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Context – Nearest-neighbor recommendation

 Methods based on similarities 
between users or items

 Highly explainable

 Very flexible and customizable

 Strong baselines 
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Challenge
 Focusing on similar neighbors or ratings is good for accuracy, but not 

so good for diversity and novelty

 Accuracy – beyond-accuracy tradeoff
• Not only limited to neighbor-based recommendation!



4
Alejandro Bellogín – ECIR IR4Good, April 2025

Contribution
 Inspired by related works, we exploit dissimilarities

 In neighbor models
• nndiv: only using nearest neighbors

but considering similarity and 
dissimilarity scores

• inds: compute near and far 
neighbors and combine scores

• indr: compute predictions based on 
near and far neigbors and combine 
final rankings

 In metrics
• rat-diff: consider difference in ratings 

consumed by both users

• rdsupp: consider difference and 
support of the differences

• bin-sets: preferences are binarized 
and the sets are compared
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Results – Baseline approaches
 Performance in terms of accuracy (nDCG@5):

• Letters denote statistical improvements (one-tailed t-test p<0.05)

 Nearest-neighbor recommenders are competitive
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Results – Dissimilarity-based neighbor models
 Accuracy and beyond-accuracy (novelty: EPC, diversity: Gini and IC):

 Novelty and diversity improved while keeping (or increasing) same 
levels of accuracy
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Results – Dissimilarity metrics comparison
 Only for inds model (best results overall):

 In Mov20M, GReads, and Lastfm: all dimensions improved
 In Vinyls: not able to improve all with the same metric
 Not a clear winner, although rat-diff tends to increase novelty and 

diversity
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Conclusions
 Various definitions of neighbor models and dissimilarity metrics 

based on different hypotheses

 We always obtain improvements in terms of novelty and diversity
• Sometimes, also in terms of accuracy

 For the future: adapt to implicit information and contextual scenarios, 
measure content-based novelty or diversity metrics
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Thank you
Improving novelty and diversity of 
nearest-neighbors recommendation 

by exploiting dissimilarities
Code and other info: https://github.com/pablosanchezp/kNNDissimilarities 
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Experimental settings
 Four datasets from different domains

 Vinyls: 5-core; Lastfm: transformation from implicit to explicit
 Random split 80/20
 TrainItems methodology
 Items in test with rating >= 4, relevant
 All metrics cutoffs, at 5
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Neighbor models – Formulation 
 nndiv: dissimilarity of close neighbors

is included so differing stances with 
respect to the target user/item are 
taken into account
 inds: two neigborhoods are computed 

independently and combined the 
predictions at the score level
 indr: extension of previous model but 

preferences are integrated at the last 
step (ranking level)
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(Dis)similarity metrics – Formulation 
 rat-diff: two users have differing 

views if their ratings/scores are as 
different as possible
 rdsupp: two users have differing views 

if their ratings/scores are different 
and the support of these differences 
is large
 bin-sets: two users have differing 

views if one likes what the other 
dislikes, and viceversa
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