high degree of adaptation. For instance, the 

predictor has been used for personalisation (Teevan et al., 2008) because of its 

proven capability of predicting ambiguity. In that paper the authors use more or less 

personalisation depending on the predicted ambiguity. 

One of the first variants proposed in the area is the simplified clarity score pro-

posed in (He and Ounis, 2004), presented in Section 5.2.1. In that paper He and 

Ouni changed the estimations of the posterior        to simple maximum likeli-

hood estimators. Hauff et al. (2008b) proposed the Improved Clarity – called 

Adapted Clarity in (Hauff, 2010) –, in which the number of feedback documents 
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(  ) is set automatically, and the term selection is made based on the frequency of 

the terms in the collection to minimise the contribution of terms with a high docu-

ment frequency in the collection. 

An alternative application of the clarity score is presented in (Allan and Raghavan, 

2002), where the score obtained for the original set of documents returned by a query 

is compared against that obtained for a modified query, which was presumed to be 

more focused than the original one. Similarly, in (Buckley, 2004) Buckley uses the 

clarity score to measure the stability of the document rankings and compare it against 

a measure that uses the Mean Average Precision of each ranking (AnchorMap). 

In (Sun and Bhowmick, 2009), Sun and Bhowmick adapted the concept of query 

clarity to image tagging, where a tag is visually representative if all the images anno-

tated with that particular tag are visually similar to each other. In previous work (Sun 

and Datta, 2009) Sun and Datta proposed a similar concept, but in the context of 

blogging: a tag would receive a high clarity score if all blog posts annotated by the tag 

are topically cohesive. 

Finally, an extension of the Kullback-Leibler divergence was proposed in (Aslam 

and Pavlu, 2007), where the Jensen-Shannon divergence was used instead. This dis-

tance is defined as the average of the Kullback-Leibler divergences of each distribu-

tion with respect to the average (or centroid) distribution. In this way, it is possible to 

compute the divergence between more than two distributions. Besides, the Jensen-

Shannon divergence is symmetric, in contrast to the divergence used in the clarity 

score, and thus, a metric can be derived from it (Endres and Schindelin, 2003). 

5.4 Evaluating performance predictors 

In this section we describe the approaches proposed in the literature to evaluate the 

predictive power of a performance predictor. We define the different functions used 

to compute the quality of the performance predictors, most of them based on well 

known correlation coefficients between the true query performance values, and the 

expected or predicted performance values. 

5.4.1 Task definition 

Based on the notation presented in Section 5.1, in the following we present different 

techniques and functions to assess the effectiveness of performance predictors. Once 

the retrieval quality has been assessed (    ), and the value of the performance pre-

dictor for each query is calculated (     , using the function  ), the predictor quality 

is computed by using a predictor quality assessment function       that measures the 

agreement between the true values of performance and the estimations, that is: 

                                                     (5.10) 
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True quality values for each query are typically obtained by computing the per-

query performance of a selected retrieval method (Cronen-Townsend et al., 2002; 

Hauff et al., 2008a), or by averaging the values obtained by several engines (Mothe 

and Tanguy, 2005), in order to avoid biases towards a particular method. As we shall 

see in the next section, the function       typically represents a correlation coeffi-

cient; however, different possibilities are available and may be more appropriate de-

pending on the prediction task. 

In fact, in (Hauff et al., 2009) three estimation tasks were considered, by dis-

criminating the output of the predictor function   . Query difficulty estimation 

could be defined as a classification task where          indicates whether the query 

is estimated to perform well or poorly. The standard estimation of query perform-

ance, nonetheless, would be defined by a function     , in order to provide a 

ranking of queries, where the highest score denotes the best performing query. Fur-

thermore, as stated in (Hauff et al., 2009), this function by itself does not directly 

estimate the performance metric  . In order to do that we need to have normalised 

scores, such that the range of    is compatible with that of the metric, which typically 

requires         . In this case, we would be considering the normalised query 

performance task. 

The methodology described above is general enough to be applicable to any of 

these three tasks, but is clearly inspired by the second one, that is, the estimation of 

query performance and it can be easily applied also to third one (normalised per-

formance prediction). Because of that, we describe next a recently proposed meth-

odology more focused on the (binary) query classification task or query difficulty 

prediction described in (Pérez-Iglesias and Araujo, 2010). 

Let us suppose that, instead of continuous values of the performance metric  , 

we are interested in estimating as accurately as possible the different difficulty grades of 

the queries, that is,          , where   is the number of difficulty grades avail-

able. Obviously, the output of the predictor    also has to be grouped in one of the   

classes. Typically, we would have    , representing “Easy”, “Average”, and 

“Hard” queries, although a binary partition could also be acceptable. In these terms 

the performance prediction problem is stated as a classification problem, where the 

goal is to effectively predict the query class. 

Furthermore, this technique lets set, at the quality computation step, whether we 

want to weight uniformly each of the   classes, or if we are more interested in only 

one of them, by building, for instance, a confusion matrix, and applying standard 

Machine Learning evaluation metrics to a subset of it. In the next section we describe 

the most popular techniques for doing this, along with a new metric introduced in 

(Pérez-Iglesias and Araujo, 2010) oriented to the problem of performance prediction. 
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5.4.2 Measuring the quality of the predictors 

There are several methods for measuring the quality of the performance prediction 

function    defined in the previous section. In particular, the quality function       

may be able to capture linear relations, take into account the importance implied by 

the scores or the ordering given by each variable (true and estimated performance, 

i.e.,   and   ), and exploit the implicit partitions derived by the method. 

The most commonly used quality function is correlation, which has been meas-

ured by three well-known metrics: Pearson‟s, Spearman‟s, and Kendall‟s correlation 

coefficients. Pearson’s   correlation captures linear dependencies between the vari-

ables, whereas Spearman’s   and Kendall’s   correlation coefficients are used in 

order to uncover non-linear relationships between the variables. They are generally 

computed as follows, although in special situations (in presence of ties, or when there 

are missing values in the data) alternative formulations may be used: 

 
  

                  
   

            
               

   

 

    
          

  
   

       
 

     
       

      
 

(5.11) 
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(5.13) 

where   and   represent the two variables of interest,    and    denote their means, 

         is the difference in ranks between    and   , and        is the minimum 

number of swaps needed to convert the rank ordering of   to that of  . All these 

coefficients return values between    and   , where    denotes a perfect anti-

correlation,   denotes statistical independence, and    denotes perfect correlation. 

It can be observed that Spearman‟s   computes a Pearson‟s   between the ranks 

induced by the scores of the variables. Moreover, Kendall‟s   is the number of opera-

tions required to bring one list to the order of the other list using the bubble sort algo-

rithm. Besides, although Spearman‟s and Kendall‟s correlations seem more general 

than Pearson‟s since they are able to capture non-parametric relations between the 

variables, we have to consider that distances between the scores are ignored in the 

rank-based coefficients, and thus, it is typically suggested to report one correlation 

coefficient of each type. 

It is important to note that the number of points used to compute the correla-

tion values affects the significance of the correlation results. The confidence test for a 

Pearson‟s   correlation, modeled as the  -value of a  -distribution (assuming normal-

ity) with     degrees of freedom (being   the size of the sample), is defined by 

the following equation (Snedecor and Cochran, 1989): 
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 (5.14) 

The  -value therefore depends on the size of the sample, and thus, the signifi-

cance of a Pearson‟s correlation value   may change depending on the number of 

test queries. In particular, for small samples, we may eventually obtain strong but 

non-significant correlations; whereas for large samples, on the other hand, we may 

obtain significant differences, even though the strength of the correlation values may 

be lower. The above also applies to the correlations computed using the Spearman‟s 

coefficient, but only under the null hypothesis or large sample sizes (greater than 

100) (Snedecor and Cochran, 1989; Zar, 1972). For Kendall‟s correlation, the confi-

dence test can be computed using an exact algorithm when there are no ties based on 

a power series expansion in    , depending again, thus, on the sample size (Best and 

Gipps, 1974). 

Table 5.3 shows the minimum  -value for obtaining a significant value with dif-

ferent sample sizes and  -values, along with the  -value computed using Equation 

(5.14) for different correlation values and sample sizes. In the table we can observe 

that the same correlation value may be significant or not depending on the size of the 

sample, for instance, with    queries, observations are significant with        for 

correlation values equal or above    , whereas for     queries it is enough to obtain 

Pearson‟s correlation values of    . This observation is related to the one presented 

in (Hauff et al., 2009), where Hauff and colleagues compared the confidence intervals 

of the three correlation coefficients described before, and observed how, due to the 

small query set sizes, most of the predictors analysed (pre-retrieval approaches such 

as clarity, IDF-based, and PMI) presented no significant differences, despite having 

very different values. In particular, this generated a subset of the analysed predictors 

that were not statistically different to the best performing predictor reported, and 

thus, any of the predictors in subset may be used in a later application since they ob-

tain statistically similar (strictly speaking, not statistically different) correlations. 

 -value 

N 

50 100 500 

       1.677 1.661 1.648 

       2.407 2.365 2.334 
 

Pearson’s   value 

N 

50 100 500 

0.1 0.696 0.995 2.243 

0.2 1.414 2.021 4.555 

0.3 2.179 3.113 7.018 

0.4 3.024 4.320 9.739 
 

Table 5.3. Left: minimum  -value for obtaining a significant value with different sample sizes 

(N). Right:  -value for a given Pearson’s correlation value and N points. In bold when the 

correlation is significative for       , and underlined for       . 
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Furthermore, in the same paper, Hauff and colleagues proposed to use the Root 

Mean Squared Error (RMSE) as a quality function. The rationale behind this is that 

the RMSE squared is the function being minimised when performing a linear regres-

sion, and thus, it should also be able to capture the (linear) relation between the vari-

ables. In fact, there is a close relation between the RMSE and the Pearson‟s   coeffi-

cient, by means of the residual sum of squares (Carmel and Yom-Tov, 2010): 
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Additional extensions to these correlation coefficients have been proposed. Most 

of these extensions have been focused on incorporating weights in the computation 

of the correlation (Melucci, 2009; Yilmaz et al., 2008). However, despite these met-

rics have an evident potential in the performance prediction area, to the best of our 

knowledge there is no work using them in order to evaluate the quality of the predic-

tors (Pérez Iglesias, 2012). 

Finally, a different family of quality functions can be considered in the query difficulty 

task, that is, when the performance prediction is cast as a classification problem. These 

techniques are based on the accuracy of the classification provided by the performance 

predictor, and thus, classic Machine Learning techniques could be used. In (Pérez-Iglesias 

and Araujo, 2010), Pérez-Iglesias and Araujo propose to use the F-measure: 

 
   

                

                
 (5.17) 

Additionally, in the same paper, Pérez-Iglesias and Araujo introduced a new met-

ric (distance based error measure, or DBEM) along with a methodology that is 

focused on the misclassified difficulty classes between the predictor and the true 

classes. With this goal in mind, the authors apply a clustering algorithm to both the 

performance metric values and their estimations, aimed to minimise the distance 

between elements in the same group, and maximise the distance between elements in 

different groups. Specifically, Pérez-Iglesias and Araujo used the  -means algorithm, 

setting the value of   to the number of relevance grades,     in their paper. The 

metric DBEM is defined as follows: 

 

     
                  

 
 

    
 

                  
 
 

 

                          

(5.18) 
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where      is the function which assigns the proper class or partition to a given 

score  , according to the clustering algorithm. This metric captures the distance be-

tween every partition, normalised by the maximum possible distance. In this case, 

lower distances imply a better predictor quality. 

5.5 Summary 

Improvement of the predictive capabilities to infer the performance or difficulty of a 

query is consolidated as a major research topic in Information Retrieval, where it has 

been mostly applied to ad-hoc retrieval. Several performance predictors have been 

defined based on many different information sources, demonstrating the usefulness 

of such predictors in different tasks, mainly for query expansion, but also for rank 

fusion, distributed information retrieval, and text segmentation. 

Some issues are, however, still open in the field, mostly regarding the evaluation 

of performance prediction. Performance prediction methods have been usually 

evaluated on traditional TREC document collections, which typically consist of no 

more than one million relatively homogenous newswire articles, and few research 

work has exploited these techniques with larger datasets; see, e.g. (Carmel et al., 2006; 

Zhou, 2007; Hauff, 2010) for some exceptions. Furthermore, reported correlation 

coefficient values have been typically computed using a small number of points (e.g. 

50 queries for standard tracks in TREC), not always providing enough confidence to 

derive conclusions. And more importantly, how predictors have to be evaluated and 

which metric has to be used are still open research questions, that have generated 

some fruitful discussion in recent publications (Hauff, 2010; Pérez Iglesias, 2012), 

although a definitive answer has not been obtained yet. 

We may presume that in the future other information retrieval applications may 

benefit from the framework derived by these techniques, and may develop tailored 

performance predictors by using purpose-designed performance metrics and evalua-

tion methodologies, such as the recently developed concept of document difficulty in 

(Alvarez et al., 2012). This thesis is an example of such an application in the Recom-

mender Systems field. More specifically, as we shall see in the next chapter, we trans-

late the problem of performance prediction to the Recommender Systems area, 

where it has been barely studied. We focus our research on the query clarity predictor 

as a basis for the recommendation performance predictors, although additional tech-

niques could be used, as we shall also present in Chapter 6. Finally, among the array 

of evaluation strategies presented above, we have decided to use correlations since it 

is the most common one in the literature, and provides a fair notion about the inter-

pretability of the results. 

 



 

 

Chapter 6 

6 Performance prediction in 

recommender systems 

In this chapter, we state and address the recommendation performance prediction 

problem, proposing and evaluating different prediction schemes. After laying out a 

formal frame for the problem, we start by researching the adaptation of principles 

and prediction techniques that have been proposed and developed in ad-hoc Infor-

mation Retrieval. More specifically, we draw from the notion of query clarity as a 

basis for finding suitable performance predictors that provide a well grounded theo-

retical formalisation. In analogy to query clarity, we hypothesise that the amount of 

uncertainty involved in user and item data (reflecting ambiguity in user‟s tastes and 

item popularity patterns) may also correlate with the accuracy of the system‟s rec-

ommendations. This uncertainty can be captured as the clarity of users and/or the 

clarity of items by an adaptation of the query clarity formulation. This adaptation, 

however, is not straightforward, as we shall describe. Besides the approaches elabo-

rating on the notion of clarity, we propose new predictors based on theories and 

models from Information Theory and Social Graph Theory. 

In Section 6.1 we formulate the research problem we aim to address. Next, in 

Sections 6.2, 6.3, and 6.4 we propose several performance predictors for recom-

mender systems, some of them based on the clarity score, information theoretical 

related concepts – such as entropy –, and graph-based metrics. The proposed predic-

tors are defined upon three different spaces, namely ratings, logs, and social net-

works. Moreover, we also provide specific correlations of the described predictors in 

Section 6.5 in order to show their predictive power under different conditions along 

with a discussion of the results. Finally, in Section 6.6 we provide some conclusions. 
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6.1 Research problem 

Performance prediction finds a special motivation in recommender systems. Con-

trary to query-based information retrieval, as far as the initiative relies on the system, 

a performance prediction approach may provide a basis to decide producing recom-

mendations or holding them back, depending on the expected level of performance 

on a per case basis, delivering only the sufficiently reliable cases. On the other hand, 

recommenders based on a single algorithm are not competitive in practice, and real 

applications heavily rely on hybridisations and ensembles of algorithms. 

The capability to foresee which algorithm can perform better in different cir-

cumstances can therefore be envisioned as a good approach to enhance the perform-

ance of the combination of algorithms by dynamically adjusting the reliance on each 

subsystem. Furthermore, it is well-known in the recommender systems field that the 

performance of individual recommendation methods is highly sensitive to different 

conditions, such as data sparsity, quality and reliability, which are subject to an ample 

dynamic variability in real settings. Hence, being able to estimate in advance which 

recommenders are likely to provide the best output in a particular situation opens up 

an important window for performance enhancement. Alternatively, estimating which 

users of a system are likely to receive worse recommendations allows for modifica-

tions in the recommendation algorithms to predict this situation, and react in ad-

vance. 

The problem of performance prediction has been however barely addressed in 

the Recommender Systems field. The issue has been nonetheless mentioned in the 

literature – evidencing the relevance of the problem – and is in some way often im-

plicitly addressed by means of ad hoc heuristic tweaks such as significance weighting 

in nearest neighbour recommenders (Herlocker et al., 1999) and confidence scores 

(Wang et al., 2008a), along with additional computations (mainly normalisations) 

which are introduced into the recommendation methods aimed to better estimate the 

predicted ratings. 

In the recommendation context, the problem of performance prediction can be 

stated as follows. We define a performance predictor as a function that takes a cer-

tain input, and returns a real value that correlates with some utility dimension of a 

recommender system. This is an instantiation of the problem presented in Section 

5.1 but in the recommendation setting. For such purpose, we first specify more pre-

cisely what the input space of predictors consists of, and how the predictor input and 

output relate to the data involved in recommendation. Thus, a utility predictor han-

dles the following information: 
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Input variables 

 The specific configuration of the recommender system. For instance, for a 

nearest neighbour recommender input parameters could be the neighbour map 

(that assigns a set of neighbours to each user) and a user similarity metric. 

 Any input of the recommender, such as the active user and the active item. 

 Background/context information: any known user, item, and user-item interac-

tion data, such as user ratings, user features, item features, social network in-

formation, data timestamps, etc. We have to note that, even though the predic-

tor will generally use this type information, we consider it as implicit input and 

do not include it explicitly in our notation to avoid making it needlessly cum-

bersome. 

Output variable 

 A value in  . 

A predictor is thus a function           (  being the set of all recom-

menders) that estimates the performance of the system, possibly using additional 

information available in the background. A predictor can be independent from some 

of these inputs, which would be then omitted in the previous notation. For instance, 

in this chapter we shall present predictors of the form       and      . Ad-

ditionally, a predictor may assume a specific parameterised recommender algorithm 

family (e.g. nearest neighbour collaborative filtering), and needs some element of its 

configuration as input. It may also happen that a predictor does not make any as-

sumption on the recommender – it does not depend on it – but still the predictor 

works well only for certain types of recommenders. It would be syntactically possible 

and correct to apply the predictor with other recommenders, although it may work 

badly. In general, what it means for a predictor to work “well” may depend on the 

application, but we generally assume it can be evaluated in terms of its correlation to 

some utility dimension of recommendations, such as an accuracy metric (RMSE, 

precision, nDCG) or alternative metrics such as novelty, diversity, etc. 

If a recommender system can be decomposed into its internal configuration, 

then a predictor can directly take as input the components of the recommender con-

figuration. For instance, neighbourhood-based collaborative filtering recommenders 

can be represented in        , where             is a preference 

estimation function (based on   similarity values between the target user and her 

neighbours, and   neighbours‟ ratings on the target item),          is a 

neighbourhood assignment map, and   is a similarity metric. Upon such a model, we 

would have              . 
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We may also constrain some inputs to a relevant condition they should meet. 

For instance, we could limit ourselves to a neighbourhood map that considers a user 

  as a candidate neighbour. In that case, this map can be essentially represented by  , 

and then we would have               (note that the first   in the 

Cartesian product stands for neighbour users, and the second   for target users). 

It is important to note that when the predictor takes as input some of the inputs 

of the recommender, namely the active user and/or the active item, then the predic-

tor‟s correlation with the recommender‟s utility must be measured on a per-input 

basis. For instance, if the predictor just takes users as input arguments, it should cor-

relate with the average utility per user. 

Moreover, predictors can also be used to enhance hybrid recommenders by fa-

vouring strategies that are predicted to produce better results. This can be done by 

relating activation switches in the recommenders to predictor values, so that one 

recommender or the others are activated or favoured depending on the predictor‟s 

estimation. 

The way in which these activation switches are related to predictors is typically 

application-dependent. For instance, in ensemble recommenders consisting of a 

unique (Boolean) selection among a set of recommenders, the selection/discarding 

of recommenders can be a binary function of a predictor for each recommender. If 

the ensemble consists of a linear combination of recommenders, the weights in the 

combination can also be a function of the predictors. In neighbourhood-based col-

laborative filtering, activation switches can be the weights of neighbours in the pre-

diction of user ratings. Indeed, relating predictor values to activation switches is a 

non-trivial problem and generally requires some research on itself. 

Based on all the above mentioned issues, the general research problem we ad-

dress consists of a) finding effective predictors of recommendation utility, and b) 

identifying and testing useful applications for the found predictors. In the reminder 

of this chapter we propose different predictors of recommendation utility using dif-

ferent types of input, namely ratings, logs, and social information. In Chapters 7 and 

8 we shall exploit and evaluate such predictors in two applications: dynamic hybrid 

recommendation, and dynamic neighbour weighting in collaborative filtering. 

6.2 Clarity for preference data: adaptations of query 

clarity 

In this thesis, we propose different adaptations for the concept of query clarity to 

recommender systems. First, we deal with the definition of user clarity when rating-

based preference data is available, where alternative ground models are proposed, 

depending on which random variables want to be considered in the computation of 
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the user clarity. Then, we define the concept of user clarity for log-based preference 

data. Additionally, for ratings we also define the concept of item clarity. 

Now we propose a fairly general adaptation of query clarity, which may be in-

stantiated into different schemes, depending on the input spaces considered. At an 

abstract level, we consider an adaptation that equates users in the recommendation 

domain to queries in the search domain, as the corresponding available representa-

tions of user needs in the respective domains. This adaptation results in the following 

formulation for user clarity: 

 

                      

      

    
   

 (6.1) 

As we can observe, the clarity formulation strongly depends on a “vocabulary” 

space  , which further constrains the user-conditioned model (or user model for 

short)       , and the background probability     . In ad-hoc information retrieval, 

this space is typically the space of words, and the query language model is a probabil-

ity distribution over words (Cronen-Townsend et al., 2002). In recommender sys-

tems, however, we may have different interpretations, and thus, different formula-

tions for such a probabilistic framework, as we shall show. In all cases, we will need 

to model and estimate two probability distributions: first, the probability that some 

event (depending on the current probability space  ) is generated by the user lan-

guage model (user model); and second, the prior probability of generating that event 

(background model). 

Under this formulation, user clarity is in fact the difference (Kullback-Leibler di-

vergence) between a user model and a background model. The use of user and back-

ground distributions as a basis to predict recommendation performance lies on the 

hypothesis that a user probability model being close to the background (or collec-

tion) model is a sign of ambiguity or vagueness in the evidence of user needs, since 

the generative probabilities for a particular user are difficult to single out from the 

model of the collection as a whole. In Information Retrieval, this fact is interpreted 

as a query for which the relevant documents are a mix of articles about different top-

ics (Cronen-Townsend et al., 2002). 

As an additional step, we generalise the adaptation stated in Equation (6.1) to al-

low for different reference probability models parameterised by a generic variable     
 

                           

        

      
   

  (6.2) 

This generalisation will allow for the development of further varieties of the clarity 

scheme, and simplifies to Equation (6.1) whenever we implicitly consider a fixed  , 

as we shall see next. Equivalently, the variable   may be integrated in both user and 

background models by exploiting a multidimensional vocabulary space: 
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 (6.2b) 

It is easy to see that Equations (6.2) and (6.2b) are fully equivalent, and thus al-

low two interpretations for the same magnitude. 

As stated in (Cronen-Townsend et al., 2002), language models capture statistical 

aspects of the generation of language. Therefore, if we use different vocabularies, we 

may capture different aspects of the user. The probabilistic relations between the 

variables involved in Equation (6.2) also depend on the nature of the data, and the 

different possible generative models induced by the recorded observations of user-

item interactions (the input to a recommender system). In this thesis we consider two 

types of interaction data records: users-rating-items (where the atomic event is a user 

rating an item with a value), and users “consuming” items (a user accesses an item at 

some time instant). The first type fits a dataset such as MovieLens and CAMRa, and 

the second fits well Last.fm data – the datasets on which we shall test the methods to 

be developed here. Across these two types, in our research we explore mainly three 

vocabulary spaces for  : ratings, items, and time. Each of the vocabulary spaces 

induces its own user-specific interpretation, as we shall see. As for the optional con-

textual parameter  , we shall consider here only the space of items ranging over the 

set of items – thus fully leveraging the triadic nature of the user-item-rating and user-

item-time spaces. The scheme is however open to the exploration of further possi-

bilities, as is the vocabulary space itself, beyond the options researched here. 

In the following sections we thus explore several alternatives for rating-based 

and log-based data spaces (and their induced generative models). 

6.2.1 Rating-based clarity 

As just mentioned, in the rating space, we consider a set of user-item-rating tuples, 

where each user-item pair appears in a unique tuple (i.e., users only rate items once). 

We consider two possible vocabulary spaces: items and ratings, and two context alter-

natives: items (which make only sense in the rating vocabulary) and none. The resulting 

clarity schemes are summarised in Table 6.1, and have each their own interpretation. 

The rating-based clarity model captures how differently a user uses rating values 

(regardless of the items the values are assigned to) with respect to the rest of users in 

the community. The item-based clarity takes into account which items have been 

rated by a user, and therefore, whether she rates (regardless of the rating value) the 

most rated items in the system or not. Finally, the item-and-rating-based clarity com-

putes how likely a user would rate each item with some particular rating value, and 

compares that likelihood with the probability that the item is rated with some par-

ticular rating value. In this sense, the item-based user model makes the assumption 

that some items are more likely to be generated for some users than for others de-
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pending on their previous preferences. The rating-based model, on the other hand, 

captures the likelihood of a particular rating value being assigned by a user, which is 

an event not as sparse as the previous one, with a larger number of observations. 

Finally, the item-and-rating-based model is a combination of the two previous mod-

els into a unified model incorporating items and ratings. As we mentioned before, 

this could be made more explicit by considering the user model          in the 

Equation (6.2b), which would be equivalent to this model under some indepence 

assumptions, i.e., when                      . 

Ground models for user clarity 

We ground the different clarity measures defined in the previous section upon a rat-

ing-oriented probabilistic model very similar to the approaches taken in (Hofmann, 

2004) and (Wang et al., 2008a). The sample space for the model is the set     

 , where   stands for the set of all users,   is the set of all items, and   is the set of 

all possible rating values. Hence, an observation in this sample space consists of a 

user assigning a rating to an item. We consider three natural random variables in this 

space: the user, the item, and the rating value, involved in a rating assignment by a 

user to an item. This gives meaning to the distributions expressed in the different 

versions of clarity as defined in the previous section. For instance,        represents 

the probability that a specific item   is rated with a value   – by a random user –, 

     is the probability that an item is rated – with any value by any user –, and so on. 

The probability distributions upon which the proposed clarity models are de-

fined can use different estimation approaches, depending on the independence as-

sumptions one would consider, and the amount of involved information. Back-

ground models are estimated using relative frequency estimators, that is: 

       
                      

                      
 (6.3) 

User clarity 
Vocabulary   / 

Context   

User 

model 

Background  

model 
Formulation 

Rating-based 
Ratings / 

None 
                        

      

    
 

 

Item-based 
Items / 

None 
                        

      

    
 

 

Item-and-

rating-based 

Ratings /  

Items 
                                   

        

      
   

 

Table 6.1. Three possible user clarity formulations, depending on the interpretation of the 

vocabulary and context spaces. 
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These are maximum likelihood estimations in agreement with the meaning of the 

random variables as defined above. Starting from these estimations, user models can 

be reduced to the above terms by means of different probabilistic expansions and 

Bayesian reformulations, which we define next for the three models introduced in 

the previous section. 

Item based model. The        model can be simply expanded through mar-

ginalisation over ratings, but under two different assumptions: the item generated by 

the model only depends on the rating value, independently from the user or, on the 

contrary, depends on both the user and the rating. These alternatives lead to the fol-

lowing developments, respectively: 

                          

   

 (6.4) 

                           

   

 (6.5) 

Rating based model. This model assumes that the rating value generated by the 

probability model depends on both the user and the item at hand. For this model, we 

sum over all possible items in the following way: 

 

                      

        

 (6.6) 

where the        term can be developed as in the item-based model above. The term 

         requires further development, which we define in the next model. 

Item-and-rating based model. Three different models can be derived depend-

ing on how the Bayes‟ rule is applied. In these models, item probability is assumed to 

be uniform and thus it can be ignored in the computation of the expectation in 

Equation (6.2). In the same way as proposed in (Wang et al., 2008a), three relevance 

models can be defined, namely a user-based, an item-based, and a unified relevance 

model: 

           
                

                    
 (6.7) 
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 (6.8) 

            
             

                 
 (6.9) 

The first derivation induces a user-based relevance model because it measures by 

         how probable it is that a user rates item   with a value  . The item-based 

relevance model is factorised proportional to an item-based probability, i.e., 

                  . Finally, in the unified relevance model, we have            

        . These estimations correspond respectively with the Equations 20a, 20b, 

and 21 from (Wang et al., 2008a); to make the thesis self-contained and facilitate the 

comparison between the different probability models, we present now these equa-

tions from (Wang et al., 2008a): 

          
 

        
 

 

  
   

  
   

  
 

        

 (6.10) 

          
 

        
 

 

  
   

  
   

  
 

        

 (6.11) 

          
 

      
 

 

  
   

  
   

  
 

 

  
   

  
   

  
 

          

 (6.12) 

where      is a Parzen Kernel function (Duda et al., 2001). In this formulation,   

denotes the user   represented as a vector by her ratings in the space of items. Un-

rated items can be filled with the average rating value or with other constant value, 

such as 0 or the average rating in the community. Respectively,   represents the item 

  in the user space.    and    are the bandwidth window parameter for the user and 

item vector, respectively;      denotes the set of observed samples where event     

has happened. For example,        denotes the set of observed samples with event 

         . More specifically: 

                       (6.13) 

                       (6.14) 

                           (6.15) 

In the experiments, we used a Gaussian Kernel function, i.e.,      

           , and           as suggested in (Wang et al., 2008a). 
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Finally, different combinations of distribution formulations and estimations re-

sult in a fair array of alternatives. Among them, we focus on a subset that is shown in 

Table 6.2, which provide the most interesting combinations, in terms of experimental 

efficiency, of user and background distributions for each clarity model. These alter-

natives are further analysed in detail below (with examples) and in Section 6.5.1 

where correlations obtained by each model are presented. 

Qualitative observation 

In order to illustrate the proposed prediction framework and give an intuitive idea of 

what user characteristics the predictors are capturing, we show the relevant aspects of 

specific users that result in clearly different predictor values, in a similar way to the 

examples provided in (Cronen-Townsend et al., 2002) for query clarity. We compare 

three user clarity models out of the seven models presented in Table 6.2: one for 

each formulation included in Table 6.1. In order to avoid distracting biases on the 

clarity scores that a too different number of ratings between users might cause, we 

have selected pairs of users with a similar number of ratings. This effect would be 

equivalent to that found in Information Retrieval between the query length and its 

clarity for some datasets (Hauff, 2010). 

Table 6.3 shows the details of two sample users on which we will illustrate the 

effect of the predictors. As we may see in the table,    has a higher clarity value than 

   for the three models analysed. That is, according to our theory,    is less “am-

biguous” than   . Figure 6.1 shows the clarity contribution in a term-by-term basis 

for one of the item-and-rating-based clarity models  where, in this case, terms are 

equivalent to a pair (rating, item)  as analysed in (Cronen-Townsend et al., 2002). In 

the figure, we plot                               for the different terms in the 

collection, sorted in descending order of contribution to the user model, i.e., 

User clarity name User dependent model Background model 

RatUser                          
RatItem                          

ItemSimple               

ItemUser                
IRUser                    
IRItem                    
IRUserItem                     

Table 6.2. Different user clarity models implemented. 

User Number of ratings ItemUser clarity RatItem clarity IRUserItem clarity 

   51 216.015 28.605 6.853 

   52 243.325 43.629 13.551 

Table 6.3. Two example users, showing the number of ratings they have entered, and 

their performance prediction values for three user clarity models. 
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        , for each user. For the sake of clarity, only the top 20 contributions are 

plotted. We may see how the user with the smaller clarity value receives lower con-

tribution values than the other user. This observation is somewhat straightforward 

since the clarity value, as presented in Equation (6.1), is simply the sum of all these 

contributions, over the set of terms conforming the vocabulary. In fact, the figures 

are analogous for the rest of the models, since one user always obtains higher clarity 

value than the other. 

Let us now analyse more detailed aspects in the statistical behaviour of the users 

that explain their difference in clarity. The IRUserItem clarity model captures how 

differently a user rates an item with respect to the community. Take for instance the 

top item-rating pairs for users 1 and 2 in the above graphic. The top pair for    is (4, 

“McHale‟s Navy”). This means that the probability of    rating this movie with 4 is 

much higher than the background probability (considering the whole user commu-

nity) of this rating for this movie. Indeed, we may see that    rated this movie with a 

3, whereas the community mode rating is 1 – quite farther away from 4. This is the 

trend in a clear user. On the other extreme of the displayed values, the bottom term 

in the figure for    is (2, “Donnie Brasco”), which is rated by this user with a 5, and 

the community mode rating for this item is 4, thus showing a very similar trend be-

tween both. This is the characteristic trend of a non-clear user. 

Furthermore, if we compare the background model with the user model, we ob-

tain more insights about how our models are discriminating distinctive from main-

stream behaviour. This is depicted in Figure 6.2. In this situation, we select those 

terms which maximise the difference between the user and background models. 

Then, for this subset of the terms, we sort the vocabulary with respect to its collec-

tion probability, and then we plot the user probability model for each of the terms in 

the vocabulary. 

 

Figure 6.1. Term contributions for each user, ordered by their corresponding contribution to 

the user language model. IRUserItem clarity model. 
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These figures show how the most ambiguous user obtains a similar distribution 

to that of the background model, while the distribution of the less ambiguous user is 

more different. In the rating-based model this effect is clear, since the likelihood of 

not so popular rating values (i.e., a „5‟) is larger for    than for   , and at the same 

time, the most popular rating value (a „4‟) is much more likely for   . The figure 

about the ItemUser model is less clear in this aspect, although two big spikes are 

observed for    with respect to the collection distribution, which correspond with 

two unpopular movies: „Waiting for Guffman‟ and „Cry, the beloved country‟, both 

with a very low collection probability. Finally, the figure about the IRUserItem model 

successfully shows how    has more spikes than   , indicating a clear divergence 

from the background model; in fact,   ‟s distribution partially mimics that of the 

collection. In summary, the different models proposed are able to successfully sepa-

 

 

 

Figure 6.2. User language model sorted by collection probability. 
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rate information concerning the user and that from the collection, in order to infer 

whether a user is different or similar from the collection as a whole. 

Item clarity 

Alternatively to user-based predictors, we can also consider item-based predictors, 

where the performance prediction is made on an item-basis. Item predictors can be 

defined analogously as those defined previously for users, the equation for item clar-

ity being as follows: 

 

                           

        

      
   

  (6.16) 

The formulation of the item predictors we propose is basically equivalent to the 

user-based scheme but swapping users and items. That is, we have the three formula-

tions presented in Table 6.4 where the vocabulary now may be either ratings or users, 

and the context variable is the user space. Based on these three formulations, and on 

derivations analogous to those presented before, we propose the seven item predic-

tors defined in Table 6.5 which are further evaluated in Section 6.5.2. 

In some of the instantiations of the item clarity predictor, we may observe that 

there are item probability models statistically equivalent to some of the user probabil-

ity models, such as the           and          . For this reason, we now only spec-

Item clarity 
Vocabulary   / 

Context   

Item 

model 

Background  

model 
Formulation 

Rating-based 
Ratings / 

None 
                        

      

    
 

 

User-based 
Users / 

None 
                        

      

    
 

 

User-and-

rating-based 

Ratings /  

Users 
                                   

        

      
   

 

Table 6.4. Three possible item clarity formulations, depending on the interpretation of the 

vocabulary and context spaces. 

Item clarity name Item dependent model Background model 

RatItem                          
RatUser                          
UserSimple               
UserItem                

URItem                    

URUser                    
URItemUser                     

Table 6.5. Different item clarity models implemented. 
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ify those probability models which have not been defined before, for the rest of es-

timations see Equation (6.3): 

                          

   

 (6.17) 

                           

   

 (6.18) 

                       (6.19) 

6.2.2 Log-based clarity 

In this section we adapt some of the previous models proposed for user clarity when 

the preference data come in the form of user-item interaction logs. Log data has a 

particularity we aim to exploit: the number of times a user consumes (purchased, 

listened, browsed, etc.) an item may be higher than one, in contrast with rating-based 

preferences, where the relation between a user and an item is summarised as a unique 

value, the rating. Moreover, the timestamp of the interactions has a stronger meaning 

in the implicit approach, as it informs of the very instant the user decided to use the 

item, rather than the time when the user decided to reflect on her quality of experi-

ence with the item (rating time). Specialised recommendation algorithms have been 

proposed in the literature that exploit such features in order to obtain better recom-

mendations (Xiang et al., 2010; Lee et al., 2008). Additional alternatives for the defi-

nition of the vocabulary may be proposed, but we shall focus on these two: log co-

occurrences and timestamps. 

Specifically, based on Equation (6.2) and the three instantiations of   and   

shown in Table 6.1, in principle only an instantiation analogous to the second one 

(   , no context – to which we shall refer as frequency-based clarity) makes sense 

here, as there is no rating space. However, it is possible to consider an additional 

space, which leads to structurally similar instantiations by taking time as the   vo-

cabulary. The similarity is only syntactic, as the meaning and implications of the re-

sulting magnitude, to which we shall refer as time-based clarity, are quite different 

from rating-based clarity – in other words, ratings and time are quite different dimen-

sions –, as we shall describe later below. 

Frequency-based clarity 

As mentioned above, we may define the following instantiation of the Equation (6.2) 

based on frequencies as follows: 

                                       

      

    
 

 (6.20) 
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where now the estimations of the user and background models are computed using 

directly the frequencies of the co-occurrences of some particular user-item interac-

tion in the data:  

 

     
       

           
 

 

       
         

              

 

(6.21) 

An alternative to such estimations is to use transformations from implicit log-

based to explicit ratings, such as the one proposed in (Celma, 2008). In that ap-

proach, any of the predictors based on ratings proposed in the previous section could 

be applied, since these transformations give the additional vocabulary space of rat-

ings that was absent in principle in log data. 

Time-based clarity 

As introduced earlier, the second dimension susceptible to be exploited when log-

based preference data are available is time. The time dimension is being paid increas-

ing attention in Information Retrieval, where, for instance, it has been integrated into 

language models as a means to capture some temporal information needs from the 

user (Berberich et al., 2010), and the temporal query dynamics are being increasingly 

considered in the field (Kulkarni et al., 2011). In fact, temporal query features have 

also been used for query performance prediction, showing low or moderate correla-

tion with query performance by themselves, although higher correlation is obtained 

when such features are combined with query clarity (Diaz, 2007; Diaz and Jones, 

2004). 

Furthermore, time has an inherent place in recommendation: recommender sys-

tems take as input (potentially long) histories of user interaction with items (Lathia, 

2010; Zimdars et al., 2001; Burke, 2010). Time is an essential dimension in making 

sense of the data, and in explaining, analysing and interpreting the motivations be-

hind the actions of users recorded over time. We propose to bring these ideas to 

recommender systems, in particular, to adapt the temporal features studied by Díaz 

and colleagues on a recommender system dataset. More specifically, we use the tem-

poral Kullback-Leibler divergence described in (Diaz and Jones, 2004) as a starting 

point, which we generalise and elaborate upong by considering the instantiation of 

Equation (6.2) for a time-based space  , and the space of items as a possible contex-

tual dimension, as presented in Table 6.6. In the following, we define the specific 

instantiations of the temporal clarity formulations presented in this table. 
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Time based model. We denote as TimeSimple clarity the most direct adapta-

tion for temporal clarity, which does not use any further extension over other dimen-

sions. It simply computes        using smoothing (see below) and       from the 

collection frequencies. 

Item-and-time based model. Like in the previous section, we develop condi-

tional probabilities into sums with respect to a third variable: the items rated by the 

user. Here, we define two temporal clarity predictors depending on the distribution 

assumed for the items in the summation. If the distribution is uniform we denote 

such predictor as ItemTime clarity and           . If, on the other hand, we 

also want to incorporate the popularity of the item for – which we have more data in 

this context and makes more sense than in rating data, since there the interaction 

between a user and an item is binary –, we include the prior item probability as 

          , which can be estimated considering the frequency by which   is ac-

cessed based on the interaction log. 

The probabilities presented above are estimated as follows: 

 

      
                     

   
 

      
                     

   
 

         
                 

                     
 

         
                 

                     
 

           
             

                 
 

(6.22) 

Note that the variable   in         in the above expressions denotes a timestamp 

in the discretised time segment (e.g. day, week) represented by  . Furthermore, these 

are simple estimations of the distributions; hence, it is also possible to introduce non-

parametric estimations or additional expansions through similar users or items (Wang 

et al., 2006a; Wang et al., 2008a). Moreover, distributions can also be modeled by 

User clarity 
Vocabulary   / 

Context   

User 

model 

Background  

model 
Formulation 

Time-based 
Time / 

None 
                       

      

    
 

 

Item-and-

time-based 

Time /  

Items 
                                 

        

      
   

 

Table 6.6. Two temporal user clarity formulations, depending on the interpretation of the 

vocabulary space. 
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other statistical theories or hypothesis (such as Bayesian inversion), and distribution 

fitting/modelling from time series theory could also be studied (Diaz and Jones, 

2004; Wang et al., 2008b). 

In particular, we have smoothed these estimations using Jelinek-Mercer as fol-

lows: 

 

                               

                               

                                   

(6.23) 

6.3 Predictors based on social topology 

Social information is widespread nowadays. As we surveyed in Chapter 2, recom-

mender systems that use social information are proliferating in the research literature, 

as well as in the recommender system industry, because of the effectiveness they are 

being found to have. It seems therefore sensible to consider social information as a 

potentially useful input for predicting the performance of recommendation. The mo-

tivation for this approach is obvious when applied to social recommender systems, 

though we will also explore its potential properties in relation to non-explicitly social 

recommendation, in order to study whether social topologies may have an indirect 

effect on the results of the algorithms for different users. 

With this goal in mind, we explore the use of graph-based measures as indicators 

of the user strength in the social network, which may in turn correlate with the ease 

or difficulty of users as recommendation targets. Graph-based measures developed 

from link-analysis theory are straightforward to interpret where they are often used 

to understand the structure of communities within a population (De Choudhury 

et al., 2010; Albert and Barabási, 2002). As a basis for user performance prediction 

they may thus bring an advantage in terms of explaining the predictions. 

More specifically, the utilised indicators of the user strength in the network are 

based on the following vertex measures computed over the social network for each 

user, where a user is represented as a node in the graph, and the user‟s friends corre-

spond with the node‟s neighbours: 

 Average neighbour degree: mean number of friends of each user‟s friend 

(Kossinets and Watts, 2006). 

 Betweenness centrality: indicator of whether a user can reach others on rela-

tive short paths (Freeman, 1977). 

 Clustering coefficient: probability that the user‟s friends are friends them-

selves (Watts and Strogatz, 1998). 
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 Degree: number of the user‟s friends in the social network (Milgram, 1967). 

 Ego components size: number of connected components remaining when 

the user and her friends are removed (Newman, 2003). 

 HITS: Kleinberg, 1999) defines two complementary measures which assign 

recursively a weight to each vertex (user) depending on the topology of the 

network. In this way, they define hubs and authorities: a vertex is a hub when it 

links to authoritative vertices, and is an authority when it links to hub vertices. 

Since the social network used here (see Appendix A.1.3) is undirected, hub and 

authority scores are redundant and we only report one, denoted as HITS. 

 PageRank score: well-known measure of connectivity relevance within a social 

network based on a random walk over the vertices, where a probability 

(      in our experiments) of jumping to any other vertex is introduced 

(Brin and Page, 1998). 

 Two-hop neighbourhood size: count of all the user‟s friends plus all the 

user‟s friend‟s friends (De Choudhury et al., 2010). 

6.4 Other approaches 

As a reference for comparison, we shall also test further predictors besides the ones 

proposed in the thesis, directly drawn from the literature, and not necessarily based 

on probabilistic formalisations, but following more loose formalisations, or heuristic 

approaches. As a further sanity check, we shall also examine obvious and simple 

functions (such as the amount of activity of a user), as a reference for the justification 

of elaborate approaches as proposed. Next, we present these predictors which are 

evaluated and compared in Section 6.5. 

6.4.1 Using rating-based preference data 

A fairly simple user predictor against which we would like to compare more elaborate 

functions is the count predictor, namely the number of items a user has rated at 

some specific moment. This predictor, as we shall see later, can be defined in the 

training set and in the test set, and although its rationale is the same, the output has 

different implications. Whereas in training this predictor is measuring how much 

information a recommender knows about some specific user, in test this value would 

be related to the amount of relevance used to obtain the performance metric. Fur-

thermore, as observed in Chapter 4, the amount of relevance would be different de-

pending on the evaluation methodology considered. However, we have to note that, 

due to statistical effects, the training count (profile size in training) and test count 
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(profile size in test) would probably be related if the training/test split is performed 

randomly. 

 
                          (6.24) 

Two additional heuristic predictors can be defined by looking at user statistics 

such as the mean and the standard deviation of the user‟s ratings. It seems plausi-

ble that such predictors would not be equally powerful for any type of recommender: 

it would depend on whether these statistics are used by the recommender. For in-

stance, one might have the intuition that the higher the standard deviation, the lower 

the recommendation performance as one may figure out uniform user ratings to be a 

somewhat easier target. 
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Alternatively to these heuristic predictors, we have also experimented with a pre-

dictor defined upon the past observed recommender‟s performance. In this way, this 

predictor – denoted as training performance from now on – use a validation set (as 

a subset of the original training set) to evaluate the performance of each user with 

respect to a specific recommender; then, this value is the one returned by the predic-

tor at test time. This approach is inspired in the Machine Learning techniques which 

aim to learn a feature (in this case, the user‟s performance) by using some training 

information. For this predictor, this training information is the performance com-

puted on the validation set. 

Additionally, we propose to measure the entropy of the user‟s preferences as a 

quantification of the uncertainty associated with a probability distribution (Cover and 

Thomas, 1991). We may therefore assess the uncertainty involved in the system‟s 

knowledge about a user‟s preferences by the entropy of the item distribution (the 

probability to choose an item) given the information in the user profile, using the 

ground models presented in Section 6.2.1. Hence, we define this predictor as follows: 

 

                            

    

 (6.27) 

Alternative measures from Information Theory could be used to define user-

based predictors, like Information Gain (Bellogín, 2009), but we leave them out of 

this analysis because its application to Recommender Systems is neither clear nor 

principled and their predictive results are not optimal. Furthermore, other measures 

already proposed in the literature such as inverse user frequency (Breese et al., 1998) 
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and the analogous inverse item frequency (Bellogín, 2009), and other manipulations 

of the same concept, are also ignored here because they are simply transformations 

of the previously presented count predictor. Finally, the concept of power users 

(Lathia et al., 2008) could also be used as a proxy for well-performing users, but pre-

liminary results have not shown strong predictive power. 

6.4.2 Using log-based preference data 

As we have observed in the previous section, recommendation performance usually 

has obvious predictors, obvious in the sense that they do not involve any interesting 

finding or insightful kind of analysis, or anything to learn from. We include in our 

analysis some of these obvious predictors, framed as baseline performance predictors 

that basically count how many interactions a user has had with the system. In this 

sense, these predictors are slightly different to the ones presented in the previous 

section, namely because in log-based datasets repetitions of items are allowed in a 

user‟s profile. In order to account for this difference, apart from count, mean, and 

standard deviation predictors, we propose to normalise the count predictor by the 

number of items consumed by each user, that is, we define the average count pre-

dictor as follows: 

 

                 
                     

                     
 (6.28) 

We also test more elaborate predictors based on the temporal dimension, such as 

the ones defined in (Diaz and Jones, 2004). First-order autocorrelation (or temporal 

self-correlation) can be considered with a reinterpretation of the random variables. 

Specifically, this predictor, in contrast with the temporal Kullback-Leibler divergence 

where the similarity with the temporal background model is assessed, captures the 

structure of the query time series. For instance, a uniform distribution would have an 

autocorrelation value of 0, whereas a query time series with strong inter-day (or 

whatever segment size is used to build the discrete time series) dependency will ob-

tain a high autocorrelation value. 

Thus, we define the autocorrelation user predictor as follows: 

 

                   
                            

   

               
   

 (6.29) 

where   is the total number of time units in the time interval. We can observe how 

this predictor captures the similarity between two consecutive observations.  

Extensions of this predictor could use the probabilities defined in Section 6.2.2, 

like         , instead of       . Similarly, other predictors proposed by Díaz and 

Jones in (Diaz and Jones, 2004) and (Jones and Diaz, 2007) such as the kurtosis or 
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the burst model could be adapted to recommender systems, but we leave such exten-

sions for future work. 

6.5 Experimental results 

In this section we provide correlation results where all the predictors – heuristic, 

social, and clarity-based – are compared against each other using an array of recom-

mendation methods and evaluation methodologies. 

6.5.1 User predictors using rating-based preference data 

In this section we compare the correlations obtained for the clarity-based predictors 

defined in Section 6.2.1, the user entropy defined in Equation (6.27), and the base-

lines presented in Equations (6.24), (6.25), and (6.26) using the MovieLens 1M data-

set. The   parameter for the language model smoothing was not optimised for this 

task and a default value of     was used in all the models as originally used in 

(Cronen-Townsend et al., 2002). Here, we focus on Pearson‟s correlation and P@10. 

Additional results are reported in Appendix A.4.1. 

Table 6.7 shows the correlation values when the AR methodology is used. We 

can observe fairly high correlation values for recommenders pLSA, ItemPop, TFL2, 

and kNN, comparable to results in the query performance literature. A slightly lower 

correlation is found for TFL1, whereas no correlation is found for CB and IB. These 

results are consistent when other performance metrics are used such as nDCG, and 

at different cutoff points. Spearman‟s correlation yields similar values. Here we also 

include the count predictor in test, which is obviously not a predictor in strict sense, 

Predictor Random CB IB ItemPop kNN pLSA TFL1 TFL2 Median Mean 

Count (training) 0.135 0.164 0.042 0.512 0.424 0.442 0.198 0.644 0.311 0.320 

Count (test) 0.135 0.172 0.042 0.520 0.431 0.452 0.200 0.647 0.316 0.325 

Training performance 0.024 0.176 0.258 0.429 0.296 0.357 0.215 0.485 0.277 0.280 

Mean 0.019 0.067 -0.002 0.015 0.022 0.108 0.026 -0.018 0.021 0.030 

Standard deviation 0.008 0.008 0.011 -0.029 -0.031 -0.032 0.011 -0.051 -0.011 -0.013 

ItemSimple Clarity 0.149 0.191 0.046 0.549 0.453 0.489 0.222 0.683 0.338 0.348 

ItemUser Clarity 0.134 0.166 0.048 0.493 0.416 0.428 0.215 0.634 0.316 0.317 

RatUser Clarity 0.135 0.160 0.048 0.514 0.442 0.435 0.214 0.651 0.325 0.325 

RatItem Clarity 0.127 0.159 0.039 0.475 0.402 0.405 0.203 0.611 0.303 0.303 

IRUser Clarity 0.128 0.157 0.027 0.486 0.382 0.408 0.182 0.599 0.282 0.296 

IRItem Clarity 0.122 0.165 0.034 0.446 0.352 0.386 0.188 0.551 0.270 0.281 

IRUserItem Clarity 0.128 0.158 0.033 0.479 0.379 0.403 0.193 0.594 0.286 0.296 

Entropy 0.121 0.168 0.025 0.492 0.389 0.483 0.140 0.589 0.279 0.301 

Median 0.128 0.162 0.037 0.489 0.396 0.418 0.196 0.605   

Mean 0.112 0.145 0.033 0.413 0.338 0.367 0.166 0.511   

Table 6.7. Pearson’s correlation between rating-based user predictors and P@10 for different recommenders using 

the AR methodology (MovieLens dataset). 
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since it uses a different input than the other predictors, but we include it in our 

analysis as a further reference to check behaviours. 

As mentioned in Chapter 5, the standard procedure in Information Retrieval for 

this kind of evaluation is to compute correlations between the predictor(s) and one 

retrieval model (like in (Cronen-Townsend et al., 2002) and (Hauff et al., 2008a)) or 

an average of several methods (Mothe and Tanguy, 2005). This approach may hide 

the correlation effect for some recommenders, as we may observe from the median 

and mean correlation values included in the table, which are still very large despite 

the fact that two of the recommenders analysed have much lower correlations. 

Nonetheless, these aggregated values, i.e., the mean and the median, provide com-

petitive correlation values when compared with those in the literature. 

The difference in correlation for CB and IB recommenders may be explained 

considering two factors: the actual recommender performance and the input sources 

used by the recommender. With regards to the first factor, as presented in Table 6.8, 

the IB algorithm performs poorly (in terms of the considered ranking quality metrics, 

such as precision and nDCG) in comparison to the rest of recommenders. It seems 

natural that a good predictor for a well performing algorithm (specifically, pLSA is 

the best performing recommender in this context) would hardly correlate at the same 

time with a poorly performing one. 

This does not explain however the somewhat lower correlation with the content-

based recommender, which has better performance than TFL1. The input informa-

tion that this recommender and the predictors take in are very different: the latter 

compute probability distributions based on ratings given by users to items, while the 

former uses content features from items, such as directors and genres. Furthermore, 

the CB recommender is not coherent with the inherent probabilistic models de-

scribed by the predictors, since the events modeled by each of them are different: CB 

would be related to the likelihood that an item is described by the same features as 

those items preferred by the user, whereas predictors are related to the probability 

that an item is rated by a user. Moreover, the predictors‟ ground models coherently 

fit in the standard collaborative framework (Wang et al., 2008a), which reinforces the 

suitability of the user performance predictors presented herein, at least for collabora-

tive filtering recommenders. 

It is worth noting to this respect that most clarity-based query performance predic-

Recommender Random CB IB ItemPop kNN pLSA TFL1 TFL2 

AR methodology 0.0025 0.0163 0.0001 0.0897 0.0307 0.1454 0.0024 0.0696 

1R methodology 0.0099 0.0221 0.0074 0.0649 0.0437 0.0836 0.0221 0.0690 

U1R methodology 0.0100 0.0223 0.0068 0.0406 0.0381 0.0718 0.0294 0.0524 

P1R methodology 0.0101 0.0197 0.0208 0.0282 0.0265 0.0604 0.0203 0.0348 

Table 6.8. Summary of recommender performance using different evaluation methodologies 

(evaluation metric is P@10 with the MovieLens dataset). 
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tion methods in Information Retrieval study their predictive power on language model-

ling retrieval systems (Cronen-Townsend et al., 2002; Hauff et al., 2008a; Zhou and 

Croft, 2007) or similar approaches (He and Ounis, 2004). This suggests that a well per-

forming predictor should be defined upon common spaces, models, and estimation 

techniques as the retrieval system the performance of which is meant to be predicted. 

Finally, the correlation values found by the training performance predictors, al-

though sometimes strong, are not as high as those of the baselines predictors – such as 

training count – in most situations, in particular, they are always lower except for the 

IB and TFL1 recommenders. This highlights the importance of having a more general 

model for predicting the performance of a user, since these predictors in fact depend 

considerably on the properties of the validation (and test) partition of the data, such as 

the amount of sparsity, type of items evaluated and so on. 

Unbiased performance prediction 

In Chapter 4 we already demonstrated that some methodologies may be biased to-

wards more popular items or sparsity constraints. We can observe in the previous 

table that trivial predictors such as count (either in training or in test) obtain signifi-

cant (and positive) correlation, no matter the recommender. We argue whether this is 

because these predictors are really capturing an interesting effect or the evaluation 

methodology is prone to such effect. In order to overcome this problem, now we 

present the same correlation analysis but with the different methodologies presented 

in Chapter 4. 

In Table 6.9 we show results with the methodology 1R. Here we can observe 

that most of the correlation values are lower than in the previous case; interestingly, 

the correlation with the Random recommender now is almost 0 for every predictor 

(and in particular, for the training and test profile size). This is evidence that per-

Predictor Random CB IB ItemPop kNN pLSA TFL1 TFL2 

Count (training) 0.061 -0.038 0.092 0.258 0.108 0.303 0.086 0.394 

Count (test) 0.063 -0.033 0.091 0.266 0.115 0.312 0.089 0.398 

Training performance 0.012 0.332 0.168 0.272 0.266 0.133 0.303 0.240 

Mean 0.036 0.082 -0.029 0.028 0.111 0.117 0.145 0.031 

Standard deviation -0.010 0.006 0.051 -0.060 -0.116 -0.080 -0.040 -0.114 

ItemSimple Clarity 0.066 -0.033 0.094 0.265 0.115 0.322 0.105 0.409 

ItemUser Clarity 0.059 -0.038 0.087 0.236 0.100 0.287 0.096 0.375 

RatUser Clarity 0.057 -0.054 0.083 0.245 0.130 0.285 0.086 0.372 

RatItem Clarity 0.057 -0.044 0.069 0.225 0.110 0.268 0.094 0.352 

IRUser Clarity 0.056 -0.020 0.053 0.250 0.069 0.280 0.077 0.364 

IRItem Clarity 0.051 -0.010 0.058 0.205 0.029 0.235 0.074 0.310 

IRUserItem Clarity 0.056 -0.020 0.052 0.242 0.066 0.273 0.081 0.357 

Entropy 0.091 0.021 0.144 0.354 0.169 0.460 0.114 0.543 

Table 6.9. Pearson’s correlation between rating-based user predictors and P@10 for different 

recommenders using the 1R methodology (MovieLens dataset). 
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formance results using the AR methodology are higher for users with more items in 

their test, independently from the recommendation algorithm complexity (see corre-

lations with Random recommender in Table 6.7). In the same way, the U1R (Table 

6.10) and P1R (Table 6.11) methodologies also obtain negligible correlation values 

for the Random recommender, which confirms the suitability of these methodologies 

for our purposes. We also have to note that we have not applied the training per-

formance predictor in these methodologies because their restrictions do not let to 

replicate the same conditions in a validation split. Furthermore, as stated in Chapter 

4, both approaches aim to remove the bias towards more popular items. Here, we 

can observe how the correlation with respect to the ItemPop recommender is com-

parable to that with the Random recommender with the P1R methodology, confirm-

ing again the ability of this methodology to produce unbiased results (at least, with 

respect to popular items). 

The main difference in the results obtained between these three methodologies 

(1R, U1R, and P1R) seems to be more at the recommender level rather than at the 

Predictor Random CB IB ItemPop kNN pLSA TFL1 TFL2 

Count (training) 0.048 -0.012 0.237 0.162 0.115 0.140 0.022 0.235 

Count (test) 0.049 -0.001 0.226 0.135 0.110 0.137 0.036 0.213 

Mean 0.023 0.051 -0.035 0.009 0.108 0.075 0.155 -0.006 

Standard deviation 0.015 0.032 0.023 -0.047 -0.098 -0.038 -0.061 -0.049 

ItemSimple Clarity 0.055 -0.005 0.241 0.166 0.128 0.153 0.042 0.241 

ItemUser Clarity 0.046 -0.009 0.232 0.142 0.109 0.133 0.028 0.216 
RatUser Clarity 0.045 -0.028 0.234 0.155 0.137 0.130 0.022 0.225 

RatItem Clarity 0.043 -0.025 0.212 0.136 0.119 0.117 0.033 0.203 

IRUser Clarity 0.044 0.002 0.180 0.153 0.069 0.134 0.029 0.210 

IRItem Clarity 0.036 0.011 0.178 0.114 0.035 0.108 0.014 0.173 

IRUserItem Clarity 0.042 0.003 0.178 0.147 0.065 0.130 0.028 0.203 

Entropy 0.078 0.044 0.278 0.227 0.169 0.249 0.073 0.321 

Table 6.10. Pearson’s correlation between rating-based user predictors and P@10 for different 

recommenders using the U1R methodology (MovieLens dataset). 

Predictor Random CB IB ItemPop kNN pLSA TFL1 TFL2 

Count (training) 0.073 -0.005 0.253 0.088 0.103 0.160 -0.001 0.307 

Count (test) 0.076 0.000 0.253 0.093 0.108 0.168 0.003 0.308 

Mean 0.034 0.073 -0.033 0.008 0.110 0.085 0.188 -0.026 

Standard deviation -0.010 0.009 0.014 -0.058 -0.104 -0.044 -0.061 -0.051 

ItemSimple Clarity 0.078 0.000 0.254 0.084 0.111 0.169 0.019 0.313 

ItemUser Clarity 0.072 -0.001 0.249 0.075 0.101 0.156 0.005 0.303 

RatUser Clarity 0.071 -0.016 0.252 0.086 0.128 0.148 0.003 0.297 

RatItem Clarity 0.067 -0.011 0.234 0.077 0.113 0.138 0.016 0.288 

IRUser Clarity 0.066 0.002 0.200 0.086 0.066 0.147 0.006 0.274 

IRItem Clarity 0.059 0.010 0.192 0.061 0.037 0.123 -0.006 0.242 

IRUserItem Clarity 0.066 0.003 0.200 0.082 0.065 0.145 0.006 0.272 

Entropy 0.092 0.038 0.286 0.133 0.128 0.266 0.039 0.379 

Table 6.11. Pearson’s correlation between rating-based user predictors and P@10 for different 

recommenders using the P1R methodology (MovieLens dataset). 
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predictor level, in the sense that the trend in predictor effectiveness is similar for 

each methodology but the correlations obtained for each recommender vary dra-

matically from one methodology to another. For instance, IB recommender obtains 

near zero correlations with 1R but higher (significative) values for U1R and P1R; a 

similar situation occurs with the TFL2 recommender, where the correlations are 

lower for the U1R methodology and higher for 1R and P1R. Note that the training 

and test sets are the same for all the methodologies except for U1R, which means 

that the performance predictors are entirely new for that methodology. Thus, a priori 

it would not be clear that such an agreement between the different methodologies 

should appear at the predictor level unless they are really capturing the same nuance 

about the user, no matter the evaluation methodology used. 

It is worth noting that the correlation values of these three methodologies have 

been found after a careful examination of the available data, where two different 

trends emerged: one where the performance values were more or less uniformly dis-

tributed in the interval [0, 0.1] – recall that 0.1 is the maximum value for the metric 

P@10 with the 1R methodology, since there is only one relevant item – ; and a sec-

ond one where a fixed value was obtained. This second trend, against which our pre-

dictors shown no correlation at all (since the performance had a zero standard devia-

tion, and thus the correlation was impossible to calculate) is able to degrade the cor-

relation coefficient almost to negligible values, mainly because it accounts for half of 

the number of points. This problem with correlation coefficients, and with Pearson‟s 

correlation in particular, is well known in the literature of performance prediction 

(Hauff, 2010; Pérez Iglesias, 2012). For this reason, we have divided the performance 

values and computed two correlations in order to account for these two trends: the 

values with respect to the first trend are those presented in the previous tables, 

whereas the correlation with respect to the second trend was not computable be-

cause the variable had a zero standard deviation. 

In summary, there seems to be no clear winner among the set of performance 

predictors proposed. The predictive power of each of them is clearly influenced by 

the actual recommender its performance aims to be predicted and the evaluation 

methodology in use. Nonetheless, the proposed predictors usually obtain higher 

correlation values than baseline predictors such as the mean or the standard de-

viation, evidencing their predictive power independently from the evaluation 

methodology. Surprisingly, the ItemSimple clarity predictor obtains very good re-

sults in most of the situations, although more complex predictors like IRUser or 

IRUserItem clarity obtain stronger correlations for some recommenders. 

6.5.2 Item predictors using rating-based preference data 

In the same way we have assessed the predictive power of user predictors, we now 

aim to estimate the predictive power of item predictors. However, the true perform-
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ance value for an item is not straightforward to compute, since the process has to 

produce unbiased results in the space of items (as described in Chapter 4) but with 

the characteristic that the item dimension is not the main input of the recommenda-

tion process, and thus, sone new approach has to be put in place. 

There are basically two possibilities for computing the true performance on an 

item: either starting from the results obtained using a standard procedure (obtain a 

ranking for each user by recommending items to users), then transposing users and 

items (generating, thus, user rankings for each item) and computing the per-ranking 

performance as usual; or transpose the original rating matrix in order to effectively 

“recommend users” for each item. This would implicitly imply a transposition of the 

recommendation task, which may also make sense: find the most suitable users to 

recommend an item – this would be the scenario, e.g. in advertisement targeting 

when a new product is released on the market. Here, we use the former approach 

since the latter does not produce consistent results in our experiments, probably be-

cause the recommendation problem is not completely symmetric and, thus, this 

method is not able to properly capture the recommender‟s performance for each 

item. On the other hand, non-personalised recommenders (such as recommendation 

by item popularity) cannot be applied in the symmetric formulation: since the same 

item ranking is built for all users, the user ranking for an item would be a global tie 

on all users. Table 6.12 shows an example of how we may transpose users and items 

from an item ranking for three users. We show that the precision for all the users is 

the same, whereas for the items is completely diverse, ranging from zero to perfect 

precision. 

In our experiments, we have tested the different methodologies already pre-

sented along with a modified version of the U1R evaluation methodology (user-

uniform U1R, or uuU1R). The rationale for the uuU1R design goes as follows: in the 

U1R methodology we force the same number of ratings (or, equivalently, users) for 

the items in the test set, however, users are freely assigned to each item. Now, when 

we transpose users and items this situation may produce a new problem, since there 

                       

    0.8    0.6    0.9  *    0.8    0.7    0.9 *    0.6 

 *    0.7 *    0.5 *    0.6  *    0.5    0.6 *    0.6     0.5 

 *    0.6 *    0.4 *    0.5     0.3    0.1 *    0.5 *   0.4 

    0.5    0.3    0.1          

P@2 0.5 0.5 0.5  1.0 0.0 0.5 0.5 

Table 6.12. Procedure to obtain ranking for items from user rankings generated by a 

standard recommender. * denotes a relevant item, and the numbers are the score 

predicted by the recommendation method. 
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could be users assigned to more items which would bias the ranking‟s performance 

towards items contained in the test set of heavy raters. Therefore, if we impose a 

uniform distribution also on the user‟s dimension, this bias should decrease. We refer 

to the reader to Appendix A.3 for more details. 

However, despite these efforts, we have not found a reliable methodology to 

evaluate the item performance. We present in Table 6.13 the results using the uuU1R 

methodology and the predictors defined in Table 6.5 for the precision metric. Recall 

that, since we transpose users and items from the generated rankings, to obtain a 

similar measure of P@10 we only use the top 10 items from each original ranking 

and then compute precision over the whole ranking for each item. We may observe 

in the table that the correlations with the Random recommender are very strong, 

questioning the validity of such results. Besides, the entropy predictor obtains 

stronger correlation than clarity-based in this case, and most of them (except for 

URItem) show little difference to training count. Note that it is not possible to com-

pute a correlation with the test count predictor since that predictor has a constant 

value with zero standard deviation (see Equation (5.11) for more details on Pearson‟s 

correlation) since every item has the same number of ratings in the test set in the 

uuU1R methodology. 

As a conclusion, we have found that a proper evaluation of item performance 

is not obvious, mainly because the task of suggesting users to items is not com-

pletely symmetric with respect to the standard task of recommendation. We have 

devised different methodologies to estimate the recommendatoin performance of an 

item, however the difficulty lies mainly in forming consistent lists of “recommended” 

users for items, a difficulty which is not conceptual (ranking target users to whom an 

item may be recommended does make sense as a task in many scenarios), but techni-

cal (obtaining balanced result lists that allow for undistorted performance measure-

ments). 

Predictor Random CB ItemPop kNN pLSA 

Count (training) 0.414 0.060 -0.151 -0.021 -0.269 

Count (test) ------- ------- ------- ------- ------- 

Mean 0.602 0.125 0.096 0.040 -0.038 

Standard deviation -0.313 0.025 -0.006 -0.003 0.075 

UserSimple Clarity 0.467 0.080 -0.120 -0.015 -0.240 

UserItem Clarity 0.419 0.064 -0.145 -0.018 -0.261 
RatItem Clarity 0.440 0.075 -0.127 -0.015 -0.230 

RatUser Clarity 0.451 0.085 -0.103 -0.004 -0.201 

URItem Clarity 0.396 0.053 -0.174 -0.026 -0.289 

URUser Clarity 0.408 0.072 -0.132 -0.004 -0.243 

URItemUser Clarity 0.409 0.061 -0.161 -0.021 -0.277 

Entropy 0.381 -0.001 -0.216 -0.055 -0.442 

Table 6.13. Pearson’s correlation for rating-based item predictors and precision 

using the uuU1R methodology (MovieLens dataset). 
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6.5.3 User predictors using log-based preference data 

In this section we analyse the correlation obtained between the predictors defined in 

Sections 6.2.2 and 6.4.2 and five recommenders using the 1R methodology on two 

versions of the Last.fm dataset – one where a temporal partition is performed and 

another where the partition is randomly made (more details about the splits in Ap-

pendix A.1.2). No smoothing was used in the language models since preliminary tests 

obtained better results with lower values of  . Besides, for comparison purposes, we 

also include one of the clarity models proposed for rating-based preference data us-

ing the transformation proposed in Section 6.2.2 to use such predictors with log data 

along with the frequency-based clarity proposed in Equation (6.20). Like in the pre-

vious section, Pearson‟s correlation with the P@10 evaluation metric is reported; for 

additional metrics, see Appendix A.4.2. 

First, we can observe in Table 6.14 (temporal split) that ItemPriorTime clarity 

obtains strong correlation values, especially for the ItemPop and kNN recommend-

ers. It is interesting to compare the correlations between this predictor and the Item-

Time clarity, which are much lower. This is probably because the ItemPriorTime 

clarity predictor, as opposed to ItemTime clarity, incorporates a component that 

measures the item popularity, i.e.,     . The TimeSimple and the frequency-based 

clarity predictors, on the other hand, obtain strong correlation but negative values for 

all the recommenders except the ItemPop for the TimeSimple predictor. Further-

more, the ItemSimple clarity (a predictor based on explicit information) obtains neg-

ligible correlations except for the ItemPop and kNN recommenders. 

Table 6.15, on the other hand, shows the results when a random split is used. We 

have to note that such split does not preserve the temporal continuity of the user‟s 

preferences, and thus, any recommender or technique which makes use of temporal 

features is not guaranteed to succeed. Here, we can observe that TimeSimple predic-

tor obtains strong correlations for all the recommenders except for the Random 

Predictor Random CB ItemPop kNN pLSA 

Average Count 0.027 0.138 0.069 -0.013 0.191 

Count 0.046 0.118 -0.058 0.131 0.139 

Mean -0.079 -0.361 0.054 -0.110 -0.376 

Standard deviation -0.050 -0.158 0.082 -0.132 -0.177 

Autocorrelation 0.004 0.139 -0.066 -0.105 0.100 

TimeSimple Clarity -0.091 -0.342 0.093 -0.317 -0.354 

ItemTime Clarity 0.037 0.078 0.038 0.258 0.064 

ItemPriorTime Clarity 0.057 0.154 0.189 0.307 0.154 

Frequency-based Clarity -0.049 -0.410 -0.221 -0.291 -0.376 

ItemSimple Clarity 0.027 0.047 -0.107 0.221 0.029 

Table 6.14. Pearson’s correlation between log-based predictors and P@10 for different 

recommenders using 1R methodology (Last.fm temporal dataset). 
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technique. Like before, ItemPriorTime has a high correlation with the ItemPop re-

commender. In contrast with the previous situation, the ItemSimple clarity obtains 

strong but negative correlations for the personalised recommenders. Besides, the 

frequency-based clarity has negative correlations for all the recommenders except 

CB, a consistent situation with the results obtained with the temporal split. 

Hence, we may conclude that log-based and time-aware predictors success-

fully predict the performance of the recommendation algorithms, although in 

some situations the sign of the prediction is negative. Moreover, frequency-based, 

ItemSimple, and TimeSimple clarity obtain consistently strong correlations both in a 

temporal split and in a random split of the data, evidencing their predictive power. 

6.5.4 User predictors using social-based preference data 

In this section we study the correlation between the predictors described in Section 

6.3 and several recommenders using the two versions of the CAMRa dataset: social 

and collaborative. In this case, we also consider social filtering recommenders in or-

der to analyse whether these predictors are sensitive to the source of information 

used by the recommender, and thus, whether they obtain stronger correlations with 

social filtering recommenders. Besides, one clarity-based predictor (ItemSimple) and 

the baseline rating predictors presented in Section 6.4.1 are also included in the 

analysis for comparison purposes. Additionally, for the HITS and PageRank graph 

metrics in this experiment we use the implementation developed in the JUNG library 

(O‟Madadhain et al., 2003). 

Table 6.16 shows correlation values obtained when using the AR methodology 

in the social version of the dataset. Here, we can observe that most of the correlation 

values obtained for the social predictors are negative, representing that the lower the 

predictor output, the better the performance, which may seem a little counter-

intuitive, at least for the social filtering recommenders (Personal and PureSocial). 

Predictor Random CB ItemPop kNN pLSA 

Average Count -0.023 -0.068 -0.170 -0.018 -0.087 

Count -0.012 -0.236 -0.242 -0.086 -0.198 

Mean 0.036 0.182 0.100 0.047 0.118 

Standard deviation -0.009 0.089 0.079 0.092 0.082 

Autocorrelation 0.045 -0.069 -0.089 -0.012 -0.055 

TimeSimple Clarity 0.031 0.274 0.314 0.169 0.240 
ItemTime Clarity 0.021 -0.145 0.004 0.025 -0.053 

ItemPriorTime Clarity 0.011 -0.057 0.176 0.145 0.083 

Frequency-based Clarity 0.025 0.018 -0.287 -0.182 -0.220 

ItemSimple Clarity 0.020 -0.247 -0.163 -0.068 -0.186 

Table 6.15. Pearson’s correlation between log-based predictors and P@10 for different 

recommenders using 1R methodology (Last.fm five-fold dataset). 



132 Chapter 6. Performance prediction in recommender systems 

 

Among the social-based predictors, degree and two-hop neighbourhood size obtain 

better correlations than the rest. 

A similar situation is presented in Table 6.17, where the collaborative-social ver-

sion of the dataset is used. Again, most of the correlations with the social-based pre-

dictors are negative, and degree and two-hop neighbourhood size obtain higher cor-

relations (in absolute value). Interestingly, in this situation strong correlations are 

obtained with the user-based recommender (kNN), in particular with degree and the 

average neighbour degree predictors. Nonetheless, these correlations are lower than 

those obtained for the ItemSimple predictor with the collaborative filtering recom-

menders. At the same time, this predictor always obtains worse correlations (in abso-

lute value) than the social-based predictors for the social filtering recommenders, as 

expected. 

Additionally, note that the number of points used in the correlation computation 

is different in each version of the dataset, namely: in the collaborative-social version 

Predictor Random ItemPop kNN pLSA Personal PureSocial 

Count (training) 0.032 0.122 0.113 0.031 0.062 0.111 

Count (test) 0.158 0.252 0.382 0.167 0.235 0.174 

Mean -0.066 0.033 -0.012 0.023 -0.057 -0.051 

Standard deviation 0.034 0.054 -0.020 0.115 0.128 0.183 

Avg neighbour degree -0.062 -0.089 -0.013 0.011 -0.074 -0.106 

Betweenness centrality -0.031 -0.016 0.027 -0.038 -0.012 -0.079 

Clustering coefficient 0.049 -0.084 -0.023 0.048 -0.027 -0.035 
Degree -0.038 -0.046 0.015 -0.059 -0.147 -0.133 

Ego components size -0.058 0.005 0.004 -0.046 -0.056 -0.020 

HITS -0.021 -0.043 0.005 0.061 0.038 0.000 

PageRank -0.022 -0.025 -0.023 -0.039 -0.102 -0.037 

Two-hop neighbourhood -0.080 -0.082 0.004 -0.054 -0.123 -0.136 

ItemSimple Clarity 0.030 0.157 0.130 0.050 0.072 0.126 

Table 6.16. Pearson’s correlation between social-based predictors and P@10 for different 

recommenders using AR methodology (CAMRa Social). 

Predictor Random ItemPop kNN pLSA Personal PureSocial 

Count (training) 0.012 0.098 0.203 0.107 0.058 0.111 

Count (test) 0.096 0.207 0.389 0.179 0.232 0.170 

Mean -0.067 0.000 -0.126 -0.024 -0.051 -0.050 

Standard deviation 0.082 0.014 -0.029 0.016 0.129 0.182 

Avg neighbour degree 0.071 -0.008 0.152 0.046 -0.073 -0.104 

Betweenness centrality -0.007 -0.008 0.010 -0.005 -0.012 -0.078 

Clustering coefficient 0.006 -0.022 0.152 0.076 -0.032 -0.035 

Degree 0.032 0.018 0.164 0.006 -0.143 -0.134 

Ego components size 0.026 0.044 0.133 0.002 -0.053 -0.022 

HITS -0.011 -0.034 -0.001 0.061 0.038 0.001 
PageRank -0.002 0.021 0.118 0.014 -0.099 -0.040 

Two-hop neighbourhood 0.059 -0.015 0.130 0.012 -0.121 -0.135 

ItemSimple Clarity 0.010 0.120 0.211 0.129 0.070 0.126 

Table 6.17. Pearson’s correlation between social-based predictors and P@10 for different 

recommenders using AR methodology (CAMRa Collaborative). 
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the number of users contained in the test set is twice the number available in the 

social version (see Appendix A.1.3), which means that significant correlations can be 

achieved with lower values (as described in Chapter 5). 

In the results described above, we can observe how, like in the previous sections, 

the size of the user profile in test (predictor count in test) obtains significant correla-

tions. This trend, however, is almost neutralised in the collaborative-social dataset 

with respect to the Random recommender. Thus, as before, we would attempt to use 

the 1R methodology with each dataset in order to obtain unbiased correlations to-

wards users with more ratings in test. However, due to the lack of coverage of Per-

sonal and PureSocial recommenders, this methodology do not obtain sensible results 

(for instance, the value of precision at 10 is almost invariably 0.10, that is, the maxi-

mum possible value when only one relevant document – as assumed in the 1R meth-

odology – is retrieved in the top 10, mainly because the recommender is not able to 

retrieve most of the not relevant items). This lack of coverage is natural for these 

recommenders since they can only suggest items rated by users in the active user‟s 

social network (see Appendix A.2 for details on the implementation of the algo-

rithms). 

In conclusion, most of the social performance predictors proposed obtain sig-

nificant correlations, however, correlations with the social filtering methods are 

not so strong as we would expect. Nonetheless, the ItemSimple clarity does 

obtain significant correlations with respect to most of the recommenders, high-

lighting the importance and validity of this predictor even when the main input of 

some recommenders (social network) is so different to that of the predictor (ratings). 

6.5.5 Discussion 

The reported experiments confirm that it is possible to predict a recommender‟s per-

formance and obtain strong correlations in this regard. The results show that, in gen-

eral, the proposed predictors (mostly based on Kullback-Leibler divergences over 

different language models and other concepts from Social Graphs and Information 

Theory such as entropy) obtain significant correlations in the three spaces consid-

ered: ratings, logs, and social networks. More importantly, these correlations are 

stronger than those obtained by more simple predictors, such as the profile size of a 

user, the standard deviation of her ratings, and the user‟s performance using a valida-

tion split. Specifically, for each recommendation input considered we have observed 

the following: 

 Clarity-based predictors are very powerful for rating-based preferences, in par-

ticular, the ItemSimple, IRUser, and IRUserItem clarity predictors obtain 

strong correlations for most of the recommendation methods. 



134 Chapter 6. Performance prediction in recommender systems 

 

 The use of the item space as a contextual variable shows strong correlation 

values when the AR methodology is used, but these correlations decrease when 

we use unbiased methodologies, which may indicate that this new dimension is 

in fact capturing the item popularity and, thus, when the popularity bias is neu-

tralised such predictors show less predictive power. We find a similar situation 

with the item clarity and the user space used as the contextual dimension. 

 Temporal and log-based versions of the clarity predictor show higher predic-

tion power than the rest of predictors. 

 Social-based predictors are not the ones with the strongest correlation regard-

ing the social filtering recommenders in this experiment, but the correlation 

found is significative and they could serve as a complement to other predictors 

based on a different input such as the rating-based. 

 The ItemSimple clarity predictor consistently obtains strong correlation values 

in most of the datasets where we have analysed it. This is an evidence of the 

theoretical power of the user clarity to capture the uncertainty in user‟s tastes, 

even when the recommender‟s input is different (social filtering recommend-

ers) or when we apply some transformation to the data (frequency-based clarity 

with transformation from implicit to explicit). 

 As described in the Appendix A.4, most of the correlations presented in this 

chapter are stable when other evaluation metrics and correlation coefficients 

are used. 

In the Recommender Systems field there are, however, additional problems due 

to subtle differences with respect to the common settings and experimental assump-

tions in Information Retrieval. Since we aim to predict the performance of a recom-

mender, we have to be sure that we are using an unbiased performance metric, and 

its subsequent evaluation methodology. As we analysed in Chapter 4 there are at least 

two biases in the evaluation of recommender systems which may distort the results: 

data sparsity and item popularity. Thus, in this chapter we have computed correla-

tions between the output of the predictors and the evaluation metrics using different 

evaluation methodologies, in order to analyse how sensitive the different proposed 

predictors are to these biases. Interestingly, although the correlations may change 

drastically when different evaluation methodologies are considered, most of the per-

formance predictors still obtain good correlations. In particular, this result evidences 

that our proposed predictor are not so prone to the analysed biases like other simple 

predictors. 

Finally, in Figure 6.3 we summarise the correlations found for the proposed pre-

dictors in each dimension – ratings, logs, and social. We have selected the most rep-

resentative evaluation methodology (AR for rating and social data, and 1R for log 
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data) and a subset of the evaluated predictors and recommenders from each experi-

ment, where the same information presented in Table 6.7, Table 6.14, and Table 6.17 

(except for the average and median correlation values) is depicted in a more visual 

form. In particular, we may observe that predictors in MovieLens seem to be more 

redundant since the correlations are too similar. 

 

Correlation between rating-based user 

predictors and recommenders using AR 

methodology in MovieLens (Table 6.7). 

 

Correlation between log-based user 

predictors and recommenders using 1R 

methodology in Last.fm (Table 6.14). 

 

Correlation between social-based user 

predictors and recommenders using AR 

methodology in CAMRa collaborative 

(Table 6.17). 

Figure 6.3. Heatmap of the correlation values between a subset of predictors and 

recommenders, using the most representative methodologies for the three considered spaces. 
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From the figure we may also observe that in Last.fm and CAMRa datasets such 

redundancy is much lower and the predictors are quite different. Moreover, the first 

column and row (from the bottom) represent the recommender and predictor base-

lines, which serve as references from where the correlations should be analysed. In 

the three cases we can observe that most of the predictors obtain larger (darker) val-

ues than the count predictor. In the first case (rating-based predictors), however, it is 

clear that the correlation depends more on the recommender and less on the actual 

predictor. 

6.6 Conclusions 

We have proposed adaptations of query performance techniques from ad-hoc In-

formation Retrieval to define performance predictors in Recommender Systems. 

Taking inspiration in the query predictor known as query clarity, we have defined and 

elaborated in the Recommender Systems domain several predictive models according 

to different formulations and assumptions. Furthermore, we propose performance 

predictors from theories and models of Information Theory, Social Graph Theory, 

and Information Retrieval based on three types of preference data: rating-based, log-

based, and social-based. 

We find several effective schemes with a high predictive power for recommend-

er systems performance. We have proposed different ways for the adaptation of the 

query clarity predictor to recommender systems depending on the equivalences be-

tween the involved spaces. The clarity formulation is powerful because of its theo-

retical soundness, which is suitable to different domain-oriented adaptations. Hence, 

for rating-based preferences we use different expansions which take into account the 

rating values and the items rated by the user. For log-based preferences we exploit 

the co-occurrences of the items in the user profile and, more importantly, the tempo-

ral dimension, which allows for more principled functions such as the temporal 

Kullback-Leibler divergence or the user‟s autocorrelation. Finally, for social-based 

preferences we exploit the user‟s social network and different graph metrics are used 

apart from the user clarity based on the ratings. The results, as summarised in the 

previous section, are in general positive and provide evidences that the proposed 

functions are able to indeed predict the performance of user or items in recom-

mender systems. 

Furthermore, by analysising the behaviour of trivial predictors (such as the count 

of ratings in training and test) we have been able to uncover noisy biases or sensitiv-

ity to irrelevant variables in the way performance is measured. Irrelevant and uninter-

esting in the sense that it is not clear that the variations due to these variables really 

reflect actual differences in quality. As a result, we have used unbiased evaluation 
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methodologies where non trivial predictors still obtain positive results with respect to 

performance correlation. 

As a side-effect, our study introduces an interesting revision of the gray sheep 

user concept. A simplistic interpretation of the gray sheep intuition would suggest 

that users with a too unusual behavior are a difficult target for recommendations. It 

appears however in our study that, on the contrary, users who somewhat distinguish 

themselves from the main trends in the community are easier to give well-performing 

recommendations. This suggests that perhaps the right characterisation of a gray 

sheep user might be one who has scarce overlap with other users. On the other hand, 

the fact that a clear user distinguishes herself from the aggregate trends does not 

mean that she does not have a sufficiently strong neighbourhood of similar users. In 

particular, this seems to indicate that users who follow mainstream trends are more 

difficult to be suggested successful items by a recommender system (at least, by a 

personalised one). In Information Retrieval, one can observe a similar trend: more 

ambiguous (mixture of topics) queries perform worse than higher-coherence queries 

(Cronen-Townsend et al., 2002). 

In the future we plan to explore further performance predictors. Specifically, we 

are interested in incorporating explicit recommender dependence into the predictors, 

so as to better exploit the information managed by the recommender, allowing to the 

predictor a smoother adaptation to the recommender performance, and increasing 

the final correlation between them. Additionally, we are also interested in exploring 

alternative item-based predictors apart from those defined in this chapter, and, even-

tually, using other information sources such as log-based preference data and even 

the social network of the users who rated a particular item. 

 





 

 

Part IV 

IV Applications

It is through science that we prove, but 

through intuition that we discover. 

Jules Henri Poincaré 





 

 

Chapter 7 

7 Dynamic recommender 

ensembles 

Hybrid recommender systems – and recommender ensembles as a particular case – 

have become a very popular strategy for making recommendations, since they help 

alleviate most of the shortcomings of the individual recommenders combined. They 

have, however, specific problems such as the need of deciding which information 

sources should be exploited, which recommenders should exploit each of these 

sources, and how the combination of recommenders should be configured. 

In this chapter we propose a framework to decide how dynamic hybridisation 

should be balanced, by estimating its expected improvements on individual recom-

mendations. Furthermore, we provide some requirements to decide when to build 

such hybridisation. Within the spectrum of hybrid recommendation approaches, we 

focus on those that linearly combine the output from several recommenders, and use 

different weights for generating a particular aggregation of the individual recommen-

dations. In the standard approach, these weights are typically fixed regardless of the 

user for which recommendations are produced, or the recommended items. In this 

context we investigate the use of performance predictors to assign those weights 

dynamically depending on the target user or item. We evaluate our approach using 

the predictors proposed in the previous chapter. The results obtained show that the 

generated dynamic ensembles are capable of outperforming their static counterparts. 

Furthermore, they also show that dynamic ensembles can be improved if predictors 

with stronger predictive power (higher correlation values as observed in the previous 

chapter) are used. 

In Section 7.1 we present and formulate the research problem of recommenda-

tion hybridisation. Next, in Section 7.2 we describe our proposed performance pre-

diction framework for dynamic hybrid recommendation. Section 7.3 describes the 

experiments conducted and provide an overall discussion of the obtained results. 

Finally, in Section 7.4 some conclusions are given. 
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7.1 Problem statement 

As described in Chapter 2, hybrid recommenders are built by the combination of 

different recommendation methods. In the simplest and typical case, hybrid recom-

mendations are produced by weighting and summing the utility values output by 

some recommenders, forming a so called recommender ensemble where an arbitrary 

number of algorithms of different kinds (content-based, user-based collaborative 

filtering, item-based collaborative filtering, social-based, demographics-based, etc.) 

can be combined. 

Researchers in Machine Learning have known for long that the combination of 

classifiers usually achieves better results than each method separately, which is also 

true in Recommender Systems – the Netflix prize has been a paradigmatic example 

of this, where all the top classified teams used large recommender ensembles. We 

focus on weighted hybrid approaches, as an option that begets a simple and general 

formulation of the dynamic balance of the combined methods    by just setting the 

weights    of each method in the hybrid combination. This approach can be ex-

pressed as follows: 

 

                 
     

 

         

 

   (7.1) 

In this chapter we investigate whether the performance predictors proposed in 

the previous chapter – where we have already found degrees of correlation between 

the ambiguity (clarity) of the user‟s preferences and the accuracy of the system‟s rec-

ommendations – can be useful for hybridisation. Specifically, we aim to use these 

predictors to build dynamic hybrid recommenders in such a way that the weight 

   depends not only on the recommender but also on the current user  , or poten-

tially other variables such as the item   or other available context information. We 

propose to specify such weights according to the ambiguity of the user‟s preferences 

or item‟s patterns, that is, we aim to use the performance predictors defined in the 

Chapter 6 to estimate those weights. 

In the next section we propose a framework to perform dynamic hybrid recom-

mendation where we use recommendation performance predictors and we analyse 

different requirements related to the adaptation of such predictors to produce 

weights in a hybrid recommender combination. After that, three different experi-

ments are presented, where the predictors proposed in Chapter 6 are used as dy-

namic weights in the combination. 
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7.2 A performance prediction framework for 

ensemble recommendation 

Let us simplify Equation (7.1) to the case where only two recommenders    and    

are used. In this situation, only one weighting factor   is needed (because of the con-

straint for the weights to sum to one) and we would have the following formulation: 

 

                                     (7.2) 

In this case, since the   weight is the same for every user   and item   we refer 

to such a recommender as a static hybrid. However, a single value of the combination 

parameter   is not generally the optimal for each (user, item) pair. Therefore, instead 

of Equation (7.2), we may want to consider: 

 

                                               (7.3) 

where    is the combination parameter which may depend on the current user, item, 

or both, and probably also depending on the recommender  . In this case we refer 

to such method as a dynamic hybrid. 

A suitable assignment of the        parameters is a difficult task. In our ap-

proach, however, we propose to use the performance prediction methodology devel-

oped in the previous chapter, whenever the predictors show some correlation with 

the performance of a recommender. In this way, since we have some evidence that 

the performance predictors are able to estimate in advance the performance of a user 

in a user or item basis, we can use such estimations to weight accordingly the ratings 

predicted for a given user and item pair by each recommender. 

In this context, it is not granted in general to obtain improvements whenever a 

performance predictor is used in a dynamic ensemble. We have to devise a set of 

conditions in which such predictors may be used; moreover, the ensemble problem 

has to be well defined, which is not always true as we shall show. Hence, we define a 

framework for dynamic hybrid recommendation based on recommendation per-

formance predictors, characterised by some prerequisites, a specific normalisation 

strategy, and a weighting distribution among recommenders. In this framework, the 

weights    are obtained by transformations of the values obtained by a performance 

predictor, in a similar way as the work presented in (Yom-Tov et al., 2005b) on rank 

aggregation in Information Retrieval, but in the context of Recommender Systems. 

7.2.1 Requirements 

A first requirement to use a performance predictor for weighting the recommenders 

of an ensemble, is that it should correlate positively with the performance of not all 
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but some of such recommenders, or with the performance of all the recommenders 

but to different degrees. If a performance predictor correlates positively with all the 

recommenders in an ensemble to a similar extent, it does not provide a discriminative 

criteria to weight the recommenders any differently. 

A predictor should be used to assign weights to those recommenders of the en-

semble with which it correlates for performance. These assignments also alter the 

weights of the uncorrelated recommenders, since the weights of all the recommend-

ers in the ensemble need to sum to 1. However, this should not affect the overall 

performance contribution of these recommenders, as the resulting weight should 

correspond randomly with their performance (hence the unpredicted recommenders‟ 

weight can be expected to change for good as much as for bad, whereas the weight 

of predicted recommenders should change more often for good). 

Figure 7.1 shows which correlations can be considered valid according to the 

statements presented above, for an ensemble with two recommenders R1 and R2. 

The horizontal axis depicts the correlation with respect R1 and the vertical axis with 

R2. Hence, the dotted area represents those situations where a predictor‟s correlation 

for R1 is higher than for R2, and thus, the predictor should weight R1. Analogously, 

the striped area represents the candidate situations where the predictor should weight 

R2. Furthermore, when correlations with R1 and R2 are too similar (diagonal) no 

weighting assignment is preferred, and thus, if a predictor lies in the white area it 

should be used for weighting neither R1 nor R2 for the reasons described above. 

Another requirement is that a recommender should not have an always superior 

or always inferior performance to those of the rest of the ensemble‟s recommenders. 

Otherwise the problem is distorted by the fact that the best weight is the one that 

gets closest to 0 for the recommenders that systematically perform worse (or 1 for 

the best), regardless of how excellent or terribly bad is the applied strategy, or the 

predictive power of the approach, since a biased predictor (either towards 0 or 1, 

depending on which recommender (the worst or the best) such predictor is weight-

ing) would obtain very good results. This issue is recognised in (van Setten, 2005) 

where the author presents the situation where all recommenders produce item sug-

gestions that are all too low or all too high with respect to the true user‟s preferences, 

and then the recommender ensemble is less accurate than the best individual recom-

mender. In summary, underperforming recommenders are useless in an ensemble to 

begin with, or equivalently, the over performing one(s) should be used alone, and 

thus, there is no true weighting problem to solve. 
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7.2.2 Predictor normalisation 

The output of a predictor is required to correlate with the performance of a recom-

mender, but it is not necessarily by itself a good value for weighting the recom-

mender in an ensemble, as already pointed out in (Hauff et al., 2009). In order to 

generate appropriate weights, the predictor output should be transformed by a 

monotonic function into values on a comparable scale, such as simply      . We shall 

call this transformation “normalisation.” 

In this context, different transformations can be applied. Mapping the minimum 

value to 0 and the maximum to 1 is the simplest transformation, also known as min-

max score normalisation (Renda and Straccia, 2003). Another common approach is 

to map (named rank-sim by Renda and Straccia, 2003) the predictor scores onto 

evenly distributed points in the      , preserving their order. Min-max preserves the 

original predictor score distribution, while rank-sim maps it onto a uniform distribu-

tion. There is no obvious a priori reason to decide which case is preferable, to pre-

serve the original distribution, or to equalise it somehow, and in fact more complex 

normalisation techniques could be used, like the one proposed in (Fernández et al., 

2006b). 

7.2.3 Weight distribution among recommenders 

Once the predictor output has been normalised, it still needs a final adjustment to 

ensure, among other things, that the sum of the weights assigned to the ensemble‟s 

 

Figure 7.1. Valid predictor correlation regions for a recommender ensemble of size 2. 
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recommenders is 1. How this step is done depends, mainly, on how many recom-

menders are weighted by predictors, more specifically on whether all or only some of 

the combined recommenders are treated by performance predictors. Hence, we con-

sider two options for the distribution of the weights among the recommenders: 

a) Only some of the recommenders in the ensemble are given dynamic weights. 

The rest of the recommenders receive the same weight, ensuring the weights of 

the ensemble‟s recommenders sum up to 1. This can be done in different ways: 

 Assigning a weight of 0.5 to the unpredicted recommenders, and dividing 

all weights by the total sum. This strategy is named as fixed weight or FW. 

 Assigning the dynamic weights to the corresponding recommenders, if we 

assume that their sum is ≤ 1, then we divide 1 minus the sum of dynamic 

coefficients equally among the unpredicted recommenders. We denote 

this strategy as one minus or OM. If the sum is greater than 1, we have to 

divide by the total sum and normalise it by the total number of predictors. 

b) All recommenders are weighted using a specific predictor per recommender. 

This is not easy to grant in general, as there may not be predictors for all the re-

commenders combined. In case this option is taken, the weights can be simply 

normalised by the sum of weights. 

Furthermore, if the output of each recommender has a different range, it would 

be necessary to apply an additional normalisation step to the recommender scores. 

The most usual strategies are the ones described in the previous section: score or 

rank normalisation (Renda and Straccia, 2003). 

7.3 Experimental results 

We next report experiments assessing the usefulness of the proposed predictors for 

adjusting the weights of a recommender ensemble, once their predictive power has 

been confirmed against the recommenders‟ actual performance, as reported in the 

previous chapter. We identify the combinations of recommenders that meet the con-

ditions stated in the previous section for the dynamic combination problem to make 

sense and select the performance predictors to be applied based on their observed 

correlation with the performance of the recommenders (as reported in Section 6.5), 

and the requirements proposed in this chapter, i.e., that one recommender in the 

ensemble should have a positive correlation with the predictor, and the other should 

have an opposite or near neutral correlation. Then, we compare dynamic against 

static ensembles. 

Among the different ways to set up static ensembles of two recommenders we 

take as baselines a) the best performing one in test, and b) the best theoretical static 

one without prior information, i.e., one with      . Intuitively, an even weighting 
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is the optimum over the – theoretical – set of all recommender ensembles: if say 

       was the best weight for the combination of two recommenders R1+R2, 

then       should be fairly bad for the permutation R2+R1 (            

being best). If we assume that performance loss is convex with respect to        – 

it can be seen that otherwise the hybrid may underperform its constituents –, then 

      is the best compromise for R1+R2 and R2+R1. Since the set of all possible 

ensembles includes all the permutations of the combined recommenders,       is 

the best (theoretical) overall weight. 

We also take as “skylines” (upper bound baselines) an oracle performance pre-

dictor consisting of the performance of the recommender itself. We shall refer to this 

method as „perfect correlation‟, where the true performance of both recommenders 

is used as a weight for hybridisation (hence, such predictor would have a correlation 

of 1.0 with the recommender‟s performance), whereas we shall refer to it as „PC-OM‟ 

and „PC-FW‟ when the performance of only one recommender is used (the same 

recommender being weighted by the predictors) along with the one minus or the 

fixed weight strategy for weight distribution (see Section 7.2.3). In all cases we apply 

a rank normalisation technique on the recommenders‟ scores. 

In the subsequent sections we present three experiments conducted to evaluate 

the proposed performance predictors. In the first experiment we use the rating-based 

predictors and test both user- and item-based performance predictors presented in 

Section 6.2.1. We use the MovieLens dataset, and compare the results with four of 

the evaluation methodologies presented in Chapter 4, i.e., AR, 1R, P1R, and U1R. In 

the second experiment we use predictors based on log data. We evaluate the predic-

tors presented in Section 6.2.2 on the two versions of the Last.fm dataset using the 

1R methodology. Finally, in the third experiment we test the social-based predictors 

presented in Section 6.3 on the CAMRa dataset and the AR methodology. 

7.3.1 Dynamic recommender ensembles on rating data 

As a first instantiation of our framework for building dynamic recommender ensem-

bles described in Section 7.2, we first have to identify the recommenders to combine, 

that is: one of the recommenders should have a positive correlation with the predic-

tor, while the other should have an opposite or near neutral correlation; besides, they 

should not perform very differently. 

According to the correlation results presented in Section 6.5.1, we identify the 

pairs of recommenders presented in Table 7.1 as combinations meeting the condi-

tions stated above. The first three ensembles are combinations of a collaborative 

filtering with a content-based recommendation method. The last ensemble combines 

a user-based collaborative filtering method with a non-personalised method, and the 

rest of the ensembles are combinations of two collaborative filtering methods. Al-
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though some of these combinations have not been typical in the recommender sys-

tems literature, in our study they serve as a proof of concept to check whether the 

proposed dynamic recommender ensemble framework is useful in general or not. We 

refer the reader to Appendix A.2 for more details about the implementation of the 

recommenders. 

The first two rows of Table 7.2, Table 7.3, Table 7.4, and Table 7.5 show the 

P@10 values for each of the combined recommenders obtained using the AR, 1R, 

U1R, and P1R methodologies, respectively. In Appendix A.5.1 we report results with 

other evaluation metrics. Note that, as mentioned in Chapter 4, in the AR methodol-

ogy the absolute values are not meaningful since they depend on the amount of rele-

vant information in test; on the other hand, for the 1R related methodologies (i.e., 

1R, U1R, and P1R) the precision at 10 metric has an upper bound on 0.1, since there 

is only one relevant item in each ranking. 

In these tables we may observe that among the six considered ensembles, there 

are cases where the first recommender (with respect to which the performance is 

predicted) performs better, worse, or similarly to the second recommender. This 

situation changes accross methodologies and provides for a comparison of the result-

ing effects when the stated requirements are not met. Analogously, the predictors‟ 

correlations may change depending on the evaluation methodology followed, as ob-

served in Section 6.5.1. Specifically, the recommenders presented in Table 7.1 where 

chosen according to the correlation results obtained for the AR methodology, and 

we may observe that some of the conditions stated above do not hold for some of 

the selected cases, for instance, correlation between most of the predictors and kNN 

recommender is negligible in the 1R, U1R, and P1R methodologies, in contrast with 

the results found for the AR methodology. 

In the tables we may also observe that the best static ensemble is different de-

pending on the evaluation methodology and the combined recommenders. The per-

formance values of the best static ensembles, on the other hand, show an interesting 

situation that does depend on the specific considered ensemble, namely, whether the 

(best) static ensembles outperform or not both recommenders. For the AR method-

ology (Table 7.2), in the case of HRU1, HRU3, HRU5, and HRU6, the best static 

 R1 R2 

HRU1 TFL1 CB 

HRU2 TFL2 CB 

HRU3 kNN CB 

HRU4 kNN IB 

HRU5 kNN pLSA 

HRU6 kNN ItemPop 

Table 7.1. Selected recommenders for building dynamic ensemble using user performance 

predictors that exploit rating-based information (MovieLens dataset). 
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outperforms both recommenders, but this is not observed for HRU2 nor for HRU4. 

In the latter scenarios, thus, it seems hybridisation would not be so useful for combi-

nation. 

Additionally, regarding the normalisation of the predictor‟s output we evaluate 

two normalisation techniques: rank and score normalisation. Since there is no prior 

information about which normalisation technique would provide better results, we 

test both, and report the best results in each situation, which are usually achieved by 

the rank-sim normalisation technique. Finally, the weigh strategy is also included as a 

parameter of the experiments. Since we only have a predictor for one of the recom-

menders in the ensemble (denoted as R1), as we explained in Section 7.2.3, we may 

weight the unpredicted recommender as one minus the predictor value (OM), or as 

0.5 and then divide the weights of the two recommenders by the sum of weights 

(FW). 

 HRU1 HRU2 HRU3 HRU4 HRU5 HRU6 

R1 (=1.0) 0.0024 0.0696 0.0307 0.0307 0.0307 0.0307 

R2 (=0.0) 0.0163 0.0163 0.0163 0.0001 0.1454 0.0897 

Baseline (=0.5) 0.0106 0.0473 0.0363 0.0008 0.1142 0.0808 

Best static 

(best ) 

0.0180 

(0.1) 

0.0668 

(0.9) 

0.0392 

(0.9) 

0.0078 

(0.9) 

0.1475 

(0.1) 

0.0937 

(0.1) 

Perfect correlation 0.0189 0.0732 0.0401 0.0311 0.1469 0.0980 

PC-OM 0.0176 0.0721 0.0434 0.0091 0.1489 0.0958 

PC-FW 0.0177 0.0541 0.0379 0.0025 0.1478 0.0958 

Entropy-OM 0.0110  


  0.0685  


  0.0388  


  0.0069  


  0.1126  


  0.0791  


  

ItemSimple-OM 0.0170  


  0.0685  


  0.0390  


  0.0072  


  0.1496  


  0.0919  


  

ItemUser-OM 0.0172  


  0.0680  


  0.0386  


  0.0068  


  0.1513  


  0.0924  


  

RatUser-OM 0.0177  


  0.0687  


  0.0393  


  0.0072  


  0.1535  


  0.0931  


  

RatItem-OM 0.0178  


  0.0674  


  0.0389  


  0.0066  


  0.1542  


  0.0928  


  

IRUser-OM 0.0169  


  0.0668  


  0.0387  


  0.0066  


  0.1487  


  0.0922  


  

IRItem-OM 0.0172  


  0.0655  


  0.0378  


  0.0061  


  0.1500  


  0.0918  


  

IRUserItem-OM 0.0170  


  0.0665  


  0.0388  


  0.0066  


  0.1498  


  0.0916  


  

Entropy-FW 0.0111  


  0.0528  


  0.0369  


  0.0027  


  0.1156  


  0.0807  


  

ItemSimple-FW 0.0156  


  0.0529  


  0.0369  


  0.0027  


  0.1433  


  0.0908  


  

ItemUser-FW 0.0166  


  0.0529  


  0.0368  


  0.0028  


  0.1468  


  0.0915  


  

RatUser-FW 0.0170  


  0.0528  


  0.0370  


  0.0028  


  0.1498  


  0.0919  


  

RatItem-FW 0.0170  


  0.0529  


  0.0369  


  0.0027  


  0.1499  


  0.0918  


  

IRUser-FW 0.0161  


  0.0526  


  0.0371  


  0.0029  


  0.1420  


  0.0912  


  

IRItem-FW 0.0163  


  0.0525  


  0.0367  


  0.0027  


  0.1459  


  0.0909  


  

IRUserItem-FW 0.0164  


  0.0527  


  0.0372  


  0.0028  


  0.1452  


  0.0908  


  

Table 7.2. Dynamic ensemble performance values (P@10) using AR methodology and user 

predictors (MovieLens dataset). Improvements over the baseline are in bold, the best result 

for each column is underlined. The value   of each dynamic hybrid is marked with   
 , 

where   and   indicate, respectively, statistical difference with respect to the best static 

(upper,  ) and with respect to the baseline (lower,  ). Moreover,  and  indicate, 

respectively, significant and non-significant improvements over the corresponding 

recommender. A similar convention with  and  indicates values below the recommender 

performance. Statistical significance is established by paired Wilcoxon        in all cases. 
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Table 7.2 shows the results obtained following the AR methodology. We may 

observe how, except in three cases, dynamic ensembles outperform the baseline. 

Interestingly, for HRU5, the best performing method is not the one obtained with 

the „perfect correlation‟ approach, as we may expect, but with our dynamic ensem-

bles based on the user clarity performance predictors. This is due to the fact that the 

corresponding predictor for the first recommender (P@10 values for kNN) also has 

a strong correlation with the performance of the second recommender (pLSA), and 

thus, it does not satisfy the requirement that the correlation values should not be too 

similar for both recommenders. 

Table 7.3 shows the results obtained with the 1R methodology. Note that in this 

case the correlations were consistently lower than those obtained with the AR meth-

odology. In particular, this is emphasised in the results of the dynamic ensemble 

HRU1, which do not outperform the baseline for almost any predictor. This can be 

explained with the results reported in Table 6.9, where the TFL1 recommender ob-

tains a near-zero correlation, and thus, the correlation requirement of our framework 

is not satisfied. Specifically, this fact highlights the importance of the strength in the 

correlation between the predictor and the recommender performance, as stated in 

Section 7.2.1. Furthermore, we may observe in the table that for two combinations 

 HRU1 HRU2 HRU3 HRU4 HRU5 HRU6 

R1 (=1.0) 0.0221 0.0690 0.0437 0.0437 0.0437 0.0437 

R2 (=0.0) 0.0221 0.0221 0.0221 0.0074 0.0836 0.0649 

Baseline (=0.5) 0.0338 0.0536 0.0469 0.0327 0.0749 0.0658 

Best static 

(best ) 

0.0338 

  (0.4) 

0.0720 

  (0.9) 

0.0514 

  (0.8) 

0.0455 

  (0.9) 

0.0856 

  (0.1) 

0.0696 

  (0.2) 

Perfect correlation 0.0370 0.0715 0.0553 0.0458 0.0840 0.0723 

PC-OM 0.0358 0.0683 0.0507 0.0353 0.0811 0.0709 

PC-FW 0.0343 0.0592 0.0482 0.0344 0.0803 0.0699 

Entropy-OM 0.0332  


  0.0662  


  0.0472  


  0.0382  


  0.0709  


  0.0626  


  

ItemSimple-OM 0.0304  


  0.0666  


  0.0473  


  0.0384  


  0.0844  


  0.0681  


  

ItemUser-OM 0.0305  


  0.0660  


  0.0471  


  0.0381  


  0.0847  


  0.0680  


  

RatUser-OM 0.0307  


  0.0666  


  0.0478  


  0.0386  


  0.0850  


  0.0680  


  
RatItem-OM 0.0305  



  0.0663  


  0.0475  


  0.0385  


  0.0849  


  0.0678  


  

IRUser-OM 0.0304  


  0.0655  


  0.0470  


  0.0381  


  0.0839  


  0.0675  


  

IRItem-OM 0.0298  


  0.0644  


  0.0457  


  0.0370  


  0.0839  


  0.0671  


  

IRUserItem-OM 0.0305  


  0.0655  


  0.0471  


  0.0381  


  0.0841  


  0.0674  


  

Entropy-FW 0.0339  


  0.0594  


  0.0472  


  0.0356  


  0.0686  


  0.0650  


  

ItemSimple-FW 0.0321  


  0.0596  


  0.0473  


  0.0358  


  0.0837  


  0.0684  


  

ItemUser-FW 0.0320  


  0.0594  


  0.0471  


  0.0356  


  0.0843  


  0.0683  


  

RatUser-FW 0.0321  


  0.0596  


  0.0475  


  0.0359  


  0.0848  


  0.0684  


  

RatItem-FW 0.0321  


  0.0595  


  0.0473  


  0.0358  


  0.0847  


  0.0684  


  

IRUser-FW 0.0320  


  0.0592  


  0.0471  


  0.0356  


  0.0834  


  0.0680  


  

IRItem-FW 0.0318  


  0.0588  


  0.0465  


  0.0349  


  0.0835  


  0.0674  


  

IRUserItem-FW 0.0320  


  0.0592  


  0.0471  


  0.0356  


  0.0837  


  0.0678  


  

Table 7.3. Dynamic ensemble performance values (P@10) using 1R methodology and user 

predictors (MovieLens dataset). 
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(HRU2 and HRU5) the best performance results are not obtained by dynamic ap-

proaches, but by the best static approaches in contrast with what we found for the 

AR methodology. This situation is different to the one obtained when we evaluate 

using MAP@10 (see Appendix A.4.1), where the best results are always obtained by 

dynamic ensembles. 

Table 7.4 and Table 7.5 show the performance values obtained with the unbiased 

methodologies proposed in Chapter 4, that is, U1R and P1R. Following the U1R 

methodology (Table 7.4) we obtain similar results to those obtained in the 1R meth-

odology except for HRU6. In contrast, with the P1R methodology (Table 7.5) our 

framework does not show improvements over any baseline. We may see that the 

„perfect correlation‟ methods are able to obtain better, although very close, values 

than those of the best static ensemble. This means that there is room for improve-

ment in this methodology, and that the performance of the dynamic recommender 

ensembles could be improved if better performance predictors were found. 

 HRU1 HRU2 HRU3 HRU4 HRU5 HRU6 

R1 (=1.0) 0.0294 0.0524 0.0381 0.0381 0.0381 0.0381 

R2 (=0.0) 0.0223 0.0223 0.0223 0.0068 0.0718 0.0406 

Baseline (=0.5) 0.0345 0.0440 0.0396 0.0283 0.0639 0.0493 

Best static 

(best ) 

0.0351 

  (0.6) 

0.0536 

  (0.9) 

0.0424 

  (0.7) 

0.0384 

  (0.9) 

0.0732 

  (0.1) 

0.0493 

  (0.5) 

Perfect correlation 0.0389 0.0552 0.0493 0.0396 0.0742 0.0559 

PC-OM 0.0373 0.0485 0.0471 0.0332 0.0732 0.0548 

PC-FW 0.0355 0.0459 0.0429 0.0307 0.0722 0.0535 

Entropy-OM 0.0345   
  0.0518  



  0.0404  


  0.0337  


  0.0615  


  0.0471  


  

ItemSimple-OM 0.0333  


  0.0519  


  0.0403  


  0.0339  


  0.0723  


  0.0444  


  

ItemUser-OM 0.0334  


  0.0517  


  0.0403  


  0.0336  


  0.0726  


  0.0438  


  

RatUser-OM 0.0335  


  0.0521  


  0.0410  


  0.0341  


  0.0728  


  0.0435  


  
RatItem-OM 0.0334  



  0.0516  


  0.0406  


  0.0341  


  0.0726  


  0.0434  


  

IRUser-OM 0.0333  


  0.0511  


  0.0401  


  0.0336  


  0.0718  


  0.0440  


  

IRItem-OM 0.0326  


  0.0504  


  0.0388  


  0.0325  


  0.0714  


  0.0430  


  

IRUserItem-OM 0.0334  


  0.0511  


  0.0401  


  0.0336  


  0.0719  


  0.0437  


  

Entropy-FW 0.0347  


  0.0472  


  0.0402  


  0.0308  


  0.0636  


  0.0486  


  

ItemSimple-FW 0.0342  


  0.0473  


  0.0402  


  0.0309  


  0.0720  


  0.0467  


  

ItemUser-FW 0.0342  


  0.0471  


  0.0401  


  0.0308  


  0.0724  


  0.0467  


  

RatUser-FW 0.0343  


  0.0474  


  0.0405  


  0.0310  


  0.0727  


  0.0469  


  

RatItem-FW 0.0342  


  0.0472  


  0.0403  


  0.0309  


  0.0725  


  0.0469  


  

IRUser-FW 0.0341  


  0.0470  


  0.0401  


  0.0308  


  0.0714  


  0.0469  


  

IRItem-FW 0.0338  


  0.0467  


  0.0393  


  0.0302  


  0.0712  


  0.0464  


  

IRUserItem-FW 0.0341  


  0.0471  


  0.0401  


  0.0308  


  0.0716  


  0.0469  


  

Table 7.4. Dynamic ensemble performance values (P@10) using the U1R methodology and 

user predictors (MovieLens dataset) 
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In summary, the results show that our methods significantly outperform 

static ensembles for different recommender combinations in most of the 

evaluation methodologies. Moreover, in most cases our methods also achieve the 

best results for each ensemble, let aside the performance of the oracle performance 

prediction (perfect correlation) and best static approaches, which use groundtruth 

(test) information, differently to the clarity- and entropy-based performance predic-

tors. 

Nevertheless, we observe that in those cases where the dynamic ensembles do 

not perform better than the static ensembles, the best static approaches use values of 

  close to    . We hypothesise that our framework may be biased towards favouring 

those ensembles whose recommender combination is highly unbalanced. Interest-

ingly, although the predictors only weight one of the recommenders (not always the 

better performing one) a dynamic ensemble is usually able to find the optimal com-

bination in the unbalanced cases. In particular, this could help to answer why our 

dynamic ensembles underperform static approaches for the U1R and P1R method-

ologies, since the best static in these cases seem to be often very close to    . 

 

 HRU1 HRU2 HRU3 HRU4 HRU5 HRU6 

R1 (=1.0) 0.0203 0.0348 0.0265 0.0265 0.0265 0.0265 

R2 (=0.0) 0.0197 0.0197 0.0197 0.0208 0.0604 0.0282 

Baseline (=0.5) 0.0470 0.0579 0.0539 0.0269 0.0763 0.0560 

Best static 

(best ) 

0.0470 

 (0.5) 

0.0593 

  (0.6) 

0.0541 

  (0.6) 

0.0278 

  (0.7) 

0.0796 

  (0.4) 

0.0560 

  (0.5) 

Perfect correlation 0.0464 0.0579 0.0546 0.0314 0.0767 0.0564 

PC-OM 0.0425 0.0554 0.0528 0.0296 0.0746 0.0537 

PC-FW 0.0429 0.0542 0.0504 0.0282 0.0764 0.0522 

Entropy-OM 0.0431  


  0.0564  


  0.0502  


  0.0261  


  0.0698  


  0.0521  


  

ItemSimple-OM 0.0358  


  0.0509  


  0.0429  


  0.0261  


  0.0689  


  0.0441  


  

ItemUser-OM 0.0361  


  0.0512  


  0.0431  


  0.0261  


  0.0675  


  0.0444  


  

RatUser-OM 0.0362  


  0.0514  


  0.0436  


  0.0263  


  0.0663  


  0.0446  


  
RatItem-OM 0.0361  



  0.0511  


  0.0432  


  0.0262  


  0.0661  


  0.0444  


  

IRUser-OM 0.0365  


  0.0513  


  0.0435  


  0.0263  


  0.0687  


  0.0447  


  

IRItem-OM 0.0357  


  0.0504  


  0.0421  


  0.0257  


  0.0669  


  0.0439  


  

IRUserItem-OM 0.0365  


  0.0513  


  0.0434  


  0.0263  


  0.0675  


  0.0447  


  

Entropy-FW 0.0457  


  0.0577  


  0.0524  


  0.0265  


  0.0745  


  0.0546  


  

ItemSimple-FW 0.0410  


  0.0540  


  0.0475  


  0.0266  


  0.0720  


  0.0498  


  

ItemUser-FW 0.0409  


  0.0538  


  0.0473  


  0.0265  


  0.0706  


  0.0497  


  

RatUser-FW 0.0410  


  0.0540  


  0.0477  


  0.0267  


  0.0691  


  0.0499  


  

RatItem-FW 0.0411  


  0.0541  


  0.0476  


  0.0266  


  0.0688  


  0.0499  


  

IRUser-FW 0.0410  


  0.0538  


  0.0474  


  0.0266  


  0.0721  


  0.0496  


  

IRItem-FW 0.0406  


  0.0534  


  0.0467  


  0.0263  


  0.0699  


  0.0491  


  

IRUserItem-FW 0.0409  


  0.0538  


  0.0474  


  0.0266  


  0.0706  


  0.0496  


  

Table 7.5. Dynamic ensemble performance values (P@10) using the P1R methodology and 

user predictors (MovieLens dataset). 
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Using item-based predictors 

As we noted in Section 6.5.2, item-based predictors could also be valuable since they 

also obtain high correlations with respect to item perfomance. Table 7.6 shows the 

selected recommenders that satisfy the correlation requirements with item predictors. 

Table 7.7, Table 7.8, and Table 7.9 show the results obtained when these recom-

mender combinations are evaluated and compared against dynamic versions (using 

our proposed item predictors), and using the 1R, U1R, and uuU1R methodologies. 

In this case, ensemble predictions are computed by means of Equation (7.3) with 

values        only depending on the current item, that is,     . 

When measuring the performance of dynamic ensembles that use item-based 

performance predictors, we do not compute the perfect correlation predictors be-

cause we do not have a standard metric for item performance. Apart from that, the 

 R1 R2 

HRI1 pLSA CB 

HRI2 pLSA kNN 

HRI3 ItemPop CB 

HRI4 ItemPop kNN 

Table 7.6. Selected recommenders for building dynamic ensembles using item predictors that 

exploit rating data (MovieLens dataset). 

 HRI1 HRI2 HRI3 HRI4 

R1 (=1.0) 0.0836 0.0836 0.0649 0.0649 

R2 (=0.0) 0.0221 0.0437 0.0221 0.0437 

Baseline (=0.5) 0.0909 0.0924 0.0886 0.0907 

Best static 

(best ) 

0.0909 

(0.5) 

0.0924 

(0.5) 

0.0886 

(0.5) 

0.0907 

(0.5) 

Entropy-OM 0.0708  


  0.0858  


  0.0684  


  0.0831  


  

UserSimple-OM 0.0761  


  0.0905  


  0.0723  


  0.0837  


  

UserItem-OM 0.0776  


  0.0903  


  0.0749  


  0.0843  


  

RatItem-OM 0.0751  


  0.0893  


  0.0712  


  0.0824  


  

RatUser-OM 0.0759  


  0.0892  


  0.0674  


  0.0789  


  

URItem-OM 0.0776  


  0.0911  


  0.0797  


  0.0885  


  

URUser-OM 0.0781  


  0.0906  


  0.0721  


  0.0820  


  
URItemUser-OM 0.0777  



  0.0909  


  0.0777  


  0.0869  


  

Entropy-FW 0.0798  


  0.0923  


  0.0771  


  0.0895  


  

UserSimple-FW 0.0946  


  0.0979  


  0.0916  


  0.0949  


  

UserItem-FW 0.0949  


  0.0980  


  0.0920  


  0.0950  


  

RatItem-FW 0.0944  


  0.0979  


  0.0913  


  0.0948  


  

RatUser-FW 0.0946  


  0.0978  


  0.0908  


  0.0942  


  

URItem-FW 0.0940  


  0.0981  


  0.0923  


  0.0958  


  

URUser-FW 0.0946  


  0.0978  


  0.0912  


  0.0945  


  

URItemUser-FW 0.0944  


  0.0980  


  0.0921  


  0.0954  


  

Table 7.7. Dynamic ensemble performance values (P@10) using 1R methodology with item 

predictors (MovieLens dataset). 
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rest of the experimental settings is the same as those described above for dynamic 

hybrids with user-based performance predictors. 

Table 7.7 shows the results obtained by using item-based predictors and the 1R 

methodology. We may observe that if the predictors are weighted using the FW 

strategy, dynamic ensembles outperform static combinations in every situation, ex-

cept for the Entropy predictor. It is interesting to note that, differently to user-based 

predictors, the dynamic ensembles are able to outperform the best static ensemble 

even when they are close to the baseline with      . The reader may compare Ta-

ble 7.4 and Table 7.7 to observe these differences. 

In Table 7.8, where the methodology U1R is used, a very similar situation occurs, 

although not all dynamic ensembles outperform the static approach with the FW 

strategy. Specifically, the dynamic hybrid weighted by the URItem clarity predictor 

clearly obtains better performance than the rest of the dynamic and static ensembles, 

in particular the HRI3 and HRI4 combinations. 

Finally, the performance results found for the uuU1R methodology are pre-

sented in Table 7.9, in which the test ratings – i.e., the users – are uniformly distrib-

uted over the items, items previously uniformly distributed in the test (like in the 

U1R methodology). In this experiment, the performance of the dynamic ensemble is 

much better than in the previous experiments, since all the rating-based item pre-

dictors (except for the Entropy predictor) outperform the static baseline no 

matter the weighting strategy in three out of four recommender combinations. 

 HRI1 HRI2 HRI3 HRI4 

R1 (=1.0) 0.0718 0.0718 0.0406 0.0406 

R2 (=0.0) 0.0223 0.0381 0.0223 0.0381 

Baseline (=0.5) 0.0764 0.0812 0.0630 0.0689 

Best static 

(best ) 

0.0764 

(0.5) 

0.0812 

(0.5) 

0.0630 

(0.5) 

0.0689 

(0.5) 

Entropy-OM 0.0571  


  0.0652  


  0.0435  


  0.0508  


  

UserSimple-OM 0.0657  


  0.0716  


  0.0399  


  0.0450  


  

UserItem-OM 0.0671  


  0.0721  


  0.0425  


  0.0462  


  

RatItem-OM 0.0645  


  0.0699  


  0.0392  


  0.0435  


  

RatUser-OM 0.0620  


  0.0671  


  0.0335  


  0.0382  


  

URItem-OM 0.0705  


  0.0757  


  0.0496  


  0.0532  


  

URUser-OM 0.0650  


  0.0699  


  0.0372  


  0.0414  


  
URItemUser-OM 0.0690  



  0.0741  


  0.0462  


  0.0500  


  

Entropy-FW 0.0668  


  0.0757  


  0.0518  


  0.0595  


  

UserSimple-FW 0.0840  


  0.0886  


  0.0601  


  0.0658  


  

UserItem-FW 0.0844  


  0.0887  


  0.0609  


  0.0663  


  

RatItem-FW 0.0839  


  0.0883  


  0.0598  


  0.0653  


  

RatUser-FW 0.0831  


  0.0876  


  0.0573  


  0.0630  


  

URItem-FW 0.0851  


  0.0897  


  0.0642  


  0.0698  


  

URUser-FW 0.0836  


  0.0881  


  0.0585  


  0.0642  


  

URItemUser-FW 0.0848  


  0.0893  


  0.0625  


  0.0680  


  

Table 7.8. Dynamic ensemble performance values (P@10) using U1R methodology with item 

predictors (MovieLens dataset). 
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In the other combination (HRI3) the best strategy is FW, the same as with the other 

evaluation methodologies. 

7.3.2 Dynamic recommender ensembles on log data 

In this section we present experiments in which log-based predictors are used to dy-

namically weight an ensemble‟s recommenders. As with rating-based information, in 

this case we first have to select suitable recommenders to combine according to the 

requirements established in our framework. Hence, we choose the combinations 

HL1, HL2 and HL3 presented in Table 7.10, where, as before, the performance pre-

dictors weight the recommender denoted as R1. 

The Last.fm dataset contains timestamped log-based information. As noted in 

Chapter 4, for efficiency reasons, we only use the 1R methodology in this dataset. 

Table 7.11 shows the results obtained with a temporal split of the data, and Table 

7.12 shows the results obtained with a random split (five-fold) of the data. 

 R1 R2 

HL1 kNN CB 

HL2 kNN ItemPop 

HL3 pLSA kNN 

Table 7.10. Selected recommenders for building dynamic ensembles using performance 

predictors that exploit log-based information (Last.fm dataset). 

 HRI1 HRI2 HRI3 HRI4 

R1 (=1.0) 0.0536 0.0536 0.0225 0.0225 

R2 (=0.0) 0.0198 0.0275 0.0198 0.0275 

Baseline (=0.5) 0.0374 0.0440 0.0239 0.0256 

Best static 

(best ) 

0.0491 

(0.9) 

0.0502 

(0.9) 

0.0239 

(0.6) 

0.0271 

(0.2) 

Entropy-OM 0.0324  


  0.0385  


  0.0236  


  0.0280  


  

UserSimple-OM 0.0510  


  0.0548  


  0.0237  


  0.0282  


  

UserItem-OM 0.0514  


  0.0547  


  0.0236  


  0.0280  


  

RatItem-OM 0.0516  


  0.0547  


  0.0237  


  0.0281  


  

RatUser-OM 0.0523  


  0.0551  


  0.0237  


  0.0282  


  

URItem-OM 0.0498  


  0.0536  


  0.0234  


  0.0280  


  
URUser-OM 0.0518  



  0.0551  


  0.0234  


  0.0279  


  

URItemUser-OM 0.0505  


  0.0542  


  0.0235  


  0.0280  


  

Entropy-FW 0.0344  


  0.0410  


  0.0241  


  0.0275  


  

UserSimple-FW 0.0435  


  0.0503  


  0.0244  


  0.0276  


  

UserItem-FW 0.0435  


  0.0501  


  0.0245  


  0.0275  


  

RatItem-FW 0.0436  


  0.0504  


  0.0244  


  0.0275  


  

RatUser-FW 0.0440  


  0.0509  


  0.0245  


  0.0276  


  

URItem-FW 0.0429  


  0.0494  


  0.0244  


  0.0273  


  

URUser-FW 0.0438  


  0.0506  


  0.0245  


  0.0274  


  

URItemUser-FW 0.0432  


  0.0498  


  0.0245  


  0.0274  


  

Table 7.9. Dynamic ensemble performance values (P@10) using uuU1R methodology with 

item predictors (MovieLens dataset). 
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We can see that the results of both tables are analogous. The dynamic ensem-

bles weighted by the log-based performance predictors outperform the base-

line static ensemble in all cases, except with the Autocorrelation predictor. 

This result is consistent with the correlations presented in Table 6.14 and Table 6.15, 

where autocorrelation obtained the lowest (absolute) correlation value for the kNN 

recommender on both versions of the dataset. Regarding the pLSA recommender (in 

the combination HL3), the Autocorrelation and TimeSimple predictors obtain com-

 HL1 HL2 HL3 

R1 (=1.0) 0.0603 0.0603 0.0926 

R2 (=0.0) 0.0916 0.0797 0.0603 

Baseline (=0.5) 0.0852 0.0755 0.0820 

Best static 

(best ) 

0.0914 

(0.2) 

0.0812 

(0.1) 

0.0925 

(0.9) 

Perfect correlation 0.0890 0.0783 0.0863 

PC-OM 0.0869 0.0771 0.0851 

PC-FW 0.0849 0.0751 0.0826 

ItemSimple-OM 0.0904  


  0.0804  


  0.0901  


  

Autocorrelation-OM 0.0815  


  0.0722  


  0.0781  


  

TimeSimple-OM 0.0905  


  0.0789  


  0.0898  


  

ItemTime-OM 0.0906  


  0.0804  


  0.0902  


  
ItemPriorTime-OM 0.0885  



  0.0778  


  0.0863  


  

ItemSimple-FW 0.0903  


  0.0802  


  0.0891  


  

Autocorrelation-FW 0.0842  


  0.0746  


  0.0809  


  

TimeSimple-FW 0.0901  


  0.0785  


  0.0884  


  

ItemTime-FW 0.0904  


  0.0800  


  0.0891  


  

ItemPriorTime-FW 0.0883  


  0.0775  


  0.0855  


  

Table 7.11. Dynamic ensemble performance values (P@10) using the 1R methodology with 

the log-based user predictors (Last.fm, temporal split). 

 HL1 HL2 HL3 

R1 (=1.0) 0.0204 0.0204 0.0836 

R2 (=0.0) 0.0828 0.0767 0.0204 

Baseline (=0.5) 0.0764 0.0643 0.0704 

Best static 

(best ) 

0.0818 

(0.2) 

0.0767 

(0.1) 

0.0837 

(0.9) 

Perfect correlation 0.0818 0.0760 0.0829 

PC-OM 0.0816 0.0755 0.0823 

PC-FW 0.0815 0.0745 0.0811 

ItemSimple-OM 0.0799  


  0.0730  


  0.0771  


  

Autocorrelation-OM 0.0717  


  0.0596  


  0.0686  


  

TimeSimple-OM 0.0814  


  0.0762  


  0.0518  


  

ItemTime-OM 0.0806  


  0.0734  


  0.0761  


  

ItemPriorTime-OM 0.0770  


  0.0658  


  0.0743  


  

ItemSimple-FW 0.0804  


  0.0726  


  0.0739  


  

Autocorrelation-FW 0.0756  


  0.0631  


  0.0697  


  
TimeSimple-FW 0.0814  



  0.0753  


  0.0579  


  

ItemTime-FW 0.0808  


  0.0728  


  0.0732  


  

ItemPriorTime-FW 0.0783  


  0.0671  


  0.0719  


  

Table 7.12. Dynamic ensemble performance values (P@10) using the 1R methodology with 

log-based user predictors (Last.fm, five-fold random split). 
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parable correlations with the combined recommenders, yet the performance of the 

corresponding dynamic ensembles is very different, thus suggesting that, although we 

have found a dependence between the predictors‟ power in terms of correlation, and 

their effectiveness in weighting hybrids, this is not a strict necessary condition to 

obtain improvements over the static ensembles. 

The best performance values were achieved either by single recommenders or by 

the best static ensembles. When the best results are obtained by single recommenders 

emphasises the fact that no hybridisation is required for that combination (like in 

HL1 and HL3 for the temporal split, and HL1 and HL2 for the random split). In the 

other case, when the best results are achieved by the best static ensembles, it may 

restrict the usefulness of our approach, although our proposed dynamic ensembles 

significantly outperform the baseline static ensembles for some predictors such as 

TimeSimple and ItemSimple. We have to recall that the best static ensembles are in 

fact optimised using the test set, which is clearly not a fair comparison. The results of 

the perfect correlation ensembles in the random split are always better than those 

obtained by the performance predictors, confirming that predictors with stronger 

correlations should obtain better performance results when used for dynamic en-

sembles. 

7.3.3 Dynamic recommender ensembles on social data 

In the third experiment we exploit the social information available in the CAMRa 

dataset to combine collaborative and social filtering recommenders using social-

based performance predictors. Table 7.13 shows the recommender combinations 

selected based on the correlations obtained in Section 6.5.4. Here, we present 4 en-

sembles where the two social filtering recommenders, Personal and PureSocial, are 

combined with two collaborative filtering recommenders, pLSA and kNN. We saw 

in Section 6.5.4 that most of the social-based predictors obtained higher correlations 

with the social filtering recommenders, and lower or negligible correlations with the 

collaborative filtering recommenders, at least for the social version of the dataset 

(Table 6.16). The situation for the collaborative-social version was not so clear, but 

for the sake of coherence, we use the same set of ensembles in both versions of the 

dataset. 

 R1 R2 

HS1 Personal pLSA 

HS2 Personal kNN 

HS3 PureSocial pLSA 

HS4 PureSocial kNN 

Table 7.13. Selected recommenders for building dynamic ensembles using social-based 

user predictors (CAMRa dataset). 
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As we mentioned in Section 6.5.4, due to the lack of coverage of the social filter-

ing recommenders, the only methodology that provides sensible results is the AR 

methodology. In this section we present the results obtained using this methodology 

on the two available versions of the CAMRa dataset: social and collaborative-social. 

Table 7.14 shows the results obtained on the social version of the CAMRa data-

set. We see that only for one out of the four recommender combinations, the dy-

namic ensembles consistently outperform the baseline static ensemble. However, it is 

interesting to note that the best value is always achieved by the perfect correlation 

ensemble, which means that further improvements could be possible if we were able 

to find predictors with stronger correlations. 

In the collaborative-social version of the dataset (Table 7.15) the results are simi-

lar, except that now for HS2, the best result is obtained by the best static ensemble. 

Moreover, a larger number of dynamic ensembles outperform the baseline static en-

semble HS3, whereas at least one dynamic ensemble outperforms the baseline HS1, 

which is a better result than the one shown in the previous Table 7.14. We hypothe-

sise this is because on this version of the dataset the individual recommenders display 

a more similar performance to each other (compare the differences between R1 and 

R2 in Table 7.14 and Table 7.15). 

 HS1 HS2 HS3 HS4 

R1 (=1.0) 0.1732 0.1732 0.1760 0.1760 

R2 (=0.0) 0.1110 0.0473 0.1110 0.0473 

Baseline (=0.5) 0.1813 0.1821 0.2006 0.1929 

Best static 

(best ) 

0.1842 

(0.7) 

0.1899 

(0.8) 

0.2012 

(0.4) 

0.1952 

(0.6) 

Perfect correlation 0.2018 0.1929 0.2089 0.1979 

PC-OM 0.1872 0.1875 0.2048 0.1946 

PC-FW 0.1863 0.1869 0.2042 0.1994 

AvgNeighDeg-OM 0.1795  


  0.1896  


  0.1973  


  0.1804  


  

BetCentrality-OM 0.1744  


  0.1804  


  0.1833  


  0.1777  


  

ClustCoeff-OM 0.1786  


  0.1786  


  0.1836  


  0.1753  


  

Degree-OM 0.1738  


  0.1839  


  0.1976  


  0.1765  


  
EgoCompSize-OM 0.1756  



  0.1833  


  0.1967  


  0.1827  


  

HITS-OM 0.1774  


  0.1911  


  0.1813  


  0.1798  


  

PageRank-OM 0.1762  


  0.1842  


  0.1917  


  0.1801  


  

TwoHopNeigh-OM 0.1756  


  0.1851  


  0.1964  


  0.1777  


  

AvgNeighDeg-FW 0.1807  


  0.1896  


  0.2003  


  0.1914  


  

BetCentrality-FW 0.1801  


  0.1872  


  0.2024  


  0.1929  


  

ClustCoeff-FW 0.1804  


  0.1875  


  0.2003  


  0.1890  


  

Degree-FW 0.1798  


  0.1887  


  0.2000  


  0.1929  


  

EgoCompSize-FW 0.1789  


  0.1896  


  0.2009  


  0.1938  


  

HITS-FW 0.1801  


  0.1902  


  0.1997  


  0.1926  


  

PageRank-FW 0.1810  


  0.1875  


  0.2003  


  0.1923  


  

TwoHopNeigh-FW 0.1801  


  0.1905  


  0.2000  


  0.1926  


  

Table 7.14. Dynamic ensemble performance values (P@10) using the AR methodology with 

social-based user predictors (CAMRa, social dataset). 
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Furthermore, some of the correlations obtained for the CAMRa collaborative 

dataset are more discriminative between the combined recommenders, in the sense 

that, for instance, the correlations between the two-hop neighbourhood predictor 

and the Personal recommender were -0.123 and -0.121 in the social and collabora-

tive-social datasets, respectively. However, the correlations between the two-hop 

neighbourhood predictor and kNN were 0.004 and 0.130, that is, in the second data-

set the relative distance in correlation between these two recommenders is larger, 

according to the correlation with respect to the predictor. This change in the correla-

tions may explain the fact that in Table 7.15 some of the dynamic ensembles outper-

form the perfect correlation ensemble, which does not take the relative correlation 

into account with respect to each individual recommender, as noted in 7.3.1. 

In general, the HITS predictor obtains the best results among the dynamic 

ensembles for some of the tested combinations. Other predictors such as the 

betweenness centrality and the ego components size produce more competi-

tive ensembles in the social version of the dataset, whereas the degree and the 

average neighbour degree preditors provide better results for more than one combi-

nation in the CAMRa collaborative dataset. 

 HS1 HS2 HS3 HS4 

R1 (=1.0) 0.1066 0.1066 0.1072 0.1072 

R2 (=0.0) 0.1007 0.0226 0.1007 0.0226 

Baseline (=0.5) 0.1509 0.1142 0.1599 0.1219 

Best static 

(best ) 

0.1524 

(0.4) 

0.1200 

(0.7) 

0.1632 

(0.3) 

0.1219 

(0.5) 

Perfect correlation 0.1608 0.1188 0.1640 0.1237 

PC-OM 0.1202 0.1164 0.1254 0.1199 

PC-FW 0.1189 0.1143 0.1263 0.1219 

AvgNeighDeg-OM 0.1489  


  0.1195  


  0.1599  


  0.1131  


  

BetCentrality-OM 0.1443  


  0.1132  


  0.1487  


  0.1114  


  

ClustCoeff-OM 0.1465  


  0.1123  


  0.1483  


  0.1108  


  

Degree-OM 0.1472  


  0.1154  


  0.1614  


  0.1107  


  

EgoCompSize-OM 0.1461  


  0.1158  


  0.1596  


  0.1140  


  

HITS-OM 0.1485  


  0.1200  


  0.1467  


  0.1134  


  

PageRank-OM 0.1471  


  0.1167  


  0.1579  


  0.1123  


  
TwoHopNeigh-OM 0.1478  



  0.1171  


  0.1585  


  0.1118  


  

AvgNeighDeg-FW 0.1518  


  0.1191  


  0.1623  


  0.1204  


  

BetCentrality-FW 0.1491  


  0.1180  


  0.1577  


  0.1213  


  

ClustCoeff-FW 0.1500  


  0.1182  


  0.1566  


  0.1189  


  

Degree-FW 0.1489  


  0.1191  


  0.1627  


  0.1208  


  

EgoCompSize-FW 0.1489  


  0.1193  


  0.1618  


  0.1210  


  

HITS-FW 0.1482  


  0.1195  


  0.1564  


  0.1202  


  

PageRank-FW 0.1491  


  0.1186  


  0.1610  


  0.1211  


  

TwoHopNeigh-FW 0.1500  


  0.1195  


  0.1619  


  0.1211  


  

Table 7.15. Dynamic ensemble performance values (P@10) using the AR methodology 

with social-based user predictors (CAMRa, collaborative dataset). 
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7.3.4 Discussion 

The analysis of the results presented in this chapter shows that ensembles can indeed 

benefit from a dynamic weighting of their recommenders. In particular, we have seen 

that when these weights come from performance predictors, which previously had 

shown significant correlation with the performance of individual recommenders, the 

resulting dynamic ensemble tends to outperform static combinations of the recom-

menders. In this context, in order to obtain successful hybridisations, we have to take 

several variables into account, which correspond to three stages proposed in our 

framework: the correlation between the predictor and the combined recommenders, 

the relative performance of such recommenders, the strategy to normalise the predic-

tor‟s values, and the weight distribution among recommenders. 

The relative performance of the recommenders has proven to be decisive, since 

in some cases, hybridisation does not make sense to begin with, when the difference 

in performance between the recommenders is significant and systematic, and thus, 

dynamic ensembles cannot obtain the best performance result, although they may 

outperform static ensembles. Performance prediction normalisation and weight dis-

tribution, on the other hand, do make a difference in the results. Although no explicit 

results are presented in this work regarding different normalisation approaches, pre-

viously conducted experiments showed us that score normalisation produce worse 

results than rank normalisation. Finally, the weight distribution strategy is not as 

critical as other stages of our framework, but helps to obtain much better results, 

specifically, when the one minus strategy (OM) is used. 

The obtained results have also shown that more complex formalisations and 

probability models do not necessarily lead to better results, with respect to the adap-

tation and definition of the user and item clarity performance predictors. In this ad-

aptation, various configurations were available, and we experimented with further 

extensions of different language models for the same clarity model, using rating and 

log-based information. Additionally, several graph-based metrics were tested, where 

the concept of the user‟s strength in a social network is modelled in different ways. 

We find that different formulations for the user-based performance clarity pre-

dictor consistently obtain the best results in different situations for rating-based pref-

erence information. We also experimented with item-based predictors, and found 

that the UserItem, URItem, and RatUser predictors were noticeably better than the 

rest of the formulations. When log-based information is exploited, the ItemTime and 

TimeSimple predictors obtained better results than other predictors not based on the 

clarity concept, such as the Autocorrelation function. Moreover, regarding the social-

based ensembles, the HITS, two-hop neighbourhood, and average neighbour degree 

approaches clearly outperform the ensemble weighted by the rest of the predictors 

and, in most of the cases, also outperform the baseline static ensemble. 
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These results are, in general, consistent with the correlation values between the 

predictors‟ output values and the recommenders‟ performance values. Figure 7.2 

shows a summary of the results presented in this and previous chapters, where the 

difference in correlation is plotted against the gain (or loss) in performance with re-

spect to the baseline. For this figure, the best and worst dynamic ensembles were se-

lected from Table 7.2, Table 7.11 and Table 7.15. In the figure we may observe the 

trend that the larger the difference in correlation, the better the improvement over the 

baseline, which is in concordance with the requirement that both correlations should 

not be very similar. These results provide some insights in order to understand which 

features may help configure well performing dynamic recommender ensembles, where 

performance predictors have emerged as a clear useful characteristic. 

7.4 Conclusions 

In this chapter we have explored how the performance of a recommender ensemble 

can be improved by dynamically assigning the weights of its recommenders, by ana-

lysing the performance correlation between the values of a performance predictor 

and the performance of an individual recommender. In this way, we have proposed a 

dynamic hybrid framework that let decide when and how dynamic hybridisation 

should be done. 

Drawing from the performance predictors proposed in the previous chapter, we 

have conducted several experiments in order to assess whether recommender en-

 

Figure 7.2. For each best and worst dynamic ensemble in Table 7.2, Table 7.11 and Table 7.15, 

this graph plots the difference in correlation between each predictor and a recommender 

against the difference in performance between the ensemble and the baseline. 
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sembles can benefit from dynamic weights according to such predictors. The results 

obtained in our experiments indicate that a strong correlation with performance 

tends to correspond with enhancements in ensembles by using the predictor for 

weight adjustment. The dynamic ensembles usually outperformed the baseline static 

ensemble for different recommender combinations, supporting their effectiveness in 

different situations. 

In future work we aim to evaluate our framework with more than two recom-

menders in an ensemble, and more than one performance predictor, eventually, one 

for each recommender. We also plan to test different normalisation strategies of the 

predictor‟s values, where several assumptions about the ideal weight distribution can 

be verified, such as whether the user‟s rating distribution or the recommender‟s out-

put are beneficial for the final performance of the ensemble. Moreover, Machine 

Learning approaches could also be used to learn the best weights in a user (or item) 

basis. Despite being more time consuming, these techniques may also achieve good 

results in terms of performance of the dynamic ensemble, although they are usually 

more prone to overfit the learned weights. 

 



 

 

Chapter 8 

8 Neighbour selection and 

weighting in user-based 

collaborative filtering 

User-based recommender systems suggest interesting items to a user relying on simi-

lar-minded people called neighbours. The selection and weighting of the input from 

these neighbours characterise different variants of the approach. Thus, for instance, 

while standard user-based collaborative filtering strategies select neighbours based on 

user similarities, trust-aware recommendation algorithms rely on other aspects indica-

tive of user trustworthiness and reliability. 

In this chapter we restate the user-based recommendation problem, generalising it 

in terms of performance prediction techniques. We investigate how to adopt this gen-

eralisation to define a unified framework where we conduct an objective analysis of the 

effectiveness (predictive power) of neighbour scoring functions. We evaluate our ap-

proach with several state-of-the-art and novel neighbour scoring functions on two 

publicly available datasets. The notion of performance takes here a different nuance 

from previous chapters. More precisely, we consider the notion of neighbour perform-

ance, for which we propose several measures and new predictors. In an empirical 

comparison involving four neighbour quality metrics and thirteen performance predic-

tors, we find a strong predictive power for some of the predictors with respect to cer-

tain metrics. This result is then validated by checking the final performance of recom-

mendation strategies where predictors are used for selecting and/or weighting user 

neighbours. As a result, we are able to anticipate which predictors will perform better 

in neighbour scoring powered versions of a user-based collaborative filtering algo-

rithm. 

In Sections 8.1 and 8.2 we present a unified formulation and the proposed 

framework for neighbour selection and weighting in user-based recommendation, and 

in Section 8.3 we describe how the different neighbour scoring functions proposed in 

the literature fit into the framework. Finally, in Section 8.4 we present an experimental 

evaluation of the framework, and in Section 8.5 we provide conclusions.  
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8.1 Problem statement 

We focus on user-based collaborative filtering algorithms, one type of memory-based 

approaches that explicitly seek people – commonly called neighbours – having pref-

erences (and/or other characteristics of interest) in common with the target user, and 

use such preferences to predict item ratings for the user. User-based algorithms are 

built on the principle that a particular user‟s rating records are not equally useful to 

all other users as input to provide them with item suggestions (Herlocker et al., 

2002). Therefore, as stated in Chapter 2, central aspects to these algorithms are a) 

how to identify which neighbours form the best basis to generate item recommenda-

tions for the target user, and b) how to properly make use of the information pro-

vided by them. Once the target user‟s neighbours are selected, the more similar a 

neighbour is to the user, the more her preferences are taken into account as input to 

produce recommendations.  

A common user-based recommendation approach consists of predicting the 

relevance of an item for the target user by a linear combination of her neighbours‟ 

ratings, which are weighted by the similarity between the target user and her 

neighbours, as presented in Equation (2.3). For the sake of clarity, and since we shall 

later elaborate from it, we reproduce here the above equation: 

 

                                      

         

 (8.1) 

User similarity has been the central criterion for neighbour selection in most of 

the user-based collaborative filtering approaches (Desrosiers and Karypis, 2011). 

Nonetheless, recently it has been suggested that additional factors could have a valu-

able role to play on this point. For instance, two users with a high similarity value 

may no longer be reliable predictors for each other at some point because of a diver-

gence of tastes over time (O‟Donovan and Smyth, 2005). Thus, in the context of 

user-based collaborative filtering, more complex methods have been proposed in 

order to effectively select and weight useful neighbours (O‟Donovan and Smyth, 

2005; Desrosiers and Karypis, 2011). In this context a particularly relevant dimension 

relates the above additional factors with the general concept of trust (trustworthiness, 

reputation) on a user‟s contribution to the computation of recommendations. Hence, 

a number of trust-aware recommender systems have been proposed in the last dec-

ade (Hwang and Chen, 2007; O‟Donovan and Smyth, 2005; Golbeck, 2009). 

Most of these systems focus on the improvement of accuracy metrics, such as 

the Mean Average Error, by defining different heuristic trust functions, which, in 

most cases, are applied either as additional weighting factors in the neighbourhood-

based formulation, or as a component of the neighbour selection criteria. The way 

trust is measured is considerably diverse in the literature. In fact, the notion of trust 
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has embraced a wide scope of neighbour aspects, spanning from personal trust on 

the neighbour‟s faithfulness, to trust on her competence, confidence in the correct-

ness of the input data, or the effectiveness of the recommendation resulting from the 

neighbour‟s data. More specifically, in trust-aware recommender systems, a trust 

model is defined and, typically, introduced into the Resnick‟s equation (Equation 

(8.1)) either as an additional weight or as a filter for the potential user‟s neighbours. 

Moreover, depending on the nature of their input, different types of trust-aware rec-

ommendation approaches can be distinguished: rating-based approaches, and social-

based approaches (using a trust network). 

One of the first works that proposed rating-based trust metrics between users is 

(O‟Donovan and Smyth, 2005). In that work O‟Donovan and Smyth propose to 

modify how the “recommendation partners” (neighbours) are weighted and selected 

in the user-based collaborative filtering formula. They argue that the trustworthiness 

of a particular neighbour should be taken into account in the computed recommen-

dation score by looking at how reliable her past recommendations were. Trust values 

are computed by measuring the amount of correct recommendations in which a user 

has participated as a neighbour, and then they are used for weighting the influence 

(along with computing the similarity), and selecting the target user‟s neighbours. 

Weng et al. (2006) propose an asymmetric trust metric based on the expectation of 

other users‟ competence in providing recommendations to reduce the uncertainty in 

predicting new ratings. The metric is used in the standard collaborative filtering for-

mula instead of the similarity value. Two additional metrics are defined in (Kwon 

et al., 2009) based on the similarity between the ratings of a neighbour and the rat-

ings from the community. Finally, Hwang and Chen (2007) define two trust metrics 

(local and global) by averaging the prediction error of co-rated items between a user 

and a potential neighbour. 

Social-based trust metrics make use of explicit trust networks of users, built upon 

friendship relations (Massa and Avesani, 2004; Massa and Bhattacharjee, 2004) and 

explicit trust scores between individuals in a system (Ma et al., 2009; Walter et al., 

2009). These metrics and, to some extent, their inherent meanings, are different with 

respect to rating-based metrics. Nonetheless, Ziegler and Lausen (2004) conduct a 

thorough analysis that shows empirical correlations between trust and user similari-

ties, suggesting that users tend to create social connections with people who have 

similar preferences. Once such a correlation is proved, techniques based on social-

based trust can be applicable. Golbeck and Hendler (2006) propose a metric called 

TidalTrust to infer trust relationships by using recursive search. Inferred trust values 

are used for every user who has rated a particular item in order to select only those 

users with high trust values. Then, a weighted average between past ratings and in-

ferred trust values provides the predicted ratings. Massa and Avesani (2007b) ex-



166 Chapter 8. Neighbour selection and weighting in user-based CF 

 

periment with local (MoleTrust) and global (PageRank) trust metrics, showing that 

trust-based recommenders are very valuable for cold start users. 

The research presented here seeks to provide an algorithmic generalisation for a 

significant variety of notions, computational definitions, and roles of trust in 

neighbour selection. Specifically, we aim to provide a theoretical framework for 

neighbour selection and weighting in which trust metrics can be defined and evalu-

ated in terms of improvements on a final recommender‟s performance. We cast the 

rating prediction task – typically based, as described above, on the aggregation of 

neighbour preferences – into a framework for dynamic combination of inputs, from 

a performance prediction perspective, borrowing from the methodology for this area 

in the Information Retrieval field. The application of this perspective is not trivial, 

and requires a definition of what the performance of a neighbour means in this con-

text. Hence, restated the problem in these terms, we propose to adapt and exploit 

techniques and methodologies developed in Information Retrieval for predicting 

query performance; in our case the target user‟s neighbours are equivalent to the que-

ries, and our goal is to predict which of these neighbours will perform better for the 

target user.  

Furthermore, since our framework provides an objective measure of the 

neighbour scoring function efficiency, we would be able to obtain a better under-

standing of the whole recommendation process. For instance, if the results obtained 

when a particular function is introduced in a recommender are not consistent with 

the (already observed) objective performance measures, it would mean that the cho-

sen strategy is not the most appropriate, suggesting to experiment with further 

strategies, providing such a function has already shown some predictive power. 

Therefore, the main contribution of our framework is that it provides a formal 

setting for the evaluation of neighbour selection and weighting functions, while, at 

the same time, enables to discriminate whether recommendation performance im-

provements are achieved by the neighbour scoring functions, or by the way these 

functions are used in the recommendation computation. Besides, our framework 

provides an unification of state-of-the-art trust-based recommendation approaches, 

where trust metrics are casted as neighbour performance predictors. As a result, in 

this chapter, we shall propose four neighbour quality metrics and thirteen perform-

ance predictors, defined upon a specific neighbour (user-based), a neighbour and the 

current user (user-user), or a neighbour and the current item (user-item). We shall 

generalise the different strategies proposed in the literature to introduce trust into 

collaborative filtering. Moreover, thanks to the proposed formulation, we will define 

and evaluate new strategies. 
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8.2 A performance prediction framework for 

neighbour scoring 

8.2.1 Unifying neighbour selection and weighting in user-

based Recommender Systems 

From the observation that most of the methods for neighbour selection and weight-

ing are elaborated upon the standard Resnick‟s scheme (Equation (8.1)), we propose 

a unified formulation as follows. Let us suppose, for the sake of generality, that we 

have a neighbour scoring function          that may depend on the target user  , a 

neighbour  , and a target item  . This function outputs a higher value whenever the 

user, neighbour, item, or a combination of them, is more trustworthy (in the case of 

trust models), or is expected to perform better as a neighbour according to the in-

formation available in the system, such as other ratings and external information, like 

a social network. Using this function we generalise Equation (8.1) to: 

 

                                                     

                 

 (8.2) 

where the function        denotes the selection of the set of neighbours, and      

is an aggregation function combining the output of s and the user similarity into a 

single weight value. In this way, we integrate the neighbour scoring function   into 

the Resnick‟s formula in order to: a) select the neighbours to be considered, instead 

of or in addition to the most similar users (via function       ), and b) provide a 

general weighting scheme by introducing an aggregation function      between the 

actual neighbour score and the similarity between the target user and her neighbours. 

Note that it is not required that s is bounded, since a constant   would normalise the 

output rating value. The function   is thus a core component in the generalisation of 

the user-based collaborative filtering techniques. It may embody similarity in itself (in 

such case      may just return its first input argument), but     and      are left to 

simplify the connection with the original similarity-only formulation, and to suit par-

ticular cases where   applies other principles distinct to similarity. 

The aggregation function      can take different definitions, some examples of 

which can be found in the literature. For instance, O‟Donovan and Smyth (2005) 

initially propose to use the arithmetic mean of the neighbour score ( ) and the simi-

larity ( ; henceforth denoted as   
   

), and end up using the harmonic mean (  
   

) 

because of its better robustness to large differences in the inputs. In (Bellogín and 

Castells, 2010), on the other hand, we use the product function (  
   

). Moreover, 

Hwang and Chen (2007) propose to directly use the neighbour score as the weight 
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given to neighbours, that is, they use the projection function   
          . Obvi-

ously, the original Resnick‟s formulation can be expressed as the symmetric projec-

tion function   
          . 

The neighbourhood selection embodied in function        also generalises Res-

nick‟s approach – the latter corresponds to the particular case   
               

       , where the neighbour scoring function is ignored, and only similarity is used. 

The general form admits different instantiations. In (Golbeck and Hendler, 2006) 

only the users with the highest trust values are selected as neighbours. In 

(O‟Donovan and Smyth, 2005), on the other hand, those users whose trust values 

exceed a certain threshold are taken into consideration. This threshold is empirically 

defined as the mean across all the obtained values for each pair of users. The latter 

strategy can be formulated as follows: 

  
                                         

 

           
         

       

 

There are, nonetheless, some considerations to take into account when using 

specific combinations of neighbour weighting and neighbour selection functions. 

First, if   
   

 is used together with   
     

 – only considering the most similar users 

in the neighbourhood –, then less reliable users (with low   
   

) who are very similar 

to the current user would be penalised, and more reliable neighbours but less similar 

to the current user are ignored, since they do not belong to the neighbourhood. Sec-

ond, when using   
   

 together with   
     

, neighbours are weighted by their simi-

larities with the target user. These similarities, however, could be very low, and thus, 

non-similar but reliable neighbours would be penalised. Finally, if   
   

 is used with 

  
     

, the similarity weight will not be considered at any point in the recommenda-

tion process.  

Some of these configurations may deserve further investigation, and are consid-

ered in Section 8.4, along with other combinations not listed here. 

8.2.2 Neighbour selection and weighting as a 

performance prediction problem 

Neighbour scoring and selection can be seen as a task of predicting the effectiveness 

of neighbours as input for collaborative recommendations. In this section we elabo-

rate and adapt the performance prediction framework presented in Chapter 5 to the 

problem of neighbour selection and weighting. 

The same as performance prediction in Information Retrieval, which has been 

used to optimise rank aggregation (Yom-Tov et al., 2005a), in our proposed frame-

work each user‟s neighbour can be considered as a retrieval subsystem (or criterion) 
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whose output is combined to form a final system‟s output (the recommendations) to 

the user.  

For user-based collaborative filtering algorithms, the estimation         of the 

preference of the target user   for a particular item   can be formulated as an aggre-

gation function of the ratings of some other users   : 

 
                                               (8.3) 

where    denotes the selected neighbours for a particular user   according to func-

tion        (see Equation (8.2)). As observed in (Adomavicius and Tuzhilin, 2005), 

different aggregation functions can be defined, but the most typical one is the 

weighted average function presented in the previous section. 

In the previous function the term         can be seen as a retrieval function that 

aggregates the outputs of several utility subfunctions             , each corre-

sponding to a recommendation obtained from a neighbour of the target user. The 

combination of utility values is defined as a linear combination (translated by
 
     ) 

of the neighbours‟ ratings, weighted by their similarity          with the target user. 

Hence, the computation of utility values in user-based filtering is equivalent to a typi-

cal rank aggregation model of Information Retrieval, where the aggregated results 

may be enhanced by predicting the performance of the combined recommendation 

outputs. In fact, the similarity value can be seen as a prediction of how useful a 

neighbour‟s advice is expected to be for the target user, which has proved to be a 

quite effective approach. The question is whether other performance factors beyond 

user similarity can be considered in a way that further enhancements can be drawn, 

as research on user trust awareness has attempted to prove in the last years. 

The Information Retrieval performance prediction view provides a methodo-

logical approach, which we propose to adapt to the neighbour selection problem. 

The approach provides a principled path to drive the formulation, development and 

evaluation of effective neighbour selection and weighting techniques, as we shall see. 

In the proposed view, the selection/weighting problem is expressed as an issue of 

neighbour performance, as an additional factor (besides user similarity) to automati-

cally tune the neighbours‟ contribution to the recommendations, according to the 

expected goodness of their advice. As summarised in Section 5.1, there are three core 

concepts in the performance prediction problem as addressed in the Information 

Retrieval literature: performance predictor, retrieval quality assessment, and predictor 

quality assessment. Since we are dealing with the prediction of which users may per-

form better as neighbours, the above three concepts can respectively be translated 

into neighbour performance predictor, neighbour quality, and neighbour predictor quality. For the 

sake of simplicity, let us assume we can define a performance predictor as a function 

that receives as input a user profile   (in general, it could receive other users or items 

as well), the set of items    rated by that user, and the collection   of ratings and 
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items (or any other user preference and item description information) available in the 

system. Then, following the notation given used in Chapter 5, we define a neighbour 

performance prediction function as: 

 
                 (8.4) 

The function   can be defined in different ways, for instance, by taking into ac-

count the rating distribution of each user, the number of ratings available in the sys-

tem, and the (implicit or explicit) relations made by that user with the rest of the 

community. Essentially, the neighbour performance predictor is intended to estimate 

the true neighbour quality metric, denoted as     , which is typically measured using 

groundtruth information about whether the neighbour‟s influence is positive. The 

application of this perspective is not trivial, and requires, in particular, a definition of 

what the performance of a neighbour means in this context – where no standard 

metric for neighbour performance is yet available in the literature. 

Once the estimated neighbour performance prediction values        are com-

puted for all users, the quality of the prediction can be measured as presented in Sec-

tion 5.4.2, that is, either by measuring the correlation between the estimations and 

the real values      , or by using classification accuracy metrics such as the F-

measure. Since in this case we are interested in providing a ranking of users, this re-

lates more with the traditional query performance task, and not with query difficulty 

(see Section 5.4.1), where the latter metrics are used. In other words, the neighbour 

predictor quality metric is defined as the following correlation: 

 
                                              (8.5) 

Similarly to the situation in Information Retrieval, this correlation provides an 

assessment of the prediction accuracy (Carmel and Yom-Tov, 2010); the higher its 

(absolute) value, the higher the predictive power of  . Moreover, the sign of      

represents whether the two involved variables – neighbour prediction and neighbour 

quality – are directly or inversely correlated. 

Besides validating any proposed predictor by checking the correlation between 

predicted outcomes and objective metrics, we may further test the effectiveness of 

the defined predictors by introducing and testing a dynamic variant of user-based 

collaborative filtering. In this variant, the weights of neighbours are dynamically ad-

justed based on their expected effectiveness, along with the decision of which users 

belong to each neighbourhood, as in the general formulation presented in Equation 

(8.2). We propose to define the neighbour scoring function          based on the 

values computed from each neighbour performance predictors. 

Hence, the basic idea of the framework presented here is to formally treat the 

neighbour selection and weighting in memory-based recommendation as a perform-

ance prediction problem. The performance prediction framework provides a princi-

ple basis to analyse whether the predictors are capturing some valuable, measurable 
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characteristic known to be useful for prediction, independently from their latter use 

in a recommendation strategy. Furthermore, if a neighbour scoring function with 

strong predictive power is introduced into the recommendation process and the per-

formance is not improved, then, new ways of introducing such predictor into the 

rating estimation should be tested (either for selection or weighting), since we have 

some confidence that this function captures interesting user‟s characteristics, valuable 

for recommendation. 

8.3 Neighbour quality metrics and performance 

predictors 

The performance prediction research methodology requires a means to compare the 

predicted performance with the observed performance. This comparison is typically 

conducted in terms of some one-dimensional functional values, where the perform-

ance is assessed by some specific metric and the prediction can be translated to a 

certain numeric value. This value quantifies the expected degree of effectiveness, 

providing, thus, a relative magnitude. 

Whereas in the context of performance prediction in IR, standard metrics of sys-

tem effectiveness in response to a query are used for this purpose, in the case of pre-

dicting the performance of a neighbour for recommendation we would require to use 

metrics that measure how effective a neighbour is. In this section we propose several 

neighbour quality metrics and performance predictors which we shall evaluate in 

Section 8.4. 

8.3.1 Neighbour quality metrics 

The purpose of effectiveness predictors in our framework is to assess how useful 

specific neighbour profiles are as a basis for predicting ratings for the target user. 

Each predictor has to be contrasted to a measure of how “good” the neighbour‟s 

contribution is to the global community of users in the system. In contrast with 

query performance prediction, where a well established array of metrics are used to 

quantify query performance, to the best of our knowledge, in the literature there is 

not an equivalent function for neighbours used in user-based collaborative filtering. 

We therefore need to introduce and propose some sound candidate metrics. 

Ideally, in the proposed framework, a quality metric should take the same argu-

ments as the predictor, and thus, if we have, for instance, a user-item predictor, we 

should also be able to define a quality metric that depends on users and items. In 

general, we shall focus on user-based predictors, but it would be possible to explore 

item-based alternatives. Furthermore, we shall consider metrics taking neighbours as 

single input, independently from which neighbourhood is involved (i.e., independ-



172 Chapter 8. Neighbour selection and weighting in user-based CF 

 

ently from the target user), and which item is recommended. At the end of this sec-

tion, nonetheless, we shall introduce a neighbour quality metric suitable for the user-

user scenario, where both the target user and neighbour are taken into account. 

Now, we propose three different neighbour quality metrics. The first two metrics 

had a different intended use by their authors, but we found they could be useful to 

evaluate how good a user is as a neighbour. The third metric was proposed by us in 

(Bellogín and Castells, 2010), where the problem of neighbour performance was ex-

plicitly addressed.  

Rafter et al. (2009) propose two metrics in order to examine whether the 

neighbours have any influence in the recommendation accuracy. Both metrics are 

based on the comparison between true ratings and a neighbour‟s estimation of the 

ratings, as a way to measure the direction of the neighbour estimation and the aver-

age absolute magnitude of the shift produced by this estimation. Thus, the larger the 

neighbour‟s influence, the better her performance, according to our definition of a 

“good” neighbour. In this context we use those metrics as follows: 

        
 

    
 

 

   
        

                

    
           

 

        
 

    
 

 

   
        

                                             

    
           

 

where   is a binary function whose output is 1 if its arguments are true, and 0 other-

wise. Metric    represents the absolute error deviation of a particular user, and    

is the sign of error deviation. Note that   
        denotes an inverse neighbour-

hood, which represents those users for whom   is a neighbour, and    denotes the 

items rated by user   in the test set. We can observe how each of these metrics 

represents a different method to measure how accurate the user   is as a neighbour. 

In (Bellogín and Castells, 2010) we proposed a metric named neighbour good-

ness, which is defined as the difference in performance of the recommender system 

when including vs. excluding the user (i.e., her ratings) from the dataset. For instance, 

based on the mean average error standard metric, neighbour goodness can be instan-

tiated as: 

         
 

        
                    

       

 

                         

            

 

where          represents the predicted rating computed using only the data in  . 

This metric quantifies how much a user affects (contributes to or detracts from) the 
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total amount of mean average error of the system, since it is computed in the same 

way as that metric, but leaving out the user of interest – in the first term, the user is 

completely omitted; in the second term, the user is only involved as a neighbour. In 

this way we measure how a user contributes to the rest of users, or put informally, 

how better or worse the “world” is in the sense of how well recommendations work 

with and without the user. Hence, if the error increases when the user is removed 

from the dataset, it is considered as a good neighbour. 

Based on the same idea of the previous metric, we propose a user-user quality 

metric that measures how one particular user affects to the error of another user 

when acting as her neighbour: 

                            

We call this metric user-neighbour goodness. It quantifies the difference in 

user  ‟s error when neighbour   is not in the system against the error when such 

neighbour is present, that is, it measures how much each neighbour contributes to 

reduce the error of a particular user. 

8.3.2 Neighbour performance predictors 

Having formulated neighbour selection in memory-based recommendation as a task 

of neighbour effectiveness prediction, and having proposed effectiveness metrics to 

compare against, the core of an approach to this problem is the definition of effec-

tiveness predictors. For this purpose, similarity functions and trust models such as 

those mentioned in Section 8.1 can be directly used, since in trust-aware recommen-

dation, trust metrics aim at measuring how reliable a neighbour is when introduced in 

the recommendation process (O‟Donovan and Smyth, 2005). Interestingly, some of 

them only depend on one user (global trust metrics), and others depend on a user 

and an item or another user (local trust metrics). Furthermore, other authors have 

proposed different indicators for selecting good neighbours, mainly based on the 

overlap between the user and her neighbour, without considering the concept of 

trust. 

We thus distinguish three types of neighbour performance predictors: user pre-

dictors – equivalent to the global trust metrics –, user-item predictors, and user-

user predictors – equivalent to the local trust metrics. Note that, although trust met-

rics could now be interpreted as neighbour performance predictors, the proposed 

performance prediction framework let us to provide an inherent value to these met-

rics (identified as performance predictors), independently from whether they im-

prove a recommender‟s performance when used for selecting or weighting in the 

specific collaborative filtering algorithm. This is due to the fact that it is possible to 

empirically check the quality of the prediction by analysing their correlation with re-

spect to the neighbour performance metric, prior to the integration in any collabora-
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tive filtering method. Thus, each predictor would obtain an explicit score that repre-

sents its predictive power, related to our a priori confidence on whether such predic-

tor is capturing the neighbour‟s reliability or trustworthiness.  

In the following we propose an array of neighbour effectiveness prediction 

methods, by adapting and integrating trust functions from the literature into our 

framework, and we also propose novel prediction functions. 

User Predictors 

User predictors are performance predictors that only depend on the target 

neighbour. When that neighbour is predicted to perform well, her assigned weight in 

the user-based collaborative filtering formulation is high.  

One of the first user trust metrics proposed in the literature is the profile-level 

trust (O‟Donovan and Smyth, 2005), which is defined as the percentage of correct 

recommendations in which a user has participated as a neighbour. If we denote the 

set of recommendations in which a user has been involved as 

                             

then the predictor is defined as follows: 

               
               

           
  

where the definition of correct recommendations depends on a threshold  : 

                                                     

                                         

       being a binary function like before whose output is a value   if the predicate 

  is true, and 0 otherwise. That is, the recommendations considered as correct are 

those in which the user was involved as a neighbour, and her ratings were close (up 

to a distance of  ) to the actual ratings. 

A similar trust metric, called expertise trust, is presented in (Kwon et al., 2009), 

where the concept of „correct recommendation‟ is also used. In that work Kwon and 

colleagues introduce a compensation value for situations in which few raters are 

available. Specifically, the correct recommendation function only outputs a value of 1 

when there are enough raters for a particular item (more than 10 in the paper). Oth-

erwise, an attenuation factor is introduced by dividing the number of raters by 10, in 

the same way as significance weighting is introduced in Pearson‟s correlation in 

(Herlocker et al., 2002). More formally, the predictor is defined as: 
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where      is 1 when item   has more than 10 raters, and    denotes the users who 

rated item  . In the same paper the authors propose another trust metric called 

trustworthiness, which is equivalent to the absolute value of the similarity between 

the target user‟s ratings and the average ratings given by the community (denoted as 

  ). The authors introduce the significance weighting factor   as in (Herlocker et al., 

2002), in a way that      is 1 when user   has more than 50 ratings; otherwise,   is 

computed as the user‟s ratings divided by 50. Once the   factor is computed, the 

predictor is defined as follows: 

                      
                             

                
 

    
            

    

   

Hwang and Chen (2007) present a global trust metric, which we call global trust 

deviation, defined as an average of local (user-to-user) trust deviations. This metric 

makes use of the predicted rating for a user–item pair by using only one user as 

neighbour: 

                                        

where user   is the considered neighbour. The predictor is then computed by averag-

ing the prediction error of co-rated items between each user, and normalising the 

error according to the rating range    (e.g. in a typical 1 to 5 rating scale,     ): 

               
 

       
  

 

       
    

                  

  
 

       

  

      

 

Finally, a performance predictor inspired by the clarity score defined for query 

performance (Cronen-Townsend et al., 2002) was proposed in (Bellogín and Castells, 

2010), considering its adaptation to predict neighbour performance in collaborative 

filtering. In the same way query clarity captures the lack of ambiguity in a query, user 

clarity is expected to capture the lack of ambiguity in a user‟s preferences. Thus, the 

amount of uncertainty involved in a user‟s profile is assumed to be a good predictor 

of her performance; and the larger the following value, the lower the uncertainty and 

the higher the expected performance: 

                                         

      

    
       

 

The probabilistic models defined in that work are based on smoothing estima-

tions and conditional probabilities over users and items. Specifically, a uniform dis-

tribution is assumed for users and items, whereas the user-user probability is defined 

by an expansion through items as follows: 
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Conditional probabilities are linearly smoothed with the user‟s probabilities and 

the maximum likelihood estimators, which finally depend on the rating given by the 

user towards an item; i.e.,                . 

It is interesting to note that this predictor (and the probability model in which is 

grounded) does not correspond with any of the adaptations of the clarity score pro-

posed in Chapter 6, since relations between users are not considered in any of the 

rating-based probability models presented. 

In addition to the integration of the above methods in the role of neighbour ef-

fectiveness predictors in our framework, we propose two novel predictors based on 

well known quantities measured over the probability models of (Bellogín and Castells, 

2010): the entropy and the mutual information. Entropy, as an information-theoretic 

magnitude, measures the uncertainty associated with a probability distribution (Cover 

and Thomas, 1991). Borrowing the definition of user entropy from Chapter 6, we 

hypothesise that the uncertainty in the system‟s knowledge about a user‟s preferences 

may be a relevant signal in the effectiveness of a user as a potential neighbour, which 

could be captured by the entropy of the item distribution as follows: 

                                        

    

 

Note that uncertainty, measured in this way, can be due to the system‟s knowl-

edge about the user‟s tastes, or may come from the user herself (e.g. some users may 

have strong preferences, while others may be more undecided), and both causes may 

similarly affect the neighbour effectiveness. In either case the predictor can be inter-

preted as the lack of ambiguity in a user profile. 

The second information-theoretic magnitude we propose to use over the prob-

ability models presented above is the mutual information. To be precise, the mutual 

information is a quantity computed between two random variables that measure the 

mutual dependence of the variables, or, in other terms, the reduction in uncertainty 

about one variable provided some knowledge about the other (Cover and Thomas, 

1991). Here, we propose to adapt this concept, and compute the mutual informa-

tion between the neighbour and the rest of the community in order to assess the 

uncertainty involved in the neighbour‟s preferences. For this purpose, instead of 

computing the mutual information over all the events in the sample space for both 

variables (users), we fix one of them (for the current neighbour), and move along the 

other dimension: 
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User-Item Predictors 

User-item predictors consist of performance predictors that depend on a user-item 

pair. More specifically, they are defined upon the active neighbour and the target 

item. This type of predictor is more difficult to apply because of its higher vulnerabil-

ity to data sparsity. In a bi-dimensional user-item input space less observations can be 

associated to each input data point, whereby the confidence on the predictor out-

come is lower, as it can be biased to outliers or unusual users or items.  

A local trust metric based on the target user and item is proposed in 

(O‟Donovan and Smyth, 2005). This metric is called item-level trust, and aims to 

discriminate reliable neighbours depending on the current item, since the same user 

may be more trustworthy for predicting ratings for certain items than for others. The 

formulation of this predictor can be seen as a particularisation of   , but constraining 

the recommendation set only to the pairs in which the current item is involved: 

                 
                              

                          
  

User-User Predictors 

The user-user predictors take as inputs two users: the active user and the current 

neighbour. User-user predictors based on local trust metrics have been studied fur-

ther than user-item predictors in the literature, since the former are able to represent 

how much a user can be trusted by another, and let for different interpretations of 

the relation between users. These metrics have been often researched in the scope of 

social networks, and the users‟ explicit links in this context (Ziegler and Lausen, 

2004; Massa and Avesani, 2007a), along with several trust metrics based on ratings, as 

we shall show below. In this way, although social-based metrics could be smoothly 

integrated in our framework, here we focus on a complementary view on trust where 

predictors are defined based on ratings. We leave other type of predictors as future 

work.  

A first simple neighbour reliability criterion one may consider is the amount of 

common experience with the target user, that is, the amount of information upon 

which the two users can be compared. If we define “user experience” as the set of 

items the user has interacted with, we may define a predictor embodying this princi-

ple as: 

                          

We shall refer to this predictor as user overlap. This predictor will serve as a ba-

sis for subsequent predictors, since most of them will depend on the items rated by 

both users. For instance, it has a clear use in assessing the reliability of the inter-user 

similarity assessments, which has been applied in the literature under a more practi-
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cal, ad-hoc manner. Specifically, Herlocker et al. (2002) proposed the introduction of 

a weight on the similarity function, where the latter is devalued when it has been 

based on a small number of co-rated items. We may formulate Herlocker’s signifi-

cance weighting predictor as follows: 

                  
       

  
                            

where    is the minimum number of co-rated items that two users should have in 

common in order to avoid similarity penalisation. A value of       was proved 

empirically to work effectively.  

A variation of the previous scheme was proposed in (McLaughlin and Herlocker, 

2004), to which we shall refer as McLaughlin’s significance weighting: 

                  
                

   
   

This predictor is aimed to be equivalent to the Herlocker‟s significance weighting 

(   ) formulation when       . However, we note that     and     represent 

different concepts, and are not fully equivalent. For instance, as noted in (Ma et al., 

2007),     may return values larger than 1 when            , while    , by defi-

nition, always returns a value in the       interval.  

Alternatively, the following variant can be drawn from (Ma et al., 2007), which is 

just a more compact reformulation of    : 

                  
               

  
   

A more elaborated predictor was proposed in (Weng et al., 2006). The rationale 

behind such predictor is to consider two situations depending whether or not user   

takes into account the recommendation made by neighbour  . In this sense trustwor-

thiness is defined as the reduction in the proportion of incorrect predictions of going 

from the latter situation to the former. The definition of this predictor, denoted as 

user’s trustworthiness, is the following: 

                  
 

                 
 

      
           

           
  

             

 

  

In this formulation     represents the number of allowed rating values in the 

system (e.g. in a 1 to 5 rating scale,      ), the function            represents 

the number of co-rated items on which  ‟s ratings have the value   while  ‟s ratings 

are  , that is,                                  when each rating tuple is repre-

sented as        , given a user  , an item  , and a rating value  . In the same way, 

                        represents all the co-rated items between   and   
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rated with any rating value by user  , and, analogously,                         . 

In this case, the assumed hypothesis is that trust is one‟s expectation of other‟s com-

petence in reducing its uncertainty in predicting new ratings. 

Finally, a user-user predictor can be defined based on the global trust deviation 

predictor defined above (  ). In fact, Hwang and Chen (2007) define trust deviation 

by ignoring the average along users as follows: 

                  
 

       
    

                  

  

 

       

 

This predictor identifies effective neighbours mainly based on how many trustworthy 

(understood as “accurate”) recommendations a user has received from another. 

8.4 Experimental results 

In this section we report experiments in which the proposed neighbour effectiveness 

prediction framework is tested. First, we check the existing correlations between the 

user-based predictors defined in Section 8.3.2 and the neighbour performance met-

rics proposed in Section 8.3.1, as a direct test of their predictive power. For the user-

item predictors we cannot analyse their correlation because we have no neighbour 

performance metric depending on both the target user and an item available.  

Moreover, we test the usefulness of the predictors to enhance the final perform-

ance of memory-based algorithms, by using the predictors‟ values in the selection and 

weighting of neighbours, that is, by taking the predictors as the scoring function in 

Equation (8.2). 

Our experiments were conducted on two versions of the MovieLens dataset, 

namely the 100K and 1M versions, described in Section 3.4.1 and Appendix A.1. For 

the user-based collaborative filtering method, we used Pearson‟s correlation as the 

similarity measure between users, and a varying neighbourhood size ( ), which is a 

parameter with respect to which the results were examined. 

8.4.1 Correlation analysis 

We analyse the correlation between neighbour quality metrics and neighbour per-

formance predictors in terms of the Pearson and Spearman‟s correlation metrics. 

Correlation provides a measure of the predictive power of the neighbour effective-

ness prediction approaches: the higher the (absolute) correlation value, the better the 

predictor estimates the positive neighbour effect on the recommendation accuracy. 

The sign of the correlation coefficient represents whether the two involved variables 

– neighbour quality metric and neighbour performance predictor – are directly or 

inversely correlated. 
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Table 8.1 and Table 8.2 show the correlation values obtained on the MovieLens 

100K dataset for the user-based predictors. We associate a sign to each quality metric 

indicating whether the metric is direct (denoted as „+‟) or inverse (denoted with „-‟), 

according to the expected sign of the correlation with the predictor, i.e., a metric is 

direct if the higher its value, the better the true neighbour performance. We can ob-

serve that the Spearman‟s correlation values are consistent, but slightly higher than 

Pearson‟s, thus evidencing a non-linear relationship between the quality metrics and 

the performance predictors. 

The absolute error deviation (  ) metric presents higher values when the 

neighbour‟s prediction is less accurate, being thus an inverse neighbour metric. The 

other two metrics, sign of error (  ) and neighbour goodness (  ), are, by definition, 

direct neighbour metrics, since the former indicates how many times a recommenda-

tion from the neighbour has been made in the right direction, whereas the latter 

represents the change in error between excluding a particular user in the neighbour-

hood or including her, and thus, the larger this error, the “better” neighbour this 

user. 

 
Absolute error deviation 

   (-) 

Neighbour goodness 

   (+) 

Sign of error 

   (+) 

Clarity -0.21 +0.17 +0.14 

Entropy -0.18 +0.18 +0.12 

Expertise -0.62 +0.03 +0.25 

Global Trust Deviation -0.35 -0.01 +0.08 

Mutual Information -0.20 +0.17 +0.12 

Profile Level Trust +0.62 -0.04* -0.24 

Trustworthiness -0.21 +0.03 +0.20 

Table 8.1. Pearson’s correlation between the proposed neighbour quality metrics and 

neighbour performance predictors in the MovieLens 100K dataset. Next to the metric 

name, an indication about the sign of the metric – direct(+) or inverse(-) – is included. 

Not significant values for a  -value of      are denoted with an asterisk (*). 

 

 
Absolute error deviation 

   (-) 

Neighbour goodness 

   (+) 

Sign of error 

   (+) 

Clarity -0.30 +0.16 +0.21 

Entropy -0.22 +0.17 +0.15 

Expertise -0.65 +0.02 +0.30 

Global trust deviation -0.38 -0.03 +0.11 

Mutual Information -0.25 +0.16 +0.17 

Profile Level Trust +0.65 -0.02 -0.30 

Trustworthiness -0.24 +0.03 +0.25 

Table 8.2. Spearman’s correlation between quality metrics and performance predictors 

in the MovieLens 100K dataset. 
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We can observe in Table 8.1 that, except for some of the predictors that obtain 

very low absolute values (     ), the four quality metrics are consistent with each 

other. This consistency is evidenced by the way the predictors correlate with the dif-

ferent metrics: some of the predictors obtain the correct correlations in every situa-

tion, that is, positive correlation with direct metrics and negative correlation with the 

inverse metric (like the clarity predictor), while other predictors obtain opposite val-

ues for all the metrics, that is, positive correlations with the inverse metric and nega-

tive correlations with direct metrics (such as the profile level trust predictor). 

Also in Table 8.1 and Table 8.2 we see that each metric captures a different no-

tion of neighbour quality because they show different correlation values with respect 

to the predictors. In this way, although consistent correlation results are obtained for 

direct and inverse metrics, each of them is actually detecting a different nuance of 

how a neighbour should behave in order to perform well. 

Table 8.3 and Table 8.4 show the correlation values obtained on the Movie-Lens 

1M dataset. We can observe that the trend in correlation is very similar to the behav-

ior observed on the 100K dataset, and thus, similar conclusions can be drawn from 

it. There are, however, some changes in the absolute values of the correlation scores 

for some combinations of performance predictor and quality metric. For instance, 

 
Absolute error deviation 

   (-) 

Neighbour goodness 

   (+) 

Sign of error 

   (+) 

Clarity -0.14 +0.40 +0.02 

Entropy -0.07 +0.39 -0.08 

Expertise -0.95 -0.06 +0.70 

Global Trust Deviation -0.55 -0.24 +0.36 

Mutual Information -0.17 +0.30 +0.13 

Profile Level Trust +0.83 +0.04 -0.55 

Trustworthiness -0.27 +0.03 +0.36 

Table 8.3. Pearson’s correlation between quality metrics and performance predictors in 

the MovieLens 1M dataset. All the values are significant for a  -value of     . 

 
Absolute error deviation 

   (-) 

Neighbour goodness 

   (+) 

Sign of error 

   (+) 

Clarity -0.16 +0.35 +0.04 

Entropy -0.03 +0.37 -0.10 

Expertise -0.94 -0.09 +0.69 

Global trust deviation -0.54 -0.25 +0.39 

Mutual information -0.16 +0.31 +0.04 

Profile level trust +0.94 +0.09 -0.69 

Trustworthiness -0.25 +0.02 +0.37 

Table 8.4. Spearman’s correlation between quality metrics and predictors in the 

MovieLens 1M dataset. 
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the clarity predictor and the neighbour goodness metric obtain larger values in this 

dataset, while the correlation between entropy and absolute error deviation is smaller. 

It is important to note that the number of points used to compute the correla-

tion values is different in the two datasets; there are less than 1,000 points in 

MovieLens 100K (with 943 users), and more than 6,000 points in MovieLens 1M 

dataset. This difference affects the significance of the correlation results, as already 

described in Section 5.4.2, where we observed how the confidence test for a Pear-

son‟s (and Spearman‟s) correlation depends on the size of the sample, and thus, the 

significance of a correlation value may change for different sample sizes. 

In our experiments, for MovieLens 100K, the correlations are significant for a  -

value of      when       , and in the 1M dataset when       . Hence, in Ta-

ble 8.1, there is only one non-significant correlation value (denoted with an asterisk), 

whereas in Table 8.3, all the results are statistically significant. 

Analysing in more detail the reported results for both datasets, we observe that 

the profile level trust predictor consistently obtains direct correlation values with 

inverse metrics, whereas inverse correlation values are obtained with direct metrics. 

This predictor seems to give higher scores to neighbours with larger deviations in 

their accuracy error, which would result on bad performance prediction because 

these values are not in the same direction than the performance metrics. The exper-

tise and global trust deviation predictor obtain strong inverse correlations with the 

absolute error deviation metric, although their correlations with respect to the 

neighbour goodness metric are negligible, especially for the first predictor, in both 

datasets. At the other end of the spectrum, the clarity, entropy, and mutual informa-

tion predictors obtain strong correlation values with the neighbour goodness, and 

moderate correlations with the rest of metrics, which make these predictors good 

candidates for successful neighbour performance predictors. Finally, the trustworthi-

ness predictor obtains a significant amount of correlation with respect to the absolute 

error deviation and sign of error metrics, although its correlation with respect to the 

neighbour goodness is very low. This predictor thus seems to be useful on estimating 

how accurate the neighbour may be in terms of the error in a user basis, but probably 

not as a global metric. 

Table 8.5 shows the correlations obtained for user-user neighbour predictors and 

the proposed user-neighbour clarity metric. Due to the high dimensionality of the 

vectors involved in this computation, we have considered only those users that have 

at least one item in common. Despite this fact, correlations are almost negligible, 

except for the McLaughlin‟s significance weighting predictor and the Spearman‟s 

coefficient, which evidences a non-linear relation between this predictor and the met-

ric. In the next section we shall show that this function is one of the best performing 

predictors among the evaluated neighbour scoring functions. This result confirms the 

usefulness of the proposed neighbour performance metric since it is able to discrimi-
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nate which neighbour performance predictors are able to capture interesting proper-

ties between the user and her neighbours. 

In summary, we have observed that most of the performance predictors agree 

with respect to the different performance metrics, and in general, the correlations 

computed between neighbour quality metrics and neighbour performance predictors 

are statistically significant. 

8.4.2 Performance analysis 

The results reported in the previous section show that some of the studied predictors 

have the ability to capture neighbour performance, and because of that we hypothe-

sise that they could be used to improve the accuracy of a recommendation model. 

This hypothesis, nonetheless, has to be checked since the metric against which we 

measure the neighbour goodness is not the same as the final recommendation per-

formance metric we aim to optimise. With the experiments we report next we aim to 

confirm the usefulness of the proposed predictors, the validity of the proposed met-

rics as useful references to assess the power of the predictive methods, and the use-

fulness of the overall framework as a unified approach to enhance neighbourhood-

based collaborative filtering.  

In order to achieve this we test the integration of the neighbour predictors into a 

neighbour selection and weighting scheme for user-based collaborative filtering, as 

described in Section 8.2.1. Besides testing the effectiveness of the predictors, this 

experiment provides for observing to what extent the correlations obtained in the 

previous section correspond with improvements in the final performance of those 

predictors. 

We provide recommendation accuracy and precision results on the MovieLens 

1M dataset. Those obtained on the MovieLens 100K dataset are not reported here 

since they had similar trends. Figure 8.1 and Figure 8.2 show the Root Mean Square 

Error (RMSE) of the Resnick‟s collaborative filtering adaptation proposed in Equa-

tion (8.2) when used for different neighbour selection and weighting approaches. The 

curves at the top of the figures represent the values obtained when neighbour per-

 
Movielens 100K Movielens 1M 

Pearson Spearman Pearson Spearman 

Herlocker 0.02 0.03 0.01 0.02 

McLaughlin 0.01 0.12 0.01 0.11 

Trust Deviation 0.01 0.01 0.01 0.01 

User Overlap 0.02 0.03 0.02 0.02 

User’s Trustworthiness -0.02 -0.02 -0.01 -0.01 

Table 8.5. Correlation between the user-neighbour goodness and user-user predictors 

in the two datasets evaluated. 



184 Chapter 8. Neighbour selection and weighting in user-based CF 

 

formance predictors are used for neighbour weighting, that is, when the standard 

neighbour selection strategy is used (         
     

 in Equation (8.2)). Note that 

since the lines represent errors, the lower these values, the better the performance. 

Besides, Figure 8.3 presents the results found with the precision at 10 (P@10) rank-

ing metric of a subset of the proposed methods, where in this case the higher the 

values, the better the performance. 

A different aggregation function is used in each approach, depending on whether 

the harmonic mean between the predictor score and the similarity value (function 

       
   

, on the right), or the projection function (       
   

, on the left) 

are used, in the latter case in order to ignore the similarity. The curves at the bottom 

 

Figure 8.1. Performance comparison for user-based predictors and different neighbourhood 

sizes. 
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of the figures show the neighbour selection approach (         
     

 in Equation 

(8.2)) along with the same neighbour weighting functions described above (i.e.,   
   

 

on the right and   
   

 on the left). The rest of the aggregation functions, such as 

average (  
   

) and product (  
   

), were also evaluated for neighbour selection and 

weighting, but provided results equivalent to those of the harmonic mean. For this 

reason, they have been omitted in the figures to avoid cluttering them. We believe 

this equivalence may be due to the normalisation factor included in the collaborative 

filtering formulation, since it would cancel out the weights obtained by the harmonic, 

average, and product functions in the same way. 

 

Figure 8.2. Performance comparison using user-item and user-user predictors for different 

neighbourhood sizes. 
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Figure 8.1 shows the accuracy results when only user-based neighbour predictors 

are evaluated. We observe that, independently from the neighbourhood size, using 

performance predictors as similarity scores does not lead to large differences with 

respect to the baseline. These results are compatible with those presented in (Weng 

et al., 2006), where the improvement in RMSE is not very high (MAE < 0.05 in 

that work). For the sake of clarity, in Table 8.6 and Table 8.7 we show the error val-

ues for a horizontal cut of the left curves; specifically, when the neighbourhood size 

is 50. We can observe that some predictors do improve Resnick‟s accuracy. Regard-

ing the use of the harmonic mean as aggregation function (curves on the right), simi-

lar results are obtained except for very large neighbourhood sizes, for which some of 

the performance predictors produce worse results than the baseline, probably due to 

the amount of noise created by considering too many neighbours. 

The curves at the bottom of the figures represent the accuracy results for 

neighbour selection strategies. In this case some of the predictors lead to worse per-

formance than the baseline, particularly the profile level trust (  ). This situation is 

consistent with the correlations observed in the previous section, since this predictor 

obtained inverse correlations with the different metrics, i.e., direct correlation values 

 RMSE   RMSE 

Resnick 1.174  Resnick 1.174 

Clarity 1.181  Herlocker 1.175 

Entropy 1.175  Item-level Trust 1.264 

Expertise 1.171  McLaughlin 1.174 

Global Trust Deviation 1.173  Trust Deviation 1.173 

Mutual Information 1.180  User Overlap 1.175 

Profile Level Trust 1.177  User’s Trustworthiness 1.175 

Trustworthiness 1.175    

Table 8.6. Detail of the accuracy of baseline vs. recommendation using neighbour 

weighting; here, performance predictors are used as similarity scores (50 neighbours). 

 

 RMSE   RMSE 

Resnick 1.174  Resnick 1.174 

Clarity 1.172  Herlocker 1.156 

Entropy 1.189  Item-level Trust 1.843 

Expertise 1.139  McLaughlin 0.581 

Global Trust Deviation 1.158  Trust Deviation 1.168 

Mutual Information 1.171  User Overlap 1.146 

Profile Level Trust 1.310  User’s Trustworthiness 1.174 

Trustworthiness 1.162    

Table 8.7. Detail of the accuracy of baseline vs recommendation using neighbour 

selection; here, performance predictors are used for filtering (50 neighbours). 
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with inverse metrics, and inverse values with direct metrics. Moreover, as predicted 

by the correlation analysis, trustworthiness (  ), mutual information (  ), and clarity 

(  ) result in some of the best performing recommenders (with strong correlations), 

as shown in the figures and in Table 8.7, along with expertise (  ) and global trust 

deviation (  ), which obtained more moderated correlation values. 

In Figure 8.2 we can see how user-item and user-user neighbour predictors affect 

the performance of collaborative filtering recommenders. The curves in the top show 

that most of the predictors obtain a similar performance to that of the baseline, ex-

cept for the item-level trust (  ), the performance of which is much worse than Res-

nick‟s. Table 8.6 shows the specific error values for these recommenders. It is inter-

esting to note that the performance of this predictor is drastically improved when 

using the harmonic mean as the aggregation function (shown on the right side of the 

figure). Similarly to user-based neighbour predictors (Figure 8.1), some of the user-

item and user-user predictors decrease their accuracy with large neighbourhoods; in 

this case, user‟s trustworthiness (   ) and McLaughlin‟s significance weighting (   ) 

are the more representative examples. 

 
 

 

Figure 8.3. Performance comparison using ranking-based metrics for both user and user-

user neighbour predictors using the AR and 1R evaluation methodologies. 
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A different conclusion results when neighbour selection is analysed (curves at 

the bottom). Two of the predictors are characterised by a much better (McLaughlin‟s 

significance weighting,    ) or worse (item-level trust,   ) final performance, inde-

pendently from the weighting aggregation function. Table 8.7 shows the specific er-

ror values obtained for each of these predictors. It is interesting how the McLaugh-

lin‟s predictor, despite its inability to boost good neighbours (see top figures), seems 

to be very useful for neighbour selection. This effect, nonetheless, is attenuated when 

the neighbourhood increases, since in that situation, selection methods have to deal 

with too many users in each neighbourhood. We believe the reason why this predic-

tor is very good for neighbour selection is because it gives higher scores to those 

neighbours that have more items in common with the target user, and thus the con-

fidence in the computation of the similarity values between the neighbour and the 

target user is higher. It is worth noting that, to the best of our knowledge, this func-

tion has never been used for neighbour selection, since its original motivation was to 

penalise the similarity value whenever it has been based on a small number of co-

rated items. However, by plugging this function into our framework, and measuring 

its predictive power for user-neighbour performance, a novel application naturally 

emerges and provides very good results. 

Finally, in Figure 8.3 we can observe that a similar trend is found with P@10 for 

both user-based predictors (top curves), and user-item and user-user predictors (bot-

tom curves). In the figure we only present the results of the neighbour selection and 

weighting approaches for less than 200 neighbours, since the results of the rest of the 

approaches and neighbourhoods are very similar. It is worth noting that the two 

methodologies evaluated – AR and 1R – agree on the order of the best and worst 

performing dynamic approaches, although as already observed in the previous chap-

ter, the absolute performance values obtained with each methodology may be very 

different – e.g. the maximum P@10 value with 1R is 0.1, which is reached by several 

recommendation methods with the AR methodology. More interestingly, these re-

sults show consistency between the performance of some dynamic approaches using 

error- and ranking-based metrics, since the best and worst predictors according to 

RMSE and P@10 are the same; McLaughlin‟s significance weighting and item-level 

trust, respectively. Moreover, the entropy and clarity user-based predictors show 

worse performance in small neighbourhoods, but outperform the baseline signifi-

cantly in larger neighbourhoods, something different to what we observed in the 

previous experiment with error-based metrics. 

In summary, we have been able to validate both the proposed user-user 

neighbour performance metrics, and the different evaluated user-user neighbour per-

formance predictors. We have obtained positive results when this type of predictors 

has been introduced and compared against the baseline in the different aggregation 

strategies and configurations, and these results are consistent with the correlations 



8.4 Experimental results 189 

obtained between the predictors and the performance metrics. In particular, 

McLaughlin‟s significance weighting obtains an improvement up to 55% in both 

accuracy (i.e., error decrease) and precision (i.e., precision improvement) when this 

predictor is used to select the neighbours which will further contribute to the rating 

prediction. Besides, the (Spearman‟s) correlation for this predictor is positive and 

strong, in contrast to the values obtained for the rest of user-user predictors, which 

did not improve the accuracy of the baseline. In this context, a possible drawback of 

the conducted analysis is that we have not been able to define neighbour perform-

ance metrics based on user-item pairs, and thus the user-item neighbour performance 

predictors are out of the scope of the developed correlation analysis. Nevertheless, 

the obtained results showed that the only user-item neighbour performance predictor 

defined here – the item-level trust – is not able to outperform the baseline recom-

mender. We believe this fact, which is in contradiction with what was reported in 

(O‟Donovan and Smyth, 2005), may be caused by the different variables taking place 

in our evaluation, such as the dataset (MovieLens 1M instead of MovieLens 100K), 

the neighbourhood size (not specified in the original paper), and the several aggrega-

tion functions and combinations used across our experiments. 

8.4.3 Discussion 

The reported experiment results provide empiric evidence of the usefulness of the 

proposed framework, and the specific proposed predictors, as an effective approach 

to enhance the accuracy of memory-based collaborative filtering. As described in the 

preceding sections, the methodology comprises two steps, one in which the predic-

tive power of neighbour predictors is assessed, and one in which the predictors are 

introduced in the collaborative filtering scheme to enhance the effectiveness of the 

latter. Our experiments confirm a strong correlation for some of the predictors – 

both user predictors and user-user predictors –, and this has been found to corre-

spond with final accuracy enhancements in the recommendation strategy: the predic-

tors that obtain strong direct correlations with the performance metrics are the best 

performing dynamic strategies; the profile level trust predictor, which obtains inverse 

correlation values with respect to the neighbour performance metrics, is the worst 

performing dynamic strategy.  

In light of these results, it could be further investigated whether the actual corre-

lation values between neighbour performance predictors and neighbour performance 

metrics could be used to infer how each predictor should be incorporated into a 

memory-based collaborative filtering method as a neighbour scoring function, since 

there is no obvious link between the ranking of the best performing scoring func-

tions and the strength of their corresponding correlations. As a starting point, only 

the sign of the correlation could be considered, using either the raw neighbour pre-

dictor score (for positive correlations) or its inverse (for negative values). Then, this 
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rationale could be further elaborated and evaluated in order to check whether the 

performance improvements are consistent. 

Research on finding functions with strong correlation power with respect to 

neighbour performance metrics could be an interesting area by itself, since it could 

have different final applications. We have experimented here with variations in 

neighbour selection and weighting for user-based collaborative filtering, but those 

predictors (functions) could also be used, for instance, for active learning (Elahi, 

2011), or for providing more meaningful explanations (Marx et al., 2010), depending 

or based on the predicted performance of a particular user‟s neighbours. 

8.5 Conclusions 

We have shown in this chapter that performance prediction does not only serve to 

aggregate entire recommender systems, but also to aggregate subcomponents of re-

commender algorithms – in this case, neighbour related terms in collaborative filter-

ing. We propose a theoretical framework for neighbour selection and weighting in 

user-based recommender systems, which is based on a performance prediction ap-

proach drawn from the query performance methodology of the Information Retrieval 

field. By viewing the neighbourhood-based collaborative filtering rating prediction 

task as a case of dynamic output aggregation, our approach places user-based col-

laborative filtering in a more general frame, linking to the principles underlying the 

formation of ensemble recommenders, and rank aggregation in Information Re-

trieval. By doing so, it is possible to draw concepts and techniques from these areas, 

and vice versa. Our study thus provides a comparison of different state-of-the-art 

rating-based trust metrics and other neighbour scoring techniques, interpreted as 

neighbour performance predictors, and evaluated under this new angle. The frame-

work lets an objective analysis of the predictive power of several neighbour scoring 

functions, integrating different notions of neighbour performance into a unified view. 

Thus, the proposed methodology discriminates which neighbour scoring functions are 

more effective in predicting the goodness of a neighbour, and thus identifies which 

weighting functions are more effective in a user-based collaborative filtering algo-

rithm. 

Drawing from different state-of-the-art neighbour scoring functions – cast as 

user, user-user, and user-item neighbour performance predictors –, we have reported 

several experiments in order to, first, check the predictive power of these functions, 

and second, validate them by comparing the final performance of neighbour-scoring 

powered memory-based strategies with that of the standard collaborative filtering 

algorithm. We also evaluate different ways to introduce these functions in the rating 

prediction formulation, namely for neighbour weighting, neighbour selection, and 

combinations thereof. In this context, methods where neighbour scoring functions 
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were integrated outperform the baseline for different values of neighbourhood size 

and predictor type. 

We have also proposed several neighbour performance metrics that capture dif-

ferent notions of neighbour quality. The evaluated performance predictors show 

consistent correlations with respect to these metrics, and some of them present par-

ticularly strong correlations. Interestingly, a correspondence is confirmed between 

the correlation analysis and the final performance results, in the sense that the corre-

lation values obtained between neighbour performance predictors and neighbour 

performance metrics anticipate which predictors will perform better when intro-

duced in a memory-based collaborative filtering algorithm. 

This research opens up the possibility to several research lines for the integration 

of other types of predictors and trust metrics into our framework. For instance, per-

formance predictors defined upon social data, such as those defined in Chapter 6 

based on user‟s trust network, could be smoothly integrated into our framework and 

analysed in the future. Furthermore, alternative neighbour performance metrics may 

be defined to check the predictive power of user-user and user-item predictors. 

These metrics may help better understand which characteristics of the neighbour 

performance such predictors are capturing, although based on a smaller amount of 

information since in rating-based systems users only rate items once. In particular, 

our framework would allow for different interpretations of the user‟s performance, 

by modelling different neighbour performance metrics, which may be oriented to 

accuracy (using error metrics as in this chapter), ranking precision, or even alternative 

metrics such as diversity, coverage and serendipity (Shani and Gunawardana, 2011). 

Additionally, other predictors based on item information could be defined similar to 

those proposed in (Weng et al., 2006; Ma et al., 2007), and easily incorporated into 

our framework using item-based algorithms instead of user-based. 

 

 





 

 

Part V 

V Conclusions

Not everything that can be counted counts, 

and not everything that counts can be counted. 

Albert Einstein 





 

 

Chapter 9 

9 Conclusions and future work 

In this thesis we have investigated how to measure and predict the performance of 

recommender systems. We have analysed and proposed an array of methods based on 

the adaptation of performance predictors from Information Retrieval – mainly the 

query clarity predictor, which captures the ambiguity of a query with respect to a given 

document collection. We have defined several language models according to various 

probability spaces to capture different aspects of the users and items involved in rec-

ommendation tasks. In this context, we have proposed and evaluated novel ap-

proaches drawing from Information Theory and Social Graph Theory for different 

recommender input spaces, using information-theoretic properties of the user‟s prefer-

ences and graph metrics such as PageRank over the user‟s social network. 

Moreover, since we aimed to predict the performance of a particular recom-

mender system, we required a clear recommender evaluation methodology against 

which performance predictions can be constrasted. Hence, in this thesis we ad-

dressed the evaluation methodology as part of the problem, where we have identified 

statistical biases in the recommendation evaluation – namely the sparsity and popu-

larity biases – which may distort the performance assessments, and therefore may 

confound the apparent power of performance prediction methods. We have analysed 

in depth the effect of such biases, and have proposed two experimental designs that 

are able to neutralise the popularity bias: a percentile-based approach and a uniform-

test approach. The systematic analysis of the evaluation methodologies and the new 

proposed variants have enabled a more complete and precise assessment of the ef-

fectiveness of our performance prediction methods. 

On the other hand, we have exploited the proposed performance prediction 

methods in two applications where they are used to dynamically weight different 

components of a recommender system, namely the dynamic adjustment of weighted 

hybrid recommendations, and the dynamic weighting of neighbours‟ preferences in 

user-based collaborative filtering. Through a series of empirical experiments on sev-

eral datasets and experimental designs, we have found a correspondence between the 

predictive power of our performance predictors and performance enhancements in 

the two tested applications. 

In this chapter we present the main conclusions obtained in our research work. 

In Section 9.1 we provide a summary and a discussion of our contributions, and in 

Section 9.2 we provide research directions that could be addressed in future work.  
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9.1 Summary and discussion of contributions 

In the next subsections we summarise and discuss the main contributions of this 

thesis, addressing the research goals stated in Chapter 1. These contributions are 

organised according to the three main objectives addressed. First, we analysed how 

to properly evaluate recommender systems in order to obtain unbiased measure-

ments of a recommender system‟s performance. Second, we proposed performance 

predictors that aim to estimate the performance of a recommendation method. And 

third, we used our performance predictors to dynamically combine components of a 

recommender system. 

9.1.1 Analysis of the definition and evaluation of 

performance in recommender systems 

We have analysed different experimental designs existing in the literature about re-

commender systems, oriented in particular to ranking-based evaluation, and have 

shown that assumptions and conditions underlying the Cranfield paradigm are 

not granted in usual recommendation settings. Specifically, we have detected 

statistical confounders (biases) that arise in applying that paradigm to the evaluation 

of recommender systems. We have shown that the specific value of the evaluation 

metric has a use for comparative purposes, but has no particular absolute meaning by 

itself. We have shown that precision decreases linearly with the sparsity of relevant 

items (sparsity bias) in the AR evaluation methodology, whereas it does not suffer 

from such bias in the 1R approach. 

We have also observed that a non-personalised recommender based on item 

popularity obtains high performance values, and have shown and analysed in detail 

how this is due to a popularity bias in the experimental methodology. To address 

these issues, we have proposed novel experimental approaches that effectively 

neutralise the popularity bias.  

9.1.2 Definitions and adaptations of performance 

predictors for recommender systems 

We have defined and elaborated performance predictors in the context of rec-

ommendation, usually taking the user as the object of the prediction, but also con-

sidering items as an alternative prediction input. Specifically, we have adapted the 

query performance predictor known as query clarity by taking different assumptions 

and formulations into several variations of user clarity predictors. We have also used 

information theoretical related concepts such as entropy, graph metrics like central-

ity, PageRank, and HITS, and other domain-specific, heuristic approaches. We have 
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defined these predictors upon three input spaces of user preferences: ratings, logs, 

and social networks. On ratings and logs we have defined several language models 

and vocabulary spaces in such a way that our adaptations of clarity would capture 

different aspects of the user in a unified formulation for both input spaces. Within 

the same framework, we have introduced the temporal dimension on log-based pref-

erence data, drawing and elaborating time-based performance predictors proposed in 

prior work in the IR field for ad-hoc search. 

Additionally, we have defined item-based predictors when rating-based prefer-

ences are used, which aim to estimate the performance of the items under considera-

tion (to be more precise, the performance of a recommender system in suggesting 

those items). Here, the main problem is how to define the true performance metric 

that the predictor is aimed to estimate, since the items are not the main input of the 

recommendation process. For this reason, we have developed novel methodologies 

where the performance of an item can be measured, also considering possible biases 

arising from heavy raters that may distort the results just for statistical reasons. 

We have assessed the predictive accuracy of our methods by computing the cor-

relation between estimated and true performance, following standard practice in the 

IR performance prediction literature. In doing so, we used the unbiased methodolo-

gies analysed throughout the thesis to compare how the predictors behave when 

the sparsity and popularity biases have been neutralised. We have found strong 

correlation values confirming that our approaches result in a significant predictive 

power. 

9.1.3 Dynamic weighting in recommender ensembles 

Prevalent in the Recommender Systems literature we find combination of recom-

menders into the so-called recommender ensembles, which are a special type of hy-

brid recommendation methods where several recommenders are combined, and 

which are currently very common in the field as represented by current competitions 

(Bennett and Lanning, 2007; Dror et al., 2012). Collaborative Filtering, one of the 

major techniques used among the array of available recommendation strategies, can 

also be seen as a combination of several utility subfunctions, each corresponding to 

one neighbour (in user-based CF). In the same way performance prediction in In-

formation Retrieval has been used to optimise rank aggregation, we have investigated 

the use of recommendation performance predictors to dynamically aggregate the 

output of recommenders and neighbours. 

We have defined a dynamic hybrid framework where recommender ensembles 

can benefit from dynamic weights according to performance predictors with which 

strong correlations have been found. Our results indicate that high correlation with 

performance tends to correspond with enhancements in dynamic hybrid recom-

menders. Additionally, dynamic ensembles of recommenders usually outperform 
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baseline static ensembles for different recommender combinations and the three 

types of performance predictors investigated. 

On the other hand, we have also proposed a framework for neighbour selec-

tion and weighting in user-based recommender systems. We have defined 

neighbour performance predictors and metrics by adapting and integrating some of 

the methods from the trust-aware recommendation literature. Our framework unifies 

several notions of neighbour performance under the same view, and provides an ob-

jective analysis of the predictive power of different neighbour scoring functions. Once 

the predictive power of these neighbour predictors was confirmed, we used them to 

weight the information coming from each neighbour in a dynamic fashion, by means 

of different strategies that combine similarity values and neighbours‟ weights. Our 

experiments confirm a correspondence between the correlation analysis and the final 

performance results, in the sense that the correlation values obtained between 

neighbour performance predictors and neighbour performance metrics anticipate 

which predictors will perform better when introduced into the user-based collabora-

tive filtering algorithm. 

9.2 Future work 

Performance prediction in recommendation is an interesting research topic also from 

a business perspective, since one could decide when to deliver certain item recom-

mendations to a user, avoiding lowering the user‟s confidence on the relevance of the 

recommendations. In this sense, performance predictions of potential recommenda-

tions may give control to the service provider; a control that could be used in various 

ways, such as recommendation combination methods more general than those ad-

dressed in this thesis. Regardless of the plausible applications for industry, and be-

yond the achievements presented throughout the thesis, we envision the following 

potential future research lines. 

The evaluation of recommender systems still is an object of active research in the 

field, where several questions need more attention, such as the gap between offline 

and online experiments, and the missing not at random assumption. Nonetheless, in 

this thesis we have focused our research on aspects related to the prediction of per-

formance, which requires a deeper understanding of the evaluation methodologies 

used. In this way, we could extend our analysis of evaluation methodologies to 

other ranking metrics such as those based on two rankings (NDPM, and Spear-

man‟s and Kendall‟s correlations) and those adapted from Machine Learning (e.g. 

AUC). In this way, we may find that one of these metrics is not influenced by any of 

the confounders described in Chapter 4, or that none of the design alternatives pro-

posed are able to neutralise these effects. As an example of the interest of this topic, 

recently in (Pradel et al., 2012) the authors analysed the popularity effects over the 
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AUC metric and found that considering missing data as a form of negative feedback 

during training may improve performance, although it may also favour popularity-

based recommenders over personalised recommendation methods. 

Additionally, it would be beneficial for our research to be able to validate the 

usefulness of the unbiased measurement of performance with online evaluations. 

This would be valuable for a comparative assessment of the offline observations 

along with a deeper understanding of the extent to which popularity may be or not a 

noisy signal. Such a user study would help us determine the real benefits (if any) of 

receiving popular recommendations, since, for instance, by definition these sugges-

tions are not novel, and probably neither serendipitous nor diverse. 

In Chapter 6 we have proposed several performance predictors for recommen-

dation based on the same principles as those denoted in IR as pre-retrieval predic-

tors, like the clarity score, where the output of the retrieval engine (or the recom-

mender system in our case) is not used by the predictor. Based on our results, the 

research possibilities to investigate more performance predictors for recommenda-

tion are abundant. In this line, several authors have exploited the combination of 

predictors to obtain higher correlation values and stronger predictive power, 

such as (Hauff et al., 2009) and (Jones and Diaz, 2007), where penalised regression 

and linear regression followed by neural network learning were used respectively. In 

those works the combination of predictors from different nature improved the corre-

lation against the target evaluation metric – i.e., average precision. Thus, we envision 

the combination of predictors as a worthwhile direction also for recommendation, 

especially since we have defined predictors based on different inputs that are ex-

pected to have low redundancy between them and, when possible, the combination 

of such predictors may produce higher correlations for different types of inputs. Ex-

amples of these combinations may be the mixture of social and temporal dimensions, 

item-based temporal predictors, and other contextual dimensions not addressed in 

this thesis. 

Moreover, a future investigation could analyse and adapt to recommender 

systems post-retrieval performance predictors defined in the IR literature, such as 

those based on the analysis of the score distribution from the recommended items to 

each user. This may provide predictors with stronger correlations and, thus, with 

more predictive power of the recommenders‟ performance, as it occurrs in IR where 

post-retrieval predictors usually obtain higher correlation values than pre-retrieval 

predictors. The main limitation of this type of predictors is that they cannot be used 

directly to adapt the output of the recommender, since the complete output – i.e., the 

ranking – is typically required for the computation of the predictor values. This 

would require thinking of different applications where this type of predictors could 

be applied to recommendation 
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A particular direction worth considering, and also related to Chapter 6, would be 

the use of alternative evaluation approaches beyond correlation metrics, such as 

those based on clustering the true and estimated performance values (see Section 

5.4.2). In our work we have focused on the use of correlation metrics, mainly Pear-

son‟s correlation. These metrics have well-known limitations, such as their sensitivity 

to outliers, and the small (not significative) differences in correlation when a small 

number of points is used. For this reason, other approaches for assessing the predic-

tive power of the predictors have been proposed. We have to note, however, that the 

use of a particular evaluation technique should be focused on their application to 

specific contexts (Pérez-Iglesias and Araujo, 2010); specifically, this requires defining 

new applications for performance predictors that match the evaluation metric, which 

we also envision as a potential future work. 

Besides, in the same chapter we developed an evaluation methodology to assess 

the true performance values of the items, in order to evaluate the proposed item pre-

dictors. This methodology should be further validated in order to obtain a fair 

measure of item performance, which at this moment is still an open problem. In 

that way we would be able to define additional item predictors for other input spaces 

apart from ratings, and improve the predictiveness of the current item performance 

predictors. 

In Chapter 7 we presented experiments regarding the dynamic combination of 

recommenders in an ensemble. Those experiments were limited to only one per-

formance predictor for a pair of recommenders. We plan to extend these experi-

ments with ensembles where two predictors are considered in order to investi-

gate which conditions should be fulfilled by each pair of predictors in order to im-

prove the performance of the ensemble. A related research direction worth of con-

sideration would be the analysis of the sensitivity of the correlation values for which 

good performance results are obtained in the dynamic hybrid methods. More specifi-

cally, we may consider whether it is better to have an overall strong correlation value 

(in average) or a not very strong average correlation but better estimates for some 

particular users, where these users would play a significant role in the system such as 

the power users defined in (Lathia et al., 2008). A study like the one presented in 

(Hauff et al., 2010) could then be conducted where simulations of predictors with 

different correlations are evaluated and their effect on the final performance of the 

ensembles is compared against each other. 

Furthermore, another limitation of the experiments presented in Chapter 7 was 

that the size of ensembles was always two. We aim to consider ensembles of N re-

commenders and, eventually as mentioned above, using one performance predictor 

for each recommender. This is a natural but non-trivial step towards a generalisation 

of the proposed framework to larger ensemble recommenders. Alternatively, Ma-

chine Learning techniques could be used to learn the best weights to use in the en-
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semble in a user and item basis. In this case, a compromise between the computa-

tional costs of each technique (machine learning against performance predictors), 

their predictive power and the tendency to overfitting should be investigated. 

Finally, in Chapter 8 we investigated the dynamic neighbour weighting problem 

using neighbour performance predictors oriented to error-based metrics. The future 

work related to this chapter could focus on the adaptation of the neighbour per-

formance metrics used in our approach to ranking-based metrics, such as pre-

cision and recall. As we have already discussed, error metrics are not the best way to 

measure performance, although they can be considered appropriate in this context 

since we want to measure the improvement in accuracy of our approaches, along 

with facilitating comparisons with the state of the art in trust-aware recommendation, 

where these metrics are prevalent. Therefore, the use of ranking metrics would be a 

valuable contribution to the field by itself. Furthermore, once a neighbour perform-

ance metric based on a ranking metric is provided, we would be able to measure the 

correlation of the neighbour predictors described in that chapter with such metric, 

and analyse in detail the predictive power of predictors for ranking metrics. Ideally, 

we would be able to obtain a predictor with enough predictive power using both 

types of neighbour performance metrics (based on error and ranking), although this 

is not easy to grant in general, since each metric is defined to optimise different pa-

rameters and concepts. 
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VI Appendices

An algorithm must be seen to be believed. 

Donald Knuth 





 

 

 

Appendix A 

A Materials and methods 

In this thesis we have reported results obtained in experiments conducted with a 

variety of input data sources and recommendation algorithms. In this appendix we 

provide additional details, not reported in previous chapters, about such datasets and 

recommenders. Hence, in Section A.1 we present statistics about the datasets, and in 

Section A.2 we describe the specific configuration setting of the recommenders. 

Next, in Section A.3 we detail the followed evaluation methodologies. Finally, in Sec-

tions A.4 and A.5 we present further results regarding prediction correlations and 

performance of dynamic recommender ensembles by means of metrics such as 

MAP@10 and nDCG@50. Despite the fact the thesis is mainly focused on ranking 

metrics, for the sake of brevity and clarity, in Chapters 6 and 7 we only reported ex-

perimental results based on the P@10 metric. 
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A.1 Datasets 

In Section 3.4 we presented the three datasets used in this thesis, namely MovieLens, 

Last.fm, and CAMRa datasets. We now describe the specific partitions in which we 

splitted those datasets for experimentation. Specifically, we explain how the data 

splits were generated, and provide some statistics of the splits, such as their number 

of users and items, and their density, measured as the percentage of cells in the rat-

ings matrix with known values, i.e., #ratings / (#users  #items)  100. 

A.1.1 MovieLens dataset 

In addition to the well-known Netflix dataset, the MovieLens 100K and MovieLens 

1M datasets – extracted from the MovieLens movie recommendation system by the 

GroupLens research group at University of Minnesota, USA – have been the most 

widely used datasets in the Recommender Systems field. The former has 943 users, 

1,682 items, and 100,000 ratings, whereas the latter has 6,040 users, 3,900 items, and 

1 million ratings. In this thesis, when we do not explicitly indicate which of the two 

datasets was used, we refer to the MovieLens 1M dataset. 

In the experiments we always performed a 5-fold cross validation strategy to 

generate 5 random 80-20% disjoint splits of rating sets. As rating sets, in the 

MovieLens 100K dataset we used the partition provided in its public distribution, 

and in the MovieLens 1M dataset we used 5 splits with 200,000 ratings, each of 

them randomly selected. 

Property Overall Average 
Average  

in training 

Average  

in test 

No. users 943 
854.60 

(± 165.44) 
943 

(± 0.00) 
766.20 

(± 205.06) 

No. items 1,682 
1,531.20 

(± 127.18) 

1651.60 

(± 4.77) 

1410.80 

(± 11.52) 

No. ratings 100,000 
50,000 

(± 31,622.78) 

80,000 

(± 0.00) 

20,000 

(± 0.00) 

Density 6.30% 
3.56%  

(± 1.72) 

5.14% 

(± 0.01) 

1.99% 

(± 0.67) 

Avg. no. rated 

items per user 
106.04 

56.46 

(± 30.56) 

84.84 

(± 0.00) 

28.09 

(± 9.43) 

Max. no. rated 

items per user 
737 

450.80 

(± 213.68) 

650.20 

(± 35.37) 

251.40 

(± 45.59) 

Min. no. rated 

items per user 
20 

3.70 

(± 3.16) 

6.40 

(± 2.07) 

1 

(± 0.00) 

Max. no. users 

rating an item 
583 

293.30  

(± 182.82) 

466.40 

(± 14.06) 

120.20 

(± 9.71) 

Min. no. users 

rating an item 
1 

1 

(± 0.00) 

1 

(± 0.00) 

1 

(± 0.00) 

Table A.1. Summary of statistics of the MovieLens 100K dataset. 
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Table A.1 and Table A.2 show some statistics about the MovieLens datasets. It is 

interesting to note that the overall sparsity in both datasets is similar (between 4% and 

6%), but the number of users vs. items is quite different: in MovieLens 100K there are 

more items than users, whereas this situation in MovieLens 1M is the opposite. 

Finally, in those experiments where we evaluated content-based recommenders, 

we used extended versions of the MovieLens dataset with information extracted 

from the Internet Movie Database9, such as the movies‟ directors, actors, and genres. 

Details about how this information was gathered and merged with the MovieLens 

user profiles can be found in (Cantador, 2008). 

A.1.2 Last.fm dataset 

Among the two Last.fm datasets distributed by Ò. Celma (Celma and Herrera, 2008), 

and described in Section 3.4.2, in this thesis we used the one denoted as Last.fm 1K, 

since it contains the music listening history (scrobbles) of each user at the track level, 

and includes the timestamp at which a user listenend to a track. 

For our experiments we built two versions of that dataset. Table A.3 shows 

some statistics about them. For building the first version (refered as Last.fm dataset 

from now on), we applied a 5-fold cross-validation on 80-20% training-test data 

splits. For building the second version, we performed a single temporal splitting of 

the user scrobbles, maintaining an 80-20% training-test ratio. This is equivalent to 

divide the data at some timestamp in such a way that 80% of the scrobblings are con-

                                                
9 The Internet Movie Database, IMDb, http://www.imdb.com  

Property Overall Average 
Average  

in training 

Average  

in test 

No. users 6040 
6038.40 
(± 1.84) 

6040 
(± 0.00) 

6036.80 
(± 1.10) 

No. items 3706 
3,576.50 

(± 109.48) 

3,680.20 

(± 6.26) 

3,472.80 

(± 6.61) 

No. ratings 1,000,000 
500,104.50 

(± 316,293.86) 

800,167.20 

(± 0.45) 

200,041.80 

(± 0.45) 

Density 4.47% 
2.28%  

(± 1.39) 

3.60 

(± 0.01) 

0.95 

(± 0.00) 

Avg. no. rated 

items per user 
165.60 

82.81 

(± 52.36) 

132.48 

(± 0.00) 

33.14 

(± 0.01) 

Max. no. rated 

items per user 
2,314 

1,157 

(± 732.10) 

1,851.20 

(± 24.00) 

462.80 

(± 24.00) 

Min. no. rated 

items per user 
20 

5.90 

(± 5.22) 

10.80 

(± 1.10) 

1 

(± 0.00) 

Max. no. users 

rating an item 
3,428 

1,714 

(± 1,084.24) 

2,742.40 

(± 22.95) 

685.60 

(± 22.95) 

Min. no. users 

rating an item 
1 

1 

(± 0.00) 

1 

(± 0.00) 

1 

(± 0.00) 

Table A.2. Summary of statistics of the MovieLens 1M dataset. 

http://www.imdb.com/
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tained in the training split. In the built dataset (refered as Last.fm temporal dataset 

from now on), the above timestamp is 16th October, 2008.  

In both datasets we aggregated the user listening data by artist (amounting to     

= 176,892 instead of      960,000 if tracks were used) in order to overcome the 

sparsity at track level. Apart from that, it is also interesting to note the difference 

between considering separate scrobblings (when a user listens to an artist, in our set-

ting) against considering unique scrobblings (or number of user-item pairs), which 

corresponds to the typical situation in movie recommendation (where, for each 

movie, there are not several ratings given by a particular user). 

Furthermore, in some experiments we transformed log-based information to ex-

plicit ratings by using the method described in (Celma, 2010) and (Celma, 2008). This 

method takes into account the number of times a user listened to an artist, in such a 

way that the artists located in the 80-100% interquintile range of the user‟s listening 

distribution receive a rating of 5 (in a five point scale), those in the next interquintile 

range are mapped to a rating of 4, and so on. Additionally, the use of the coefficient 

of variation                 is proposed in (Celma, 2008) to discriminate be-

tween skewed and uniform distributions. We have not considered this coefficient 

since it produced strange behaviours in the recommenders, such as too many ties in 

the recommended items and errors in the computation of some correlations (since 

the mean would have the same value for every rating, see Equation (2.5)). 

  Five-fold Temporal 

Property Overall Average 
Average  

in training 

Average  

in test 
Average Training Test 

No. users 992 
991 

(± 1.70) 

992 

(± 0.00) 

990 

(± 2.00) 

932 

(± 16.97) 
920 944 

No. items 176,892 
108,065.20 

(± 48,266.14) 

153,854.20 

(± 155.01) 

62,276.20 

(± 199.80) 

118,530 

(± 43,371.10) 
149,198 87,862 

No. scrobblings 19,129,595 
9,564,797.50 

(± 6,049,542.74) 

15,303,676 

(± 56,393.95) 

3,825,919 

(± 56,393.95) 

9,564,798.50 

(± 8,115,999.81) 
15,303,677 3,825,920 

No. unique 

 scrobblings 
904,309 

452,154.50 

(± 285,967.77) 

723,447.20 

(± 313.46) 

180,861.80 

(± 313.46) 

539,553  

(± 268,287.63) 
729,261 349,845 

Density 
10.90% 

0.52% 

8.12% (± 2.02) 

0.38% (± 0.10) 

10.03% (± 0.04) 

0.47% (± 0.00) 

6.21% (± 0.11) 

0.29% (± 0.00) 

7.88% (± 4.62) 

0.48% (± 0.08) 

11.15% 

0.53% 

4.61% 

0.42% 

Avg. no.  

scrobblings per user 
19,283.87 

9,645.83 

(± 6,094.22) 

15,427.09 

(± 56.85) 

3,864.57 

(± 57.35) 

10,343.66 

(± 8,896.50) 
16,634.43 4,052.88 

Max.no.  

scrobblings per user 
183,094 

93,795.20 

(± 55,859.24) 

146,475.20 

(± 7,036.93) 

41,115.20 

(± 5,753.13) 

117,872.50  

(± 84,792.71) 
177,830 57,915 

Min. no.  

scrobblings per user 
2 

1.30 

(± 0.48) 

1.60 

(± 0.55) 

1 

(± 0.00) 

1 

(± 0.00) 
1 1 

Avg. no. scrobbled 

items per user 
911.60 

455.99 

(± 288.08) 

729.28 

(± 0.32) 

182.69 

(± 0.12) 

581.64  

(± 298.45) 
792.68 370.60 

Max. no. scrobbled  

items per user 
8,452 

4,226.00 

(± 2,672.76) 

6,761.60 

(± 0.55) 

1,690.40 

(± 0.55) 

5,707 

(± 1,554.22) 
6,806 4,608 

Min. no. scrobbled  

items per user 
2 

1.30  

(± 0.48) 

1.60  

(± 0.55) 

1  

(± 0.00) 

1  

(± 0.00) 
1 1 

Max. no. users  

scrobbling an item 
710 

356.10  

(± 233.52) 

568.00 

(± 10.39) 

144.20  

(± 7.36) 

527.50 

(± 146.37) 
631 424 

Min. no. users 

scrobbling an item 
1 

1  

(± 0.00) 

1  

(± 0.00) 

1  

(± 0.00) 

1  

(± 0.00) 
1 1 

Time interval  

(in days) 
3,150 

1,586.85 

(± 0.02) 

1,586.85 

(± 0.00) 

1,586.84 

(± 0.02) 

1,574.87 

(± 331.64) 
1,340 1,809 

Table A.3. Summary of statistics of the Last.fm datasets. 
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On this dataset, content-based recommenders used the artists‟ tags. The consid-

ered tags for each artist were the most popular tags assigned to that artist according 

to the Last.fm API10. 

A.1.3 CAMRa dataset 

Among the several datasets provided in the different CAMRa challenges (Said et al., 

2010) (Said et al., 2011), in this thesis we used the dataset published at the social track 

of CAMRa ‟10. This dataset was gathered from the Filmtipset community, and con-

tains social links between users, movie ratings, movie comments, and other attributes 

of users and movies. The design of this dataset and, more specifically, the selection 

of test users as provided in the challenge‟s social track is representative of online 

applications in which every target user has a non-empty list of contacts (see Figure 

A.1). This is the case of social-centric systems such as Facebook, Linkedin, and Twit-

ter, but not of many social media applications, such as Delicious and Last.fm, where 

the coverage of their social network is partial – not all registerd users really use the 

social part of the system. 

In fact, the Filmtipset dataset belongs to the latter case. Considering the set of all 

users, more than 10,000 out of about 16,500 users do not have any friends in the 

system. The number of contacts per user follows a power law distribution, where the 

average number of friends per user is 0.95, and the mode among users (with at least 

one friend) is 1. If we take this dataset as representative of social media systems, the 

                                                
10 Documentation related with the method used, http://www.lastfm.es/api/show/artist.getTopTags 

 

Figure A.1. Friend distribution among the users composing the original test set of the 

CAMRa ’10 social track. Note that a logarithmic regression line fits almost perfectly with the 

above distribution. The total number of users is 439, and the maximum and minimum 

numbers of friends are 14 and 2 respectively. 
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presence of contacts by itself does not guarantee the accuracy of social recommenda-

tion. Moreover, intermediate cases, where social data is available but not enough to 

support optimal recommendation, would rather seem to be the norm. We therefore 

simulate an alternative scenario by adding an equal amount of users without friends 

to a new test set by sampling randomly the same number of test users in the original 

test set (i.e., 439 users), but forcing them to have no friends. We name the original 

dataset as CAMRa Social, and the modified one as CAMRa Collaborative-Social or 

simply CAMRa Collaborative, since it is not focused on social information. Table A.4 

shows some statistics about these datasets, from which the minimum number of 

friends per user in the test sets is the main difference between the above datasets (2 

in the original, social dataset, and 0 in the collaborative test). 

A.2 Configuration of recommendation algorithms 

In this section we provide details about the implementation of the recommendation 

algorithms used in Chapters 4, 6, 7, and 8. Table A.5 shows a summary of such re-

commenders, along with references to the chapters where the recommenders were 

evaluated. In the following we describe each of these recommenders, and provide 

their parameter values, explicit formulations, and references. The recommenders, 

categorised according to the type of recommendations they provide, are the following: 

  Social Collaborative-Social 

Property Overall Training Test Training Test 

No. users 16,473 16,473 439 16,473 793 

No. items 24,222 24,222 1,915 24,212 2670 

No. ratings 3,091,075 3,075,346 15,729 3,069,888 21,187 

Density 0.77% 0.77% 1.87% 0.77% 1.00% 

Avg. no. rated 

items per user 
187.64 186.69 35.83 186.36 26.72 

Max. no. rated  
items per user 

3,435 3,435 314 3,435 314 

Min. no. rated  

items per user 
1 1 1 1 1 

Max. no. users  

rating an item 
14,339 14,290 111 14,255 134 

Min. no. users  

rating an item 
1 1 1 1 1 

Avg no. friends 

per user 
0.95 0.95 3.85 0.95 2.13 

Max. no. friends 

per user 
24 24 14 24 14 

Min. no. friends 

per user 
0 0 2 0 0 

Table A.4. Summary of statistics of the CAMRa datasets. 
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Non-personalised recommenders 

 ItemPop: a non-personalised recommender based on the popularity of the 

item being recommended. It basically counts the number of training ratings of 

an item, and generates a recommendation score for the item based on such 

number. 

 Random: a non-personalised recommender that generates a random recom-

mendation score in a required value range. 

Content-based recommender 

 CB: a content-based recommender, which, similarly to the one described in 

(Martinez et al., 2009), computes the cosine similarity between user and item 

vectors whose components can represent any possible content-based feature. 

A different configuration of features is used depending on the dataset. For the 

MovieLens dataset, we used item attributes such as movie genre, director, and 

country, as appeared in IMDb. Other features like actors and keywords were 

also tested, but yielded worse performance. Specifically, we used the most 

popular 3 countries for each item, 3 directors, and 8 genres per movie, as sug-

gested in (Cantador, 2008); besides, each of these features was weighted as fol-

lows: the country feature was assigned a weight of 0.26, director, 0.06, and 

genre, 0.66. For the Last.fm dataset, we used as features the 50 most popular 

tags related to each artist. 

Rating-based recommenders 

 IB: an item-based collaborative filtering recommender, in which Equation (2.8) 

is used along with Pearson‟s correlation as the similarity metric between items 

Recommender Chapter(s) where the recommender is evaluated 

CB Chapters 6 and 7 

IB Chapters 6 and 7 

ItemPop Chapters 4, 6, and 7 

kNN Chapters 4, 6, and 7 

MF Chapter 4 

pLSA Chapters 4, 6, and 7 

Random Chapters 4 and 6 

Resnick Chapter 8 

TFL1 Chapters 6 and 7 

TFL2 Chapters 6 and 7 

Table A.5. List of the recommenders evaluated in this thesis, and the chapters where 

their evaluations are reported. 
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(analogous to Equation (2.5), but considering items instead of users). More-

over, a constraint was implemented in order to remove some noise from 

neighbour items: only predictions produced by at least two similar items were 

considered; that is, if we replaced    by   , then those users with only one item 

similar to the target item   in their profiles did not receive any recommenda-

tion. 

 kNN: a user-based (nearest neighbour) collaborative filtering recommender, in 

which a slight modification of Equation (2.3) is used to adapt the item-based 

algorithm proposed in (Koren, 2008). We used 100 neighbours and Pearson‟s 

correlation as similarity metric, as defined in Equation (2.5). Specifically, we 

considered the following equation: 

              
 

                    
                          

         

 

where            is the shrunk similarity                           , 

       being        , that is, the number of users who rated both items. Be-

sides,                is the user-item bias learnt solving the following 

least squares problem, where   indicates the overall average rating: 

   
     

                  
        

 

 

    
 

 

  

     

 

In our experiments no tuning of the    regularisation parameter was done 

(partially because this method indeed optimises RMSE, which is not our main 

goal), and used a fixed value of     . We used a learning rate of      , and 

    iterations in the optimisation process. Furthermore, we did not shrink the 

similarity, so an effective      was used. Additionally, at least 5 neighbours 

had to participate in the prediction process to consider a predicted item as 

valid. 

 MF: a matrix factorisation recommender, as implemented in the Mahout library 

by means of the Expectation Maximisation (EM) algorithm. We used     itera-

tions and    features, leaving the rest of the parameters as default (i.e.,       

as learning rate,      as regularisation parameter, and       as random noise). 

We have to note that the original method proposed in (Koren et al., 2009) used 

Alternating Least Squares to learn the user and item factorised vectors. How-

ever, the version implemented in Mahout provided worse results for this learn-

ing method, and thus we used the EM algorithm in our experiments. 

 pLSA: a probabilistic Latent Semantic Analysis recommender, in which we use 

the co-occurrence latent semantic model as defined in (Hofmann, 2004). That 
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is, the prediction is made by computing                      . The mod-

els based on ratings produced worse results, and are not applicable with im-

plicit (log-based) user preference data. This is why we preferred to use the co-

occurrence model over the one based on ratings. In the experiments we used 

   factors and    iterations. 

 Resnick: a user-based (neearest neighbour) collaborative filtering recom-

mender, implemented as in Equation (2.3), where rating deviations from the 

user‟s and neighbour‟s rating means are considered (Resnick et al., 1994). As 

discussed in Chapter 8, different neighbourhood sizes were tested. We used 

Pearson‟s correlation as the user similarity metric, like in Equation (2.5). 

 TFL1: an item-based collaborative filtering recommender, which uses the TF 

method with normalisation    , as defined in (Bellogín et al., 2011b). This is 

equivalent to an standard item-based CF algorithm without dividing by the 

similarities values, that is: 

                      

    

 

We did not consider the neighbourhood size, replacing    by   , and using 

Pearson‟s correlation as similarity metric         . 

 TFL2: an item-based collaborative filtering recommender in which, similarly to 

the TFL1 recommender, we used the TF method with normalisation    , and 

L2 norm as defined in (Bellogín et al., 2011b). This is equivalent to an standard 

item-based CF, but instead of normalising by the sum of similarity values, it di-

vides by the square root of the sum of similarity values squared, that is: 

       
 

           
    

               

    

 

Like before, we did not consider the neighbourhood size, and used Pearson‟s 

correlation as the similarity metric. 

Social-based recommenders 

 Personal: a social filtering recommender presented in (Ben-Shimon et al., 

2007), which utilises Equation (2.11) for score prediction. We set     and 

   , along with a constraint specifying that at least two friends have to par-

ticipate on the item prediction in order to be considered valid. 

 PureSocial: a social filtering recommender, which is an adaptation of the stan-

dard user-based collaborative filtering in which friends are used as neighbours, 
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as proposed in (Liu and Lee, 2010) and (Bellogín et al., 2012). Specifically, we 

used Equation (2.4) as the user-based method, but where the neighbourhood 

        is built by means of the user‟s social network. No neighbourhood size 

is used, and, like in the previous recommender, at least two friends have to par-

ticipate on the item prediction to consider the suggestion as a valid one. 

We implemented these recommenders on top of the Mahout library11, and will 

make the developed source code publicly available at the following URL: 

http://ir.ii.uam.es/~alejandro/thesis. 

Additionally, we implemented the static and dynamic weighted recommender en-

sembles evaluated in Chapter 7 using the rank fusion library provided in (Fernández 

et al., 2006a) and (Fernández et al., 2006b). This library contains a series of tech-

niques for the two basic stages of any rank fusion problem: score normalisation and 

score combination. In this thesis we conducted the following procedure: a) taking 

each item ranking (in a user basis) for every recommender in an ensemble, b) normal-

ising each ranking using either rank or score normalisation techniques (Renda and 

Straccia, 2003), c) combining the normalised rankings using a weighted sum to com-

pute the score of each item (i.e., combSUM method); the weight assigned to each 

ranking may come from a performance predictor, as explained in Section 7.2.3, and 

d) ranking the items according to the scores produced in the last combination stage. 

A.3 Configuration of evaluation methodologies 

In Chapter 4 we presented several evaluation methodologies that have been further 

elaborated and used in the experiments of Chapters 6 and 7. In this section we pro-

vide specific examples regarding how these methodologies build the set of items to 

recommend. We also indicate the value of the parameters required by each method 

that have been used in the different chapters of this dissertation. 

In Chapter 4 we classified the different target item selection strategies according 

to three design settings: the base candidate settings (AI or TI), the relevant item se-

lection (AR or 1R), and the non-relevant item selection (AN or NN). Table A.6 

shows the specific configurations of these methodologies, according to the notation 

introduced in Chapter 4. Note that the uniform methodologies (U1R, UAR, and 

uuUAR) take as additional parameters   and  ; for the MovieLens 1M dataset, these 

parameters took the following values:      ,      , and     . 

                                                
11 Available at http://mahout.apache.org 

http://ir.ii.uam.es/~alejandro/thesis


A.3 Configuration of evaluation methodologies 215 

In the following we present several toy examples to illustrate how the different 

methodologies behave. For these examples we consider three users as follows: 

 A user    with training set                   , and test set           

       . 

 A user    with                      , and test set               . 

 A user    with                      , and test set                  . 

According to these training and test data, we next compare the target items se-

lected for user    by 1R and AR methodologies. The AR methodology selects all 

items contained in the test set (TI-AN) as non-relevant, and all items in the active 

user‟s test (AR); hence, it produces the following set to be scored and ranked by a 

given recommender:           . The 1R methodology, on the other hand, produces a 

ranking for each relevant item as follows:         for item   , and         for item   , 

where we use      for illustration purposes. 

In the example we also have that              , and        , and for 

the items                     and              , where      denotes 

the number of items rated by a user (and similarly for items) as denoted in Chapter 4. 

With the uniform methodologies we have to build a different training/test split for 

each user. Specifically, in the U1R and UAR methodologies we need to ensure that 

every item has been rated the same number of times in the test, whereas in the 

uuU1R methodology we also have the constraint that all users have to appear the 

same number of times in the test set. Therefore, the following split would be valid 

for the U1R or UAR methodologies: 

                                      

                                      

                                         

In this case     for every item in the test set. Then, we can apply the 1R or 

AR methodology to obtain the corresponding rankings for the U1R or UAR meth-

Methodology 
Base  

candidate 

Relevant  

item selection 

Non-relevant 

item selection 
Configuration Chapters 

1R TI 1R NN       4, 6, and 7 

AR TI AR AN  4, 6, and 7 

P1R TI 1R NN 
      

     
4, 6, and 7 

U1R TI 1R NN 
      

              
4, 6, and 7 

UAR AI/TI AR AN               4 

uuU1R TI 1R NN 

      
              
              

6 and 7 

Table A.6. Configuration of the evaluation methodologies used in the thesis. 



216 Appendix A. Materials and methods 

 

odologies, respectively. However, since we have a different amount of ratings for 

each user, this configuration is not valid for the uuU1R methodology. A valid con-

figuration for this methodology would be: 

                                      

                                      

                                         

Here, we have     and     for all the users and items in the test set. In this 

context, if we apply the 1R methodology to this split we would obtain results corre-

sponding to the uuU1R methodology. 

Alternatively, for uuU1R we can also derive a valid configuration directly from a 

given uniform split, i.e., the one used for U1R and UAR. To do this, we would ex-

ploit the degree of freedom we have to select the set of not-relevant items for each 

user. Hence, we have to guarantee that all the non-relevant items selected for each 

user have to appear the same number of times in every target set to be recom-

mended. This constraint would be satisfied depending on the user and item distribu-

tions, where a greedy algorithm (by brute force) could be applied if enough ratings 

are available. For instance, in our previous example we cannot derive a valid configu-

ration from the split presented for U1R and UAR. In such a case, an alternative split 

should be made as explained above. 

For simplicity purposes, in the examples we have assumed that all items con-

tained in the test set are relevant. However, this is not the general case, and a thresh-

old on the minimum rating value should be set. To be consistent across methodolo-

gies, only items rated as   by a user are considered relevant. Thus, for the AR meth-

odology, although every item in a user‟s test set is considered, in the evaluation only 

those items with 5 stars are considered relevant. On the other hand, the 1R method-

ology builds one ranking for each relevant item. That is, in the example above, if 

           and           , then a unique ranking would be generated and 

evaluated, the one corresponding to        . 

As additional material, we will make publicly available an implementation of the 

above evaluation methodologies at http://ir.ii.uam.es/~alejandro/thesis. 

A.4 Additional results about correlations 

Next we report additional experiments to those presented in Chapter 6 regarding the 

computation of correlation coefficients between the performance predictors and 

recommenders. Specifically, we provide experimental results obtained with metrics 

different to P@10, and alternative correlation coefficients such as Spearman‟s and 

Kendall‟s. 

http://ir.ii.uam.es/~alejandro/thesis
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A.4.1 Correlations of user predictors using rating data 

In this section we provide results obtained by using different correlation coefficients 

and metrics in the evaluation of user predictors based on ratings. Specifically, we 

provide results obtained with Spearman‟s   and Kendall‟s   correlation coefficients, 

and metrics such as MAP@10 (because it is considered as more stable than precision 

(Manning et al., 2008; Baeza-Yates and Ribeiro-Neto, 2011)), recall@10 (as an in-

versely related metric to precision), and nDCG@50 (because it includes graded rele-

vance and a different cutoff). 

Table A.7, Table A.8, and Table A.9 show the results obtained when the above 

three metrics are used along with the Pearson‟s correlation coefficient and the AR 

methodology. Comparing these results with those shown in Table 6.7, we can ob-

serve that most of the correlation trends are similar to the ones presented in Chapter 

6. Specifically, the results with nDCG@50 are almost equivalent to those obtained 

with P@10, proving that our predictors are also consistent with other metrics apart 

from precision. On the other hand, the correlation values with MAP@10 and re-

call@10 metrics have some differences with respect to the P@10 metric, being lower 

in general. In fact, the correlation with CB and pLSA recommenders is negative, 

probably due to the (inverse) relation between precision and recall, which makes very 

difficult to optimise both metrics at the same time. 

Predictor Random CB IB ItemPop kNN pLSA TFL1 TFL2 

Count (training) 0.005 -0.031 0.009 0.047 0.094 -0.049 0.024 0.281 

Count (test) 0.004 -0.029 0.009 0.047 0.092 -0.052 0.022 0.276 

Mean 0.009 0.010 -0.002 -0.065 -0.036 -0.002 0.007 -0.103 

Standard deviation 0.004 0.013 0.011 -0.018 -0.029 -0.023 0.015 -0.069 

ItemSimple Clarity 0.007 -0.031 0.010 0.040 0.089 -0.054 0.026 0.274 

ItemUser Clarity 0.005 -0.029 0.011 0.039 0.089 -0.054 0.028 0.272 

RatUser Clarity 0.006 -0.031 0.009 0.048 0.093 -0.049 0.024 0.273 

RatItem Clarity 0.005 -0.029 0.008 0.041 0.087 -0.053 0.022 0.267 
IRUser Clarity 0.006 -0.026 0.005 0.051 0.083 -0.046 0.021 0.265 

IRItem Clarity 0.003 -0.021 0.009 0.038 0.076 -0.046 0.023 0.234 

IRUserItem Clarity 0.005 -0.025 0.007 0.049 0.082 -0.047 0.024 0.261 

Entropy 0.000 -0.032 0.007 0.040 0.103 -0.037 0.021 0.296 

Table A.7. Pearson’s correlation values between rating-based user predictors and MAP@10 

for different recommenders, using the AR methodology on the MovieLens 1M dataset. 
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As pointed out by other authors, Pearson‟s correlation values by themselves may 

not be enough to completely understand the relation between analysed variables 

(Hauff et al., 2009; Carmel and Yom-Tov, 2010). Because of that, in Table A.10 and 

Table A.11 we provide results found when Spearman‟s and Kendall‟s correlations are 

used, along with the P@10 metric and the AR methodology. Comparing these results 

with those shown in Table 6.7, we can observe that strong correlations are also ob-

tained using non parametric coefficients such as Kendall‟s  . More specifically, our 

results show that      , with respect to the Pearson‟s  , Spearman‟s  , and 

Kendall‟s   correlation coefficients. 

Predictor Random CB IB ItemPop kNN pLSA TFL1 TFL2 

Count (training) -0.001 -0.048 0.009 0.012 0.053 -0.120 0.020 0.213 

Count (test) -0.002 -0.047 0.008 0.009 0.051 -0.123 0.018 0.208 
Mean 0.009 0.009 -0.002 -0.067 -0.024 -0.017 0.005 -0.104 

Standard deviation 0.004 0.014 0.011 -0.038 -0.034 -0.035 0.019 -0.076 

ItemSimple Clarity 0.000 -0.049 0.009 0.000 0.047 -0.131 0.023 0.203 

ItemUser Clarity -0.001 -0.046 0.011 0.003 0.049 -0.121 0.025 0.205 

RatUser Clarity 0.000 -0.049 0.009 0.011 0.055 -0.116 0.020 0.201 

RatItem Clarity -0.002 -0.046 0.007 0.008 0.050 -0.115 0.019 0.199 

IRUser Clarity 0.001 -0.040 0.004 0.018 0.047 -0.108 0.018 0.201 

IRItem Clarity -0.002 -0.036 0.006 0.006 0.039 -0.106 0.020 0.176 

IRUserItem Clarity 0.000 -0.040 0.006 0.016 0.046 -0.109 0.021 0.197 

Entropy -0.004 -0.048 0.006 0.010 0.058 -0.124 0.018 0.252 

Table A.8. Pearson’s correlation values between rating-based user predictors and recall@10 

for different recommenders, on the MovieLens 1M dataset and using the AR methodology 

Predictor Random CB IB ItemPop kNN pLSA TFL1 TFL2 

Count (training) 0.085 0.012 0.010 0.221 0.228 0.144 0.152 0.528 

Count (test) 0.085 0.015 0.010 0.225 0.231 0.148 0.153 0.525 

Mean 0.023 0.037 -0.014 -0.035 0.011 0.050 0.040 -0.084 

Standard deviation 0.003 0.019 0.010 -0.046 -0.069 -0.048 0.021 -0.096 

ItemSimple Clarity 0.094 0.020 0.011 0.226 0.235 0.156 0.173 0.540 

ItemUser Clarity 0.084 0.014 0.013 0.205 0.220 0.134 0.167 0.513 

RatUser Clarity 0.087 0.005 0.010 0.221 0.240 0.139 0.160 0.517 

RatItem Clarity 0.081 0.008 0.008 0.201 0.218 0.123 0.158 0.493 
IRUser Clarity 0.079 0.022 -0.001 0.216 0.201 0.136 0.138 0.492 

IRItem Clarity 0.074 0.032 0.007 0.184 0.173 0.119 0.145 0.440 

IRUserItem Clarity 0.079 0.023 0.003 0.212 0.198 0.133 0.146 0.485 

Entropy 0.078 0.025 0.004 0.224 0.235 0.192 0.127 0.561 

Table A.9. Pearson’s correlation values between rating-based predictors and nDCG@50 for 

different recommenders, on the MovieLens 1M dataset and using the AR methodology. 



A.4 Additional results about correlations 219 

We also compare the results shown in Table A.9 with those obtained on differ-

ent datasets. Table A.12 shows the correlation values for the MovieLens 100K data-

set, as published in (Bellogín et al., 2011b). We observe that the correlation does not 

Predictor Random CB IB ItemPop kNN pLSA TFL1 TFL2 

Count (training) 0.112 0.165 0.020 0.457 0.367 0.465 0.124 0.585 

Count (test) 0.114 0.174 0.020 0.473 0.375 0.484 0.124 0.589 
Mean 0.015 0.064 0.000 0.010 0.025 0.106 0.030 -0.024 

Standard deviation 0.007 0.005 0.009 -0.032 -0.038 -0.037 0.009 -0.064 

ItemSimple Clarity 0.117 0.176 0.021 0.474 0.382 0.492 0.130 0.602 

ItemUser Clarity 0.112 0.168 0.021 0.442 0.362 0.457 0.131 0.583 

RatUser Clarity 0.113 0.157 0.021 0.469 0.388 0.482 0.122 0.598 

RatItem Clarity 0.113 0.169 0.019 0.460 0.378 0.477 0.130 0.592 

IRUser Clarity 0.110 0.164 0.019 0.449 0.364 0.454 0.123 0.571 

IRItem Clarity 0.107 0.174 0.017 0.422 0.318 0.414 0.123 0.532 

IRUserItem Clarity 0.110 0.164 0.020 0.447 0.362 0.453 0.125 0.571 

Entropy 0.112 0.166 0.020 0.460 0.369 0.468 0.124 0.588 

Table A.10. Spearman’s correlation values between rating-based user predictors and P@10 

for different recommenders, on the MovieLens 1M dataset and using the AR methodology. 

Predictor Random CB IB ItemPop kNN pLSA TFL1 TFL2 

Count (training) 0.092 0.134 0.017 0.358 0.296 0.353 0.102 0.471 

Count (test) 0.094 0.143 0.017 0.373 0.305 0.371 0.102 0.477 

Mean 0.013 0.052 0.000 0.008 0.020 0.079 0.025 -0.018 
Standard deviation 0.006 0.004 0.008 -0.024 -0.030 -0.028 0.007 -0.050 

ItemSimple Clarity 0.096 0.143 0.017 0.371 0.308 0.374 0.106 0.484 

ItemUser Clarity 0.091 0.136 0.018 0.344 0.292 0.346 0.107 0.467 

RatUser Clarity 0.093 0.127 0.017 0.367 0.313 0.366 0.100 0.481 

RatItem Clarity 0.092 0.137 0.016 0.359 0.304 0.362 0.106 0.476 

IRUser Clarity 0.090 0.133 0.015 0.350 0.293 0.344 0.100 0.457 

IRItem Clarity 0.087 0.141 0.014 0.328 0.255 0.312 0.101 0.423 

IRUserItem Clarity 0.090 0.133 0.017 0.348 0.292 0.343 0.102 0.456 

Entropy 0.092 0.134 0.017 0.359 0.297 0.355 0.101 0.472 

Table A.11. Kendall’s correlation values between rating-based user predictors and P@10 for 

different recommenders, on the MovieLens 1M dataset and using the AR methodology. 

Predictor Random CB IB kNN TFL1 TFL2 

Count (training) 0.288 0.255 0.170 0.488 0.529 0.545 

Count (test) 0.384 0.384 0.242 0.592 0.602 0.623 

Mean -0.063 -0.009 -0.060 -0.018 -0.103 0.012 
Standard deviation -0.011 -0.033 0.045 -0.016 0.031 -0.135 

ItemSimple Clarity 0.282 0.257 0.146 0.491 0.521 0.564 

ItemUser Clarity 0.289 0.255 0.189 0.479 0.540 0.530 

RatUser Clarity 0.282 0.234 0.182 0.469 0.507 0.516 

RatItem Clarity 0.239 0.191 0.184 0.395 0.442 0.426 

IRUser Clarity 0.149 0.171 -0.092 0.257 0.253 0.399 

IRItem Clarity 0.232 0.218 0.152 0.372 0.453 0.416 

IRUserItem Clarity 0.279 0.265 0.105 0.444 0.523 0.545 

Entropy 0.263 0.256 0.110 0.497 0.499 0.574 

Table A.12. Pearson’s correlation values between rating-based user predictors and 

nDCG@50 for different recommenders, on the MovieLens 100K dataset and using the AR 

methodology. 
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change significantly; only the correlation values for the CB, IB and TFL1 recom-

menders increase in the MovieLens 100K dataset. 

Additionally, as shown in Chapter 6, when different experimental designs are 

tested, the selection of relevant and not relevant items is very important. In the AR 

methodology, as described in Section A.3, we consider as relevant those items whose 

ratings are 5 (to some extent in order to be consistent with the rest of the method-

ologies). Table A.13, on the other hand, shows that the correlation changes when all 

the items in the test set are considered relevant. The first thing to note when we 

compare these results with those shown in Table 6.7 is that the absolute correlation 

values are now much higher. However, if we take the correlations with the Random 

recommender as a reference, these relative correlations are very similar in both tables. 

Moreover, the trend in predictive power of the predictors (that is, which predictors 

have more or less predictive power) is consistent across this dimension, which evi-

dences the stability of the evaluation methodology used to measure the predictive 

power of the recommendation performance predictors. 

A.4.2 Correlations of user predictors using log data 

In this section we focus on complementing our results with correlations between the 

predictor values and the MAP@10 metric, since we have observed in the previous 

sections that other correlation coefficients are consistent with Pearson‟s. 

Hence, in Table A.14 we report the results with the temporal split, whereas in 

Table A.15 we present the results for the random split on the Last.fm dataset. Re-

spectively, we have to compare these tables against Table 6.14 and Table 6.15. This 

comparison shows that the results obtained using the precision and MAP metrics are 

equivalent, in contrast to what happened in the previous sections. This is because in 

this experiment we use the 1R methodology where there is only one relevant item, in 

Predictor Random CB IB ItemPop kNN pLSA TFL1 TFL2 

Count (training) 0.389 0.464 0.100 0.718 0.553 0.697 0.490 0.793 

Count (test) 0.392 0.475 0.100 0.728 0.562 0.711 0.492 0.797 
Mean -0.093 -0.151 -0.022 -0.117 -0.041 -0.152 -0.123 -0.104 

Standard deviation 0.017 0.036 0.009 -0.029 -0.045 -0.025 0.018 -0.069 

ItemSimple Clarity 0.383 0.453 0.100 0.721 0.563 0.700 0.478 0.802 

ItemUser Clarity 0.391 0.465 0.112 0.696 0.544 0.678 0.514 0.783 

RatUser Clarity 0.387 0.442 0.116 0.702 0.557 0.665 0.498 0.788 

RatItem Clarity 0.366 0.426 0.096 0.663 0.524 0.633 0.500 0.765 

IRUser Clarity 0.376 0.469 0.068 0.671 0.498 0.664 0.499 0.742 

IRItem Clarity 0.358 0.443 0.082 0.622 0.469 0.609 0.482 0.684 

IRUserItem Clarity 0.378 0.470 0.083 0.664 0.494 0.658 0.513 0.736 

Entropy 0.313 0.442 0.056 0.687 0.508 0.747 0.341 0.710 

Table A.13. Pearson’s correlation values between rating-based user predictors and P@10 for 

different recommenders, on the MovieLens 1M dataset and using the AR methodology, but 

considering all the items in test set as relevant. 
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contrast to the AR methodology used in that experiment, and thus, these two metrics 

are equivalent. Similar results are obtained for recall and nDCG metrics for the same 

reasons. 

A.4.3 Correlations of user predictors using social data 

In this section we present additional results regarding the correlations between social-

based performance predictors and evaluation metrics. Like in the previous section, 

here we only show correlations with respect to the MAP@10 metric, which, in this 

case, do not provide results equal to those of the precision metric since we use the 

AR methodology instead of the 1R methodology. 

Table A.16 shows Pearson‟s correlation values on the social version of the 

CAMRa dataset. We observe that the correlations are much lower than those pre-

sented in Table 6.16; in some situations even the sign of the correlation changes, like 

for most of the values of kNN. A more interesting situation is observed on the 

CAMRa Collaborative dataset (Table A.17), where strong but negative correlations 

arise, in particular for the ItemPop and pLSA recommenders. This result may have a 

direct impact on the performance of the dynamic ensembles, since the correlation of 

Predictor Random CB ItemPop kNN pLSA 

Average Count 0.001 0.173 0.027 -0.054 0.163 

Count 0.028 0.188 -0.044 0.140 0.115 
Mean -0.059 -0.407 0.037 -0.089 -0.220 

Standard deviation -0.034 -0.191 -0.035 -0.119 -0.094 

Autocorrelation 0.049 0.156 -0.079 -0.105 0.001 

TimeSimple Clarity -0.044 -0.435 0.053 -0.257 -0.212 

ItemTime Clarity 0.024 0.142 0.085 0.316 0.084 

ItemPriorTime Clarity 0.069 0.219 0.240 0.345 0.204 

Frequency Clarity -0.039 -0.421 -0.248 -0.307 -0.365 

ItemSimple Clarity 0.008 0.118 -0.052 0.275 0.014 

Table A.14. Pearson’s correlation values between log-based user predictors and MAP@10 

for different recommenders, on the Last.fm temporal dataset and using the 1R methodology. 

Predictor Random CB ItemPop kNN pLSA 

Average Count -0.043 -0.065 -0.139 0.020 -0.136 

Count -0.031 -0.212 -0.194 -0.040 -0.260 

Mean 0.004 0.173 0.111 0.008 0.117 

Standard deviation -0.010 0.116 0.116 0.021 0.099 

Autocorrelation 0.010 -0.032 -0.078 -0.007 -0.063 

TimeSimple Clarity 0.041 0.304 0.277 0.082 0.344 

ItemTime Clarity 0.037 -0.147 0.020 0.052 -0.084 

ItemPriorTime Clarity 0.036 -0.028 0.210 0.149 0.072 

Frequency Clarity 0.001 -0.038 -0.286 -0.158 -0.211 

ItemSimple Clarity 0.028 -0.240 -0.131 -0.021 -0.213 

Table A.15. Pearson’s correlation values between log-based user predictors and MAP@10 

for different recommenders, on the Last.fm five-fold dataset and using the 1R methodology. 
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the predictors is now very different. We refer the reader to Section A.5.3 where we 

show how the dynamic ensembles perform when this metric is used. 

A.5 Additional results about dynamic ensembles 

Next we present additional results obtained in the experiments aimed to compare 

static and dynamic hybrid recommendations. We report values of metrics different to 

P@10, which has been extensively used in the thesis. In particular, we focus on 

MAP@10 in order to provide a full overview of the predictors‟ behaviour, since cor-

relations with respect to this metric have been presented in the previous sections. 

Predictor Random ItemPop kNN pLSA Personal PureSocial 

Count (training) 0.016 0.104 0.022 0.024 0.013 0.066 

Count (test) 0.086 -0.032 0.021 -0.167 -0.215 -0.294 
Mean -0.047 0.074 0.075 0.009 0.003 0.025 

Standard deviation -0.030 -0.065 -0.144 -0.061 -0.063 -0.004 

Avg neighbour degree -0.025 -0.057 -0.031 -0.124 -0.120 -0.240 

Betweenness centrality -0.015 0.061 -0.010 -0.015 0.011 -0.076 

Clustering coefficient 0.028 -0.024 0.035 -0.106 0.001 -0.133 

Degree -0.026 -0.070 -0.065 -0.130 -0.184 -0.185 

Ego components size -0.044 0.019 -0.051 0.029 -0.036 0.021 

HITS -0.010 -0.018 0.056 -0.002 0.082 0.040 

PageRank -0.020 -0.022 -0.047 0.041 -0.059 0.041 

Two-hop neighbourhood -0.039 -0.040 -0.062 -0.118 -0.148 -0.227 

ItemSimple Clarity 0.012 0.132 0.031 0.037 0.023 0.080 

Table A.16. Pearson’s correlation values between social-based user predictors and 

MAP@10 for different recommenders, on the CAMRa social dataset and using the AR 

methodology. 

Predictor Random ItemPop kNN pLSA Personal PureSocial 

Count (training) 0.004 -0.072 0.054 -0.096 0.012 0.067 

Count (test) 0.031 -0.119 0.056 -0.163 -0.215 -0.294 

Mean -0.045 0.119 0.042 0.057 0.005 0.026 

Standard deviation 0.041 -0.043 -0.139 -0.041 -0.063 -0.004 

Avg neighbour degree 0.086 -0.168 0.044 -0.148 -0.120 -0.240 

Betweenness centrality -0.005 0.010 -0.008 -0.039 0.012 -0.075 

Clustering coefficient -0.002 -0.133 0.099 -0.149 -0.001 -0.135 

Degree 0.045 -0.174 0.039 -0.198 -0.183 -0.185 

Ego components size 0.030 -0.126 0.016 -0.143 -0.035 0.022 

HITS -0.009 -0.023 0.027 0.085 0.082 0.040 

PageRank 0.000 -0.136 0.024 -0.134 -0.058 0.041 

Two-hop neighbourhood 0.080 -0.148 0.016 -0.151 -0.146 -0.227 

ItemSimple Clarity 0.002 -0.068 0.057 -0.092 0.022 0.081 

Table A.17. Pearson’s correlation values between social-based user predictors and 

MAP@10 for different recommenders, on the CAMRa collaborative dataset and using the 

AR methodology. 
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A.5.1 Performance results from dynamic ensembles on 

rating data 

In this section we report experiments where dynamic hybrid recommenders are built 

by means of rating-based performance predictors. Table A.18 and Table A.19 show 

performance values (in terms of the MAP metric) of the hybrid recommenders by 

using the AR and 1R methodologies respectively. Additionally, Table A.20 shows 

performance values using item predictors along with the uuU1R methodology. 

We can observe that the results from Table A.18 are quite similar to those pre-

sented in Table 7.2: in most cases the dynamic hybrid recommenders outperform the 

baseline static recommender, and the best result for each ensemble is obtained either 

by using the perfect correlation predictor or one of the clarity-based performance 

predictors. The only difference of these results with those of the P@10 metric (Table 

7.2) is that when we evaluate with MAP@10 the baseline outperforms the dynamic 

ensembles for the combination HRU3. We have to note that the best static recom-

mender is very different for this combination: whereas for P@10 the best result is 

obtained when      , for MAP@10 the best result is obtained for      , where, 

as we observed in Chapter 7, the rating-based user predictors seem to perform worse 

when the best static recommender is close to that value. 

 HRU1 HRU2 HRU3 HRU4 HRU5 HRU6 

R1 (=1.0) 0.0005 0.0298 0.0116 0.0116 0.0116 0.0116 

R2 (=0.0) 0.0086 0.0086 0.0086 0.0001 0.1047 0.0551 

Baseline (=0.5) 0.0043 0.0268 0.0271 0.0003 0.0794 0.0499 

Best static 

(best ) 

0.0087 

(0.1) 

0.0310 

(0.9) 

0.0271 

(0.5) 

0.0022 

(0.9) 

0.1108 

(0.1) 

0.0584 

(0.1) 

Perfect correlation 0.0099 0.0373 0.0297 0.0119 0.1166 0.0663 

PC-OM 0.0097 0.0399 0.0305 0.0045 0.1125 0.0602 

PC-FW 0.0097 0.0296 0.0278 0.0008 0.1136 0.0615 

Entropy-OM 0.0057  


  0.0333  


  0.0260  


  0.0009  


  0.0863  


  0.0509  


  

ItemSimple-OM 0.0090  


  0.0330  


  0.0256  


  0.0009  


  0.1149  


  0.0572  


  

ItemUser-OM 0.0091  


  0.0332  


  0.0255  


  0.0008  


  0.1161  


  0.0576  


  

RatUser-OM 0.0093  


  0.0335  


  0.0262  


  0.0009  


  0.1178  


  0.0575  


  

RatItem-OM 0.0093  


  0.0329  


  0.0259  


  0.0008  


  0.1185  


  0.0576  


  

IRUser-OM 0.0087  


  0.0326  


  0.0257  


  0.0008  


  0.1146  


  0.0580  


  

IRItem-OM 0.0091  


  0.0321  


  0.0250  


  0.0008  


  0.1160  


  0.0577  


  
IRUserItem-OM 0.0090  



  0.0325  


  0.0256  


  0.0008  


  0.1154  


  0.0578  


  

Entropy-FW 0.0054  


  0.0282  


  0.0264  


  0.0006  


  0.0849  


  0.0508  


  

ItemSimple-FW 0.0085  


  0.0281  


  0.0263  


  0.0006  


  0.1111  


  0.0573  


  

ItemUser-FW 0.0088  


  0.0282  


  0.0262  


  0.0006  


  0.1131  


  0.0571  


  

RatUser-FW 0.0090  


  0.0281  


  0.0265  


  0.0006  


  0.1147  


  0.0569  


  

RatItem-FW 0.0089  


  0.0278  


  0.0264  


  0.0006  


  0.1154  


  0.0573  


  

IRUser-FW 0.0085  


  0.0280  


  0.0266  


  0.0007  


  0.1094  


  0.0568  


  

IRItem-FW 0.0089  


  0.0278  


  0.0256  


  0.0006  


  0.1123  


  0.0570  


  

IRUserItem-FW 0.0085  


  0.0281  


  0.0265  


  0.0007  


  0.1116  


  0.0573  


  

Table A.18. Dynamic ensemble performance values (MAP@10) using the rating-based 

user predictors, on the MovieLens 1M and using the AR methodology. 
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Table A.19 shows performance values of the hybrid recommenders using the 1R 

methodology. The outcome of this experiment is identical to that presented in Table 

7.3, except that now the best performing ensemble is a dynamic hybrid recommend-

ers, either the perfect correlation or the PC-OM, instead of the best static ensemble, 

further validating our framework. 

Additionally, in Table A.20 we show the performance of the dynamic hybrid re-

commenders using item predictors with the MAP metric. We may observe that these 

results are very similar to those presented for P@10 in Table 7.9, which emphasises 

the flexibility of our approach, in terms of being able to obtain performance im-

provements when using different evaluation metrics. 

 

 HRU1 HRU2 HRU3 HRU4 HRU5 HRU6 

R1 (=1.0) 0.0559 0.3335 0.1815 0.1815 0.1815 0.1815 

R2 (=0.0) 0.0847 0.0847 0.0847 0.0125 0.5163 0.3430 

Baseline (=0.5) 0.1147 0.2384 0.1974 0.0989 0.4004 0.3211 
Best static 

(best ) 

0.1186 
(0.3) 

0.3369 
(0.9) 

0.2248 
(0.8) 

0.1789 
(0.9) 

0.5189 
(0.1) 

0.3618 
(0.1) 

Perfect correlation 0.1409 0.3625 0.2584 0.1919 0.5139 0.3822 

PC-OM 0.1176 0.3014 0.2380 0.1375 0.5213 0.3785 

PC-FW 0.1155 0.2678 0.2141 0.1189 0.5012 0.3715 

Entropy-OM 0.1138  


  0.3187  


  0.2103  


  0.1383  


  0.3802  


  0.3087  


  

ItemSimple-OM 0.1107  


  0.3210  


  0.2111  


  0.1398  


  0.5022  


  0.3517  


  

ItemUser-OM 0.1084  


  0.3174  


  0.2097  


  0.1379  


  0.5093  


  0.3534  


  

RatUser-OM 0.1051  


  0.3216  


  0.2130  


  0.1405  


  0.5162  


  0.3556  


  

RatItem-OM 0.1046  


  0.3187  


  0.2120  


  0.1400  


  0.5168  


  0.3560  


  

IRUser-OM 0.1109  


  0.3131  


  0.2092  


  0.1382  


  0.4991  


  0.3495  


  

IRItem-OM 0.1073  


  0.3062  


  0.2025  


  0.1328  


  0.5030  


  0.3484  


  

IRUserItem-OM 0.1082  


  0.3127  


  0.2091  


  0.1381  


  0.5035  


  0.3497  


  

Entropy-FW 0.1160  


  0.2703  


  0.2042  


  0.1184  


  0.3965  


  0.3196  


  

ItemSimple-FW 0.1142  


  0.2712  


  0.2049  


  0.1192  


  0.4864  


  0.3491  


  
ItemUser-FW 0.1120  



  0.2700  


  0.2037  


  0.1181  


  0.4951  


  0.3509  


  

RatUser-FW 0.1097  


  0.2713  


  0.2058  


  0.1194  


  0.5049  


  0.3535  


  

RatItem-FW 0.1095  


  0.2707  


  0.2046  


  0.1193  


  0.5066  


  0.3542  


  

IRUser-FW 0.1146  


  0.2699  


  0.2044  


  0.1183  


  0.4828  


  0.3474  


  

IRItem-FW 0.1109  


  0.2672  


  0.2010  


  0.1158  


  0.4905  


  0.3461  


  

IRUserItem-FW 0.1123  


  0.2697  


  0.2043  


  0.1181  


  0.4894  


  0.3481  


  

Table A.19. Dynamic ensemble performance values (MAP@10) using the rating-based user 

predictors, on the MovieLens 1M dataset and using the 1R methodology. 
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 HRI1 HRI2 HRI3 HRI4 

R1 (=1.0) 0.2498 0.2498 0.0835 0.0835 

R2 (=0.0) 0.0717 0.0914 0.0717 0.0914 

Baseline (=0.5) 0.1550 0.1746 0.0878 0.0932 

Best static 

(best ) 

0.2146 

(0.9) 

0.2233 

(0.9) 

0.0892 

(0.7) 

0.0954 

(0.2) 

Entropy-OM 0.1283  


  0.1412  


  0.0872  


  0.0979  


  

UserSimple-OM 0.2116  


  0.2273  


  0.0879  


  0.0975  


  

UserItem-OM 0.2129  


  0.2267  


  0.0866  


  0.0973  


  

RatItem-OM 0.2166  


  0.2305  


  0.0872  


  0.0975  


  

RatUser-OM 0.2231  


  0.2385  


  0.0870  


  0.0977  


  

URItem-OM 0.2021  


  0.2136  


  0.0869  


  0.0973  


  
URUser-OM 0.2176  



  0.2312  


  0.0856  


  0.0974  


  

URItemUser-OM 0.2071  


  0.2200  


  0.0870  


  0.0973  


  

Entropy-FW 0.1382  


  0.1517  


  0.0873  


  0.0981  


  

UserSimple-FW 0.1770  


  0.1950  


  0.0900  


  0.0975  


  

UserItem-FW 0.1771  


  0.1953  


  0.0902  


  0.0973  


  

RatItem-FW 0.1776  


  0.1957  


  0.0902  


  0.0975  


  

RatUser-FW 0.1793  


  0.1976  


  0.0904  


  0.0974  


  

URItem-FW 0.1737  


  0.1907  


  0.0893  


  0.0969  


  

URUser-FW 0.1782  


  0.1964  


  0.0903  


  0.0971  


  

URItemUser-FW 0.1752  


  0.1931  


  0.0899  


  0.0974  


  

Table A.20. Dynamic ensemble performance values (MAP) using the rating-based item 

predictors, on the MovieLens 1M dataset and using the uuU1R methodology. 

 

A.5.2 Performance results from dynamic ensembles on log 

data 

In this section we compare the performance values of hybrid recommenders using 

the 1R methodology with log-based predictors, and P@10 and MAP@10 metrics. 

From Table A.21 and Table A.22 we can observe that the performance values are 

very similar to those shown in Table 7.11 and Table 7.12, respectively. This may be 

due to the fact that correlations for MAP@10 presented in Section A.4.2 were also 

analogous, since precision and MAP are almost equivalent under the 1R methodol-

ogy as there is only one relevant item for each evaluated ranking. From Table A.21 

we have to note, nonetheless, that the combination HL2 obtains worse performance 

values for the OM weighting strategy. Another difference is that the best performing 

ensemble for the combination HL2 now is achieved by the perfect correlation 

method, not by the best static recommender, as shown in Table 7.11 and Table 7.12. 

This shows that there would be room for improvement in the HL2 combination if 

we are able to define predictors with stronger correlation values. A similar situation is 

found for the combination HL3 in the five-fold split. 
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 HL1 HL2 HL3 

R1 (=1.0) 0.4094 0.4094 0.7229 

R2 (=0.0) 0.8255 0.5601 0.4094 

Baseline (=0.5) 0.6922 0.6244 0.6429 

Best static 

(best ) 

0.7913 

(0.1) 

0.6326 

(0.3) 

0.7256 

(0.1) 

Perfect correlation 0.7485 0.6470 0.6940 

PC-OM 0.7272 0.6239 0.6763 

PC-FW 0.7188 0.6240 0.6669 

ItemSimple-OM 0.7742  


  0.6235  


  0.7165  


  

Autocorrelation-OM 0.6592  


  0.5962  


  0.6163  


  

TimeSimple-OM 0.7676  


  0.5913  


  0.6955  


  

ItemTime-OM 0.7762  


  0.6200  


  0.7149  


  
ItemPriorTime-OM 0.7354  



  0.6223  


  0.6777  


  

ItemSimple-FW 0.7597  


  0.6329  


  0.7106  


  

Autocorrelation-FW 0.6827  


  0.6177  


  0.6353  


  

TimeSimple-FW 0.7514  


  0.6048  


  0.6893  


  

ItemTime-FW 0.7608  


  0.6292  


  0.7061  


  

ItemPriorTime-FW 0.7276  


  0.6278  


  0.6714  


  

Table A.21. Dynamic ensemble performance values (MAP@10) using the log-based user 

predictors, on the Last.fm temporal split and using the 1R methodology. 

 HL1 HL2 HL3 

R1 (=1.0) 0.0453 0.0453 0.5824 

R2 (=0.0) 0.5901 0.5387 0.0453 

Baseline (=0.5) 0.4233 0.3961 0.3308 

Best static 

(best ) 

0.5728 

(0.1) 

0.5317 

(0.1) 

0.5463 

(0.1) 

Perfect correlation 0.5820 0.5396 0.5728 

PC-OM 0.5805 0.5403 0.5768 

PC-FW 0.5795 0.5357 0.5611 

ItemSimple-OM 0.5395  


  0.4894  


  0.4397  


  

Autocorrelation-OM 0.3972  


  0.3659  


  0.3642  


  

TimeSimple-OM 0.5561  


  0.5206  


  0.2405  


  

ItemTime-OM 0.5407  


  0.4881  


  0.4375  


  

ItemPriorTime-OM 0.4577  


  0.4108  


  0.4276  


  

ItemSimple-FW 0.5240  


  0.4791  


  0.3826  


  

Autocorrelation-FW 0.4191  


  0.3896  


  0.3523  


  

TimeSimple-FW 0.5372  


  0.5033  


  0.2813  


  

ItemTime-FW 0.5243  


  0.4779  


  0.3819  


  
ItemPriorTime-FW 0.4582  



  0.4201  


  0.3783  


  

Table A.22. Dynamic ensemble performance values (MAP@10) using the log-based user 

predictors, on the Last.fm five-fold split and using the 1R methodology. 
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A.5.3 Performance results from dynamic ensembles on 

social data 

In this section we extend the results presented in Section 7.3.3, where P@10 and 

methodology AR were used in the two versions of CAMRa dataset. Here we use the 

same methodology, but the MAP@10 metric, as in the previous sections. In Table 

A.23 we can observe that there are some differences in the social version of the data-

set when compared against the results shown in Table 7.14. We may attribute such 

differences to the different optimal static hybrid recommenders obtained since the 

correlations have not changed significantly. For instance, for HS1, the best lambda 

for static hybrids was 0.3 with P@10 and now it is 0.7 with MAP@10. 

It is worth noting that even when the best static is so different from one metric 

to the other, the best performance is still obtained with the perfect correlation en-

semble, which again reinforces the idea that finding predictors with higher correla-

tions would be able to dynamically select the best weights in a user basis. 

Finally, in Table A.24 we present the results regarding the collaborative version 

of the CAMRa dataset. In this case, we have a strong evidence towards the benefits 

of using performance predictors. First, we have to recall the absolute values of the 

pLSA correlations are stronger for the MAP metric than for precision. Then, now we 

 HS1 HS2 HS3 HS4 

R1 (=1.0) 0.2002 0.2002 0.2192 0.2192 

R2 (=0.0) 0.1203 0.0364 0.1203 0.0364 

Baseline (=0.5) 0.2175 0.2287 0.2555 0.2398 

Best static 

(best ) 

0.2222 

(0.3) 

0.2349 

(0.9) 

0.2630 

(0.3) 

0.2408 

(0.9) 

Perfect correlation 0.2632 0.2562 0.2652 0.2511 

PC-OM 0.2451 0.2576 0.2668 0.2497 

PC-FW 0.2355 0.2378 0.2661 0.2446 

AvgNeighDeg-OM 0.2176  


  0.2403  


  0.2570  


  0.2229  


  

BetCentrality-OM 0.2031  


  0.2232  


  0.2146  


  0.2236  


  

ClustCoeff-OM 0.2082  


  0.2201  


  0.2261  


  0.2155  


  

Degree-OM 0.2147  


  0.2303  


  0.2615  


  0.2166  


  

EgoCompSize-OM 0.2078  


  0.2276  


  0.2577  


  0.2214  


  

HITS-OM 0.2127  


  0.2428  


  0.2187  


  0.2231  


  

PageRank-OM 0.2108  


  0.2289  


  0.2573  


  0.2238  


  
TwoHopNeigh-OM 0.2121  



  0.2377  


  0.2545  


  0.2202  


  

AvgNeighDeg-FW 0.2218  


  0.2370  


  0.2574  


  0.2300  


  

BetCentrality-FW 0.2171  


  0.2351  


  0.2460  


  0.2344  


  

ClustCoeff-FW 0.2129  


  0.2348  


  0.2434  


  0.2344  


  

Degree-FW 0.2176  


  0.2373  


  0.2627  


  0.2332  


  

EgoCompSize-FW 0.2124  


  0.2373  


  0.2616  


  0.2352  


  

HITS-FW 0.2164  


  0.2380  


  0.2405  


  0.2331  


  

PageRank-FW 0.2169  


  0.2363  


  0.2574  


  0.2336  


  

TwoHopNeigh-FW 0.2177  


  0.2373  


  0.2587  


  0.2323  


  

Table A.23. Dynamic ensemble performance values (MAP@10) using the log-based user 

predictors, on the CAMRa social dataset and using the AR methodology. 
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have to note that the performance values are now better fo MAP than for precision, 

in particular for HS1 and HS3, where dynamic hybrid recommenders outperform the 

baselines in a larger number of cases. 

 

 

 HS1 HS2 HS3 HS4 

R1 (=1.0) 0.1234 0.1234 0.1334 0.1334 

R2 (=0.0) 0.1474 0.0195 0.1474 0.0195 

Baseline (=0.5) 0.2190 0.1441 0.2359 0.1520 

Best static 

(best ) 

0.2228 

(0.3) 

0.1494 

(0.9) 

0.2440 

(0.2) 

0.1520 

(0.5) 

Perfect correlation 0.2379 0.1597 0.2396 0.1590 

PC-OM 0.1494 0.1577 0.1657 0.1535 

PC-FW 0.1492 0.1462 0.1660 0.1498 

AvgNeighDeg-OM 0.2226  


  0.1511  


  0.2426  


  0.1409  


  

BetCentrality-OM 0.2069  


  0.1412  


  0.2119  


  0.1410  


  

ClustCoeff-OM 0.2071  


  0.1390  


  0.2199  


  0.1386  


  

Degree-OM 0.2175  


  0.1457  


  0.2454  


  0.1378  


  
EgoCompSize-OM 0.2142  



  0.1441   
  0.2417  



  0.1395  


  

HITS-OM 0.2100  


  0.1519  


  0.2136  


  0.1419  


  

PageRank-OM 0.2110  


  0.1447  


  0.2416  


  0.1405  


  

TwoHopNeigh-OM 0.2156  


  0.1514  


  0.2469  


  0.1392  


  

AvgNeighDeg-FW 0.2214  


  0.1501  


  0.2410  


  0.1464  


  

BetCentrality-FW 0.2145  


  0.1479  


  0.2254  


  0.1475  


  

ClustCoeff-FW 0.2167  


  0.1474  


  0.2266  


  0.1474  


  

Degree-FW 0.2197  


  0.1497  


  0.2437  


  0.1464  


  

EgoCompSize-FW 0.2189  


  0.1490  


  0.2405  


  0.1474  


  

HITS-FW 0.2157  


  0.1502  


  0.2241  


  0.1461  


  

PageRank-FW 0.2170  


  0.1476  


  0.2440  


  0.1465  


  

TwoHopNeigh-FW 0.2216  


  0.1502  


  0.2423  


  0.1469  


  

Table A.24. Dynamic ensemble performance values (MAP@10) using the log-based user 

predictors, on the CAMRa collaborative dataset and using the AR methodology. 



 

 

 

Appendix B 

B Introducción 

En este capítulo presentamos una visión general de la tesis. En las Secciones B.1 y 

B.2 mostramos las motivaciones y objetivos de nuestro trabajo. En la Sección B.3 

resumimos las principales contribuciones de la tesis, y en la Sección B.4  enumeramos 

las publicaciones resultantes de nuestra investigación. Finalmente, en la Sección B.5 

describimos la estructura de este documento. 
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B.1 Motivación 

Las tecnologías de Recuperación de Información (RI) han ganado una prevalencia 

excepcional en las dos últimas décadas con la explosión del número de repositorios 

masivos de información existentes en línea, y más en particular en la World Wide Web. 

En RI se han investigado y diseñado formas que buscan maximizar el grado de satis-

facción de ciertas condiciones objetivas, típicamente – aunque no necesariamente de 

manera única – la satisfacción del usuario. La investigación y el desarrollo en RI han 

girado en torno a la definición de modelos y algoritmos que mejor alcancen dicho 

objetivo, de metodologías y métricas que permiten evaluar cuánto de bien se consigue 

esta meta con diferentes sistemas, así como de teorías consolidadas que proveen una 

base sólida y una orientación en el desarrollo de algoritmos de RI y su consistente 

evaluación. Entre las muchas tendencias que han surgido desde el flujo principal de 

investigación y desarrollo, un nuevo reto de investigación ha empezado a ser conside-

rado desde comienzos de los 2000: ¿es posible predecir cómo de bueno será un resul-

tado devuelto por un sistema de RI antes de presentarlo al usuario, o incluso, antes de 

efectuar por completo la búsqueda del resultado por el sistema (Cronen-Townsend 

et al., 2002)? Esta pregunta ha dado pie a una fértil corriente de investigación en lo 

que se ha llamado en RI como predicción de eficacia. 

La predicción de eficacia tiene muchos usos potenciales en RI. Desde la perspec-

tiva del usuario proporcionaría información que puede ser usada para dirigir una 

búsqueda, desde la perspectiva del sistema ayudaría a distinguir consultas poco efica-

ces, y desde la perspectiva del administrador del sistema permitiría identificar consul-

tas relacionadas sobre un tema específico que resultan difíciles para el motor de 

búsqueda. Las técnicas de predicción de eficacia se basan en el análisis y caracteriza-

ción de la evidenca usada por un sistema de RI para evaluar la relevancia (utilidad, 

valor, etc.) de los ítems a recuperar (documentos, artículos, etc.) en tiempo de ejecu-

ción (Cronen-Townsend et al., 2002). El escenario más común en recuperación de 

información supone una consulta del usuario y una colección de documentos como 

la entrada básica para formar una lista ordenada de resultados de búsqueda, pero 

otros elementos adicionales pueden tenerse en cuenta para seleccionar y ordenar re-

sultados (Baeza-Yates and Ribeiro-Neto, 2011). Cualquier información que el sistema 

de recuperación de información tome como entrada puede ser utilizada también para 

la predicción de su eficacia, y habitualmente los métodos de predicción usan infor-

mación adicional. El contexto del usuario (la tarea actual, los registros de búsquedas, 

las preferencias, etc.), las propiedades globales de los documentos de la colección, 

comparaciones con respecto a (otros) elementos de referencia como datos históricos, 

o la salida de distintos sistemas, son algunos ejemplos de las diferentes fuentes de 

información de las que un predictor puede extraer evidencia. 
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Predecir la eficacia de un subsistema, módulo, función o entrada contrastando la 

estimación de eficacia de cada componente para una consulta, permite una serie de 

estrategias de optimización dinámicas que seleccionen en tiempo de ejecución la op-

ción que se predice funcionará mejor o, cuando se usan sistemas a gran escala o 

aproximaciones híbridas, que ajusten sobre la marcha el grado de participación de 

cada módulo. En el campo de RI dominan los casos donde información de relevan-

cia, sistemas de recuperación, modelos y criterios se definen en función de la fusión o 

combinación de sub-modelos. Sistemas personalizados de recuperación (incluyendo 

técnicas como búsqueda personalizada, sistemas de recomendación, filtrado colabo-

rativo y búsqueda contextualizada) son claros ejemplos donde se puede aplicar la 

predicción de eficacia dado que dichos sistemas combinan varias fuentes de evidencia 

para la estimación de la relevancia, como pueden ser consultas explícitas, historial de 

búsqueda, puntuaciones de usuarios, información social, información del usuario y 

modelos de contexto. 

La predicción de eficacia encuentra una motivación adicional en la recomenda-

ción personalizada, puesto que esas aplicaciones pueden decidir si producir recomen-

daciones u ocultarlas, entregando sólo las suficientemente fiables. Más aún, los Sis-

temas de Recomendación (SR) actuales se caracterizan por una creciente diversifica-

ción de los tipos y fuentes de datos, contenidos, evidencias y métodos disponibles 

para tomar decisiones y construir los resultados. En este contexto, predecir la eficacia 

de un método de recomendación específico o de una componente se convierte en un 

problema atractivo, ya que permite una combinación adecuada de las alternativas 

disponibles y sacar el máximo provecho de ellas, adaptando dinámicamente la estra-

tegia de recomendación a la situación actual. La cuestión gana mayor relevancia hoy 

con la proliferación de técnicas de recomendación híbridas para mejorar la precisión 

de los métodos – siendo el premio Netflix uno de los ejemplos paradigmáticos del 

uso de estos métodos, donde los participantes mejor situados combinaron múltiples 

métodos de recomendación. Esto requiere de una investigación en aproximaciones 

híbridas con un nivel de mecanismos dinámicos auto-ajustables, de manera que se 

optimice la efectividad resultante de los sistemas de recomendación, tomando opor-

tuna ventaja de datos de alta calidad cuando estén disponibles, pero evitando aferrar-

se a estrategias fijas cuando se predice que pueden producir resultados pobres bajo 

ciertas condiciones. 

La predicción de eficacia en RI típicamente se evalúa en términos de correlación 

entre el predictor y los valores de eficacia para cada consulta. Esto requiere métricas 

de evaluación de la eficacia fiables, las cuales han sido analizadas cuidadosamente y 

están actualmente bien establecidas en el área de RI, orientadas en su mayor parte a 

búsqueda ad-hoc. Por el contrario, la evaluación en el campo de los SR está más 

abierta, y la variabilidad en las técnicas de evaluación y configuraciones experimenta-

les es significativa. Cómo medir la eficacia de un sistema de recomendación es un 
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asunto clave en nuestra investigación ya que las medidas de calidad del sistema pue-

den verse influidas por propiedades estadísticas del método de medición y/o por el 

diseño experimental. A lo largo de esta tesis nos centraremos en la precisión del sis-

tema, donde hemos de evitar que si una métrica estuviera sesgada hacia algún tipo de 

ruido medido a la vez que la calidad de la recomendación, pues entonces un predictor 

que sólo capturara dicho ruido podría actuar como un predictor de eficacia errónea-

mente útil. Así, los sesgos estadísticos (ruidos) de las metodologías de evaluación 

deben ser bien entendidos para permitir una valoración significativa de los predicto-

res de eficacia. 

Tomando el estado del arte de predicción de eficacia en RI como punto de parti-

da, el trabajo actual replantea este problema en el campo de los Sistemas de Reco-

mendación donde ha sido escasamente considerado hasta la fecha. Investigamos de-

finiciones adecuadas de eficacia en el contexto de los SR y los elementos a los que 

sensatamente se puede aplicar, analizando los sesgos estadísticos que pueden apare-

cer cuando se adapta el marco de evaluación de RI a SR. De este modo tomamos 

como dirección principal la aplicación de los predictores de eficacia para obtener 

mejoras en dos problemas específicos de combinación en el campo de SR, a saber, la 

combinación dinámica de métodos de recomendación en sistemas de recomendación 

híbridos, y la agregación dinámica de las señales de vecinos en filtrado colaborativo 

basado en usuario. 

B.2 Objetivos 

El principal objetivo de la investigación presentada aquí es encontrar métodos pre-

dictivos para la eficacia de componentes específicos de sistemas de recomendación, y 

mejorar la eficacia de los métodos de recomendación combinados, basados en el 

análisis y predicción dinámicos y automáticos de la eficacia esperada de los elementos 

de un método compuesto, con los cuales la participación relativa de cada elemento se 

ajusta de acuerdo a su efectividad predicha. Para abordar estos problemas nuestro 

trabajo tiene los siguientes objetivos de investigación concretos: 

O1: Análisis y formalización de cómo se define y evalúa la eficacia en los 

sistemas de recomendación. Dado que pretendemos predecir su eficacia necesita-

mos desarrollar un estudio en profundidad sobre cómo se pueden evaluar de manera 

fiable los sistemas de recomendación en términos de valores númericos de una 

métrica. Más aún, hemos de investigar si existen sesgos en la manera en que los sis-

temas se evalúan – debidos tanto a metodologías de evaluación como a métricas, ya 

que cualquier sesgo en el proceso de evaluación podría conducir a resultados incon-

cluyentes o engañosos con respecto el poder predictivo de los métodos de predicción 

de eficacia propuestos. Si dichos sesgos existieran, intentaríamos entenderlos de ma-

nera precisa, y desarrollar metodologías que los aislaran. Además, deberíamos com-
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probar la efectividad de nuestros predictores frente a la de otros métodos conocidos 

más básicos y observar si cambia al aislar dichos sesgos. 

O2: Adaptación y definición de técnicas de predicción de eficacia para sis-

temas de recomendación. Queremos estudiar el potencial de la predicción de efi-

cacia en problemas y escenarios específicos en el área de los Sistemas de Recomenda-

ción. Investigaremos la definición de un marco formal donde los predictores de efi-

cacia puedan ser integrados. Como punto de partida, pretendemos explorar la adap-

tación de predictores específicamente efectivos en Recuperación de Información 

como la claridad de la consulta (Cronen-Townsend et al., 2002) al campo de la reco-

mendación. De manera complementaria a la adaptación de técnicas conocidas, que-

remos investigar la definición de nuevos predictores basados en modelos de la Teoría 

de Información y Grafos Sociales, además de otras aproximaciones heurísticas y es-

pecíficas del dominio. Una vez hayamos definido algunos predictores de eficacia para 

recomendación, evaluaríamos la efectividad de dichos predictores en términos de su 

correlación con métricas de eficacia de manera que pudiéramos estimar su poder de 

predicción. 

O3: Aplicación de predictores de eficacia a sistemas de recomendación 

compuestos e híbridos. Queremos identificar e integrar los predictores propuestos 

en métodos de recomendación combinados para obtener una mejora real en la efica-

cia de los métodos combinados. Con este objetivo en mente consideraremos pro-

blemas donde la agregación de métodos de recomendación es necesaria, y analizare-

mos cómo aplicar los predictores de eficacia mencionados antes a tales problemas. 

Además, deberíamos realizar un estudio metodológico para la aproximación experi-

mental, su configuración y las métricas usadas, de manera que se usen métodos base 

y diseños experimentales apropiados. Finalmente, evaluaremos las mejoras y benefi-

cios de los métodos combinados cuando se utilizan los predictores de eficacia. 

B.3 Contribuciones 

Esta tesis se dedica al problema de estimar la eficacia de los sistemas de recomenda-

ción para usuarios e ítems particulares. Las contribuciones particulares de esta tesis 

están relacionados con la evaluación de la eficacia de un sistema de recomendación y 

la predicción de la misma, donde hemos abordado varios problemas relacionados 

con ambos temas y hemos propuesto modelos y métodos novedosos, que han sido 

empleados en dos aplicaciones como mostraremos a continuación. 

Como un primer paso, esta tesis analiza el paradigma Cranfield de evaluación de 

Recuperación de Información, dado que los sistemas de recomendación normalmen-

te se consideran como un problema particular del filtrado de información, y, por 

tanto, de la recuperación de información en general (Belkin and Croft, 1992). En el 

Capítulo 4 argumentamos las diferencias involucradas en las alternativas de 
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diseños experimentales a partir de las hipótesis habituales hechas en el para-

digma Cranfield, lo cual resulta en la aparición de sesgos estadísticos conside-

rables en Sistemas de Recomendación, para los que proponemos diferentes 

métodos para neutralizar estos sesgos. De manera adicional, las siguientes contri-

buciones relacionadas han sido realizadas: 

 Proponemos una caracterización precisa y sistemática de las alternativas para la 

adaptación del paradigma Cranfield a tareas de recomendación. Identificamos 

hipótesis y condiciones subyacentes en dicho paradigma Cranfield que no pue-

den ser asumidas en los experimentos habituales de recomendación. 

 Detectamos y caracterizamos los sesgos estadísticos resultantes, a saber, la dis-

persión de test y la popularidad de los ítems, los cuales no aparecen en colec-

ciones de test habituales en RI, pero que interfieren en experimentos de reco-

mendación. 

 Proponemos dos diseños experimentales nuevos para neutralizar estos sesgos. 

Observamos que una evaluación basada en percentiles reduce considerable-

mente el margen para el sesgo de popularidad, mientras que una aproximación 

basada en un test uniforme elimina cualquier ventaja estadística obtenida por 

tener más puntuaciones positivas de test. Más aún, encontramos que las dos 

propuestas discriminan bien entre recomendaciones puramente basadas en po-

pularidad y un algoritmo de recomendación personalizado. 

Además, en esta tesis mostramos cómo las técnicas de predicción de eficacia 

de consultas desarrolladas en Recuperación de Información pueden ser adap-

tadas a los Sistemas de Recomendación, y resultar en predictores eficaces en 

este dominio. Presentamos estos predictores de eficacia en el Capítulo 6, donde pro-

ponemos distintas adaptaciones del predictor de claridad de consulta basadas en dis-

tintas interpretaciones de los modelos de lenguaje subyacentes, así como con modelos 

de Teoría de Información y de Grafos Sociales. Más aún, en el mismo capítulo eva-

luamos la efectividad de dichos predictores midiendo la correlación con res-

pecto a métricas de eficacia, donde también probamos los métodos propuestos en 

el Capítulo 4 para neutralizar los sesgos en la evaluación. A continuación resumimos 

las contribuciones específicas respecto a la predicción de eficacia para recomendación: 

 Definimos y elaboramos varios modelos predictivos en el dominio de los siste-

mas de recomendación de acuerdo a diferentes formulaciones e hipótesis, y ba-

sados en tres tipos de datos de preferencia: puntuaciones, registros y sociales. 

 Las formulaciones para preferencias en base a puntuaciones se basan en adap-

taciones de la claridad de consulta de RI y conceptos de Teoría de la Informa-

ción como la entropía. En esta adaptación proponemos distintas estimaciones 
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de probabilidad, donde desarrollamos derivaciones Bayesianas y estimaciones 

no parámetricas. 

 También explotamos atributos temporales al definir los predictores basados en 

registros. Más específicamente, usamos una versión sensible al tiempo de la di-

vergencia de Kullback-Leibler, junto con otros conceptos de series temporales 

como la autocorrelación del usuario. 

 Usamos métricas basadas en Teoría de Grafos para definir predictores que 

aprovechan las estructuras de red social y las correlaciones entre las propieda-

des topológicas de los usuarios y el éxito de las recomendaciones devueltas. 

 Encontramos fuertes correlaciones entre las salidas de los predictores y las 

métricas de eficacia, mostrando por tanto evidencia empírica del poder predic-

tivo de las técnicas propuestas. Más aún, cuando se utilizan las metodologías 

no sesgadas los predictores conservan buenos valores de correlación, eviden-

ciando que los predictores propuestos no están sólo capturando los sesgos ana-

lizados y beneficiándose de los mismos, especialmente cuando los comparamos 

frente a otros predictores triviales. 

Finalmente, los Capítulos 7 y 8 presentan dos aplicaciones de los predictores de 

eficacia en Sistemas de Recomendación. En el Capítulo 7 proponemos varios sis-

temas híbridos ponderados linealmente donde las ponderaciones se ajustan 

dinámicamente de acuerdo a la salida de los predictores. Observamos que las 

correlaciones obtenidas en el Capítulo 6 ayudan a decidir cuáles son las mejores 

combinaciones a experimentar. Más importante aún, la correlación entre el predic-

tor y el algoritmo de recomendación tiende a anticipar bien cuándo un siste-

ma híbrido mejorará con respecto a un método base. Además, el Capítulo 8 pre-

senta un marco unificado donde los predictores de eficacia se usan para se-

leccionar y ponderar los vecinos cercanos en un algoritmo estándar de filtrado 

colaborativo basado en usuario. La metodología tradicional de predicción de efica-

cia es adaptada y traducida a este problema, donde definimos novedosas métricas 

sobre la eficacia de vecinos y evaluamos el poder predictivo de los predictores. 

Las contribuciones relacionadas con la parte de aplicaciones de la tesis son, en 

resumen, las siguientes: 

 Proponemos un marco de hibridación dinámica para decidir automáticamente 

cuándo y cómo debería realizarse la hibridación, dependiendo de distintas con-

diciones, a saber: las correlaciones entre los algoritmos de recomendación y los 

predictores, y la eficacia relativa entre los algoritmos combinados. 

 En varios experimentos con los predictores de eficacia mencionados previa-

mente, nuestros resultados indican que una fuerte correlación con la eficacia 
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tiende a corresponder con mejoras en la recomendación híbrida dinámica 

cuando los predictores se usan para ajustar los pesos de la combinación. 

 Proponemos un marco teórico para la selección y ponderación de vecinos en 

sistemas de recomendación basados en usuarios. Este marco se fundamenta en 

la predicción de eficacia estableciendo equivalencias entre la tarea de predicción 

de puntuaciones basada en vecindarios y una agregación dinámica de compo-

nentes, en este caso, las predicciones de cada vecino. 

 Comparamos varias métricas de confianza del estado del arte así como otras 

técnicas para valorar vecinos, interpretadas ambas como predictores de eficacia 

de vecinos. También proponemos varias métricas de eficacia de vecinos que 

capturan diferentes nociones de la calidad de los vecinos. 

B.4 Publicaciones relacionadas con la tesis 

En los siguientes artículos de revistas y conferencias internacionales presentamos 

descripciones, resultados y conclusiones relacionadas con esta tesis: 

Predicción de eficacia y evaluación 

1. Bellogín, A., Cantador, I., Díez, F., Castells, P., and Chavarriaga, E. (2012). 

An empirical comparison of social, collaborative filtering, and hybrid recom-

menders. ACM Transactions on Intelligent Systems and Technology, por aparecer. 

2. Bellogín, A., Castells, P., and Cantador, I. (2011). Predicting the Performance 

of Recommender Systems: An Information Theoretic Approach. In Amati, 

G. and Crestani, F., editors, ICTIR, volume 6931 of Lecture Notes in Computer 

Science, pages 27–39, Berlin, Heidelberg. Springer Berlin / Heidelberg. 

3. Bellogín, A., Castells, P., and Cantador, I. (2011). Self-adjusting hybrid re-

commenders based on social network analysis. In Proceedings of the 34th interna-

tional ACM SIGIR conference on Research and development in Information, SIGIR ‟11, 

pages 1147–1148, New York, NY, USA. ACM. 

4. Bellogín, A., Castells, P., and Cantador, I. (2011). Precision-oriented evalua-

tion of recommender systems: an algorithmic comparison. In Proceedings of the 

fifth ACM conference on Recommender systems, RecSys ‟11, pages 333–336, New 

York, NY, USA. ACM. 

5. Bellogín, A. and Castells, P. (2010). A Performance Prediction Approach to 

Enhance Collaborative Filtering Performance. In Gurrin, C., He, Y., Kazai, 

G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., and Rijsbergen, editors, 
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Advances in Information Retrieval, volume 5993 of Lecture Notes in Computer Sci-

ence, pages 382–393, Berlin, Heidelberg. Springer Berlin / Heidelberg. 

6. Bellogín, A. and Castells, P. (2009). Predicting neighbor goodness in collabo-

rative filtering. In And, T. A., Yager and, R. R., And, H. B., And, H. C., and 

Larsen, H. L., editors, FQAS, volume 5822 of Lecture Notes in Computer Science, 

pages 605–616, Berlin, Heidelberg. Springer Berlin / Heidelberg. 

Recomendación basada en contenido 

7. Cantador, I., Bellogín, A., and Vallet, D. (2010). Content-based recommenda-

tion in social tagging systems. In Proceedings of the fourth ACM conference on Re-

commender systems, RecSys ‟10, pages 237–240, New York, NY, USA. ACM. 

8. Cantador, I., Bellogín, A., and Castells, P. (2008). News@hand: A Semantic 

Web Approach to Recommending News. In Nejdl, W., Kay, J., Pu, P., and 

Herder, E., editors, Adaptive Hypermedia and Adaptive Web-Based Systems, vol-

ume 5149 of Lecture Notes in Computer Science, chapter 34, pages 279–283. 

Springer Berlin / Heidelberg, Berlin, Heidelberg. 

9. Cantador, I., Bellogín, A., and Castells, P. (2009). Ontology-Based Personal-

ised and Context-Aware Recommendations of News Items. In Web Intelligence 

and Intelligent Agent Technology, 2008. WI-IAT ’08. IEEE/WIC/ACM Interna-

tional Conference on, volume 1, pages 562–565. 

10. Cantador, I., Bellogín, A., Fernández-Tobías, I., and López-Hernández, S. 

(2011a). Semantic Contextualisation of Social Tag-Based Profiles and Item 

Recommendations. In Huemer, C., Setzer, T., Aalst, W., Mylopoulos, J., 

Sadeh, N. M., Shaw, M. J., Szyperski, C., Aalst, W., Mylopoulos, J., Sadeh, N. 

M., Shaw, M. J., and Szyperski, C., editors, Electronic Commerce and Web Tech-

nologies, volume 85 of Lecture Notes in Business Information Processing, chapter 9, 

pages 101–113. Springer Berlin Heidelberg, Berlin, Heidelberg. 

11. Fernández-Tobías, I., Cantador, I., and Bellogín, A. (2011). cTag: Semantic 

contextualisation of social tags. In Proceedings of the Workshop on Semantic Adap-

tive Social Web (SASWeb 2011). CEUR Workshop Proceedings, vol. 730, pages 45–

54. RWTH, Aachen (2011). 

Recomendación basada en filtrado colaborativo 

12. Bellogín, A., Wang, J., and Castells, P. Bridging Memory-Based Collaborative 

Filtering and Text Retrieval. Information Retrieval Journal, por aparecer. 

13. Bellogín, A., Cantador, I., and Castells, P. A Comparative Study of Heteroge-

neous Item Recommendations in Social Systems. Information Sciences, por 

aparecer. 
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14. Bellogín, A. and Parapar, J. (2012). Using Graph Partitioning Techniques for 

Neighbour Selection in User-Based Collaborative Filtering. In Proceedings of the 

sixth ACM conference on Recommender systems, RecSys ‟12, pages 213–216, New 

York, NY, USA. ACM. (premio al mejor artículo corto) 

15. Bellogín, A., Wang, J., and Castells, P. (2011). Structured collaborative filter-

ing. In Proceedings of the 20th ACM international conference on Information and knowl-

edge management, CIKM ‟11, pages 2257–2260, New York, NY, USA. ACM. 

16. Bellogín, A., Wang, J., and Castells, P. (2011). Text Retrieval Methods for 

Item Ranking in Collaborative Filtering. In Clough, P., Foley, C., Gurrin, C., 

Jones, G., Kraaij, W., Lee, H., and Mudoch, V., editors, Advances in Information 

Retrieval, volume 6611 of Lecture Notes in Computer Science, chapter 30, pages 

301–306. Springer Berlin / Heidelberg, Berlin, Heidelberg. 

17. Bellogín, A., Cantador, I., and Castells, P. (2010). A study of heterogeneity in 

recommendations for a social music service. In Proceedings of the 1st International 

Workshop on Information Heterogeneity and Fusion in Recommender Systems, HetRec 

‟10, pages 1–8, New York, NY, USA. ACM. 

Recomendación basada en filtrado social 

18. Díez, F., Chavarriaga, J. E., Campos, P. G., and Bellogín, A. (2010). Movie 

recommendations based in explicit and implicit features extracted from the 

Filmtipset dataset. In Proceedings of the Workshop on Context-Aware Movie Recom-

mendation, CAMRa ‟10, pages 45–52, New York, NY, USA. ACM. 

Recomendación sensible al tiempo 

19. Campos, P. G., Bellogín, A., Díez, F., and Cantador, I. (2012). Time Feature 

Selection for Identifying Active Household Members. In Proceedings of the 21st 

ACM international conference on Information and knowledge management, CIKM ‟12, 

New York, NY, USA. ACM (por aparecer). 

20. Campos, P. G., Díez, F., and Bellogín, A. (2011). Temporal rating habits: a 

valuable tool for rating discrimination. In Proceedings of the 2nd Challenge on Con-

text-Aware Movie Recommendation, CAMRa ‟11, pages 29–35, New York, NY, 

USA. ACM. 

21. Campos, P. G., Bellogín, A., Díez, F., and Chavarriaga, J. E. (2010). Simple 

time-biased KNN-based recommendations. In Proceedings of the Workshop on 

Context-Aware Movie Recommendation, CAMRa ‟10, pages 20–23, New York, 

NY, USA. ACM. 
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Sístemas de recomendación híbridos 

22. Cantador, I., Castells, P., and Bellogín, A. (2011). An enhanced semantic layer 

for hybrid recommender systems. International Journal on Semantic Web and In-

formation Systems, 7(1):44–78. 

23. Cantador, I., Bellogín, A., and Castells, P. (2008). A multilayer ontology-

based hybrid recommendation model. AI Commun., 21(2-3):203–210. 

24. Cantador, I., Castells, P., and Bellogín, A. (2007). Modelling Ontology-based 

Multilayered Communities of Interest for Hybrid Recommendations. In 

Workshop on Adaptation and Personalisation in Social Systems: Groups, Teams, Com-

munities, at the 11th International Conference on User Modeling. 

Evaluación de la recomendación 

25. Bellogín, A., Cantador, I., Castells, P., and Ortigosa, A. (2011). Discerning 

Relevant Model Features in a Content-based Collaborative Recommender 

System. In Fürnkranz, J. and Hüllermeier, E., editors, Preference Learning, chap-

ter 20, pages 429–455. Springer Berlin Heidelberg, Berlin, Heidelberg. 

26. Bellogín, A., Cantador, I., Castells, P., and Ortigosa, A. (2008). Discovering 

Relevant Preferences in a Personalised Recommender System using Machine 

Learning Techniques. In Preference Learning Workshop (PL 2008), at the 8th Euro-

pean Conference on Machine Learning and Principles and Practice of Knowledge Discovery 

in Databases (ECML PKDD 2008), pages 82–96. 

Estas publicaciones se relacionan con los contenidos de esta tesis como sigue. En 

[4] analizamos diferentes metodologías de evaluación existentes en la literatura de 

recomendación (Capítulos 3 y 4). En [2], [5], [6] definimos las formulaciones para el 

concepto de claridad de usuario basada en puntuaciones (Capítulo 6), mientras que en 

[1] y [3] definimos los predictores sociales (también en el Capítulo 6). Además, en [1] y 

[3] también investigamos el uso de los predictores de eficacia para recomendaciones 

híbridas dinámicas (Capítulo 7). Más aún, en [5] y [6] abordamos el problema de la 

ponderación de vecinos basada en los predictores de eficacia de vecinos (Capítulo 8). 

Además, durante el transcurso de la tesis, la investigación presentada aquí motivó 

una serie de publicaciones que abordaban temas más amplios en el área, como las 

recomendaciones basadas en contenido [7-11], el filtrado colaborativo [12-17], las 

técnicas de filtrado social [18], la recomendación sensible al tiempo [19-21], los sis-

temas de recomendación híbrida [22-24], y la evaluación de la recomendación [25, 

26]. Estas publicaciones han resultado en el uso y construcción de conjuntos de da-

tos, el desarrollo de algoritmos y la investigación y utilización de algunas metodolog-

ías y métricas de evaluación que aparecen en esta tesis. 
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Publicaciones adicionales 

Trabajo preliminar relacionado con las propuestas presentadas aquí fue incluido en 

primer lugar en la tesis de Máster titulada “Performance prediction in recommender 

Systems: Application to the dynamic optimisation of aggregative methods” (Bellogín, 

2009). Específicamente, en dicho trabajo proponemos el concepto de predicción de 

eficacia para recomendación. Además, la motivación, el potencial impacto y los prin-

cipales resultados de nuestra investigación fueron publicados como contribuciones 

en dos simposios doctorales internacionales: 

 Bellogín, A. (2011). Predicting performance in recommender systems. Doctoral 

Symposium. In Proceedings of the fifth ACM conference on Recommender systems, Rec-

Sys ‟11, pages 371–374, New York, NY, USA. ACM. 

 Bellogín, A. (2011). Performance Prediction in Recommender Systems. Doc-

toral Symposium. In Konstan, J., Conejo, R., Marzo, J., and Oliver, N., editors, 

User Modeling, Adaption and Personalization, volume 6787 of Lecture Notes in Com-

puter Science, pages 401–404, Berlin, Heidelberg. Springer Berlin / Heidelberg. 

Además, los siguientes artículos están bajo revisión, algunos de ellos altamente 

relacionados con los temas de la tesis: 

 Bellogín, A., Castells, P., and Cantador, I. Statistical Biases in IR Metrics for 

Recommender Systems: A Methodological Framework for the Adaptation of 

the Cranfield Paradigm. En revisión. 

 Bellogín, A., Castells, P., and Cantador, I. Neighbour Selection and Weighting 

in User-Based Recommender Systems: A Performance Prediction Approach. 

En revisión. 

 Parapar, J., Bellogín, A., Castells, P., and Barreiro, Á. Relevance-Based Lan-

guage Modelling for Recommender Systems. En revisión. 

B.5 Estructura de la tesis 

La tesis está dividida en seis partes. La primera parte presenta y motiva el problema 

abordado, así como una revisión del estado del arte en el campo de los Sistemas de 

Recomendación donde esta tesis se enmarca. La segunda parte describe las diferentes 

técnicas de evaluación usadas en la literatura de sistemas de recomendación, y provee 

un análisis de las alternativas de diseño y los sesgos estadísticos que pueden aparecer. 

La tercera parte hace una revisión de la literatura en predicción de eficacia, propone 

adaptaciones de este concepto al espacio de los sistemas de recomendación, y evalúa 

el poder predictivo de estas propuestas. La cuarta parte muestra dos aplicaciones de 

los predictores de eficacia propuestos. La quinta parte concluye y resume las princi-
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pales contribuciones de esta tesis. Información adicional y otros detalles se incluyen 

en la última parte. 

Más detalladamente, los contenidos de esta tesis se distribuyen como sigue: 

Parte I. Introducción 

 El Capítulo 1 presenta la motivación, objetivos, contribuciones y publicacio-

nes relacionadas con la tesis. 

 El Capítulo 2 presenta una visión general del estado del arte en sistemas de re-

comendación, teniendo en cuenta una clasificación de los principales tipos de 

técnicas. También describe los puntos débiles de las distintas técnicas de reco-

mendación y presenta una amplia gama de métodos híbridos de recomenda-

ción que ayudan a superar esas limitaciones. 

Parte II. Evaluando la Eficacia en los Sistemas de Recomendación 

 El Capítulo 3 describe las principales métricas y metodologías de evaluación 

usadas en el campo de los sistemas de recomendación. También describe los 

conjuntos de datos públicos más habitualmente usados. 

 El Capítulo 4 presenta un análisis y formalización de las diferentes metodolog-

ías de evaluación descritas en la literatura. Primero, presenta una caracteriza-

ción sistemática de las alternativas de diseños experimentales. Después identifi-

ca y analiza sesgos estadísticos que aparecen cuando algunas metodologías se 

aplican a recomendación, y propone dos diseños experimentales alternativos 

que neutralizan tales sesgos satisfactoriamente. 

Parte III. Prediciendo la Eficacia en los Sistemas de Recomendación 

 El Capítulo 5 presenta el problema de predicción de eficacia en Recuperación 

de Información, incluye un resumen de los principales trabajos en dicha área, 

tanto en la definición de predictores de eficacia (aplicados a consultas) como 

en la evaluación de los predictores para estimar su poder predictivo. 

 El Capítulo 6 formula el problema de predicción de eficacia en los Sistemas de 

Recomendación. Define varios predictores de eficacia basados en tres dimen-

siones de la recomendación donde analizamos de manera cualitativa el poder 

predictivo de los predictores. 

Parte IV. Aplicaciones 

 El Capítulo 7 propone un marco donde los predictores de eficacia se usan pa-

ra construir sistemas de recomendación híbridos dinámicos. Evalua estos algo-

ritmos de recomendación en los tres espacios de entrada previamente conside-

rados en la definición de los predictores de eficacia, y usa las distintas alternati-

vas de diseño experimental donde algunos sesgos estadísticos han sido neutra-

lizados. 
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 El Capítulo 8 reformula el problema de recomendación basado en usuarios, 

dando una generalización del mismo como un problema de predicción de efi-

cacia. Investiga cómo adoptar dicha generalización para definir un marco unifi-

cado donde podamos realizar un análisis objetivo de la efectividad (poder pre-

dictivo) de las funciones de valoración de los vecinos. 

Parte V. Conclusiones 

 El Capítulo 9 concluye con un resumen de las principales contribuciones de 

esta tesis y una discusión sobre las líneas de investigación futuras. 

Parte VI. Apéndices 

 El Apéndice A da detalles sobre los métodos propuestos en esta tesis: confi-

guración de los algoritmos de recomendación y los parámetros de los diseños 

experimentales usados en la evaluación. También reporta estadísticas detalladas 

sobre los conjuntos de datos utilizados en los experimentos, complementando 

otros datos incluidos en capítulos previos. 

 El Apéndice B contiene la traducción a español del Capítulo 1. 

 El Apéndice C contiene la traducción a español del Capítulo 9. 

 

 

 



 

 

 

Appendix C 

C Conclusiones y trabajo futuro 

En esta tesis hemos investigado cómo medir y predecir la eficacia de sistemas de re-

comendación. Hemos analizado y propuesto un conjunto de métodos basados en la 

adaptación de predictores de eficacia desde el área de Recuperación de Información – 

principalmente el predictor de claridad de consulta, que captura la ambigüedad de una 

consulta con respecto a una colección de documentos dada. Hemos definido varios 

modelos de lenguaje utilizando distintos espacios de probabilidad para capturar los 

aspectos de los usuarios e ítems implicados en las tareas de recomendación. En este 

contexto, hemos propuesto y evaluado técnicas novedosas para distintos espacios de 

entrada extraídas de la Teoría de la Información y la Teoría de Grafos Sociales, usan-

do propiedades sobre las preferencias de usuario así como métricas de grafos, como 

PageRank sobre la red social del usuario. 

Más aún, dado que queremos predecir la eficacia de un sistema de recomenda-

ción particular, necesitamos una metodología de evaluación clara con la cual las pre-

dicciones de eficacia puedan ser contrastadas. Así, en esta tesis investigamos la meto-

dología de evaluación como parte del problema abordado, donde hemos identificado 

sesgos estadísticos en la evaluación de la recomendación – a saber, sesgos de disper-

sión en test y popularidad – los cuales pueden distorsionar las medidas de eficacia, y 

por tanto, confundir el poder aparente de los métodos de predicción de eficacia. 

Hemos analizado en profundidad el efecto de dichos sesgos, y hemos propuesto dos 

diseños experimentales capaces de neutralizar el sesgo de popularidad: una técnica 

basada en percentiles y un test uniforme. El análisis sistemático de las metodologías 

de evaluación y las nuevas variantes propuestas permiten una valoración más comple-

ta y precisa de la eficiencia de nuestros métodos de predicción de eficacia. 

Por otro lado, hemos explotado los métodos propuestos de predicción de efica-

cia en dos aplicaciones donde se usan para ponderar dinámicamente distintos com-

ponentes de un sistema de recomendación, a saber, el ajuste dinámico de recomenda-

ciones híbridas ponderadas, y la ponderación dinámica de las preferencias de los ve-

cinos en filtrado colaborativo basado en usuario. A través de una serie de experimen-

tos empíricos con varios conjuntos de datos y diseños experimentales, hemos encon-

trado una correspondencia entre el poder predictivo de nuestros predictores de efica-

cia y la mejora en eficacia de las dos aplicaciones evaluadas. 

Presentamos aquí las conclusiones principales obtenidas en este trabajo de inves-

tigación. La Sección C.1 muestra un resumen y discusión de nuestras contribuciones, 

mientras que en la Sección C.2 mostramos vías de investigación que puedan ser 

abordadas como trabajo futuro.  
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C.1 Resumen y discusión de las contribuciones 

En las siguientes subsecciones resumimos y discutimos las principales contribuciones 

de esta tesis, abordando los objetivos enunciados en el Capítulo 1. Estas contribucio-

nes están organizadas de acuerdo a los tres objetivos principales de la tesis. Primero 

hemos analizado cómo evaluar adecuadamente los sistemas de recomendación para 

obtener medidas no sesgadas de su eficacia. Segundo hemos propuesto predictores de 

eficacia que tratan de estimar la eficacia de un método de recomendación. Y tercero 

hemos usado los predictores de eficacia propuestos para combinar dinámicamente 

componentes de un sistema de recomendación. 

C.1.1 Análisis de la definición y evaluación de la eficacia 

en sistemas de recomendación 

Hemos analizado distintas alternativas de diseño experimental disponibles en la lite-

ratura para sistemas de recomendación, orientados, en particular, a la evaluación ba-

sada en rankings, y hemos mostrado que las hipótesis y condiciones subyacentes 

al paradigma Cranfield no se pueden asumir en los entornos habituales de 

recomendación. Específicamente, hemos detectado sesgos estadísticos que aparecen 

al aplicar dicho paradigma a la evaluación de sistemas de recomendación. Hemos 

mostrado que el valor específico de la métrica de evaluación es útil en términos com-

parativos, pero no tiene un sentido particular en términos absolutos. Hemos mostra-

do que la precisión decrece linealmente con la dispersión de los ítems relevantes 

(sesgo de dispersión) al usar la metodología de evaluación AR, mientras que no 

sufre de este sesgo al usar la estrategia 1R. 

También hemos observado que un algoritmo de recomendación no personaliza-

do basado en la popularidad de los ítems obtiene valores de eficacia altos, y hemos 

mostrado y analizado en detalle cómo y por qué esto es debido a un sesgo de popu-

laridad en la metodología experimental. Para abordar estos problemas, en esta tesis 

hemos propuesto técnicas experimentales novedosas que neutralizan satisfac-

toriamente el sesgo de popularidad. 

C.1.2 Definiciones y adaptaciones de predictores de 

eficacia para sistemas de recomendación 

En esta tesis hemos definido y elaborado predictores de eficacia en el contexto de 

recomendación, normalmente tomando al usuario como el objeto de la predicción, 

pero también considerando los ítems como entradas alternativas para la predicción. 

Específicamente, hemos adaptado el predictor de eficacia de consulta conocido como 

claridad tomando distintas hipótesis y formulaciones para obtener diferentes variaciones 
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de los predictores de claridad del usuario. También hemos usado conceptos relacio-

nados con la Teoría de la Información como la entropía, métricas de grafos como la 

centralidad, PageRank y HITS, y otras técnicas heurísticas y específicas del dominio. 

Hemos definido estos predictores basándonos en tres espacios de entrada para las pre-

ferencias de los usuarios: puntuaciones, registros y redes sociales. Sobre puntuacio-

nes y registros hemos definido varios modelos de lenguaje y espacios de vocabulario de 

tal manera que nuestras adaptaciones de claridad capturen distintos aspectos del usua-

rio en una formulación unificada para ambos espacios de entrada. Dentro del mismo 

marco, hemos introducido la dimensión temporal en los datos de preferencia basados 

en registros, considerando y elaborando predictores de eficacia basados en tiempo 

propuestos en trabajos sobre búsqueda ad-hoc previos en el área de RI. 

Además, hemos definido predictores basados en ítems cuando se usan prefe-

rencias basadas en puntuaciones, los cuales intentan estimar la eficacia de los objetos 

en consideración (siendo más precisos, la eficacia de un sistema de recomendación 

cuando sugiere dichos ítems). Aquí el principal problema consiste en cómo definir una 

métrica de eficacia real de manera que un predictor intente estimarla, ya que los ítems 

no son la entrada principal del proceso de recomendación. Por esta razón, hemos 

desarrollado metodologías novedosas donde la eficacia de un ítem pueda ser medida, 

también considerando posibles sesgos que pudieran aparecer cuando usuarios con 

muchas puntuaciones pueden distorsionar los resultados por razones estadísticas. 

Hemos evaluado el acierto predictivo de nuestros métodos calculando la correla-

ción entre la eficacia estimada y la real, siguiendo la práctica estándar en la literatura 

de predicción de eficacia en RI. De esta manera, hemos usado las metodologías no 

sesgadas analizadas a lo largo de esta tesis para comparar cómo se comportan los 

predictores cuando los sesgos de dispersión y popularidad han sido neutrali-

zados. Hemos encontrado fuertes valores de correlación confirmando que nuestras 

técnicas muestran un poder predictivo significativo. 

C.1.3 Ponderación dinámica en sistemas de 

recomendación 

La combinación de algoritmos de recomendación es frecuente en la literatura de los 

Sistemas de Recomendación, en especial lo que se conoce como conjuntos de algo-

ritmos de recomendación (ensembles), que son un tipo particular de métodos de reco-

mendación híbrida donde se combinan varios algoritmos, y que actualmente son muy 

comunes en el área, tal y como se puede comprobar en competiciones recientes 

(Bennett and Lanning, 2007; Dror et al., 2012). El filtrado colaborativo, una de las 

técnicas más usadas dentro de la colección de estrategias de recomendación, también 

se puede ver como una combinación de varias subfunciones de utilidad, cada una 

correspondiendo a un vecino (en un filtrado basado en usuario). De la misma manera 
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que los predictores de eficacia en Recuperación de Información se han usado para 

optimizar la agregación de rankings, nosotros hemos investigado el uso de predicto-

res de eficacia en recomendación para agregar dinámicamente la salida de los algo-

ritmos de recomendación y los vecinos. 

Hemos definido un marco de hibridación dinámica donde los conjuntos de al-

goritmos de recomendación pueden beneficiarse de las ponderaciones dinámicas de 

acuerdo a los predictores de eficacia con los que muestran correlaciones altas. Nues-

tros resultados indican que correlaciones altas con la eficacia tienden a corresponder 

con mejoras en los algoritmos de recomendación híbridos dinámicos. Además, los 

conjuntos dinámicos de recomendación han mostrado mejor eficacia que los conjun-

tos estáticos para distintas combinaciones de algoritmos y en los tres tipos de predic-

tores de eficacia investigados. 

Por otro lado, también hemos propuesto un marco para la selección y ponde-

ración de vecinos en sistemas de filtrado colaborative basados en usuario. Hemos 

definido predictores y métricas de eficacia de vecinos adaptando e integrando algu-

nos de los métodos de la literatura en recomendación sensibles a la confianza de 

usuarios. Nuestro marco unifica varias nociones de eficacia de vecinos bajo la misma 

forma, y presenta un análisis objetivo del poder predictivo de diferentes funciones de 

valoración de vecinos. Una vez el poder predictivo de estos predictores de vecinos ha 

sido confirmado, usamos dichos métodos para ponderar la información que proviene 

de cada vecino de manera dinámica, experimentando con distintas estrategias para la 

combinación de valores de similitud y pesos de los vecinos. Nuestros experimentos 

confirman una correspondencia entre los análisis de correlación y los resultados fina-

les de eficacia, en el sentido de que los valores de correlación obtenidos entre los 

predictores y las métricas de eficacia de vecinos anticipan qué predictores obtendrán 

mejor eficacia cuando se introduzcan en un algoritmo de filtrado colaborativo basado 

en usuarios. 

C.2 Trabajo futuro 

La predicción de eficacia en recomendación es un área interesante de investigación 

también desde una perspectiva de negocio, ya que podríamos decidir cuándo entregar 

las recomendaciones al usuario, evitando disminuir la confianza de los usuarios sobre 

la relevancia de las sugerencias del sistema. En este sentido, las predicciones pueden 

dar un control al proveedor de servicios, un control que podría usarse potencialmen-

te de varias maneras, incluyendo una combinación de métodos más general que la 

que se ha abordado en esta tesis. Independientemente de cualquier aplicación plausi-

ble para la industria, y más allá de los logros presentados a lo largo de esta tesis, con-

templamos las líneas de investigación futuras que describimos a continuación. 
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La evaluación de los sistemas de recomendación es aún un objeto de investiga-

ción activa en el campo, donde varias cuestiones requieren atención, como el vacío 

entre experimentos en línea (online) y de fuera de línea (offline). No obstante, en esta 

tesis hemos enfocado nuestra investigación en aspectos relacionados con la predic-

ción de eficacia, lo cual requiere un conocimiento más profundo de las metodologías 

de evaluación utilizadas. De esta manera, podríamos extender nuestro análisis de 

las metodologías de evaluación a otras métricas de ranking, como a aquellas 

basadas en dos listas de recomendaciones (NDPM y las correlaciones de Spearman y 

Kendall) o a aquellas adaptadas de Aprendizaje Automático (por ejemplo, el área bajo 

la curva o AUC en inglés). De esta manera, podríamos encontrar que alguna de estas 

métricas no está influida por ninguno de los sesgos descritos en el Capítulo 4, o que 

ninguno de los diseños alternativos propuestos es capaz de neutralizar esos efectos. 

Como un ejemplo del interés de este tema, recientemente en (Pradel et al., 2012) los 

autores analizaron los efectos de popularidad sobre la métrica AUC, y encontraron 

que considerar los datos no puntuados como información negativa durante el entre-

namiento podría mejorar la eficacia, pero también podría favorecer a los algoritmos 

de recomendación basados en popularidad con respecto a los personalizados. 

Además, sería beneficioso para nuestra investigación ser capaces de validar la uti-

lidad de las medidas no sesgadas de eficacia con evaluaciones en línea. Esto sería 

valioso para tener una valoración comparativa con las observaciones fuera de línea 

que hemos obtenido, así como un conocimiento más profundo de la magnitud por la 

cual la popularidad puede ser o no una señal ruidosa. Tal estudio de usuario nos ayu-

daría a determinar los beneficios reales (si los hubiera) de recibir recomendaciones 

populares, ya que, por ejempo, por definición estas sugerencias no serían novedosas 

ni probablemente causales o diversas. 

En el Capítulo 6 hemos propuesto varios predictores de eficacia para recomenda-

ción basados en los mismos principios de aquellos denominados como predictores 

pre-búsqueda en Recuperación de Información, como la claridad, donde la salida del 

algoritmo de búsqueda (o de recomendación en nuestro caso) no es usada por el pre-

dictor. Teniendo en cuenta nuestros resultados, las posibilidades para investigar más 

predictores de eficacia en recomendación son abundantes. En esta línea, varios auto-

res han explotado la combinación de predictores para obtener valores de corre-

lación mayores y un poder predictivo mayor, como (Hauff et al., 2009) y (Jones 

and Diaz, 2007), donde se han usado regresión penalizada y regresión lineal con 

aprendizaje mediante redes neuronales, respectivamente. En esos trabajos la combina-

ción de predictores de distinta naturaleza mejoró la correlación con respecto a una 

métrica de evaluación objetivo – en este caso, la precisión promedio. Por ello, cree-

mos que la combinación de predictores puede ser válida también para recomendación, 

especialmente sabiendo que hemos definido predictores basados en diferentes tipos 

de datos de los que se espera baja redundancia entre ellos y, por tanto, que dicha 
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combinación pueda producir correlaciones mayores. Ejemplos de tales combinaciones 

podrían ser la mezcla de dimensiones sociales y temporales, los predictores temporales 

basados en ítems, u otras dimensiones contextuales no abordadas en esta tesis. 

Más aún, una futura investigación podría analizar y adaptar también a los sis-

temas de recomendación predictores de eficacia post-búsqueda definidos en la 

literatura de RI, como por ejemplo aquellos basados en el análisis de la distribución 

de las puntuaciones de los ítems recomendados a cada usuario. Esto podría conseguir 

predictores con correlaciones más fuertes y, por tanto, con mayor poder predictivo 

de la eficacia de los algoritmos de recomendación, como ocurre en RI donde los pre-

dictores post-búsqueda normalmente obtienen valores de correlación mayores que 

los pre-búsqueda. La principal limitación de este tipo de predictores es que no pue-

den ser usados directamente para adaptar la salida de los algoritmos de recomenda-

ción, ya que normalmente se requiere la salida completa – es decir, el ranking – para 

el cálculo de los valores del predictor. Esto obligaría a pensar en distintas aplicacio-

nes donde este tipo de predictores pudieran ser usados en recomendación. 

Una dirección particular digna de ser considerada y también relacionada con el 

Capítulo 6, sería el uso de técnicas de evaluación alternativas más allá de las métri-

cas de correlación, como aquellas basadas en el agrupamiento entre los valores de 

eficacias reales y estimados (ver Sección 5.4.2). En nuestro trabajo nos hemos centra-

do en el uso de métricas de correlación, principalmente la correlación de Pearson. 

Estas métricas tienen limitaciones bien conocidas, como su sensibilidad a los valores 

extremos y correlaciones no significativas cuando se usan un número pequeño de 

puntos. Por esta razón, se han propuesto otras técnicas para evaluar el poder predicti-

vo de los predictores. Hemos de notar, sin embargo, que el uso de una técnica particu-

lar de evaluación debería enfocarse a su aplicación en contextos específicos (Pérez-

Iglesias and Araujo, 2010); en particular esto requiere la definición de nuevas aplica-

ciones para predictores de eficacia que encajen con la métrica de evaluación, lo cual 

también contemplamos como un potencial trabajo futuro. 

También en el Capítulo 6 hemos desarrollado una metodología de evaluación pa-

ra estimar el valor real de eficacia de los ítems, con el objetivo de evaluar los predic-

tores de ítems propuestos. Esta metodología debería ser validada para obtener una 

medida justa de la eficacia del ítem, lo cual en este momento es aún un problema 

abierto. De esta manera, seríamos capaces de definir predictores de ítems adicionales 

para otros espacios de entrada además de las puntuaciones, y de mejorar la capacidad 

de predicción de los actuales predictores de eficacia de ítems. 

En el Capítulo 7 presentamos experimentos sobre combinación dinámica de al-

goritmos de recomendación en conjunto. Esos experimentos estaban limitados a un 

único predictor de eficacia por cada par de algoritmos, así que pretendemos extender 

dichos experimentos con conjuntos de algoritmos de recomendación donde se 

consideren dos predictores para investigar qué condiciones deberían satisfacerse 
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entre cada par de predictores de manera que se mejore la eficacia del conjunto. Una 

vía de investigación relacionada a considerar sería el análisis de valores de correlación 

tales que se obtengan buenos resultados de eficacia en los métodos híbridos dinámi-

cos. Más específicamente, queremos saber si es mejor tener un fuerte valor de corre-

lación en general (en promedio) o un valor medio no tan fuerte pero mejores estima-

ciones para usuarios particulares, que tendrían un papel significativo en el sistema 

similar a los usuarios poderosos (power users) definidos en (Lathia et al., 2008). En ese 

punto, se podría realizar un estudio como el presentado en (Hauff et al., 2010), don-

de simulaciones de predictores con distintos valores de correlación son evaluados, y 

cuyos efectos sobre la eficacia final en conjuntos de algoritmos de recomendación 

son comparados. 

Además, otra limitación de los experimentos presentados en el Capítulo 7 es que 

el tamaño de los conjuntos siempre es dos. Pretendemos considerar conjuntos de 

algoritmos de recomendación de tamaño N y a la larga, como se mencionó antes, 

usar un predictor de eficacia para cada algoritmo de recomendación. Este es un paso 

natural, pero no trivial hacia la generalización del marco propuesto de conjuntos 

completos de algoritmos de recomendación. De manera alternativa, podrían usarse 

técnicas de Aprendizaje Automático para aprender los mejores pesos a usar por cada 

usuario e ítem en el conjunto. En este caso, se debería investigar un compromiso 

entre los costes computacionales de cada técnica (aprendizaje automático frente a 

predictores de eficacia), su poder predictivo y la tendencia a sobreajustar los datos. 

Finalmente, en el Capítulo 8 investigamos el problema de ponderación dinámica 

de vecinos usando predictores de eficacia de vecinos orientados a métricas de error. El 

trabajo futuro relacionado con este capítulo podría centrarse en la adaptación de las 

métricas de eficacia de vecinos usadas en nuestra propuesta hacia métricas de 

ranking, tales como la precisión y el recall. Como ya hemos discutido, las métricas de 

error no son la mejor manera de medir la eficacia, aunque se pueden considerar apro-

piadas en este contexto ya que queremos medir la mejora en la exactitud de nuestras 

propuestas, y a la vez facilitar comparaciones con el estado del arte en recomendación 

sensible a la confianza, donde estas métricas son predominantes. Por lo tanto, el uso 

de métricas de ranking sería una valiosa contribución al campo por sí misma. Además, 

una vez tuviéramos definidas métricas de eficacia de vecinos basadas en ranking, ser-

íamos capaces de medir la correlación de los predictores de eficacia de vecinos descri-

tos en este capítulo con tales métricas, y analizar en detalle su poder predictivo con 

métricas de ranking. Idealmente, podríamos obtener un predictor con suficiente poder 

predictivo usando los dos tipos de métricas de eficacia de vecinos (las basadas en error 

y en ranking), aunque esto no es fácil de garantizar en general, ya que cada métrica se 

define para optimizar distintos parámetros y conceptos. 
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