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Abstract
Recommender systems in the tourism domain are gaining increas-
ing attention, yet the development of diverse recommendation
tasks remains limited, largely due to the scarcity of public datasets.
This paper introduces Context Trails, a novel dataset addressing
this gap. Context Trails distinguishes itself by including not only
user interactions with touristic venues, but also the itineraries
(trails or routes) followed by users. Furthermore, it enriches ex-
isting item features (e.g., category, coordinates) with contextual
attributes related to the interaction moment (e.g., weather) and
the venue itself (e.g., opening hours). Beyond a detailed descrip-
tion of the dataset’s characteristics, we evaluate the performance
of several baseline algorithms across three distinct recommen-
dation tasks: classical recommendation, route recommendation,
and contextual recommendation. We believe this dataset will fos-
ter further research and development of advanced recommender
systems within the tourism domain. Dataset is available at https:
//zenodo.org/records/15855966; further code available at https://
github.com/pablosanchezp/ContextTrailsExperiments.
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1 Introduction
Recommender systems are becoming increasingly present in our
daily lives, helping users discover relevant content in different do-
mains, such as e-commerce, entertainment, and, notably, tourism.
∗All authors contributed equally to this research.
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In particular, Point-of-Interest (POI) recommendation plays a cru-
cial role in enhancing user experience by suggesting relevant loca-
tions to visit when the users are exploring a city. However, unlike
traditional domains like movies or books, POI recommendation
is heavily influenced by contextual factors, such as time of day,
weather, or the user’s travel intention [27, 42].

While researchers can access a vast number of datasets for rec-
ommender systems – such as MovieLens (for movies), Amazon (for
product reviews), or others1 – there are few datasets specifically
designed for POI recommendation that include rich contextual
information (see Table 1). Public and well-known POI datasets,
such as those from Location-Based Social Networks (LBSNs) like
Foursquare2 or Yelp3, provide valuable data for POI recommen-
dation, including basic POI metadata (e.g., categories or names)
and user interactions (called check-ins) with timestamps. However,
despite their usefulness, these datasets still miss stronger contex-
tual signals such as weather or opening hours that are crucial for
building realistic Context-Aware Recommender Systems (CARS).

To address this gap, we propose an extension of an existing
Foursquare dataset, enriching it with additional contextual features
(or providing the necessary code for that matter) such as POI cate-
gories, opening hours, and weather conditions at the time of each
check-in. Herein, we present three sets of experiments using our
dataset: traditional POI recommendation, route recommendation,
and contextual recommendation, analyzing the behavior of a set
of classical algorithms in the dataset. Thanks to this analysis, we
consider that this extended dataset might be useful to the devel-
opment of context-aware recommenders in both POI and route
recommendation.

Hence, the contributions of this work are summarized as:
• We collect and provide the code to construct a new dataset
covering user interactions as trails for three cities (New York,
Petaling Jaya, and Tokyo). We enhance a previously pub-
lic Foursquare dataset and integrate additional information
about the POIs retrieved from the Foursquare API, along
with weather conditions when check-ins occurred.

• We provide a comprehensive analysis of the dataset, includ-
ing visualizations of POI spatial distribution, information on
the user routes, and detailed statistics on weather conditions
and the other collected contextual variables.

• We conduct benchmarking experiments across three recom-
mendation tasks: classic Point-of-Interest, route, and context-
aware recommendation.

1GitHub repository with links to datasets for recommendation tasks: https://github.
com/ACMRecSys/recsys-datasets.
2Foursquare datasets: https://sites.google.com/site/yangdingqi/home/foursquare-dataset.
3Yelp dataset: https://business.yelp.com/data/resources/open-dataset/
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2 Related work
This section presents the main recommendation tasks our dataset
allows analyzing and a contextualization against other datasets.

2.1 Point-of-interest (POI) recommendation
The POI recommendation task consists of suggesting relevant venues
(often referred as POIs) – such as restaurants, museums, or parks
– users might want to visit, when traveling to a specific city [31].
These recommendations are typically derived by analyzing user
preferences and historical behaviors, captured through check-ins
registered in Location-Based Social Networks (LBSNs). These net-
works are online platforms where users voluntarily share their
location by checking-in at specific venues, often accompanied by
reviews or ratings [2, 39]. Some examples of these LBSNs include
Foursquare, Gowalla, or Yelp. Check-ins are used to build user–POI
interaction matrices, which are then exploited by recommendation
models to infer preferences and suggest locations [9, 26].

Unlike traditional recommendation scenarios, such as movies or
books, where user preferences tend to be relatively stable and not
so dependent on temporal and geographic information, POI rec-
ommendation is inherently more dynamic and context-dependent.
POI relevance often depends on situational factors such as the
user’s current location, the time of the day, weather conditions, or
the user’s intention (e.g., sightseeing or dining) [16, 36, 38]. To ad-
dress these challenges, the field has evolved significantly in the last
decade. Early approaches focused on Collaborative Filtering (CF)
techniques, including similarity-based models and Matrix Factor-
ization (MF), aimed at obtaining latent representations of users and
venues [19, 44]. These techniques incorporated temporal dynamics,
geographic information, and social influence to improve recommen-
dation accuracy. More recently, deep learning has brought substan-
tial advances, with architectures such as recurrent neural networks
(RNNs) [14, 48], graph neural networks [45], and attention-based
models [17, 43] which are applied to model sequential behavior,
capture spatial correlations, and learn from heterogeneous sources.

2.2 Route recommendation
In addition to individual POI recommendation, a more challenging
but highly relevant task is route recommendation, which involves
suggesting an ordered sequence of POIs that a user may wish to
visit within a single time frame. While traditional POI recommenda-
tion focuses on identifying a single relevant location based on user
preferences and context, route recommendation must take into ac-
count multiple interdependent decisions, considering relationships
between consecutive POIs, temporal constraints, and geographical
proximity among other criteria [6, 21].

This task involves multi-objective optimization [8], where mod-
els must balance not only the relevance of each POI, but also factors
like travel time, route coherence, time budgets, and starting and
ending locations [13]. The combinatorial nature of the problem
makes it particularly challenging: the number of potential routes
increases exponentially with the number of candidate POIs, mak-
ing efficient search, pruning strategies, and user personalization
essential. Several techniques have been explored to address these
challenges, ranging fromheuristic-based proposals and graph-based
models [46] to approaches that use sequence modeling (e.g., RNNs,

transformers) and reinforcement learning to dynamically generate
or rank route candidates [7, 47]. Some methods treat the problem
as different sub-areas from the Operations Research field (e.g., ori-
enteering and traveling salesman problems) with personalized and
contextual constraints [12], while others rely on historical trajectory
data to mine frequent patterns or transitions between POIs [18].

2.3 Context-aware recommendation
Recommender systems usually take into account only two variables:
users and items. But a third dimension may frequently coexist,
embedding the so-called “contextual information”. Context is a
multifaceted concept that has been used across different disciplines
[20]. This additional information can be temporary, geographical,
or any other type that can help the system to be more precise in its
main goal; for example, information about the weather can help a
tourist company to improve its recommendations. In this scenario,
it has been shown that the incorporation of this type of information
makes it possible to better characterize and profile users using more
detailed data and, therefore, make better recommendations [37].

Starting with the seminal work of Adomavicius et al. [1], various
authors have discussed the main challenges of CARS approaches; in
that work, the authors illustrate the usage of this type of algorithms,
focusing on travel and music domains, although foreseeing more
interactive or adaptive scenarios like conversational applications.
More recently, we find literature surveys specialized in particu-
lar domains regarding CARS methods, like social networks [35],
cultural heritage [5], temporal aspects [4], or neural networks [20].

All these approaches can be characterized as belonging to one of
the following three paradigms, depending on how context is incor-
porated into the recommendation model: i) contextual pre-filtering,
where context is used to select the relevant set of data records and,
then, recommendations are produced by using any classical (i.e.,
non-CARS) recommender system on the selected subset; ii) contex-
tual post-filtering, where contextual information is ignored when
training the algorithms, hence allowing to obtain recommendations
again by using a classical RS trained with the whole data, subse-
quently, such recommendations are adjusted through a per-user
contextualization by incorporating the contextual information - in
other words, this mechanism refines the resultant recommendation
list; and iii) contextual modeling, where context is directly integrated
in the recommendation function [20].

2.4 Related datasets
Both the tourism domain and the context-aware recommendation
area suffer from a lack of sufficiently large, diverse, and complete
datasets. Based on a non-exhaustive search, but considering highly-
cited related publications and recent surveys on these topics (i.e.,
[15, 20, 31]), we show in Tables 1 and 2 a collection of 15 CARS
datasets and 8 POI and route datasets.

Regarding the datasets used in CARS approaches, besides stan-
dard statistics, we identify the domain and the contexts included
in the data, and where several versions existed, we include a range
of minimum-maximum values for that column. It should be noted
that in some cases (as in those denoted as HC, from HyperCars
[3]) these contexts are inferred from textual reviews, so the con-
textual information is not as certain as in other datasets. Also, in
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Table 1: Datasets used in publications dealing with CARS
approaches. K andM denote thousands andmillions. Context
abbreviations used: A (age), B (budget), C (companion), D
(demographic), DS (driving style), G (goal), H (hunger level),
L (location), LI (last interactions), M (mood), O (order), R (road
type), RV (real/virtual), S (social), Sch (schedule), T (time), Ta
(tag), TT (trip type), W (weather).

Dataset Domain Users Items Interactions Contexts

Adom Movie 0.1K 0.2K 1.5K C, L
Comoda Movie 0.1K 1.2K 2.3K M, S, T, W
DePaulMovie Movie 0.1K 0.1K 5K C, L, T
In Car Music 0.01K 0.2K 4K DS, M, R, W
Food Food 0.2K 0.01K 6.4K H, RV

Foursquare POI 0.2K-51K 0.3K-500K 0.5K-3.5M D, L, T, W
Frappe Apps 1K 4K 95K L, T
HC-Gowalla POI 24K 40K 1M L, T, W
HC-Yelp POI 312K 12.6K 1.1M L, T, W
LastFM Music 0.01K-3K 1.8K-174K 93K-19M LI, O, Ta, T

MovieLens Movie 0.7K-140K 1.6K-19K 31K-20M A, T
STS POI 0.3K 0.3K 2.5K B, C, G, M, T, W
TripAdvisor POI 1.2K-2.6K 1.5K-1.9K 4.7K-9.3K TT
Weeplaces NY POI 4.5K 16.1K 864K W
Yelp POI 5K-96K 13K-49K 144K-2.3M LI, L, T

Context Trails POI 85K 84K 1.3M L, Sch, T, W

Table 2: Datasets used in publications dealing with POI and
route recommendation approaches.

Dataset Cities Users Items Check-ins Routes

Foursquare Global Scale 415 267K 3.7M 33.3M NA
GeoLife 1 0.2K ≈17K 28M 17.6K
Gowalla 50 1.6K-107K 3.5K-1.3M 116K-6.4M NA
Semantic Trails 2013 10K 256K 2.8M 18.6M 6.1M
Semantic Trails 2018 52K 400K 1.9M 11.9M 4M
Trip builder 3 22.6K 1.3K 133K 55.5K
VeronaCard 1 (unk) 0.1K 1.2M 250K
YFCC100M 1-7 0.9-6.5K 0.1K 17K-130K 4K-20K

Context Trails 3 85K 84K 1.3M 580K

other cases (like movies and music) debatable context features are
used, like tags or age [33, 40, 49]. We also observe that POI is a
popular domain where context has often been studied, because it
offers richer context sources beyond time. Based on this sample,
we conclude that our collected dataset is larger than most of these
datasets, includes relevant contextual dimensions, and belongs to a
domain that is interesting for the CARS community.

Regarding the datasets used in POI and route recommendation
approaches, we also include the number of cities they cover and
the routes, if available. It is important to note that many of these
datasets contain a small number of POIs, which is surprising, es-
pecially considering the number of cities they claim to include.
Since the field has devoted more effort on the POI, rather than the
route, recommendation problem, it does not come as a surprise that
not many datasets include some type of (explicit) route, trail, or
trajectory of the users throughout the city. Our collected dataset
is the one with more routes (except for Semantic Trails, which is,
as we shall explain later, the data source we start from). There are
also other datasets with more cities, but this is the first version of
our dataset, and we are working on extending it with more cities,
all of them with their corresponding routes and contexts.

2.5 Contextualizing our work
Our dataset offers the following features: i) user and item times-
tamped interactions, both in the form of check-ins, for traditional
POI recommendation, and in the form of routes; ii) currently, a se-
lection of popular but culturally diverse range of cities (New York,
Petaling Jaya, and Tokyo); iii) together with temporal and geograph-
ical dimensions, which are frequently used in CARS literature [20],
we include weather data (aligned to the timestamped interaction
and the corresponding city) and schedules for the venues. While
weather information is sometimes included in datasets of this do-
main (such as [36]), the schedules are frequently neglected, basically
because the use case scenario of the simulated recommendations do
not aim to be realistic (i.e., is the suggested venue really open when
the user is expected to visit it?). Our dataset would allow answering
this type of questions and create richer and realistic approaches.

3 The Context Trails dataset
3.1 Data collection
The dataset Context Trails we present here is based on three main
data sources: SemanticTrails, VisualCrossing, and Foursquare:

• SemanticTrails: this dataset contains user routes (called trails
by the authors) across various POIs in different cities around
the world. It is available online4 and was proposed in [23].
The dataset is divided into data from 2013 (check-ins ex-
tracted from the Global-Scale Check-in Dataset from foot-
note 2) and 2018. We focus on the 2018 version to include
more recent interactions and avoid outdated information.
The POIs visited by users are identified with Foursquare IDs.
This dataset includes route and user identifiers, timestamps
related to the check-ins, and categories and country of each
POI. Note no geographical coordinates are included in this
version of the dataset, even though this is a common feature
among existing POI datasets (see Table 1).

• VisualCrossing5 provides historical weather data, allowing
to obtain information such as temperature, rainfall, and wind
for different dates and locations around the world. The data
was obtained with an hourly resolution.

• Foursquare Developers API6 allows developers to obtain
more specific details about the POIs, including their geo-
graphical coordinates and opening and closing hours.

There are multiple stages involved in building the Context Trails
dataset. First, to promote more recent data and objectively defined
user routes, we select the SemanticTrails dataset (2018 version). We
choose all the trails from the cities of New York (NYC), Petaling Jaya
(PTJ), and Tokyo (TOK), which correspond to Wikidata IDs Q60,
Q864965, and Q308891, respectively. Second, we obtain the details
of each POI in these cities using the Foursquare API: Foursquare ID,
latitude, longitude, categories, price tier, average rating, total num-
ber of ratings, total number of user tips, and the specific opening
and closing hours. Unfortunately, some POIs may be removed from
the Foursquare API over time, making it impossible to retrieve any
data for them (in particular, note our data collection corresponds

4See https://figshare.com/articles/dataset/Semantic_Trails_Datasets/7429076
5VisualCrossing: https://www.visualcrossing.com/
6Foursquare Developers: https://location.foursquare.com/developer/
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Table 3: Statistics of the data collected for the three cities,
including its Wikidata ID (WikID), number of users (|U|),
POIs (|P|) and POIs with schedule (|P𝑠 |), check-ins (|C|), and
unique number of contexts as weather conditions (CT𝑤 ),
temperature values (CT𝑡 ), and schedules (CT𝑠 ).

City WikID |U| |P| |C| CT𝑤 CT𝑡 CT𝑠 |P𝑠 |

NYC Q60 1,649 1,461 4,849 10 430 53 1,177
PTJ Q864965 18,346 18,618 153,543 4 122 153 17,207
TOK Q308891 66,125 64,086 1,178,663 8 385 333 57,192

to November 2024). Specifically, in NYC, of a total of 1,461 POIs,
this information could not be retrieved for 117 (8.0%). In Petaling
Jaya, data was unavailable for 1,412 POIs of 18,618 (7.58%). Lastly,
in TOK, no information was retrieved for 5,781 POIs out of a total
of 64,086 (9.02%). Finally, we download the weather data from Vi-
sual Crossing, covering the overall period of the original Semantic
Trails dataset (October 2017 to December 2018) [10]; once this data
is obtained, we assign the corresponding weather information to
each check-in according to the recorded timestamp. We report in
Table 3 all this information for the three cities.

3.2 Data content
We provide the following data or the necessary code to retrieve it:

• POI information: For each POI, we provide code to retrieve
its Foursquare ID, latitude, longitude, and categories (separated
by “-”; each POI may belong to multiple categories). Additional
attributes include price tier, average rating, total number of
ratings, and total number of user tips. We also include a set
of binary indicators that represent whether the POI is open
during specific time intervals. The defined time windows are:
early morning (00:00–06:00), morning (06:00–12:00), afternoon
(12:00–18:00), and night (18:00–00:00). These availability indi-
cators are computed separately for weekdays (Monday-Friday)
and weekends (Saturday-Sunday). We use 1 to represent the
POI is open at that interval, and 0 otherwise. As Foursquare
defines over 1K categories, we also include the first-level cate-
gory; this information is derived from the “Places Open Source
& Pro/Premium Flat” file7. Specifically, we extract the first-
level category by parsing the “category_label” field, which
presents the full category hierarchy separated by the ’>’ sym-
bol; the first segment corresponds to the first-level category.

• Route & weather information: For each route, we include
the route ID, the user who followed the route, the associated
Foursquare venue ID, and the timestamp of the check-in. In
addition, we enrich each entry with contextual weather data at
that specific time, including temperature (measured in Celsius),
precipitation level (measured in mm), wind speed (measured
in kph), type of precipitation, and sky conditions.

• Training and test splits: We provide the original training
and test splits used in our experiments for both POI and route
recommendation tasks. For POI recommendation, each record
contains the user ID, venue ID, and timestamp. For route rec-
ommendation, we also include the route ID.

7“Places Open Source & Pro/Premium Flat” file: https://docs.foursquare.com/data-
products/docs/categories

(a) New York City (b) Petaling Jaya (c) Tokyo

Figure 1: Choropleth map showing the distribution of points
available in the three cities that conform Context Trails.

3.3 Data statistics
The main statistics for each city are reported in Table 3, where we
specify the number of users, POIs, check-ins, contexts, and POIs
with schedule. These statistics are computed for all cities, Tables 4
and 5 show the statistics when they are used for the recommenda-
tions problems considered herein.

We now describe the complete dataset for each city, prior to any
split. Figure 1 shows the spatial distribution of POIs in each city,
with darker green areas indicating the regions where POIs are more
densely concentrated. For all cities, check-ins tend to be concen-
trated in the center, except for Petaling Jaya, which also contains
check-ins from other areas. Figure 2 illustrates the distribution of
route sizes, originally determined by the creators of the Semantic
Trails dataset [23]. We observe that most of the routes are very
short, in particular, less than 3 POIs.

Figure 3 presents the climographs for these cities, illustrating
the monthly precipitation volumes and average temperatures from
October 2017 to December 2018 (hourly resolution). To further an-
alyze the impact of weather conditions on user activity, we also
show in Figure 4 the number of check-ins for each weather con-
dition in each city. Figure 5 presents the temperature distribution
associated with the check-ins, while Figure 6 shows the distribution
of different types of precipitation. Although there are notable dif-
ferences between cities — for instance, New York exhibits a higher
percentage of check-ins on partly cloudy days compared to Tokyo,
and nearly all check-ins in Petaling Jaya occur on partly cloudy
days — there are very few check-ins during snowy conditions. This
lack of check-ins while snowing is due both to the unusual nature
of snow in these locations and a general tendency for users to avoid
checking in during extremely cold weather, as further evidenced
by the temperature distribution in Figure 5 and the distribution of
precipitation types in Figure 6.

Finally, Figure 7 shows the number of POIs in the most popular
categories open during each time segment of the day. In particular,
most POIs fall into the “dining and drinking” category, making it the
most frequent in all time slots. Furthermore, the “retail” category
exhibits increased activity after the early morning hours, indicating
a temporal pattern in user engagement.

3.4 Dataset use
The Context Trails dataset can be used to train and evaluate tradi-
tional RS algorithms, such as CF or content-based [29]. However,
its main strength lies in its contextual, POI, and route information;

https://docs.foursquare.com/data-products/docs/categories
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Figure 2: Distribution of the route sizes.
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Figure 3: Climograph of the three cities that conform Context Trails throughout the time covered in the data.
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Figure 4: Number of interactions for each weather condition included in the dataset. Conditions are: C (Clear), PC (Partially
Cloudy), O (Overcast), R (Rain), and S (Snow). Combined conditions are represented by multiple abbreviations, e.g., R,PC stands
for Rain and Partially Cloudy.
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Figure 5: Distribution of the temperatures.
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Figure 6: Distribution of the precipitation types.
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Figure 7: Number of POIs open during each time segment of the day: Early Morning (EM), Morning (M), Afternoon (A), and
Night (N). For NYC and TOK, two plots are shown displaying the number of open POIs per category, focusing on the top-10
most represented categories, in each plot corresponding to weekdays (left) or weekends (right).

hence, the nature of the data analysis and recommendation tasks it
promotes is broad and varied. For example, it can be used to analyze
how weather conditions influence human mobility patterns and
POI visiting behaviors, providing information on user preferences
in different atmospheric scenarios. It also supports the development
and evaluation of adaptive models that adjust to external factors
such as rain, temperature, or wind. In addition, it can also be used to
generate weather-aware route recommendations, where suggested
tours can avoid outdoor locations during unfavorable conditions.

In summary, the dataset provides valuable information to ad-
vance research at the intersection of human mobility, context-
awareness, and urban computing.

4 Tasks and experiments
We now present the specific evaluation setup used for the addressed
tasks: POI, route, and contextual recommendation. We detail algo-
rithms, data partitioning strategies, and evaluation metrics.

4.1 Experimental setup
4.1.1 POI recommendation. In this task, we used the following
traditional algorithms, tuned to maximize nDCG@5:

• Random (Rnd): perform recommendations randomly.
• Popularity (Pop): recommends to the target user the venues
that have received the highest number of visits.

• UB and IB: non-normalized neighborhood CF approaches [24].

• BPR: Bayesian Personalized Ranking loss [28] used in MF.
• EASEr: Embarrassingly Shallow Autoencoders for Sparse Data
proposed in [34].

• RP3𝛽 : graph-based technique presented in [25].
• IRenMF: geographical weighted matrix factorization that mod-
els the geographical influence between neighbor POIs [19].

• GeoBPR: geographical BPR that incorporates geographical
information by assuming that users will prefer to visit POIs
close to the venues visited previously [44].

• H-PUM: a hybrid approach that combines three different rec-
ommenders: Pop, UB, and midpoint of the users.

• Skyline: perfect recommender that recommends the test set.
This recommender serves as an upper bound for performance.

In this task, we first aggregate all user check-ins to ensure each
user visited a given venue only once. We used the aggregated value
to represent the user’s level of interest in that specific venue, hence
building a frequency user × POI matrix while retaining the times-
tamp of the user’s most recent interaction with each venue. Next,
we split the check-ins into training and test sets by applying a tem-
poral partition. The oldest 80% of the dataset serves as the training
set, while the remaining 20% is used for testing. Statistics in each
processing step are shown in Table 4. As pointed out in Section 3.1,
some information regarding the POIs could not be obtained. For
those POIs, we considered their coordinates to be the center of the
city, so that the recommenders that use geographical information
could continue to generate recommendations for these POIs.
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Table 4: Statistics of the three cities for POI recommendation
configuration. For each city, we show the number of users
|U|, POIs |P|, check-ins |C|, and density (𝛿).

City Split |U| |P| |C| 𝛿 (%)

NYC

Original 1,649 1,461 4,849 0.20127
Aggregated 1,649 1,461 4,161 0.17271
Training 1,347 1,277 3,328 0.19337
Test 397 459 833 0.45713

PTJ

Original 18,346 18,618 153,543 0.04495
Aggregated 18,346 18,618 123,351 0.03611
Training 16,316 16,102 98,680 0.03756
Test 5,593 7,490 24,670 0.05889

TOK

Original 66,125 64,086 1,178,663 0.02781
Aggregated 66,125 64,086 833,103 0.01966
Training 59,361 58,012 666,482 0.01936
Test 26,523 27,280 166,621 0.02303

4.1.2 Route recommendation. For this configuration, we used the
following classical route recommenders, where every recommended
route starts with the first POI visited by each test user:

• Baseline-R: recommends the first POI of the user in the test
set, it is used to show the expected base performance.

• ClosestNN-R: route recommender suggesting the geographi-
cally nearest POI to the previously recommended one.

• MC-R: route recommender using a first-order Markov chain
to suggest the next POI.

• FMC-R: same as the previous one, but considering the feature
transition probability between the categories of the POIs.

• kNN-R: route recommender based on a 𝑘-nearest neighbors
approach that computes the similarity between users using
the Jaccard similarity. Candidate POIs are scored according to
the similarity of the neighbor who visited them, accumulating
scores from multiple neighbors if applicable.

• WG-R: route recommender that combines three components:
distance-based weights (favoring geographically close POIs),
transition-based weights (favoring frequently visited sequen-
tial POIs), and category-based weights (favoring POIs with
similar category transitions).

Note that when computing the score for the next POI to recom-
mend, the scores of multiple candidate POIs may be identical. In
such cases, we resolve ties using one of two criteria: we select either
the most popular one or the closest to the previously visited POI,
depending on which one maximizes nDCG@5. Again, for those
POIs for which no valid coordinates are available, the city center
has been selected as the coordinates for these POIs.

For this configuration, we must consider that the routes should
not be split. That is, every route must remain as a whole in the
training or test sets. Based on this, we decided to split the data
as follows: For each user with at least 2 different routes, the most
recent route is assigned to the test set, provided it contains at least
4 check-ins; the remaining routes are allocated to the training set.
No additional data filtering is applied. We show the statistics in
each processing step for this task in Table 5.

4.1.3 Contextual recommendation. For the context-aware recom-
mendation task, we selected 3 algorithms from those applied to
the POI recommendation task (Section 4.1.1), and then applied a

Table 5: Statistics of the three cities for the route recommen-
dation configuration. For each city, we show the number of
users |U|, POIs |P|, check-ins |C|, density (𝛿), and trails |T|.

City Split |U| |P| |C| 𝛿 (%) |T|

NYC
Original 1,649 1,461 4,849 0.20127 3,186
Training 1,649 1,446 4,763 0.19975 3,170
Test 16 73 86 0.07363 16

PTJ
Original 18,346 18,618 153,543 0.04495 82,959
Training 18,346 18,494 151,675 0.04470 82,568
Test 390 1,060 1,868 0.45186 390

TOK
Original 66,125 64,086 1,178,663 0.02781 489,684
Training 66,125 63,498 1,145,465 0.02728 483,814
Test 5,870 8,461 33,198 0.06684 5,870

post-filter to retain only the items matching the target context [1].
The selected algorithms are: Random (C-Rnd), Popularity (C-Pop),
and H-PUM (C-H-PUM).

Each method was evaluated using three context configurations—
time, weather, and their combination—employing the same data
split as in Section 4.1.1, where the oldest 80% of interactions form
the training set and the most recent 20% are used for testing. For
each user–context pair in the test set, a POI ranking was generated
based on the algorithm’s strategy and contextual information (i.e.,
considering the original ranking from the algorithm and filtering
according to the context(s)), and nDCG@5 was computed.

4.2 Results
In this section, we describe the results obtained in the POI rec-
ommendation task (Section 4.2.1), route recommendation (Sec-
tion 4.2.2), and contextual recommendation (Section 4.2.3). Petaling
Jaya is omitted for space constraints, but full results can be found
in the online repository.

4.2.1 POI recommendation. We present in Table 6 the results ob-
tained in the POI recommendation task. For each city, we present
the performance of the recommenders in terms of ranking rele-
vance (nDCG), novelty (EPC), diversity (Gini), and user coverage
(UC), i.e., the number of users test to whom we are able to make
recommendations. Based on the results, we observe that all recom-
menders (including the Skyline), except for Pop, Rnd, and H-PUM,
do not achieve full coverage. This implies that there are test users for
whom no recommendations are generated. This limitation arises be-
cause all generated recommendations are restricted to POIs present
in the training set, and, because of the temporal data split, many
users in the test set had no prior interactions in the training set.

Moreover, we observe different behavior across the three cities
in terms of recommendation performance. In New York, the Pop
recommender outperforms the rest, likely due to the limited data
available, where popularity serves as a reliable proxy for user pref-
erences. Consequently, this model exhibits the lowest scores in
novelty and diversity. In contrast, in Tokyo, more sophisticated
recommenders outperform the Pop approach for nDCG. Besides,
the IB recommender achieves relatively low nDCG values but ex-
cels in novelty and diversity. Similarly, RP3𝛽 demonstrates strong
performance in these dimensions; however, its results in nDCG are
significantly lower. Regarding the other recommenders, we observe
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Table 6: Performance of the recommenders in POI recom-
mendation in terms of ranking accuracy (nDCG), novelty
(EPC), and diversity (Gini) at cutoff 5. Best result for each
metric in bold (excluding the Skyline).

City

Method

Rnd
Pop
UB
IB
EASEr
RP3𝛽
BPR
GeoBPR
IRenMF
H-PUM
Skyline

NYC

nDCG EPC Gini UC

0.0000 0.9981 0.4772 397
0.1096 0.9385 0.0028 397
0.0133 0.9927 0.1173 75
0.0130 0.9945 0.1474 85
0.0105 0.9890 0.0689 95
0.0106 0.9973 0.1639 95
0.0485 0.9425 0.0040 95
0.0530 0.9670 0.0121 95
0.0327 0.9884 0.0949 95
0.1069 0.9437 0.0137 397
0.8949 0.9826 0.0985 350

TOK

nDCG EPC Gini UC

0.0001 0.9998 0.5710 26523
0.2260 0.8418 0.0001 26523
0.2343 0.8854 0.0024 19059
0.1422 0.9325 0.0674 19716
0.2081 0.8969 0.0014 19759
0.0596 0.9794 0.1150 19759
0.2350 0.8462 0.0001 19759
0.2323 0.8517 0.0001 19759
0.2390 0.8487 0.0001 19759
0.2190 0.8687 0.0170 26523
0.7707 0.9597 0.0623 26327

Table 7: Performance for route recommendation in terms
of ranking accuracy (nDCG), novelty (EPC), diversity (Gini),
and distance (Dist) of the route, at cutoff 5. Best result in bold.

City Recommender nDCG EPC Gini Dist (km) UC

NYC

Baseline-R 0.3584 0.9737 0.0078 0 16
ClosestNN-R 0.4162 0.9913 0.0385 0.544 16
MC-R 0.4285 0.9746 0.0138 0.905 16
FMC-R 0.4130 0.9682 0.0070 5.637 16
kNN-R 0.4253 0.9845 0.0131 1.226 16
WG-R 0.4332 0.9880 0.0345 1.012 16

TOK

Baseline-R 0.3696 0.8555 0.0109 0 5870
ClosestNN-R 0.3729 0.9669 0.0392 0.053 5870
MC-R 0.4250 0.6954 0.0066 5.757 5870
FMC-R 0.4110 0.7661 0.0024 15.939 5870
kNN-R 0.4158 0.8683 0.0104 5.725 5870
WG-R 0.4210 0.8076 0.0273 6.016 5870

that GeoBPR outperforms BPR in New York, whereas in Tokyo
their performances are nearly equivalent. In terms of novelty and
diversity, GeoBPR also achieves slightly better results, highlighting
the critical role of geographical influence in POI recommendations.
This observation is further supported by the performance of H-
PUM and IRenMF models, with the latter achieving the highest
ranking accuracy in 2 out of the 3 cities (regarding full results).

4.2.2 Route recommendation. Table 7 presents the performance
for the route recommendation task. We observe that the MC-R
model achieves the highest nDCG in Tokyo, and it is the second
best in NYC, indicating superior ranking accuracy. Another well-
performing recommender is the WG-R, being the best in NYC and
the second best in the other city. In terms of novelty, diversity, and
distance (EPC, Gini, Dist), the ClosestNN-R model performs best.
This is because it relies solely on the distance component, ignoring
both the characteristics of the POIs and the users’ preferences. As a
result, whenever there are multiple POIs located close to each other,
the model prioritizes proximity, resulting in low Dist and high EPC
and Gini values, but low accuracy. The results obtained by FMC-R
are interesting, since it evidences lack of diverse recommendations.
This may stem from its strategy of maximizing transitions between
POI features, which can lead to repetitive cycles—transitions be-
tween similar POIs without exploring more varied options.

Table 8: Performance of the recommenders in contextual
recommendation in terms of nDCG@5, when considering
time, weather, or both as contexts. Best result for each context
underlined, and the overall for each city in bold.

City Recommender Time Weather Both

NYC
C-Rnd 0.0018 0.0005 0.0005
C-Pop 0.0375 0.0060 0.0050
C-H-PUM 0.0254 0.0048 0.0045

TOK
C-Rnd 0.0000 0.0000 0.0000
C-Pop 0.0057 0.0113 0.0053
C-H-PUM 0.0048 0.0033 0.0031

4.2.3 Contextual recommendation. Table 8 shows the results after
applying contextual post-filtering as described in Section 4.1.3. C-
Pop is the best performing method independently of the context
being used. However, it should be noted that in PTJ, C-Pop performs
very well but is outperformed by C-H-PUM (see online appendix).

In NYC, the temporal context performs better, whereas in TOK
the weather context produces better results. This is linked to Figures
4-6, where the weather seems more discriminative for the latter
city. Finally, when compared against the results with no context
(Table 6), it becomes evident that producing accurate contextual
recommendations is much more difficult, since sparsity increases.

5 Conclusions and Future Work
Novel and flexible datasets are critical to advance research. In this
paper, we have presented the Context Trails dataset, a new resource
for the community to perform POI, route, and contextual recom-
mendations by using geographical, categorical, weather, and tem-
poral information. By extending a previous data source with newly
collected information, we build a unique dataset with several con-
textual dimensions and the possibility to be used for POI or route
recommendation.

Limitations. Routes included inContext Trails are limited to those
in the original data [23], where coordinates were not available, thus
requiring the use of Foursquare API (although the POI may not exist
anymore). One possibility would be to start from the Foursquare
Global Scale dataset [41] and generate routes from check-in data as
in [30]. Moreover, LBSNs include very different types of POIs, not
all of them might be interesting from a recommendation perspec-
tive (e.g., a bus stop); currently no filtering was done but included
categories in the resource allow doing this systematically.

Future work. We aim to further expand our dataset with more
cities (our current setup allows for this in a straightforward way)
and more contexts (e.g., identifying events in those cities, like sport
matches or concerts). It might also be useful to link this dataset
with related datasets, such as Yelp or Gowalla, or more touristic
oriented ones like tourist card logs [22]. Additionally, to allow finer
analyses based on user types, we would like to discriminate users
between tourists and locals, as done in recent research [11, 32].
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