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Introduction (2 ?

Is it possible to anticipate the success of a search
before its execution?




Introduction )

= |n Information Retrieval (IR), performance prediction techniques
address how to estimate the performance of a query

* Ina given collection
 Based on the collection’s vocabulary and statistics
e Using (or not) the retrieved documents

= We study the performance prediction problem in recommendation

* Where no query is given

VAT

Perf_roaCh I R G
UNIVERSIDAD AUTONOMA
IR Group @ UAM




Recommender Systems (1) ;

= A recommender system aims to find and suggest items of
likely interest based on the users’ preferences

Today's Recommendations For You

Here's a daily sample of items recommended for you.

FUZURARN '
-
i
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Clvmpus SPE-720UZ Digital Ultra Icewind Dale and Heart of Futurama: Into the Wild Green Jobv Gorillapod Original - Black How I Met Your Mother -
Zoom Camera - Bl... Winter Expansion - Dio... ¥... OVD ~ Billy West Yrinindndy (248) £11.08 Season... OVD ~ Josh Radnar
Yrindrird (4) £219.99 £6.49 *ﬁ*ﬁi (0] EREE Eir ik recammendition Yoirdndodr (14) £17.99
Fix this recommendation Fix this recommendation Fix this recommendation Fix thiz rececmmendation

= Examples:

 Amazon — products
* Netflix — tv shows and movies
* LinkedIn — jobs and colleagues

e Last.fm — music artists and tracks
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Recommender Systems () ;

= The interactions between the user and the system are recorded

* Typically, in the form of ratings

I1 [ Y] Ik [ Y] Im
U,
un

= The items could be of any type: movies, music, people, ...
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Recommender Systems ) 7

= [tem suggestions can be obtained using several techniques:

e Content-based

Collaborative filtering

Social filtering

“You may like rock music if you like heavy metal”
Hybrid filtering
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Recommender Systems ) ¥

= [tem suggestions can be obtained using several techniques:

Content-based

Collaborative filtering

Social filtering

“You may like classical music if you like heavy metal”
Hybrid filtering
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Recommender Systems ) ;

= [tem suggestions can be obtained using several techniques:

e Content-based

Collaborative filtering

Social filtering

Hybrid filtering “You may like samba because your friend Marcelo likes it”
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Recommender Systems )

= [tem suggestions can be obtained using several techniques:

* Content-based
Collaborative filtering
Social filtering

Hybrid filtering
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Main research question &

Is it possible to predict the performance of a specific
recommendation approach or component?

= We need reliable measurements of performance
= We seek predictors with strong predictive power

= There are potential applications where these predictors may
achieve an improvement in performance

IR Group @ UAM



Research goals .

= RG1: Analysis and formalisation of how retrieval performance can
be defined and evaluated in recommender systems

 Whatis performance?
 How should we measure performance?

= RG2: Adaptation and definition of performance prediction
techniques to recommender systems

* How can we estimate the performance of a recommender?

= RG3: Application of performance predictors to hybrid
recommender systems

 Where (and how) can we apply our performance predictors?
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Proposal 3

= RG1: Evaluating performance in recommender systems

* We analyse design alternatives in recommender evaluation and discuss
differences with respect to IR

 We detect resulting biases and propose designs to neutralise them

= RG2: Predicting performance in recommender systems

 We show adaptations to recommendation of performance predictors from IR
 We report strong predictive power between true and predicted performances

= RG3: Applications

 We research applications of performance predictors to dynamic aggregations
of information

 We find that predictors with strong predictive power tend to obtain higher
improvements in dynamic applications
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Contents 1

Part | — Evaluating performance in recommender systems

* Performance evaluation in recommender systems
* Experimental designs and biases

Part Il — Predicting performance in recommender systems

* Performance prediction in Information Retrieval
* Performance prediction in recommender systems

Part Il — Applications

* Dynamic recommender ensembles
* Neighbour selection and weighting in collaborative filtering

Conclusions and future work
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Contents +

= Part | — Evaluating performance in recommender systems

* Performance evaluation in recommender systems
* Experimental designs and biases
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Performance evaluation in recommender systems (ij¢

= Error metrics have been dominantin the literature
* Root Mean Square Error (RMSE), Mean Absolute Error (MAE)

= Now, ranking metrics are increasingly used

* Precision, recall

= |n general, a set of items are issued to the recommender and
ranked according to the estimated preference

= Each experimental design would select a set of candidate items in
different ways

VA

UNIVERSIDAD AUTONOMA

Perfi roach I R G
IR Group @ UAM




Experimental designs v

= The adoption of IR methodologies is natural:
* Query = User
* Document = Item
e Relevant ~ Test (positive) rating
= However, there are differences in the evaluation settings:

e The candidate answers

— Retrieval: all the documents, the same for all the queries

— Recommendation: training/test split, a target item set different for each user
* Relevance / ground truth

— Retrieval: assumed to be reasonably complete, objective

— Recommendation: highly incomplete, subjective

VAT

Perf_roaCh I R G
UNIVERSIDAD AUTONOMA
IR Group @ UAM




Candidate item selection () e

All items
- Relevant item
A
. :Ilsr:\]-relevant
N
Training . '
A
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Candidate item selection 2 “’

All items

‘ Relevant item

Non-relevant
item

_
.A

A
]
Training e .A

Consider the relevant items - .

Include all Test Rated items (TR)
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&

Training

Candidate item selection )

®

_
.A
_

All items

b/

Consider the relevant items - .
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‘ Relevant item

Non-relevant
item

Include all Test Rated items (TR) || Include All non-Re

O

evant items (AR)

O
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Could the candidate item selection affect the
measured performance of the system?
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Results with different candidate item strategies

= |nthe literature

Different results are reported
depending on the selected items to rank

= \We have compared the TR and AR designs

e Different absolute values BEME HWIB ™ kNN

« Recommenders compare differently
0.16

0.15

Precision
o
o
w

o
o
o
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Experimental designs #

= We discard TR because it highly overestimates precision
= |n this thesis, we use the following designs (methodologies):

e All non-Relevant and All Relevant test items: AR

meO0 0
® Amm A

* One Relevant test item per ranking: 1R. Plus a fixed number of non-relevant

T me ee
A A

- - (Cremonesi et al., 2010)
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Experimental designs and biases .

= We have identified the following biases in the AR and 1R designs:

e Sparsity bias: metric values change depending on the ratio of relevant items
* Popularity bias: metrics favour the overall satisfaction of the users

= We study the effect of these biases

* Analytically (in terms of expected precision)
* Empirically

= Experimental settings

e Dataset: Movielens, Last.fm

e Evaluation metric: Precision at 10

 Recommenders: personalised (kKNN, MF, pLSA) and non-personalised
(Popularity, Random)
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Sparsity bias s

= Experiments

* Change the density of known relevance

—— Popularity —o— MF  ----- Random
—e— pLSA —— kNN
AR 1R
0.1
.—.—.——.—.—.ﬂ__.__.\.
0.08 -
0.06 -
—0—0—0—0—0—0—0—0—90
004 & T T
0.02 -
O I I I I I I I I
0% 30% 60% 90% 0% 30% 60% 90%
Removed test ratings Removed test ratings

= Conclusions

* Precision values in AR are useful only for comparative purposes
* Precision values in 1R are not sensitive to the sparsity level

VAT

UNIVERSIDAD AUTONOMA

Perfi

B IRG

IR Group @ UAM




Popularity bias () %

= The popularity-based recommender outperforms other techniques

= Empirical evidence

 Both methodologies are sensitive to the effect of popularity

0.16 0.10
014 AR 1R
015 0.08
S 0.10 0.06 -
® 008 -
006 - 0.04 -
0.04 - 0,02 -
0.02 -
0.00 - 0.00 -

B Popularity B pLSA @ MF @ kNN 0 Random
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Popularity bias (2

= The popularity-based recommender outperforms other techniques

* Due to statistical reasons, popular items appear more often in the test set
* Average precision metrics tend to favour the satisfaction of majorities

all ratings

Nr. ratings

test ratings
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Overcoming the popularity bias 2

= We propose two methodologies to overcome the popularity bias
* Percentile-based partition (P1R): the items are grouped according to their

popularity
e Uniform test item profiles (U1R): all the items have the same amount of test
ratings
a) Percentile-based partition b) Uniform testitem profiles
v
‘§ all ratings ‘§ all ratings
% test ratings = test ratings

Il Iz 1.3 I4 IS Iﬁ I7 Ig Ig IlO ‘ Y g [tems
T

Items
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Experiments #

= Comparison of results: biased vs. unbiased experimental designs

0.12
0.10 B Popularity @ pLSA B MF B kNN Random

o 0.08

@
S0.06

0.04

0.02

0.00

U1R P1R 1R
m=10 -10% head

= Conclusions

 UI1R and P1R discriminate between pure popularity-based and personalised
recommendation

* Better discrimination than removing the 10% of most popular items from test
(Cremonesi et al., 2010)
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Contents 0

= Part Il — Predicting performance in recommender systems

* Performance prediction in Information Retrieval
* Performance prediction in recommender systems
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Performance prediction in Information Retrieval ) *

Performance

predictor

Query length,
query clarity,

v(q)




Performance prediction in Information Retrieval 2 *

Retrieval quality
assessment

\

Average
precision
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Performance prediction in Information Retrieval ) *®

Performance Retrieval quality
predictor assessment

Predictor quality
assessment

quality(y) = f({y(a,), ..., v(a,)} {edQq), ..., gda,)})

Correlation
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Performance prediction in Information Retrieval ) *

Performance Retrieval quality
predictor assessment

4(a) \

Predictor quality Average
assessment precision

v(q)

Query length,
qguery clarity,

quality(y) = f({y(a,), ..., v(a,)} {edQq), ..., gda,)})

Correlation
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Performance prediction in Information Retrieval (5 *

Performance Retrieval quality
predictor assessment

Predictor quality
assessment

quality(y) = f({y(a,), ..., v(dn)} {2ddy), ..., 2dapn)})
= Some applications

 Query expansion: deciding which queries should be expanded
* Query rephrasing: providing feedback to the user

* Rank aggregation: combining results from different retrieval models
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A performance predictor in IR 36

Query clarity
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Query clarity

= |t measures the (Kullback-Leibler) divergence between the query
and the collection language model

p(wlq)

clarit ( ): Z (w| )log
y(q w@yp q ()

= Clear queries are those whose distributions are different from the
collection’s distribution

KLD =0.25 KLD =1.60

-
o

— N2, 1) T — N2, 1)
—— Gamma(3) < - — N4, 1)
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Performance prediction in recommender systems
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Performance prediction in Information Retrieval *

Performance Retrieval quality
predictor assessment

p— v(a) a) /
Query elng ' Predictor quality Average

quality(y) = f({y(a,), ..., v(a,)} {edQq), ..., gda,)})

Correlation
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Performance prediction in recommender systems @f°

Performance Recommendation
predictor quality assessment

P v(u) #(u) /
Query elng ' Predictor quality Average
query clarity, assessment precision

quality(y) = f({y(uy), ..., Y(up)h, {eduy), ..., glup)})

Correlation
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Performance prediction in recommender systems (f*

Performance Recommendation

predictor quality assessment

Predictor quality
assessment

( ? ) quallty(y) = f({Y(Ul); ey 'Y(Un)}; {,Ll(ul), ey lu(un)})

Correlation

/

Average
precision
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Performance prediction in recommender systems @f*

Performance Recommendation
predictor quality assessment

Predictor quality
assessment precision

quality(y) = f({y(uy), ..., Y(up)h, {eduy), ..., glup)})

Correlation
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Performance prediction in recommender systems @f®

Performance Recommendation
predictor quality assessment

/

Predictor quality Precision
assessment

quality(y) = f({y(uy), ..., Y(up)h, {eduy), ..., glup)})

Correlation
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Performance prediction in recommender systems (sf*

= We propose definitions of user predictors Performance

* Based on rating data predictor
* Based on log data
e Based on social data

= We use C ? )

* Query clarity adaptations

* Measures from Information Theory (e.g., entropy)
e Social graph metrics (e.g., PageRank, HITS, centrality)
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User clarity *

= Query clarity

p(wlq)

clarit ( )= Z (w| )10
y\¢q WEVP q g p(w)

= User clarity

p(x|u)

clarity(u) = Z p(x|u)log

xeX P(x)

* Freedom to select the vocabulary space X

0 B IRG
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User clarity (2

= Query clarity

clarity(q) = Z p(w | q)log

= Generalized user clarity

clarity (u) = Ee

p(wlq)

welV

Z p(x|u,¢9)10g

xe X

* Freedom to select the vocabulary space X

* Possibility to introduce a context variable & in some formulations

* They let capture different aspects of the user

VAT
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p(x|u,9)_

p(x16)
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User clarity for rating data v

= User clarity

p(x|u 9)
clarity(u) = Ee Z p(x | u,H)log
_xeX p(x |9) _
Rating data: (user, item, rating)
. p(rlu)
Rating based %p(?lu)log
p(r)
| p(ilu)
[tem based > p(ilu)log
p (i)
[tem-and-rating based S p(i)p(rlu,i)log plriuwi)
; p(r|i)

IRG
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User clarity for rating data

= User clarity

clarity(u) = Ee Z p(x|u,¢9)log

Rating data: (user, item, rating)

Rating based

[tem based

[tem-and-rating based

p(x|u 9)
p(x10) ]
p(r|u)logp(r|u)
5 ()
p(ilu)
> p(ilu)lo
’ ) p (i)
épun(w,@log”(””’”
p(rli)
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User clarity for log data *

= User clarity

clarity(u) = Ee Z p(x|u,¢9)log
_xeX p(x|6’)

Log data: (user, item, timestamp)

p(ilu)

p (i)

Frequency based % p(ilu)log

| B IRG
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ltem space in user clarity

[tem based Frequency based
plilu) p(ilu)
(ilu)lo (i 14)1o
Zi:p g p (1) Zf:p g p (i)
freq (i,u

Z freq (j,u)
Jel,

50
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Temporal dimension for user clarity

= User clarity

clarity(u) = Ee Z p(x|u,¢9)log

Log data: (user, item, timestamp)

Time based

Item-and-time based

p(t|u,i)

ép(i)p(fluQ)log
p(t]i)

51
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User clarity

What is the predictive power of these models?

52



Experiment 3

= The predictive power is measured by the correlation with a metric
of actual performance

= Experimental configuration

 Performance metric: Precision at 10

 Correlation coefficient: Pearson’s r

r=-0.67 r=0.15 r=0.93
o o = o
[e] =] — OO
- - o o o0
O T ARG 0 B N © $°
o o o4 -
OWO @:OOD (5) o] Ie) — ng
[ ] fa's) ol O (o' o — go o o o o o0 o o
g | o o%o o O ] Oo o © O o oooooo o & Omooooo@
oo o 00 o -— jo's}
o ? o i o 09 W@ O of
I °© o & o °©9% o g% o 5 o
o @ o, @®° - A o @ .Cpoooo © %@ 00 | o ¢ 400 S "o
=1 o = o o0 © 00°9®°° °C@ o
o o o4 o o0 o o0
qu| O o Ls] OO o — 05 o &%CO 0
o o - o o & o o0 o
Lo ] < o]
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I3 — 0o 0
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Experiments *

= The predictive power is measured by the correlation with a metric
of actual performance

= Experimental configuration
 Performance metric: Precision at 10
e Correlation coefficient: Pearson’s r

e Evaluation methodologies: AR, 1R, U1R, P1R

Are the proposed predictors sensitive to the statistical biases
detected in some of these methodologies?

e Datasets: Movielens (ratings), Last.fm (logs), CAMRa (social)

Are the proposed predictors equally effective
depending on the type of data?

VA
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Experiments with rating data

= User clarity predictors

- are particularly effective for rating data

55

- achieve good results with unbiased experimental designs
(similar with the P1R design)

0.60 0.35
0.50 0.30

5 0.25

‘50.40

o

v 0.20

00.30

(8]

“» 0.15

50.20

o 0.10

©

Q

2-0.10 0.05 -
0.00 0.00 -

Random
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Random
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0.12
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0.06
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0.00 -
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Random kNN pLSA
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Experiments with log data

= Temporal and frequency-based clarity predictors show higher
correlations than non-temporal predictors

0.40

1R

0.35

o
W
(@)

o
N
o

Pearson's correlation
o O
= N
(@3] o

o
[N
o

Random kNN pLSA

W Profile size MFrequencybased ' Time based M Item-and-time based B Item based
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Experiments with social data

= Social predictors have stronger correlations than rating predictors
with social filtering recommenders (Personal and PureSocial)

0.25

-1 H”lﬂi

Random pPLSA Personal PureSocial

o
N
o

o
=
(92

o
=
o

Pearson's correlation

W Profile size " Degree M PageRank M Itembased
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Conclusions =

= Strong predictive power of the proposed predictors

* Sanity check: stronger correlations than trivial predictors
(e.g., profile size)

* Better results than prediction based on training performance

= The item based clarity predictor consistently shows high correlation
values in the three datasets evaluated

= Correlations remain stable with other evaluation metrics (nDCG
and recall) and correlation coefficients (Spearman and Kendall)
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Contents >

= Part Il — Applications

* Dynamic recommender ensembles
* Neighbour selection and weighting in collaborative filtering
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Applications 0

Dynamic recommender ensembles
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Dynamic recommender ensembles () N

= Context

* Hybrid recommendations are produced by combining the output of some
recommenders

 The combination of recommenders usually achieves better performance than
separate methods

= Recommender ensembles

Combination —

J W\

Average ¢<-~ /’I‘ ‘l
Majority <« ~ ,

. Ve
Maximum <= /’

: ‘@-—’/
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Dynamic recommender ensembles () N

= Context

* Hybrid recommendations are produced by combining the output of some
recommenders

 The combination of recommenders usually achieves better performance than
separate methods

= Recommender ensembles (linear combination)

;(u,i) =3 2, ';Rk (u,i) s.t. > a, =1
k k

= Research problem:

How to properly select the combination weights 4,

VAT
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Dynamic recommender ensembles () @

= We propose to build dynamic ensembles (of size 2):

r(u,i) = A, (w,i)-r, (u,i)+ A, (u,i) 1, (u,i)

 The combination parameter depends on both the user and item
* We use the performance predictors to assign these weights

= We assign the weight of R, according to the output of predictor y (u):
* The weight of R, is fixed:

= y (u) - 0.5 "

r(u,i)= -rRl(u,i)+ -rRz(u,i)

y(u)+ 0.5 y(u)+0.5

 Oritdepends on the predictor:

~ ~

r(u,i) = 7/(14)-;R1 (u,i)+ (1— 7/(1,t))-1rR2 (u,i)
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Requirements (1) o

= Requirements for the problem to be well defined

* Similar performance of the recommenders in the ensemble

~ ~ ~

r(u,i)=A-r, (u,i)+(1—-21)-r, (u,i)

1 2

0.08

0.07 IB+kNN

0.06

0.05

0.04

0.03 W O—C0O— {)\O
0.02

0.01 0/

0.00
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Requirements (1) s

= Requirements for the problem to be well defined

* Similar performance of the recommenders in the ensemble

~ ~ ~

r(u,i)=A-r, (u,i)+(1—-21)-r, (u,i)
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Requirements (2 o

= Requirements for the problem to be well defined
* Similar performance of the recommenders in the ensemble
= Requirements for our approach to be well defined

e Positive correlation with one of the recommenders and neutral (or contrary)

correlation with the other
C-]candidates for weighting R1 candidates for weighting R2

:l> h b
1 1 1

“

o«
N
1 1
rJ

o©
[uny

o
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correlation wrt R1
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Experiment ¥

Goal

Check if dynamic ensembles perform better
than static ensembles

Weighting schemes for R; + R,

e Static: same weight (0.5) for both recommenders and every user
* Dynamic: weights from predictor’s output (best and worst result)
e Oracle: use weights from the true performance (perfect correlation)

Metrics:

* Precision at 10

Evaluation methodologies
AR, 1R, P1R, U1R

Datasets

* Movielens (ratings), Last.fm (logs), CAMRa (social)
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Experiments with rating data s

= Dynamic ensembles perform better than the baseline

e Similar results with AR and U1R, not so clear improvements with P1R

0.10 1R

0.09

0.08
0.07

0.06
=)

g 0.05
a

0.04
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0.00
kNN+IB kNN+pLSA  kNN+Popularity

M Static @ Worst dynamic B Best dynamic B Oracle
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= Dynamic ensembles always outperform the baseline

Experiments with log data

= Better results than oracle
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Experiments with social data 70

= Results less significative than before

= Due to lack of coverage, 1R does not provide sensible results

AR
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Summary of results "

= The larger the difference in correlation, the better the improvement
over the baseline

* The following is validated: “correlations with each recommender should not be
very similar”

0.05

Performance difference wrt baseline

0.04 ¢ P@10(dynamic) - P@10(baseline)

0.03

0.02 @

® 03 0.5 0.7
Difference in correlation
corr(R1) - corr(R2)
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Applications

Neighbour selection and weighting
in Collaborative Filtering

72



Neighbour selection and weighting in CF 73

= User-based collaborative filtering:

~ —

r(u,i)= r_(u)+ CZ sim(u,v)(r(v,i)— v (v))

vel

= Use neighbour performance predictors (function ) to select and
weight neighbours’ contribution to the recommendations

r(u,i)=7(u)+C Z fagg(y(u,v,i),sim(u,v))(r(v,i)—r(v))

ve fneig (u,i;k,}/)
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Results "‘

= Performance improvement in both RMSE and Precision

* For RMSE: better (lower values) for smaller neighbourhoods

e For Precision: better (higher values) with larger neighbourhoods
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= Conclusions and future work
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Conclusions

RG1: Evaluating performance in
recommender systems
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Conclusions — RG1 77

= Assumptions and conditions underlying IR evaluation
methodologies are not granted in usual recommendation settings

= We detect statistical biases in evaluation of recommender systemes:
sparsity and popularity

= \We propose novel experimental approaches that neutralise the
popularity bias
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Conclusions

RG2: Predicting performance in
recommender systems

78



Conclusions — RG2 7

= We define performance predictors for recommendation, with
several variations of user clarity

= We integrate the temporal and social dimensions

= We find predictors with significant predictive power, also under
unbiased conditions, that is, when sparsity and popularity biases
have been neutralised
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Conclusions 80

RG3: Applications

IRG
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Conclusions — RG3 o

= We aggregate the output of recommenders and neighbours using
performance predictors

= We define a dynamic hybrid framework where high correlation
values with performance tend to correspond with enhancements in
dynamic ensembles

= We propose a framework for neighbour selection and weighting
unifying several notions of neighbour performance where we
obtained improvements in terms of RMSE and precision
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82

Future work

= RG1: Evaluating performance in recommender systems

e Extend our analysis on design alternatives to other ranking metrics (e.g., AUC)
* Validate the unbiased methodologies with online evaluations

= RG2: Predicting performance in recommender systems

 Combine predictors to obtain higher correlation values
* Use clustering approaches to estimate the quality of predictors

= RG3: Applications

* Extend the experiments with ensembles of N recommenders and using one
predictor for each recommender

* Adapt the proposed neighbour performance metrics to use ranking metrics
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Thank you! "

Performance prediction and evaluation
in Recommender Systems:
An Information Retrieval Perspective

Alejandro Bellogin Kouki

under the supervision of

Pablo Castells Azpilicueta
and

lvan Cantador Gutiérrez
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