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Data sparsity is a persistent challenge in recommender systems, specially in specific domains like Point-of-
Interest (POI) recommendation, where it significantly impacts model performance. While classical recom-
mender systems have used various imputation and data augmentation mechanisms to address data sparsity,
these methods have not been extensively explored in the POI recommendation domain. In this work, we pro-
pose a generic imputation framework to study the use of data augmentation techniques to generate synthetic
check-ins and analyze their effects on the POI recommendation scenario. Our main goal is to enhance the
performance of various traditional recommenders by increasing the training set interactions, considering
specific characteristics of the domain, such as geographical information. We apply these techniques in six
different cities from a global Foursquare check-in dataset, as well as in two additional cities from the Gowalla
dataset, and a separate dataset from Yelp, ensuring a comprehensive evaluation across multiple data sources.
Our imputation approach evidences improvements for most models. In several cases, these improvements
exceeded 100% for ranking accuracy, measured in terms of nDCG, without considerably compromising novelty
or diversity. Data and code is released at https://github.com/pablosanchezp/ImputationForPOIRecsys.
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1 INTRODUCTION
Recommender Systems (RSs) have become indispensable in various economic sectors, including
online retail, entertainment, and even online dating [50]. These systems suggest different items,
e.g., products, movies, TV series, or potential matches based on user preferences and behaviors. As
technology advances, the role of RSs in shaping user experiences across different domains continues
to expand, highlighting their importance in modern digital interactions. One of the most represen-
tative examples is the tourism industry, where RSs also play an important role, as demonstrated by
the substantial research dedicated to the Point-of-Interest (POI) recommendation problem and other
related tasks [53, 36]. The main goal in the POI recommendation problem is to suggest new venues
(or POIs) to be visited by the users when they are in a city. The information used to train the models
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is usually obtained from Location-based Social Networks (LBSNs) such as Gowalla, Foursquare,
or Yelp. In these social networks, users register the check-ins they perform in the different POIs
they visit, and sometimes they establish friendship links with each other. Using this information,
it is possible to infer users’ preferences and interests in order to generate recommendations on
new venues to visit [40]. By analyzing user data and preferences, POI recommenders enhance the
travel experience, offering personalized suggestions for attractions, restaurants, activities, etc. This
personalized approach not only improves user satisfaction but also drives engagement and revenue
in the tourism sector [1, 23].
The main objective of Point-of-Interest recommendation is the same as that of traditional

recommendations: to provide users with items that are particularly interesting to them. Nevertheless,
this domain has specific characteristics that must be consideredwhenmodeling the recommendation
task. For instance, temporal and sequential influences – crucial in other domains like music [43] – are
relevant here, as we can track the routes users take when visiting POIs. However, the most critical
factor is geographical influence, as users generally prefer venues near their current location [53].
Unlike the traditional recommendation scenario where users typically rate each item only once, in
POI recommendation it is common for users to visit the same POIs multiple times. Hence, instead
of using the traditional user × item rating matrix, most researchers make use of frequency matrices,
where each value represents the number of visits a user has made to a particular venue. As a
consequence, data sparsity is particularly severe in the POI recommendation domain.
While sparsity is a significant challenge in traditional recommender systems (for instance, the

Movielens25M dataset has a sparsity of 99.75%), it is even more pronounced in POIs datasets.
Two of the most widely used datasets for POI recommendation, Gowalla and Foursquare [53,
35, 11], exhibit sparsity levels of 99.9966% and 99.9953%, respectively. These low density levels
are a challenge in the recommendation process and reduces the model performance [34, 57].
To alleviate these sparsity issues, most state-of-the-art approaches take advantage of various
of the aforementioned influences, including geographical, social, temporal, and POIs categories,
to generate better recommendations [44]. However, the performance of these models remains
significantly lower than in traditional recommendation scenarios. In fact, one approach that has
been studied in classical recommendation domains, but not in detail in POI recommendation, is
the so-called data imputation or augmentation [3, 48, 25]. These methods allow recommendation
algorithms to consider extended training data, where some (or all) missing values have been inferred,
thereby reducing the input sparsity the algorithms need to face. As a result, the more (useful)
information that the recommenders have, the better performance they normally achieve [12].
Data augmentation in POI recommendation presents a unique challenge, particularly when it

comes to generating new interactions that can provide recommender systems with more useful
information. The core of the issue lies in the uncertainty of how to effectively perform such data
imputation. Specifically, it is unclear which users should be targeted for these imputed or synthetic
interactions, or which mechanisms should be used for generating these interactions. Moreover, it
is crucial to define the requirements that the imputed interactions need to meet (considering, for
example, restrictions regarding the geographical location of the users). Thus, the selection process
must be carefully designed to ensure that the augmented data is realistic and beneficial to the
learning model of the process. For that reason, just as in traditional recommender systems where
denser datasets generally yield better results [12], we believe that the performance of the models in
POI recommendation will also improve if we impute useful data.
Our work. To address the problem of data sparsity in POI recommendation, in this paper we

propose to integrate, adapt, and exploit data imputation techniques to increase the available check-
ins for the recommenders, with the purpose of enhancing their overall performance in the POI
recommendation domain. Our proposed framework defines two sets of parameters that allow us to
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Improving traditional Point-of-Interest recommendation through data augmentation 3

model the necessary components for the successful imputation of new and relevant data to the
recommendation methods, which correspond to check-ins instead of ratings. These parameters
include determining the percentage of interactions to be imputed, identifying the specific users
and items for imputation, and considering any additional domain-dependent restrictions that
may influence the imputation process (e.g., considering geographical constraints). Moreover, our
proposal is aligned with the existing literature on this topic, and we argue that future algorithmic
developments could greatly benefit from such an approach.
Research questions. In order to validate our proposal, we analyze the performance of various

well-known traditional recommender systems focusing on a global-scale Foursquare check-in
dataset, although we have also considered other LBSN datasets (i.e., Gowalla and Yelp) in our
experiments. We perform a comprehensive offline temporal evaluation across multiple cities to
evaluate the effectiveness of the recommenders and address the following research questions: (RQ1)
What are the required building blocks for an imputation framework tailored for Point-of-Interest
recommendation? In particular, which dimensions or parameters should be considered? (RQ2) By
applying this imputation framework, is it possible to improve ranking accuracy? What about other
evaluation dimensions like novelty and diversity? (RQ3) Which parameters of this framework are
more critical to achieve performance improvements?

Specifically, the main contributions of our work can be summarized as follows:
• We propose a novel and generic framework that enables the definition of a set of parameters
to guide the data imputation process for POI recommendation, thereby enhancing the volume
of data available in the training set and reducing the data sparsity. By augmenting the
available data, this framework aims to improve the performance of both traditional and POI
recommender systems.

• We define a set of methodological settings designed to fairly and appropriately evaluate
recommendation algorithms with and without imputed data. By exploiting such settings, we
could derive correct and replicable conclusions from the obtained results.

• Wepresent a thorough experimental comparison across six different cities from the Foursquare
dataset belonging to various continents, two additional cities from the Gowalla dataset, and a
separate dataset from Yelp. We use a temporal offline evaluation testing methodology to assess
well-known recommendation algorithms from both traditional and POI recommendation
domains. The results report improved values not only in terms of ranking accuracy but also
in terms of novelty and diversity.

Implications. As our results shall demonstrate, the highly configurable imputation framework
we propose allows the incorporation of various parameters to enhance data quality, leading to
competitive ranking accuracy across datasets from different sources and with varying inherent
characteristics. This supports the premise that the performance of POI recommenders can be
improved by reducing the training sparsity through the imputation of meaningful check-ins.
Additionally, our proposal is sufficiently generic, allowing other researchers to integrate it into
their models and achieve an improved performance in other domains.
The remainder of the paper is organized as follows: in Section 2, we introduce the problem of

POI recommendation and summarize related work on different techniques that have been proposed
to reduce the data sparsity existing in recommender systems. In Section 3 we present in detail the
imputation framework we propose and provide some informative examples. Section 4 describes the
evaluation methodology followed in the experiments presented in Section 5, where we show the
results obtained when comparing the performance of the recommenders without any type of data
imputation versus those obtained using various instantiations of our imputation framework. Finally,
Section 6 discusses works related to data imputation for POI recommendation, while Section 7
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summarizes the main conclusions and future directions, including a discussion about the main
limitations of this work.

2 BACKGROUND
2.1 Point-of-Interest recommendation
Recommender Systems are powerful tools designed to navigate through vast on-line databases
and product catalogs. Their primary goal is to simplify the user’s search process by filtering out
irrelevant data and suggesting items that align with the user’s specific preferences. As discussed
in the introduction, recommending Points-of-Interest (POIs) such as restaurants, museums, or
parks shares similarities to traditional recommendation tasks but has unique characteristics. While
typical recommendation scenarios often deal with single-use items, POIs are often revisited, offering
valuable data for recommendation systems. Additionally, POI recommendations are influenced by
spatial factors (e.g., location), social dynamics (e.g., the user’s social network), and temporal aspects
(e.g., time of visit).

As a result, many strategies developed for traditional RSs, such as similarity-based methods,
matrix factorization, and neural networks, have been adapted to incorporate these additional
dimensions. For instance, in [35] and [30], the authors proposedmatrix factorization approaches that
integrate geographical information, addressing the spatial aspect of POI recommendations. Similarly,
in [70], the authors defined a new weighted matrix factorization approach that considers social,
temporal, and geographical information. In [29], the authors utilized a Large Language Model (LLM)
to process temporal, geographical, and categorical information, while [68] proposed a Recurrent
Neural Network (RNN) that incorporates spatio-temporal factors into the recommendation process.
Hybrid models that combine various strategies further demonstrate the flexibility of traditional
methods when extended to the POI domain. For example, in [63], the authors propose a fusion
model combining the user preferences (including temporal information) through a similarity
based approaches with a probabilistic approach for modeling the geographical information, while
in [57] the authors combined a two-dimensional Gaussian kernel density estimation method with a
one-dimensional power law function exploiting the activity of the users in the system.

2.2 Sparsity reduction in recommendation
As discussed in the introduction, higher levels of sparsity are considered one of the biggest challenges
for the recommender systems community, and in particular, for POI recommendation, as they
entail lower performance values for the algorithms, since the useful signal that can be exploited
in a user- or item-basis is very low [34]. Here we shall focus on approaches derived within the
recommendation area to address this issue. There are, however, other areas where researchers
tackle this problem, as it has an impact on prediction accuracy in the more general area of Machine
Learning, mainly by performing data augmentation to reduce overfitting and train the models with
more data [38], or to increase the power of statistical methods [20]. In this section, we mention
several approaches that have the same goal in mind, even when they do not use the terms data
augmentation or imputation explicitly.

Significant work has been conducted to reduce sparsity in the context of traditional recommen-
dation, particularly for collaborative filtering (CF). One of the first works devoted to this is [59],
where the authors consider a Machine Learning classifier (decision trees, logistic regression, etc.)
to decide the missing values, either using the rating matrix or content data, and the results are
always better than only using a CF method in terms of error reduction. A similar approach is
devised in [64], where the authors exploit users’ demographic information by considering simple
techniques, such as the average rating of users in the same age range or occupation, to improve the
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accuracy of CF algorithms. These two works were focused on neighborhood-based approaches, in
[47, 46, 48] the authors present a method with theoretical basis to achieve the maximum imputation
benefit, again applied to neighborhood-based CF; the proposed auto-adaptive imputation method
and adaptive maximum imputation framework allow adapting to each user’s rating history and
maximizing the imputation benefit by identifying the imputation area according to the maximum
possible item and user sets for each prediction. Results in terms of error reduction are positive,
and the authors conclude that what to impute, i.e., deciding key missing values, is as important
as how it is imputed. Another work tailored for CF based on neighbors is presented in [4], that
applied data imputation techniques to identify better neighbors for users, under the hypothesis
that a lower sparsity should allow finding more effective neighbors.

Recently, other approaches have been investigated to cover recommendation algorithms beyond
those based on neighbors. For example, in [2] the authors propose an imputation method that
works for Nonnegative Matrix Factorization, by first imputing all missing values by considering the
trust network of users, and then factorizing the original user-item matrix and the imputed matrix,
performing predictions through a combination of imputed and non-imputed factorized matrices.
This method, still evaluated according to error reduction, obtains positive results, in particular
for cold-start and new users. A new matrix factorization technique is proposed in [45], where an
imputed matrix is introduced in the cost function.
Other works in recent years exploit deep learning approaches, such as [28], where the authors

used a variational autoencoder to extract the features of users and items, under the hypothesis that
pre-use preferences (impressions) on items lead to their post-use preferences (ratings); this approach
is agnostic to the CF algorithm and shows consistent positive results in terms of accuracy ranking
metrics. A different idea is proposed in [25], where the authors aim to quantify the uncertainty on
each missing entry and those with the lowest uncertainty are imputed; this idea is implemented
on top of a variational autoencoder model, outperforming other simple imputation approaches at
different imputation rates in terms of ranking accuracy, although the authors note that performance
drops if too many ratings are imputed.
Data sparsity is also a great challenge for sequential recommendation, that is why in [62] the

authors augment the dataset by employing counterfactual inference techniques, which are guided
by user feedback through reinforcement learning. In [18], the authors propose different operators
to augment data in sequential recommendation by transforming non-uniform sequences to uniform
ones. In the context of POI recommendation, [33] and [32] propose methods to increase the missing
check-ins and boost the performance of next-POI recommendation models (these approaches will
be further discussed in the related work section).
In recommendation, since users interact with the system, one possibility not available in other

Machine Learning applications is to ask users to rate some items, as a form of rating or preference
elicitation, or more generally, active learning [56, 19]. This is especially useful for cold-start users,
i.e. those users with none or very few ratings collected in the system. The goal of these techniques
remains the same as those already discussed: reducing data sparsity by collecting more information,
however, they require some type of interaction with users. Moreover, in [27] the authors exploit the
concept of uninteresting items, which are detected on a user basis and then included (i.e. imputed)
as negative feedback for that user. Although it is a very limited imputation technique, it has
demonstrated good results in terms of precision when dealing with implicit feedback. Additionally,
when privacy is a concern, recent works aim to perturb the information in the system to confuse
potential attackers [39]; some of these obfuscating techniques may add or remove ratings – when
adding ratings these works would enter the same category as data augmentation techniques,
however, since the final goal is not reducing the sparsity, they may not have a comparable utility
as those techniques already discussed.
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3 AN IMPUTATION FRAMEWORK FOR POINT-OF-INTEREST RECOMMENDATION
When imputing new data to increase the information available in the training set, we will end up
obtaining a new training set that contains all the original information plus extended information.
This can be expressed as follows:

C′ = FI (C, 𝜃𝑐 , 𝜃𝑣) (1)
where C′ denotes the imputed check-in matrix, and C is the original frequencymatrix obtained from
the training set. Please, note that C′ includes the information from C and the imputed (new) values
according to an imputation function represented with FI . Although in this definition we imply a
check-in matrix is needed, this framework can be used in the more traditional recommendation
domain by plugging in a rating (or interaction) matrix R.
According to some previous works [47, 28, 25], the problem of preference imputation can be

divided into two different parts: a) selecting which preferences should be imputed, and b) how to
determine the imputed values. Hence, to address RQ1 (What are the required building blocks for an
imputation framework tailored for Point-of-Interest recommendation?) in Equation 1 we use 𝜃𝑐 and
𝜃𝑣 to denote the parameters encoding these characteristics. Hence, 𝜃𝑐 will be used to represent the
parameters that model which check-ins should be imputed. For example, the number of check-ins to
impute, the specific users/venues affected by the imputation, or the specific venues to impute. On
the other hand, 𝜃𝑣 will refer to themechanism to generate the imputed values, or the set of values used
for imputation. In addition, when adapting this problem to the Point-of-Interest recommendation
scenario, ratings, which are usually the basis for imputation in classical recommender systems, are
not normally available [65]. Nevertheless, as presented in Section 1, other information sources,
such as geographical and temporal data, have proven to be influential in this domain and can be
exploited. Therefore, we show below the following parameters encapsulated in the aforementioned
𝜃 = {𝜃𝑐 , 𝜃𝑣} variables:

• Parameters related to 𝜃𝑐 (which check-ins should be imputed):
– Δ: the number or percentage of check-ins to impute. This can be applied globally across
the entire dataset, or on a per-user basis.

– UFI , IFI : the specific users or venues affected by the imputation. We could consider only
a specific profile of users or items that may suffer the imputation (e.g., cold-start users, less
popular items, etc.).

– I𝑢,FI : the specific POIs to impute for a specific user. Here, we can consider domain-specific
restrictions. For example, we can incorporate geographical information by only considering
items for imputation if they are close to the current or typical location of their corresponding
user.

• Parameters related to 𝜃𝑣 (mechanism to generate the imputed values):
– A: the algorithm/mechanism to generate the imputed check-ins considering the selected
parameters from 𝜃𝑐 . In general, regardless of the algorithm used to impute check-ins, only
those that maximize the utility of user 𝑢 for venue 𝑖 will generally be imputed. In some
cases, a specific threshold 𝛼 can be considered to determine whether the new check-in is
of sufficient quality or confidence to be imputed.

– V: the set of value(s) used for imputation. These values could be predefined by always
imputing the same value, based on the user and venues characteristics, or depending on
the output of the algorithm or mechanism A (for example, by exploiting its uncertainty).

It is worthwhile to note that, even though these parameters can (and will later, in our experiments,
be) defined manually according to some criteria or use cases in mind, it remains possible to benefit
from an automatic decision process on top, so that those parameter values optimizing whatever
pre-defined goal observed in the data, could be used in subsequent instantiations of the framework.
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Fig. 1. Representation of the effect of different imputation mechanisms on an original interaction matrix
presented in the top-left subfigure. The top-right subfigure shows the same matrix after a 40% increase in the
original data, with the imputed data highlighted in green. The bottom-left subfigure represents an imputation
strategy where each user’s data is increased by 40%. At the bottom-right subfigure another imputation
mechanism is depicted, where 40% of the total interactions are added by specifically increasing the data for
users with fewer interactions.

This would be related to recent advances in AutoML [21, 55] or its applications to recommender
systems [69], and would result in a promising research line to improve the proposed framework in
the future.

Toy examples
To illustrate the behavior and variability of this framework, we now present Figures 1 and 2. First, in
Figure 1, we show four subplots to capture the effect of some parameters related to 𝜃𝑐 , representing
different interaction matrices, where each row corresponds to a user and each column to an item
(or venue, in this context). Blue cells indicate that user 𝑢 has interacted with item 𝑖 , while white
cells indicate that there is no interaction. The top-left subplot shows the original interaction matrix,
representing the observable data in a given dataset. When generating new interactions to impute
into the original dataset, various strategies and imputation percentages need to be considered,
encapsulated in our variables Δ, UFI , and IFI . For instance, we could increase the total number of
system interactions by 40%. This scenario is depicted in the top-right subplot. Alternatively, we
could apply a 40% increase to each user’s interactions but on a user basis, not overall, as shown in the
bottom-right subplot. Another approach could be to target only certain users for imputation, such
as those with few interactions, which is represented in the bottom-left subplot. As demonstrated,
with only two parameters of 𝜃𝑐 , we can generate a wide range of configurations. Here, we have
only presented a few of the more straightforward examples. Note that the purpose of this figure
is to serve as an example of how an interaction matrix would behave as the data increases. In a
real environment, increasing the data by 40% could be counterproductive, as some of the imputed
data might lack sufficient quality and result in unrealistic interactions. Moreover, imputing too
much data may not only degrade recommendation quality, but also increase computational costs,
resulting in models that scale poorly and require longer training times.
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Fig. 2. Representation of the effect of different imputation algorithms A in New York. The original check-ins
are shown in the top-left subfigure, where each color except yellow represent a different user; popular venues
are represented in yellow and new imputed interactions contain a small black dot. Top-right shows the effect
of imputing check-ins randomly. Bottom-left shows imputation based on popularity. Bottom-right shows
imputed interactions near the midpoint of the user.

Now, to demonstrate the effect of some of the parameters encoded by 𝜃𝑣 , Figure 2 shows the
effect of applying different algorithms to generate new interactions. The original check-ins for New
York are shown in the top-left subfigure, where each color except yellow represents a different
user; the yellow points represent popular venues. In the top-right subfigure, we show the effect
of imputing some check-ins randomly, where the new imputed interactions contain a small black
dot. In the bottom-left subfigure, we show the effect of performing imputation based on popularity,
with new imputed values belonging to the set of popular venues, and in the bottom-right, we
show the effect of imputing interactions near the midpoint of the user. Note how the result of the
imputation mechanism is very different depending on the algorithm considered, either promoting
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points closer to where the user already had exhibited some preferences for (last example), popular
items (bottom-left), or scattered throughout the city (randomly).

Analysis on computational complexity
Our proposed imputation framework is aimed at improving the effectiveness of the recommendation
model it is applied to. However, imputing new data may incur in additional complexity or reduced
efficiency on the overall system. We analyze these concerns in this section.
On the one hand, among the parameters identified in our framework, those related to which

check-ins to impute, 𝜃𝑐 , could impact significantly in the increased complexity of the model, since
they could require to impute too many new check-ins. Hence, controlling these values depending
on the existing information and the desired sparsity levels, could make the imputation process
to be manageable and useful, or very expensive and probably noisy if too many check-ins are
requested but too little information is known in a user basis. On the other hand, the parameters
related to the imputation mechanism, 𝜃𝑣 , may bring scalability or memory issues depending on
the actual algorithm used to impute the check-ins. Some methods may not scale well to very
large user-item matrices, and the imputed matrices, as they are less sparse, can require significant
memory resources.
However, such computational costs and efficiency concerns can be mitigated by first noting

that imputation occurs before training, so the extra time does not impact system’s response
or its scalability in practical applications, although it may increase the time needed to train the
algorithms. Second, some of the components described before and included in our framework can
be parallelized to improve efficiency. And third, by reducing data sparsity, imputation can lead to
more accurate recommendations; this can translate to better user engagement and satisfaction,
which can indirectly improve efficiency in terms of user retention and conversion. In particular,
this means that, even when the original data is large, the imputation process might not necessarily
be slow or inefficient, as some of the aforementioned imputation parameters may not depend on
the size of the dataset; for example, when the imputation mechanism A does not depend on the
number of users or items in the collection.

4 EXPERIMENTS
In this section, we describe the details of the experiments conducted in our study. First, in Section 4.1
we describe the dataset used in the experiments. Then, in Section 4.2 we explain the procedure to
perform the training and test splits together with the set of algorithms used in the experiments.
Finally, in Section 4.3 we further develop the methodology considered.

4.1 Dataset
In this paper, we have used the global-scale check-in dataset from Foursquare [66], the Gowalla
dataset from [13], and a Yelp dataset1. The Foursquare dataset contains more than 33M check-
ins from 415 cities in 77 countries over more than 2 years. We decided to focus on the cities of
London (LON), New York City (NYC), Santiago (SAN), Mexico City (MEX), Moscow (MOS), and
Tokyo (TOK) as these cities entail different ratios of users, venues, and check-ins, and each city
belongs to a different continent and cultural background. The Gowalla dataset contains 6,442,892
check-ins. In this case, we decided to focus on the following two cities: San Francisco-Gwl (SF-G)
and New York-Gwl (NY-G). For Yelp, unlike the other datasets, we use it as a whole and do not
divide between different cities2, so we work with the original 216,471 check-ins. Our motivation

1https://github.com/rahmanidashti/LBSNDatasets/tree/master/Yelp/Yelp_4
2Note that most of the check-ins in this dataset belong to cities of the United States of America.
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Table 1. Statistics of the cities used in the experiments. We present the number of users (|U|), the number
of items/venues (|V|), the number of check-ins (|C|), and the sparsity 𝛿 = (|U| · |V|) / |C| for the complete,
training, and test splits. The cities from Foursquare dataset (all except Yelp, SF-G, and NY-G) are ordered by
the number of check-ins in the complete set from lowest to highest.

City Split |U | |V | |C | 𝛿

London
(LON)

Complete 7,574 16,554 100,084 0.0798%
Training 6,492 15,185 80,067 0.0812%
Test 3,211 7,934 20,017 0.0786%

New York City
(NYC)

Complete 12,480 25,082 190,725 0.0609%
Training 11,097 22,527 152,580 0.0610%
Test 5,930 12,752 38,145 0.0504%

Santiago
(SAN)

Complete 7,415 39,095 289,418 0.0998%
Training 9,047 47,763 305,732 0.0708%
Test 6,025 24,133 76,433 0.0526%

Mexico City
(MEX)

Complete 9,520 47,213 376,663 0.0838%
Training 7,220 33,913 231,534 0.0946%
Test 5,209 17,814 57,884 0.0624%

Moscow
(MOS)

Complete 9,534 55,156 382,165 0.0727%
Training 9,188 41,320 301,330 0.0794%
Test 6,744 23,099 75,333 0.0484%

City Split |U | |V | |C | 𝛿

Tokyo
(TOK)

Complete 11,594 51,467 441,625 0.0740%
Training 11,077 47,608 353,300 0.0670%
Test 7,793 25,458 88,325 0.0445%

Yelp
(Yelp)

Complete 5,000 13,683 202,566 0.2960%
Training 4,599 12,984 162,052 0.2714%
Test 3,181 9,073 40,514 0.1404%

New York-Gwl
(NY-G)

Complete 5,671 15,761 97,692 0.1093%
Training 4,918 14,688 78,153 0.1082%
Test 1,685 8,740 19,539 0.1327%

San Francisco-Gwl
(SF-G)

Complete 6,113 14,847 134,442 0,1481%
Training 5,195 13,999 107,553 0,1326%
Test 2,217 9,157 26,889 0,1325%

behind this decision was to evaluate the performance of our framework in a different setting that is
sometimes considered in the literature [53].

4.2 Experimental Setup
As a first step regarding the data preparation, we conducted a pre-processing step for the entire
Yelp dataset and for every city in both Foursquare and Gowalla datasets (that is, we considered
each city as an independent dataset). This involved applying a 2-core filtering process, where we
maintained only those users and venues with at least 2 check-ins. To handle repeated visits by the
same user to the same POI, we aggregated these visits creating a frequency matrix, preserving the
timestamp of the last check-in.

Hence, for each independent dataset, we then split the data into training and test subsets using
a global temporal split. Specifically, we allocated the oldest 80% of all aggregated check-ins for
training, while the remaining 20% were used to test the performance of the approaches. We present
in Table 1 the specific details of the cities, where we report the statistics of the complete city, the
training, and test sets. Note that the information of the test set is unknown to the models, as they
only work with the data from the training file.
Following this, we selected a set of traditional top-n recommenders. Our selection included

both classical recommendation models, which operate independently of geographical factors, and
Point-of-Interest recommenders, which incorporate geographical components. For each dataset,
we performed hyperparameter tuning on each model (see Table 4, in Appendix A), selecting the
best configurations based on their performance in terms of nDCG@10.

Furthermore, there are different strategies to consider when selecting the candidate items (venues)
for recommendation. In this work, we use the TrainItems strategy. This approach considers, as
candidate items for recommendation to each user, all the POIs in the training set the user has
not visited during the training step [51]. We have decided to work with this strategy because the
general purpose of a recommender should be to suggest venues to users they have not visited
before [42].

Below, we present the classical and Point-of-Interest recommenders used in the experiments to
analyze whether our imputation framework is capable of improving their performance.
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• Rnd: recommends random Points-of-Interest to the users.
• Pop: recommends the Points-of-Interest that have received the largest number of visits from
different users.

• UB and IB: non normalized versions of collaborative filtering techniques based on user and
item neighborhood, respectively [42].

• HKV: matrix factorization (MF) algorithm that uses Alternate Least Squares for optimiza-
tion [24].

• BPR: Bayesian Personalized Ranking (BPR) loss from [49] applied to matrix factorization.
• EASEr: Embarrassingly Shallow Autoencoders for Sparse Data proposed in [58].
• SAE-NAD: neural network approach from [37] based on autoencoders. It uses a self-attentive
encoder (SAE) (to learn the user-POIs relationships) and a neighbor-aware decoder (NAD) to
model the geographical influence.

• IRenMF: weighted MF from [35]. It also models the geographical influence between neighbor
POIs.

• GeoBPR: geographical BPR. It incorporates the geographical component into BPR, assuming
that users will prefer to visit Points-of-Interest close to the previous visited venues [67].

• FMFMGM: Hybrid technique from [11] combining a Probabilistic MF (PMF) and aMulti-center
Gaussian Model approach (MGM).

• RnkGeoFM: MF based on BPR that models the geographical influence using the geographical
neighbor Points-of-Interest with respect to the target Point-of-Interest with an additional
latent matrix for the users [30].

• PGN: hybrid Point-of-Interest recommendation technique that combines the Pop, UB, and
AvgDis recommenders [54]. The AvgDis recommender is a geographical algorithm that
recommends the closest Points-of-Interest to the user’s average location. The average location
is computed by calculating the midpoint of the coordinates of the visited Points-of-Interest
in the user profile (i.e., her training set). Since AvgDis on its own is a very basic baseline, we
do not report its results, as its accuracy performance is similar to that of a random model.

4.3 Methodology
Producing comparable and reproducible experimental environments is not easy, but it is something
the community is investing a lot of efforts in last years [5, 16]. Because of that, as one of our contri-
butions, in this section we present in detail the procedure followed in the experiments, summarized
in Figure 3. Thus, for each dataset (independent cities or entire data, depending on the source)
used in the experiments, we firstly divide the original dataset in training and test sets. From the
training set, we obtain the original check-in matrix C, and we train the recommendation algorithms
listed in Section 4.2 using the hyperparameters stated in Table 4 and this (non-imputed) check-in
matrix C. Once we have selected the best recommenders according to the optimal hyperparameters
by checking the performance against the test set, we use these optimal parameters to report the
performance of the non-imputed versions of the algorithms.

In parallel, we generate imputed check-in matrices using different combinations of parameters 𝜃𝑐
and 𝜃𝑣 , as explained in Section 3. For each imputed matrix C′, we train again every recommendation
algorithm but using the optimal parameters found for the non-imputed training data. It is important
to include this additional training step with the imputed check-in matrix C′, as the model can
potentially learn new patterns from the imputed data, even without further parameter tuning.
Finally, using again the original (non-imputed) test set, we evaluate these recommenders trained
with the extended training set.

It is important to note that the test set remains the same throughout the entire process. Moreover,
since imputed check-ins may belong to the test set and typical recommendation algorithms do not
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Original
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Fig. 3. Summary of the methodology followed in the paper. The numbers along the arrows indicate the order
in which the steps should be executed, with each step depending on the successful completion of all preceding
steps with lower numbers. In red, we represent the steps that use the original training check-in matrix C. In
blue, we represent the steps involving the imputed check-in matrix C′.

expect repetitions between training and test sets, to ensure a comparable environment between
imputed and non-imputed scenarios, we force every algorithm to follow the TrainItems strategy
(see Section 4.2) but according to the original matrix, i.e., all the algorithms will consider the same
set of candidate items, irrespectively of whether that item already existed in its training set (because
it was imputed) or not.
Also, it is worth highlighting that optimizing the hyperparameters on the imputed algorithms

would probably obtain better results, but would demand a huge computationally overload while not
being very realistic. Indeed, we argue the use case scenario of such an imputation framework for
recommendation should work on top of previously trained algorithms, which are already optimized,
with the goal of producing better results just by performing one additional training with the imputed
input, but not to start from scratch in every case.

5 RESULTS
In this section, we present the effect of applying our imputation framework with different con-
figurations and analyze the performance of the recommenders after augmenting the data. Before
that, to provide a context to these results and to get performance baselines (i.e., the recommenders
trained without the imputation matrix) to compare against, we show the results obtained by the
models in the traditional POI recommendation scenario; that is, without applying our imputation
framework, i.e., working only with C. All experiments report the results of the models in terms
of ranking accuracy (nDCG) and novelty and diversity. Novelty is measured using the Expected
Popularity Complement (EPC) metric and diversity with Gini [8]. In all cases, the higher the value
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Table 2. Results of evaluated recommenders across different datasets and metrics. For each dataset, we show
the performance of each of the recommenders presented in Section 4.2 in terms of ranking accuracy (nDCG),
novelty (EPC), and diversity (Gini). All metrics @10. Best result in a row (specific metric for a particular
dataset) in bold.

City Metric Rnd Pop UB IB HKV BPR EASEr SAE-NAD IRENMF GeoBPR FMFMGM RnkGeoFM PGN

LON
nDCG 0.0001 0.0643 0.0569 0.0258 0.0362 0.0639 0.0769 0.0752 0.0936 0.0727 0.0550 0.0438 0.0691
EPC 0.9992 0.9385 0.9720 0.9931 0.9867 0.9396 0.9553 0.9448 0.9510 0.9640 0.9574 0.9711 0.9443
Gini 0.5636 0.0006 0.0233 0.2578 0.0214 0.0006 0.0063 0.0013 0.0060 0.0073 0.0033 0.0873 0.0060

NYC
nDCG 0.0002 0.1474 0.1015 0.0346 0.0870 0.1380 0.1290 0.1377 0.1414 0.0960 0.0563 0.0724 0.1398
EPC 0.9994 0.9076 0.9508 0.9876 0.9578 0.9141 0.9339 0.9205 0.9138 0.9660 0.9405 0.9560 0.9268
Gini 0.5868 0.0004 0.0230 0.2564 0.0067 0.0014 0.0051 0.0013 0.0017 0.0006 0.0011 0.0525 0.0434

SAN
nDCG 0.0001 0.0797 0.0761 0.0349 0.0395 0.0735 0.0797 0.0818 0.1031 0.0639 0.0322 0.0449 0.0881
EPC 0.9991 0.8653 0.9535 0.9692 0.9599 0.8721 0.9109 0.8869 0.8892 0.9266 0.9114 0.9368 0.9112
Gini 0.4887 0.0003 0.0140 0.1794 0.0069 0.0004 0.0026 0.0008 0.0024 0.0014 0.0011 0.0070 0.0439

MEX
nDCG 0.0001 0.0581 0.0635 0.0375 0.0433 0.0626 0.0682 0.0758 0.0910 0.0583 0.0359 0.0458 0.0701
EPC 0.9992 0.8791 0.9650 0.9772 0.9652 0.8811 0.9276 0.9080 0.9071 0.9398 0.9215 0.9542 0.9117
Gini 0.4946 0.0002 0.0151 0.2113 0.0080 0.0002 0.0026 0.0010 0.0018 0.0014 0.0015 0.0108 0.0320

MOS
nDCG 0.0000 0.0332 0.0521 0.0380 0.0292 0.0348 0.0596 0.0542 0.0675 0.0488 0.0316 0.0461 0.0457
EPC 0.9993 0.8811 0.9651 0.9795 0.9696 0.9466 0.9301 0.9074 0.9052 0.9428 0.9088 0.9576 0.9116
Gini 0.4531 0.0002 0.0160 0.2080 0.0085 0.0098 0.0036 0.0015 0.0020 0.0034 0.0009 0.0141 0.0257

TOK
nDCG 0.0001 0.1584 0.1834 0.1337 0.1164 0.1743 0.1912 0.2062 0.1883 0.1905 0.1791 0.1296 0.1759
EPC 0.9994 0.8523 0.8941 0.9373 0.9242 0.8542 0.8959 0.8750 0.8674 0.8790 0.8761 0.9339 0.8829
Gini 0.5256 0.0002 0.0033 0.1052 0.0008 0.0002 0.0017 0.0011 0.0007 0.0006 0.0005 0.0128 0.0284

Yelp
nDCG 0.0011 0.0147 0.0529 0.0344 0.0493 0.0436 0.0522 0.0427 0.0486 0.0489 0.0261 0.0389 0.0403
EPC 0.9973 0.9558 0.9767 0.9885 0.9803 0.9726 0.9809 0.9742 0.9775 0.9727 0.9867 0.9841 0.9695
Gini 0.6047 0.0007 0.0219 0.1077 0.0249 0.0106 0.0452 0.0132 0.0283 0.0074 0.0847 0.0910 0.0185

NY-G
nDCG 0.0003 0.1535 0.1109 0.0281 0.0823 0.1161 0.1064 0.1143 0.1444 0.1005 0.0455 0.0632 0.1576
EPC 0.9990 0.9138 0.9524 0.9921 0.9809 0.9196 0.9534 0.9237 0.9382 0.9262 0.9575 0.9738 0.9238
Gini 0.4690 0.0006 0.0172 0.1502 0.0133 0.0012 0.0172 0.0013 0.0144 0.0014 0.0092 0.1077 0.0141

SF-G
nDCG 0.0007 0.2261 0.1838 0.0232 0.1025 0.2015 0.1755 0.1968 0.2117 0.2001 0.0749 0.0749 0.2225
EPC 0.9985 0.9133 0.9585 0.9918 0.9734 0.9243 0.9472 0.9283 0.9390 0.9229 0.9561 0.9699 0.9343
Gini 0.5367 0.0007 0.0224 0.1660 0.0039 0.0032 0.0140 0.0030 0.0154 0.0010 0.0081 0.0760 0.0446

of the metric, the higher the performance of the recommender in that dimension. Unless stated
otherwise, we report results @10, i.e, for these metrics we only consider the 10 first recommended
items to each user.
In Table 2 we show the performance of the recommenders presented in Section 4.2 in terms

of nDCG (ranking accuracy), EPC (novelty), and Gini (diversity) for the 9 datasets (6 cities from
Foursquare, 2 from Gowalla, and Yelp). In this table, we observe the low results obtained by the
recommenders in terms of ranking accuracy primarily due to data sparsity (see Table 1) and the
temporal split performed, where both users and venues might be absent in the training set but
present in the test set. Consequently, some recommenders may fail to perform recommendations to
all users in the test set. Additionally, using the TrainItems strategy results in new relevant venues
in the test set being unavailable as candidates for recommendation. Regarding the recommenders,
we observe that in many cases, the Pop recommender is quite competitive, and in the case of
NYC and SF-G, it is the algorithm that obtains the best results. This is a common result in the
area of POI recommendation, where most of the check-ins are concentrated in a few venues
[54]. Interestingly, the Pop model performs relatively poorly on Yelp. This may be due to the
sparsity of all datasets; however, Yelp is the least sparse dataset, allowing other recommender
models to capture more complex patterns. Nevertheless, focusing only on accuracy presents its own
challenges. Although Pop is competitive in ranking accuracy, by definition, it is the worst in terms
of novelty and diversity. On the other hand, we can observe the opposite scenario: Rnd performs
the worst in terms of ranking accuracy but quite well in novelty and diversity. Regarding the rest
of the classical recommenders, UB and BPR also show competitive results when analyzing ranking
accuracy. However, a disadvantage of BPR (along with its geographical version, i.e., GeoBPR) is
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Table 3. Average percentage of user check-ins by distance (1km, 5km, 10km, 15km, 20km, and higher than
20km) from their corresponding midpoint across the analyzed datasets.

City 1km 5km 10km 15km 20km >20km

London 24.60% 78.30% 93.40% 97.80% 99.49% 100.00%
New York City 29.67% 77.18% 92.31% 97.77% 99.86% 100.00%
Santiago 11.42% 63.14% 90.00% 97.58% 99.68% 100.00%
Mexico City 10.04% 57.82% 89.60% 98.46% 99.82% 100.00%
Moscow 10.12% 60.56% 88.45% 97.57% 99.64% 100.00%
Tokyo 10.97% 69.95% 93.96% 98.40% 99.66% 100.00%

Yelp 7.95% 40.52% 57.82% 65.63% 69.55% 100.00%

New York-Gwl 27.15% 75.28% 90.60% 96.31% 99.30% 100.00%
San Francisco-Gwl 21.28% 63.38% 83.42% 93.66% 98.57% 100.00%

that it exhibits a strong popularity bias, as evidenced by its diversity results being almost identical
to those of the Pop recommender.
However, as expected, considering the geographical component is crucial for making relevant

recommendations in this domain. In 5 out of 6 cities of the Foursquare dataset, the top model is
a POI recommender (IRenMF for London, Santiago, Mexico City, and Moscow, and SAE-NAD
for Tokyo). These models generally perform similarly in terms of ranking accuracy, novelty, and
diversity. For the rest of the recommenders, while GeoBPR achieves slightly higher novelty and
diversity than BPR, it still scores low overall, especially in the latter. PGN, though not the best
in ranking accuracy (except in New York-Gwl), excels in diversity except in London, due to its
combination of Pop, UB, and AvgDis, which balances popularity bias with geographical proximity.
Given the challenge of balancing these complementary dimensions, the IB recommender is also
noteworthy: despite its lower ranking accuracy, it obtains very good results in novelty and diversity,
being competitive against Rnd.

5.1 Data imputation applied to all users
Now, we analyze the effect of applying the imputation framework we defined in Section 3 with
distinct configurations of parameters 𝜃𝑐 and 𝜃𝑣 to the previously presented recommendation
algorithms and cities. Firstly, we focus on the total set of all users in the training set. In this sense,
we will impute new check-ins to each training user proportionally to the number of check-ins
they have. In other words, we will impute more check-ins to those users who have made a high
number of interactions in the training set, in order to encourage collaborative information. Hence,
the instantiation of the framework parameters in this experiment would be defined as follows:

• Δ: the percentage of interactions to impute will stay low, as stated in previous literature
that too much imputation may add noise [48, 25]. In the experiments, we will compare the
impact of using a 10% and 30% imputation ratio, i.e., Δ = {10%, 30%}. We believe these values
would help improve the performance of the recommenders without a loss in the quality of
the dataset.

• UFI , IFI : all users in the training set will experience an increase in their number of training
check-ins. The imputed check-ins will be from Points-of-Interest that appear in the training
set, i.e., UFI = 𝑈𝑡𝑟 ,IFI = 𝐼𝑡𝑟 , where𝑈𝑡𝑟 and 𝐼𝑡𝑟 represent the users and items in the training
set.

• I𝑢,FI : the new imputed check-ins will correspond to venues not visited previously in the
training set by the user while being at most 10km away from the user midpoint, i.e., for each
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Fig. 4. Performance of each recommender in every Foursquare city for the nDCG@10 metric when imputation
is done to every training user. In red, the performance of the model in the original training. In blue, the effect
of our imputation techniques, increasing the data for each user by 10%, and in green, by 30%. Each marker
denotes a different mechanism to generate the imputed data; i.e., Rnd 10 denotes that the Rnd algorithm is
used to generate 10% imputed check-ins in every user.

user 𝑢, I𝑢,FI = {𝑖 ∈ 𝐼𝑡𝑟 ∧ dist(i, Midpoint(𝑢)) < 10𝑘𝑚 | 𝑖 ∉ 𝐼𝑡𝑟𝑢 }), where 𝐼𝑡𝑟𝑢 denotes the
venues that have been visited by the user in the training set. We use the threshold of 10km
because, in all cities, at this distance the average percentage of user check-ins from their
corresponding midpoint is higher than 83% (see Table 3 for more details), except for Yelp,
which, as previously mentioned, does not have check-ins specific to a single city.

• A: we will use the algorithms Rnd, AvgDis, IB, and PGN for imputing the data, i.e.,A = {Rnd,
AvgDis, IB, PGN}, as representative simple methods for geographical and collaborative
approaches. In all cases, we will impute check-ins in order of highest to lowest relevance
until we get the desired percentage of increased check-ins per user. For IB, we used SetJ
(Jaccard) similarity with 90 neighbors and for PGN, we used the same similarity with 100
neighbors. We used these values because they were the parameters that generally obtained
the best results when we used them in the recommenders without imputation.

• V: we will use a value of 1 for the imputed venues, i.e.,V = {1} as we assume the user visits
the imputed POI only once.

We present in Figure 4 the results obtained in each city of the original global check-in Foursquare
dataset using the aforementioned configuration in terms of nDCG@10. We represent with different
colors and markers the different configurations. Hence, in red, we represent the value obtained by
the recommender using the original dataset (the value of nDCG@10 obtained in Table 2). In blue,
we represent the performance of the recommenders increasing the training set for each user by
a 10%, and in green, the same but by a 30%. The square, triangle, diamond, and inverted triangle
markers represent the imputation performed by the Rnd, AvgDis, IB, and PGN recommenders. We
also report the results of the same recommenders for Yelp and Gowalla in Figures 5 and 6.
Analyzing the results to address RQ2 (By applying this imputation framework, is it possible to

improve ranking accuracy?), we notice some interesting behaviors. First, we observe that the Rnd
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Fig. 5. Recommender performance in Yelp using the same configuration as in Figure 4.
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Fig. 6. Recommender performance in both cities from Gowalla (New York City, left and San Francisco, right)
using the same configuration as in Figure 4.

recommender obtains practically no performance change through the imputation. This is expected,
since there is no personalization component in this method. On the other hand, for most cities in
the Foursquare dataset (except for New York City and the GeoBPR recommender and Santiago and
Mexico City for EASEr), we identify at least one imputation configuration that leads to improved
performance, or, when no improvement is observed, the difference with respect to the original
version remains negligible. Recall that the optimal parameter settings for the algorithms were
determined using the original training set, not the imputed data set; consequently, if hyperparameter
selection were to be performed on the imputed data set, the results could potentially be superior,
although less realistic in practice.
Regarding the algorithms used to perform the imputation (A), we observe that, in general, the

worst performing one is the Rnd strategy, although in some cases, especially in the case of 30%
imputation ratio, we find that this strategy substantially improves the performance with respect to
the configuration without imputation, as in the case of the city of Santiago, Moscow, or Mexico
City for the Pop, BPR, GeoBPR, or PGN recommenders. Although this may seem strange, we have
to take into account that although the imputation is random, we impute only those POIs that are
at a distance of at most 10km from the midpoint of each user, so that POIs that are far away are
discarded, hence, the imputation is not completely random. This again indicates the importance
of geographical influence in making recommendations, bringing, thus, a preliminary response to
RQ3 (Which parameters of this framework are more critical to achieve performance improvements?),
although in the next section we will continue with such analysis.
However, simply recommending nearby venues does not necessarily improve performance, as

demonstrated by using AvgDis recommender to impute data, where its performance is sometimes
even worse than random recommendations. For instance, in New York City, this is the case with
the UB, GeoBPR, and RnkGeoFM methods, and in Moscow, with the BPR and HKV algorithms. In
any case, as analyzed previously regarding the results without imputation, both the IB and PGN
algorithms are noteworthy for their balance between ranking accuracy, novelty, and diversity.
The results here indicate that PGN generally enhances the performance of most models in almost

, Vol. 1, No. 1, Article . Publication date: June 2025.



Improving traditional Point-of-Interest recommendation through data augmentation 17

Rnd Pop UB IB HKV BPR Ease
R

SAE-
NAD IREN

MF
GeoB

PR
FMFMGM

RnkG
eoFM PGN

0.94

0.95

0.96

0.97

0.98

0.99

1.00

EP
C
@
10

LON

Configuration

original

Random 10

AvgDist 10

IB 10

PopGeoNN 10

Random 30

AvgDist 30

IB 30

PopGeoNN 30

Rnd Pop UB IB HKV BPR Ease
R

SAE-
NAD IREN

MF
GeoB

PR
FMFMGM

RnkG
eoFM PGN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
in
i@

10

LON

Rnd Pop UB IB HKV BPR Ease
R

SAE-
NAD IREN

MF
GeoB

PR
FMFMGM

RnkG
eoFM PGN

0.92

0.94

0.96

0.98

1.00

EP
C
@
10

NYC

Rnd Pop UB IB HKV BPR Ease
R

SAE-
NAD IREN

MF
GeoB

PR
FMFMGM

RnkG
eoFM PGN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
in
i@

10

NYC

Rnd Pop UB IB HKV BPR Ease
R

SAE-
NAD IREN

MF
GeoB

PR
FMFMGM

RnkG
eoFM PGN

Family

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

EP
C
@
10

SAN

Rnd Pop UB IB HKV BPR Ease
R

SAE-
NAD IREN

MF
GeoB

PR
FMFMGM

RnkG
eoFM PGN

Family

0.0

0.1

0.2

0.3

0.4

0.5

G
in
i@

10

SAN

Fig. 7. Figure representing the performance in terms of novelty (EPC) and diversity (Gini), in the Foursquare
cities of London (LON), New York City (NYC), and Santiago (SAN) following the same imputation strategy as
the one used in Figure 4 (imputing for each training user).

all cities, sometimes yielding remarkable improvements. For instance, in Santiago, both IB and
HKV obtain an nDCG performance increase higher than 100%. Similarly, in Moscow, equivalent
performance boosts are observed for FMFMGM, RnkGeoFM, HKV, and BPR. In the case of IB, we
also observe performance increases for recommenders in several cities, most notably in Santiago
and Moscow, and to a lesser extent in Mexico City and Tokyo. However, these improvements are
smaller compared to those achieved with PGN. As previously noted in the non-imputed results, IB
performance in terms of accuracy was not very competitive.
Let us now analyze the results for Gowalla (Figure 6), where in both cities we observe that the

benefits of our imputation strategies are generally smaller than in the case of Foursquare. In neither
city we are able to improve the base performance of EASEr, and both BPR in New York-Gwl and
IRenMF in San Francisco-Gwl fail to improve with the imputed data. However, in all other cases,
at least one imputation technique maintains or enhances performance. Notable improvements
include IB and RnkGeoFM in both cities, as well as HKV in New York-Gwl. Regarding the Yelp
dataset (Figure 5), we also observe that imputation techniques do not achieve results as strong as
in Foursquare, as we do not find any configuration that improves the performance of UB, BPR,
EASEr, GeoBPR, RnkGeoFM, or PGN without imputation. While this may seem surprising, it is
important to note that the Yelp dataset does not correspond to a single city (see Table 3), making
tailored imputations for Points-of-Interest (using geographical and domain-dependent aspects)
more challenging in this context. This once again highlights the crucial role of geographic influence
in POI recommendation and reinforces the importance of not mixing POIs from different cities [53].
In order to clarify the results obtained in Figures 4, 5, and 6, we present in Appendix B the

complementary Table 5. In this table, for each combination of dataset and configuration, we show
the number of models that achieve a better result than the imputation-free recommender (original,
represented in red in these figures) in terms of nDCG. Based on these summarized results, we
observe that the configurations using PGN algorithm are the ones that improve the performance of
the algorithms the most, followed by the IB strategy.
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Fig. 8. Figure representing the performance in terms of novelty (EPC) and diversity (Gini), in the Foursquare
cities of Mexico City (MEX), Moscow (MOS), and Tokyo (TOK) following the same imputation strategy as the
one used in Figure 4 (imputing for each training user).

Rnd Pop UB IB HKV BPR Ease
R

SAE-
NAD IREN

MF
GeoB

PR
FMFMGM

RnkG
eoFM PGN

0.96

0.97

0.98

0.99

EP
C
@
10

Yelp

Configuration

original

Random 10

AvgDist 10

IB 10

PopGeoNN 10

Random 30

AvgDist 30

IB 30

PopGeoNN 30

Rnd Pop UB IB HKV BPR Ease
R

SAE-
NAD IREN

MF
GeoB

PR
FMFMGM

RnkG
eoFM PGN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
in
i@

10

Yelp

Fig. 9. Novelty (EPC) and diversity (Gini) performance in Yelp as in Figures 7 and 8.

Once we have analyzed the performance of the imputation strategies in terms of ranking accuracy,
let us analyze these strategies but in terms of novelty and diversity, in order to answer RQ2. For
this reason, Figures 7 and 8 present the results for all the cities of the Foursquare dataset using
the EPC (novelty) and Gini (diversity) metrics, whereas Figures 9 and 10 show the results for Yelp
and Gowalla. In the case of Foursquare, we observe a well-known phenomenon in recommender
systems: recommenders that perform poorly in terms of accuracy ranking often excel in novelty
and diversity. This highlights the challenge of finding a balance between all dimensions [60].
Nevertheless, it is possible to observe that several recommenders keep consistent (unchanged)

performance in these metrics, regardless of the imputation mechanism used. For example, the
Pop recommender and BPR show the same results in both novelty and diversity, while IRenMF,
FMFMGM, HKV, and UB remain unchanged in terms of diversity. This consistency is not necessarily
negative; as demonstrated in the previous section, we were able to improve performance in terms
of accuracy ranking. This indicates that there are configurations capable of enhancing relevance
without sacrificing performance in novelty and diversity. Moreover, we can also observe some
interesting cases, as in the RnkGeoFM recommender, where we improve both novelty and diversity,
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Fig. 10. Novelty (EPC) and diversity (Gini) performance in Gowalla (New York City in top row, San Francisco
in bottom row) as in Figures 7 and 8.

while at the same time, as we saw before, we are able to improve the performance of nDCG as
well. Additionally, in the case of EASEr, the imputed and non-imputed versions showed almost
identical accuracy performance. However, certain configurations exhibited substantial increases in
novelty and diversity. For SAE-NAD, novelty and diversity remained largely unchanged between
the imputed and non-imputed versions, except for specific cases such as Tokyo or New York City.
In any case, we found that the Rnd and AvgDis strategies generally have a positive impact on

the novelty and diversity of the models. However, these strategies do not achieve a significant
improvement in terms of ranking accuracy. This highlights the ongoing challenge of balancing
enhancements in ranking accuracy while improving novelty and diversity. Nonetheless, as a positive
contribution of our work, it also suggests that certain combinations within the proposed framework
might be able to enhance all three dimensions simultaneously.
Following the analysis of Foursquare, the novelty and diversity analysis for the cities of Yelp

(Figure 9) and Gowalla (Figure 10) evidence that some trends remain consistent with those seen
in Foursquare cities. Once again, EASEr, RnkGeoFM, and IB benefit the most in these evaluation
dimensions when applying our imputation techniques. Furthermore, diversity appears to be less
affected than novelty. In fact, for novelty, in almost all cases (except for the Rnd recommender), we
find at least one configuration that outperforms the non-imputed version.

Again, we summarize in Tables 6 and 7 (in Appendix B) the results presented in previous figures,
showing the number of models that outperform their non-imputed versions in each combination
of dataset and configuration in terms of EPC and Gini.

5.2 Data imputation applied to cold-start users
In the recommender systems domain, it is common to analyze the performance for specific user
groups. These groups can be defined by metadata (e.g., age, gender, ethnicity) or by their behavior
when interacting with the system. One of the most common groups is cold-start users – those
with very few interactions, making it challenging to generate accurate predictions for them. In this
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Fig. 11. Same as Figure 4, but imputation is only applied to users with the lowest number of check-ins
(cold-start users) as explained in Section 5.2 (Foursquare).

section, we analyze the effect of our imputation techniques on these types of users, as we want to
confirm if they are able to benefit from our framework.
In this case, parameters I𝑢,FI , A, and V remains the same as in the previous experiment.

Although we are also using a 10% and a 30% of increment for Δ, in this scenario, the imputation is
applied globally rather than per each user. This means the increase is based on the total number of
check-ins. More differently, now the users with the lowest number of check-ins (cold-start) are
the ones affected by the imputation process (UFI ). The procedure involves ordering users by their
number of check-ins, computing the average number of check-ins needed to meet the stipulated
data increment, and impute check-ins for each user until they reach the computed average. Once
a user reaches such average value, their data is no longer imputed, and the process moves to the
next user. The procedure stops once the overall imputation target value is achieved. Consequently,
users with a higher number of check-ins will not experience an increase in their interactions.

Results for this scenario in the Foursquare, Yelp, and Gowalla datasets are shown in Figures 11, 12,
and 13. For Foursquare, when comparing these outcomes with the previous experiment, we see that
the behavior is slightly different, as there are more instances where configurations fail to outperform
the value obtained from the original training without imputation. While Figure 4 only showed
that for the GeoBPR in New York City the non-imputed version is the best, in these experiments it
also happens in Tokyo for UB, IB, and BPR, and also in London for GeoBPR. Nevertheless, we also
find some instances where results are slightly better than in the previous experiment, such as for
Santiago or Moscow with PGN and a 30% increment.

The results for Yelp (Figure 12) and Gowalla (Figure 13) show that, although there are still models
that do not benefit from the imputation strategies (e.g., BPR, EASEr, SAE-NAD, and IRenMF in
both San Francisco-Gwl and New York City, and UB, PGN, and GeoBPR in Yelp), the performance
loss in these cases is generally negligible – except for UB in Yelp. On the other hand, for the rest of
the models where performance improves, the gains in terms of nDCG are clearly noticeable.

As in the previous experiment, we also present a summary in the appendix (in Table 8) with the
number of models that are able to obtain a higher performance than their non-imputed version
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Fig. 12. Same as Figure 5, but imputation is only applied to cold-start users (Yelp).
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Fig. 13. Same as Figure 6, but imputation is only applied to cold-start users (Gowalla).

for each city and configuration. Despite these results, where more combinations of algorithm
and imputation mechanism do not improve performance, imputing only for users with fewer
check-ins could still be a valid strategy, as the overall trend is positive. In fact, considering the
higher uncertainty involved in the users being imputed in this experiment, these results are very
promising, since we are taking more risks by considering users with less information in their
training set, hence being easier to fail in the imputations or to introduce noisy information.

5.3 Discussion
In this work, we have demonstrated through various experiments the beneficial impact of data
imputation techniques on the performance of different recommender systems, especially in terms
of ranking accuracy. Among the evaluated strategies, using the hybrid PGN algorithm to impute
data stands out as the most promising option, offering substantial scope for improvement.
However, it is important to emphasize again that all the results presented so far have been

obtained using the optimal hyperparameter configuration derived from the non-imputed version. In
other words, once we determine the best parameter settings for each model using the non-imputed
training file, we maintain these settings across all imputation strategies. This approach suggests
that if we were to select hyperparameters using the imputed training file, we could potentially
increase the performance of the algorithms even further. This improvement could be achieved by
fine-tuning the parameters for each specific training set used.

To illustrate this, we present in Figure 14 a series of boxplots for the city of London (belonging to
Foursquare), whereas those corresponding to Yelp and New York City and San Francisco (Gowalla)
are shown in Appendix C (Figures 15, 16, and 17) for the sake of space. Each boxplot represents
the performance obtained by each recommender considering all its hyperparameters (see Table 4)
considering the original training set (red), the imputed training set using the PGN recommender
with a 10% increment (blue), and the imputed training set with a 30% increment (green) for every
training user. The median and average of each boxplot is represented with the horizontal black
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Fig. 14. Boxplots for the city of London (Foursquare) of the performance values obtained by different
configurations of the recommendation algorithms considering all the hyperparameters. In red, the values
obtained with no imputation. In blue, using the PGN as imputation algorithm, incrementing the number of
check-ins by a 10% per user. In green, the same but incrementing the number of check-ins by a 30%.

lines and with the black “x”, respectively. For example, the UB recommender has 20 different
configurations (10 different neighbor values with 2 different similarities), hence, we compute a
boxplot using the performance values obtained by the 20 versions of the UB recommender for every
training set. Note that recommenders that do not have parameters, that is, Rnd and Pop do not
produce a boxplot, as only 1 measurement for both the original training and the imputed versions
would exist. Therefore, each boxplot encapsulates the performance of every parametrization for
each recommender according to the nDCG@10 metric.
For Foursquare, in Figure 14, we observe that in most instances, the boxplots of the imputed

versions outperform the original ones. This is particularly noticeable in the case of classical
recommendation models that do not incorporate geographic influence, such as UB, IB, HKV, and
BPR. When analyzing the POIs recommenders, there is one model that does not appear to benefit as
significantly from the imputation, and three models that do not get their best result with imputed
data (although imputation improves their results overall). The first one is the PGN model, which
is, to some extent, expected, given that data imputation was conducted using the same algorithm,
making it unlikely to benefit from its own imputation strategy. The other models are EASEr,
SAE-NAD, and IRenMF, where most of their original performance values are outperformed when
imputation is considered, except for their best value (top horizontal line). Furthermore, it is worth
noting that we have conducted Wilcoxon statistical tests between the results of the non-imputed
and imputed versions for all models. All of them, except IRenMF, achieved statistical significance
(p-value < 0.05), underscoring the effectiveness of the imputation strategy.

Regarding the analysis for the other datasets, we refer to Appendix C for a detailed discussion. In
summary, we observe that some models do not benefit from our imputation techniques as clearly
as in Foursquare (as seen in London, Figure 14, where only PGN performance does not improve
with imputation), while others do, so performance improvements seem to depend more on the type
of approach than in Foursquare. Nonetheless, we would like to emphasize that our framework is
highly configurable, and we find it very promising that, even with simple imputation strategies
and straightforward parameter exploration, we can improve the performance of a wide range of
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models. In the future work section, we outline how the quality of imputed data can be enhanced
through more advanced strategies.

6 RELATEDWORK
In the Point-of-Interest recommendation domain, as far as we know, the topic of data imputation
remains relatively unexplored. While some studies have made progress in this area, it is essential to
distinguish between approaches that enhance existing check-ins with additional POI information
and those that infer new check-ins. Regarding the first type of proposals, we have the work of [9],
where the authors introduced a neural network model to add Point-of-Interest information into
social media posts. [31] proposed a similar approach based on RankSVM to address the scarcity
of POI details in social media. On the other hand, some of the proposals aimed at generating new
check-ins include the work of [33], where the authors proposed the POI-Augmentation Sequence-
to-Sequence model (PA-Seq2S). This model, based on neural networks, is specifically designed to
fill in potential gaps in user check-in sequences by predicting missing check-ins. SGRec from [32]
is another interesting approach which uses the Sequence-to-Graph (Seq2Graph) augmentation
technique, associating Point-of-Interest nodeswith neighboring venues using semantic relationships
to reduce data sparsity. Similarly, [71] uses a self-attention mechanism to complete trajectory
sequences caused by gaps in user check-in data.

It should be noted that these works are designed for the next-Point-of-Interest recommendation
problem, i.e., oriented to recommend the next Point-of-Interest to be visited by the user, and that
they tested their proposals only against other sequential models; in comparison with our work
here, which is designed for the original Point-of-Interest recommendation scenario. In fact, the
generic nature of our framework makes it possible to incorporate such previous works, even
though we leave this effort for the future, as it is out of the scope of our initial analysis of the
problem. Additionally, it should be emphasized that the work presented herein is not tied to any
particular recommendation algorithm or imputation strategy.We have tested methods with different
characteristics and obtained promising results in most of the scenarios, evidencing that the POI
recommendation problem could benefit from simple but domain-specific solutions.

7 CONCLUSIONS & FUTUREWORK
7.1 Summary
The Point-of-Interest recommendation domain has always been characterized by higher sparsity
than other traditional recommendation areas, such as movies or books. The data available to
train the models is generally limited, with many users making only a few check-ins, and few
venues drawing a lot of the attention, evidencing a strong popularity bias. This results in a poor
performance of models not only in terms of ranking accuracy but also in terms of novelty and
diversity. In order to address this problem, in this work we have proposed a generic framework that
allows us to model a data imputation process in the area of Point-of-Interest, by generating new
check-ins for the recommenders while making use of a set of parameters grouped in two categories:
parameters to configure how to choose the preferences to be imputed and parameters oriented
to define the values to be imputed. These parameters allow to control how much data sparsity is
reduced and which methods are used for this goal.

We have presented a set of experiments in six cities from the Foursquare global check-in dataset,
two cities from Gowalla, and the Yelp dataset as a whole using two different models to impute
data using collaborative filtering and geographic information approaches. As shown in the results,
we have been able to improve the nDCG performance of most recommenders compared to their
standard versions without imputation. Among the framework parameters, the most influential ones
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towards the performance of the recommenders are the algorithms used for data imputation. Both
PGN and IB strategies enable us to impute more useful data for the recommenders. Additionally, the
imputation percentage plays a crucial role: generally, imputing 30% of the data yields better results
than imputing only 10%, evidencing that data sparsity reduction is linked to better performance
results. Furthermore, imputing data for all users tends to produce better outcomes than targeting
only those with few check-ins.

We consider these results positive and very promising, especially since we did not perform hyper-
parameter selection with the imputed check-in matrix C′, as we maintained the same parameters
as those obtained in the non-imputed training.

7.2 Limitations
Throughout this paper, we have emphasized the issue of data sparsity, and we have explored how
imputation techniques can mitigate it, thereby enhancing the performance of recommendation
algorithms. Nevertheless, despite the positive results achieved with our proposed methods, we
believe this work can be further extended by integrating insights from other areas of recommender
systems research.
One particularly promising area for such integration is the analysis of recommendation uncer-

tainty, which is often discussed in terms of its opposite concepts: reliability and confidence [7,
61, 41]. In sparse situations (like POI recommendation) the algorithms infer the users preferences
relying on small amount of data, making uncertain recommendations, and hence, measuring and/or
estimating the confidence on recommender systems predictions is critical to detect which rec-
ommendations are more probable to be unsuccessful [15]. This confidence has been previously
analyzed in CF techniques based on similarities and matrix factorization [6, 41] and also using
approaches based on Bayesian Neural Networks and Monte-Carlo Markov Chains [14]. Therefore,
for future work, we believe it is natural to integrate some of these techniques to determine whether
the imputed data are sufficiently reliable to be included in the imputed matrix and be used later for
generating the recommendations.

Imputation, while helpful for data completion, raises privacy concerns, particularly when dealing
with sensitive user data in recommender systems and Point-of-Interest domain, such as the user’s
location. Imputing values can inadvertently reveal private information if the imputation method
relies on correlations or patterns within the data. For instance, if a user’s sensitive attribute is
strongly correlated with other features, imputation could reconstruct that attribute, even if it was
initially missing. Hence, this would require careful consideration of privacy-preserving imputation
techniques and robust data anonymization practices to mitigate these risks.

Another major limitation of this work, but that can be extended to how recommender systems are
evaluated nowadays [22], is the focus on short-term improvements in recommendation performance,
as their long-term impact is not feasible to be assessed with offline experiments. Hence, further
and more complete experiments should be designed to analyze the stability of imputed data and
the performance changes in the long term.

7.3 Future work
Although the results shown here are promising, there is still room for improvement. As future work,
we pretend to perform a more comprehensive analysis using more variables in the data imputation
framework. Besides, we plan to make a more complete analysis of how these imputation techniques
work for different user groups (national, international, local tourists, etc.), as it has been observed
by the community that each user group exhibits different behaviors [52]. Similarly, after observing
the positive results of using geographic information in our data imputation framework, we plan to
include other types of information that we can find in LBSNs, such as temporal data and/or the
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POI categories [53]. In fact, our results open up the possibility to analyze in detail how different
types of POIs might be affected by the imputation framework, to consider whether some POIs are
easier to impute than others based on the framework parameters.

At the same time, we consider exploring the effect of other imputation strategies on more complex
and data intensive models such as neural networks and factorization machines, in order to detect
whether these techniques can benefit from our framework and to what extent. Similarly, we intend
to make use of such complex models to be used as imputation algorithms. However, especially when
dealing with complex techniques, it is important to be aware of the privacy concerns mentioned in
the previous section, and especially, to incorporate privacy-preserving methods to avoid leaking
personal information.

Moreover, in the context of POI recommendation, imputing missing check-ins could benefit from
cross-domain techniques [17] by incorporating data from other location-based social networks.
For instance, if a user’s check-in history is sparse in one dataset, information from another LBSN
could help validate or refine imputed check-ins by identifying similar behavioral patterns across
platforms. Moreover, cross-domain knowledge could serve as a filtering mechanism to ensure
that imputed check-ins make sense; for example, if a POI appears frequently in one dataset but is
rarely visited in another, this discrepancy might indicate potential noise in the imputed data. By
integrating data from multiple sources, we could improve the accuracy of imputations and mitigate
biases, ultimately leading to more robust POI recommendation models.

An alternative research line for the future would be to consider the causal structure of the data,
so that the imputation mechanism would model the inherent biases and implicitly consider the
underlying data structure, favoring domain generalization, as recently analyzed in [26]. In parallel,
it is worth considering the quality of the imputed data. In principle, the goal of imputing data
is to complete the user-venue matrix, meaning that the imputed check-ins should be useful to
the subsequent recommendation algorithm. However, ensuring the quality of imputed data is a
worthwhile avenue for the future. One potential approach we envision for this is the need of some
kind of validation. In the domain presented in our work, this could be done by comparing the
imputed check-ins with POI opening hours, user mobility patterns, and even weather conditions to
assess if they would be valid, realistic check-ins performed by users; for example, a check-in at an
outdoor location during extreme weather might indicate an unreliable imputation. Such additional
validations present significant challenges but could enhance the reliability of imputed data and
deserve further research efforts.
Finally, we plan to explore several optimization strategies to improve the scalability of the

proposed framework for large-scale datasets. One promising direction is the use of more efficient
sampling techniques during the imputation phase, prioritizing the imputation of interactions that are
more likely to impact the training of the recommenders. Additionally, since exact computations are
not always necessary, the use of approximate methods — such as approximate nearest neighbor [10]
algorithms for similarity calculations — could significantly accelerate the imputation process
without substantially sacrificing accuracy. Moreover, many components of the framework are
well-suited for parallelization or distributed computing, which could further reduce execution time
and make the approach more practical for real-world applications.
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Table 5. Number of times each imputation configuration achieves a performance equal to or greater than
that of the “original” configuration (no imputation) in terms of nDCG@10 across all the cities of the different
datasets, ignoring the Rnd, recommenders. This table represents a summary of Figures 4, 5, and 6.

Configuration LON NYC SAN MEX MOS TOK Yelp NY-G SF-G

AvgDis 10 2 5 6 7 3 4 1 5 3
AvgDis 30 4 2 8 7 7 1 1 4 2
IB 10 3 2 5 6 9 4 1 1 0
IB 30 2 1 9 8 9 2 1 1 0
PGN 10 8 5 8 8 5 5 2 4 3
PGN 30 5 3 9 9 9 2 1 4 2
Rnd 10 3 5 3 6 6 2 3 2 3
Rnd 30 2 2 9 7 7 1 1 3 3

Table 6. Number of times each imputation configuration achieves a performance equal to or greater than
that of the “original” configuration (no imputation) in terms of EPC @10 across all the cities, ignoring the
Rnd recommender. This table represents a summary of Figures 7, 8, 9, and 10 for the EPC metric.

Configuration LON NYC SAN MEX MOS TOK Yelp NY-G SF-G

AvgDis 10 11 11 10 6 10 10 12 9 10
AvgDis 30 11 11 10 9 12 11 12 12 12
IB 10 7 8 6 3 5 3 10 9 11
IB 30 8 8 7 6 6 3 10 10 9
PGN 10 2 3 2 1 2 2 2 3 3
PGN 30 2 4 2 2 1 1 2 5 2
Rnd 10 8 10 10 7 8 8 10 9 11
Rnd 30 10 10 11 6 9 10 11 10 11

B ADDITIONAL PERFORMANCE RESULTS OF IMPUTATION CONFIGURATIONS
Tables 5, 6, and 7 present the number of models whose imputed version improves the performance
of the non-imputed version in all datasets in terms of nDCG, EPC, and Gini, respectively. Table 8
also shows the number of models where the imputation methodology improves the performance of
the non-imputed version in terms of nDCG but in the cold-start scenario presented in Section 5.2.

C ADDITIONAL ANALYSIS OF HYPERPARAMETER TUNING APPLIED TO
IMPUTATION STRATEGIES

This section presents additional results to those discussed in Section 5.3, corresponding to Yelp
(Figure 15) and New York City (Figure 16) and San Francisco (Figure 17) from Gowalla. In both
Gowalla cities, models such as RnkGeoFM, FMFMGM, HKV, and IB show a performance increase.
For Yelp, the behavior is more similar to the results reported for Foursquare, although the per-
formance gains are again slightly smaller. Additionally, statistical significance tests (Wilcoxon)
reveal meaningful differences between models in the rest of the cities. For SF-G, all models achieved
statistical significance (p-value < 0.05), while for NY-G, the results reported by BPR, UB, and
GeoBPR are not statistically different from their non-imputed counterparts. Finally, for Yelp, the
results obtained by HKV, IRenMF, SAE-NAD, and EASEr with data imputation are not statistically
different from their non-imputed versions.
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Table 7. Number of times each imputation configuration achieves a performance equal to or greater than
that of the “original” configuration (no imputation) in terms of Gini@10 across all the cities, ignoring the
Rnd recommender. This table represents a summary of Figures 7, 8, 9, and 10 for the Gini metric.

Configuration LON NYC SAN MEX MOS TOK Yelp NY-G SF-G

AvgDis 10 12 11 9 7 8 9 12 10 10
AvgDis 30 11 11 11 11 11 11 12 12 11
IB 10 8 10 4 6 7 3 3 9 6
IB 30 9 10 5 5 7 5 3 8 6
PGN 10 3 3 2 4 2 2 1 4 1
PGN 30 2 3 0 0 1 1 1 1 0
Rnd 10 8 9 7 8 5 6 10 9 9
Rnd 30 11 10 10 8 7 6 11 9 11

Table 8. Number of times each imputation configuration achieves a performance equal to or greater than that
of the “original” configuration (no imputation) in terms of nDCG@10 across the different cities for cold-start
users, ignoring the Rnd recommender. This table represents a summary of Figures 11, 12, and 13.

Configuration LON NYC SAN MEX MOS TOK Yelp NY-G SF-G

AvgDis 10 3 3 3 9 3 2 3 3 1
AvgDis 30 3 2 9 7 7 2 2 3 1
IB 10 4 3 3 9 9 4 5 1 1
IB 30 6 2 9 9 9 2 3 1 1
PGN 10 5 5 3 4 5 4 7 2 2
PGN 30 5 3 9 8 9 2 6 2 3
Rnd 10 6 3 2 9 6 5 0 4 4
Rnd 30 3 2 9 7 7 1 0 2 1
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Fig. 15. Boxplots for Yelp of the performance values obtained by different configurations of the recommenda-
tion algorithms considering all the hyperparameters. Same configuration as in Figure 14.

Nevertheless, these differences in performance across datasets can be explained by the inherent
characteristics of these datasets, as evidenced in the statistics reported in Table 1. For the case of
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Fig. 16. Boxplots for New York City (Gowalla) of the performance values obtained by different configurations
of the recommendation algorithms considering all the hyperparameters. Same configuration as in Figure 14.
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Fig. 17. Boxplots for San Francisco (Gowalla) of the performance values obtained by different configurations
of the recommendation algorithms considering all the hyperparameters. Same configuration as in Figure 14.

Foursquare, the data is significantly sparser than in Gowalla and Yelp, which makes the imputed
data more helpful. On the other hand, in our current imputation strategy, we only impute binary
interactions (i.e., 1s), as defined by parameterV in our framework. As a result, if there are “real”
check-ins with higher aggregated values (e.g., frequency), the imputed data may contribute less
useful information, or even degrade model performance in some cases.
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