Measuring and Mitigating Biases in Location-based Recommender Systems

Pablo Sánchez¹ Alejandro Bellogín² Ludovico Boratto³

 1 Instituto de Investigación Tecnológica (IIT), Universidad Pontificia Comillas

²Universidad Autónoma de Madrid

³University of Cagliari

June 20, 2024

*Summary of a work Published in **Data Mining and Knowledge Discovery** journal on February 2023 [Sánchez et al., 2023].

2 Analyze biases in Point-Of-Interest recommendation

3 Conclusions and future work

3

2 Analyze biases in Point-Of-Interest recommendation

3 Conclusions and future work

3

• Recommending **new venues** to the users when they are in a specific city or region.

- Recommending **new venues** to the users when they are in a specific city or region.
- The recommenders exploit the information of **Location-Based Social Networks** (e.g. Foursquare or Gowalla), where the users register the **check-ins** they perform to different venues.
- Differences with classical recommendation:

- Recommending **new venues** to the users when they are in a specific city or region.
- The recommenders exploit the information of **Location-Based Social Networks** (e.g. Foursquare or Gowalla), where the users register the **check-ins** they perform to different venues.
- Differences with classical recommendation:
 - Greater sparsity: Movielens20M (0.539%) and Netflix (1.177%) density vs Foursquare (0.0034%) and Gowalla (0.0047%) density.

- Recommending **new venues** to the users when they are in a specific city or region.
- The recommenders exploit the information of **Location-Based Social Networks** (e.g. Foursquare or Gowalla), where the users register the **check-ins** they perform to different venues.
- Differences with classical recommendation:
 - Greater sparsity: Movielens20M (0.539%) and Netflix (1.177%) density vs Foursquare (0.0034%) and Gowalla (0.0047%) density.
 - Implicit and repeated interactions: users visit the same places more than once.

- Recommending **new venues** to the users when they are in a specific city or region.
- The recommenders exploit the information of Location-Based Social Networks (e.g. Foursquare or Gowalla), where the users register the check-ins they perform to different venues.
- Differences with classical recommendation:
 - Greater sparsity: Movielens20M (0.539%) and Netflix (1.177%) density vs Foursquare (0.0034%) and Gowalla (0.0047%) density.
 - Implicit and repeated interactions: users visit the same places more than once.
 - **External influences: geographical**, temporal, social, and sequential influences.

Everything is related to everything else, but near things are more related than distant things —[Miller, 2004]

POI recommendation

$$p^*(u) = \arg\max_{p \in \mathcal{P}} g(u, p, C)$$

(1)

CAEPIA-SISREC June 20, 2024

POI recommendation

$$p^*(u) = \arg\max_{p \in \mathcal{P}} g(u, p, C)$$

(1)

POI recommendation

$$p^*(u) = \arg\max_{p \in \mathcal{P}} g(u, p, C)$$

(1)

POI recommendation

$$p^*(u) = \arg\max_{p \in \mathcal{P}} g(u, p, C)$$

(1)

2 Analyze biases in Point-Of-Interest recommendation

3 Conclusions and future work

3 × -

Bias

Bias normally refers to the **phenomenon** of **unfairly favoring** a group of people or an **opinion**. —[Färber et al., 2023]

Bias

Bias normally refers to the **phenomenon** of **unfairly favoring** a group of people or an **opinion**. —[Färber et al., 2023]

- Recommender Systems are **multi-stakeholder** environments, as they affect the users receiving the recommendations, and those behind the recommended items (providers).
- In Point-Of-Interest recommendation, the **business** of **venue owners strongly depends** on the **venue recommendations**.

Bias

Bias normally refers to the **phenomenon** of **unfairly favoring** a group of people or an **opinion**. —[Färber et al., 2023]

- Recommender Systems are **multi-stakeholder** environments, as they affect the users receiving the recommendations, and those behind the recommended items (providers).
- In Point-Of-Interest recommendation, the **business** of **venue owners strongly depends** on the **venue recommendations**.
- Hence, it is important to consider **possible biases** that can be produced using **Artificial Inteligence** (AI) **tools**.

Proposed Bias Measurements: Popularity bias

• **Popularity bias**: bias produced when a **more popular** venue is **ranked higher** than a **less popular one**, when **considering** the **top-n items** recommended to a user.

• Popularity bias: bias produced when a more popular venue is ranked higher than a less popular one, when considering the top-n items recommended to a user.

Popularity bias

- We measure the **area under the curve** generated by the **cumulative distribution** of the recommended items by each recommender.
- Higher values means that more items with different popularity values are being recommended.

Popularity bias analysis (in the city of Tokyo).

• Personalized recommenders (except PGN and IB) tend to suffer from popularity bias.

Popularity bias analysis (in the city of Tokyo).

- Personalized recommenders (except PGN and IB) tend to suffer from popularity bias.
- It is difficult to approach the reduced popularity bias of the test set (Skyline).

• Item exposure: ability of the model to recommend items proportionally to the number of times the users will consider that item in the future. • Item exposure: ability of the model to recommend items proportionally to the number of times the users will consider that item in the future.

Item exposure bias

- We compare the number of times an item has been recommended (Recommender Exposure, RE) against its actual exposure (Actual Exposure, AE).
- The **lower** the value, the **better** (the less diference between the recommended exposure and the actual exposure).

• Geographical bias: bias produced by a recommender when suggesting venues far from the current position of the user (or with respect to the rest of the recommended venues). • Geographical bias: bias produced by a recommender when suggesting venues far from the current position of the user (or with respect to the rest of the recommended venues).

Geographic distance bias

- First metric: sums the distance of the recommended **POIs** as if the user accepted those recommendations and visited those venues in order.
- Second metric: computes the total distance between each recommended POI and the user historical midpoint.
- We need to **compare** these results with the ones **exhibited** by the users in test.

	Acc	uracy	Popularity Bias	Exp	osure	\mathbf{Dist}	ance	Coverage
Rec	Р	nDCG	PopI	ExpP	ExpR	DistT	DistU	UC
Rnd Pop	0.000 0.071	$0.000 \\ 0.087$	0.303 0.000	0.000 0.131	0.001 0.121	$37.2 \\ 24.9$	$\begin{array}{c} 34.7 \\ 26.4 \end{array}$	7,253 7,253
UB IB HKV BPR	$\begin{array}{c} 0.070 \\ 0.063 \\ 0.064 \\ 0.066 \end{array}$	0.087 0.080 0.078 0.081	$\begin{array}{c} 0.002 \\ 0.026 \\ 0.003 \\ 0.003 \end{array}$	0.103 0.064 0.038 0.123	0.093 0.057 <i>0.031</i> 0.112	26.0 23.2 22.0 25.6	25.8 25.0 21.7 27.7	6,931 6,931 6,931 6,931
FMFMGM GEOBPR IRENMF PopGeoNN	$\begin{array}{c} 0.063 \\ 0.065 \\ 0.069 \\ 0.068 \end{array}$	$0.079 \\ 0.081 \\ 0.083 \\ 0.086$	$\begin{array}{c} 0.002 \\ 0.001 \\ 0.008 \\ 0.023 \end{array}$	0.105 0.120 0.072 0.110	0.095 0.110 0.063 0.100	23.7 23.7 23.9 23.6	22.7 24.2 23.8 20.9	6,931 6,931 6,931 7,253
Skyline	0.784	0.996	0.087	0.000	0.000	17.5	18.8	7,241

→ Ξ →

포카 포

	Acc	uracy	Popularity Bias	oularity Bias Exposur			Distance			
Rec	Р	nDCG	PopI	ExpP	ExpR	DistT	DistU	UC		
Rnd Pop	0.000 0.071	$0.000 \\ 0.087$	0.303 0.000	0.000 0.131	0.001 0.121	$37.2 \\ 24.9$	34.7 26.4	7,253 7,253		
UB IB HKV BPR	$\begin{array}{c} 0.070 \\ 0.063 \\ 0.064 \\ 0.066 \end{array}$	$\begin{array}{c} 0.087 \\ 0.080 \\ 0.078 \\ 0.081 \end{array}$	$\begin{array}{c} 0.002 \\ 0.026 \\ 0.003 \\ 0.003 \end{array}$	$0.103 \\ 0.064 \\ 0.038 \\ 0.123$	$\begin{array}{c} 0.093 \\ 0.057 \\ 0.031 \\ 0.112 \end{array}$	26.0 23.2 22.0 25.6	25.8 25.0 21.7 27.7	$6,931 \\ 6,931 \\ 6,931 \\ 6,931 \\ 6,931$		
FMFMGM GEOBPR IRENMF PopGeoNN	$0.063 \\ 0.065 \\ 0.069 \\ 0.068$	$0.079 \\ 0.081 \\ 0.083 \\ 0.086$	$\begin{array}{c} 0.002 \\ 0.001 \\ 0.008 \\ 0.023 \end{array}$	0.105 0.120 0.072 0.110	$0.095 \\ 0.110 \\ 0.063 \\ 0.100$	23.7 23.7 23.9 23.6	22.7 24.2 23.8 20.9	6,931 6,931 6,931 7,253		
Skyline	0.784	0.996	0.087	0.000	0.000	17.5	18.8	7,241		

• Skyline represents the results obtained by a **perfect** recommender (test set).

	Acc	uracy	Popularity Bias	\mathbf{Exp}	osure	Dist	ance	Coverage
Rec	Р	nDCG	PopI	ExpP	\mathbf{ExpR}	DistT	DistU	UC
Rnd Pop	0.000 0.071	$0.000 \\ 0.087$	0.303 0.000	0.000 0.131	0.001 0.121	$37.2 \\ 24.9$	34.7 26.4	7,253 7,253
UB IB HKV BPR	$\begin{array}{c} 0.070 \\ 0.063 \\ 0.064 \\ 0.066 \end{array}$	$\begin{array}{c} 0.087 \\ 0.080 \\ 0.078 \\ 0.081 \end{array}$	$\begin{array}{c} 0.002 \\ 0.026 \\ 0.003 \\ 0.003 \end{array}$	$\begin{array}{c} 0.103 \\ 0.064 \\ 0.038 \\ 0.123 \end{array}$	$0.093 \\ 0.057 \\ 0.031 \\ 0.112$	$26.0 \\ 23.2 \\ 22.0 \\ 25.6$	$25.8 \\ 25.0 \\ 21.7 \\ 27.7$	$6,931 \\ 6,931 \\ 6,931 \\ 6,931 \\ 6,931$
FMFMGM GEOBPR IRENMF PopGeoNN	$\begin{array}{c} 0.063 \\ 0.065 \\ 0.069 \\ 0.068 \end{array}$	0.079 0.081 0.083 <i>0.086</i>	$\begin{array}{c} 0.002 \\ 0.001 \\ 0.008 \\ 0.023 \end{array}$	0.105 0.120 0.072 0.110	0.095 0.110 0.063 0.100	23.7 23.7 23.9 23.6	22.7 24.2 23.8 20.9	6,931 6,931 6,931 7,253
Skyline	0.784	0.996	0.087	0.000	0.000	17.5	18.8	7,241

• The performance of Pop and Rnd are **inverse**. **Pop** is among the **best** in terms of **accuracy** (but the worst in terms of bias, novelty and diversity), as **opposed to** Rnd.

	Acc	uracy	Popularity Bias	Expo	osure	Dist	ance	Coverage
\mathbf{Rec}	Р	nDCG	PopI	ExpP	ExpR	DistT	DistU	UC
Rnd Pop	0.000 0.071	$0.000 \\ 0.087$	0.303 0.000	0.000 0.131	0.001 0.121	37.2 24.9	34.7 26.4	7,253 7,253
UB	0.070	0.087	0.002	0.103	0.093	26.0	25.8	6.931
IB	0.063	0.080	0.026	0.064	0.057	23.2	25.0	6,931
HKV	0.064	0.078	0.003	0.038	0.031	22.0	21.7	6,931
BPR	0.066	0.081	0.003	0.123	0.112	25.6	27.7	6,931
FMFMGM	0.063	0.079	0.002	0.105	0.095	23.7	22.7	6,931
GEOBPR	0.065	0.081	0.001	0.120	0.110	23.7	24.2	6,931
IRENME	0.069	0.083	0.008	0.072	0.063	23.9	23.8	6.931
PopGeoNN	0.068	0.086	0.023	0.110	0.100	23.6	20.9	7,253
Skyline	0.784	0.996	0.087	0.000	0.000	17.5	18.8	7,241

• **PopGeoNN** (an hybrid recommender) and **IB** obtain a **good balance** between **accuracy** and **novelty/diversity** and biases.

Point-Of-Interest recommendation

2 Analyze biases in Point-Of-Interest recommendation

3 Conclusions and future work

→ Ξ →

-

• Different biases are present in classical POI recommenders (specially, popularity bias).

- Different biases are present in classical POI recommenders (specially, popularity bias).
- There is a difficult **trade-off** between the dimensions of accuracy, item exposure, and geographical distance.

- Different biases are present in classical POI recommenders (specially, popularity bias).
- There is a difficult **trade-off** between the dimensions of **accuracy**, **item exposure**, **and geographical distance**.
- Simple techniques like creating **hybrid recommenders** and **reranking** might be useful to increase the **performance** across different **dimensions**.

• We plan to continue this **analysis** by **using different** groups of users (international **travelers**, **local travelers**, **or pure local** inhabitants in the city).

- We plan to continue this **analysis** by **using different** groups of users (international **travelers**, **local travelers**, **or pure local** inhabitants in the city).
- We are studying how to apply imputation techniques to reduce the data sparsity in POI recommendation and improve the performance of the recommenders.

Measuring and Mitigating Biases in Location-based Recommender Systems

Pablo Sánchez¹ Alejandro Bellogín² Ludovico Boratto³

 1 Instituto de Investigación Tecnológica (IIT), Universidad Pontificia Comillas

²Universidad Autónoma de Madrid

 $^{3}\mathrm{University}$ of Cagliari

June 20, 2024

Thank you

- Färber, M., Coutinho, M., and Yuan, S. (2023).
 Biases in scholarly recommender systems: impact, prevalence, and mitigation.
 Scientometrics, 128(5):2703-2736.
- Miller, H. J. (2004).
 Tobler's first law and spatial analysis.
 Annals of the Association of American Geographers, 94(2):284–289.
- Sánchez, P., Bellogín, A., and Boratto, L. (2023).
 Bias characterization, assessment, and mitigation in location-based recommender systems.
 Data Min. Knowl. Discov., 37(5):1885–1929.

Proposed Bias Measurements: Popularity bias

• Popularity bias: bias produced when a more popular venue is ranked higher than a less popular one, when considering the top-n items recommended to a user.

Proposed Bias Measurements: Popularity bias

• Popularity bias: bias produced when a more popular venue is ranked higher than a less popular one, when considering the top-n items recommended to a user.

Popularity bias

$$PopI@n(rec) = \frac{1}{2|m|} \sum_{k=2}^{|m|} \left(F_{\text{pop}}^{R(rec,n)}(x_{k-1}) + F_{\text{pop}}^{R(rec,n)}(x_k) \right)$$
(2)

- where m are the items in the training set (ordering them by the number of times they have been recommended by rec). $F_{\text{pop}}^{R(rec,n)}$ is the **cummulative popularity distribution** of item x (only if they belong to the recommendation list R).
- Higher values means that more items with different popularity values are being recommended.

• Item exposure: ability of the model to recommend items proportionally to the number of times the users will consider that item in the future.

• Item exposure: ability of the model to recommend items proportionally to the number of times the users will consider that item in the future.

Item exposure bias

$$IE@n(rec;\pi) = \sum_{i \in I} (RE@n(i,rec) - AE(i;\pi))^2$$
(3)

- where RE@n(i, rec) is the **recommender exposure** of item *i*, and $AE(i; \pi)$ is the **actual exposure** (number of times that item should be recommended).
- The **lower** the value, the **better** (the less difference between the recommended exposure and the actual exposure).

• rec_2 would obtain a lower value because it is recommending the black item 2 times, as in the test set, and it is not recommending the dotted item, which does not appear in the test set. Hence, as the recommended items from rec_2 are more similar to the ground truth of the user than the ones recommended by rec_1 , the venue exposure polarization of rec_2 would be lower.

• Geographical bias: bias produced by a recommender when suggesting venues far from the current position of the user (or with respect to the rest of the recommended venues).

• Geographical bias: bias produced by a recommender when suggesting venues far from the current position of the user (or with respect to the rest of the recommended venues).

- where \vec{u}_m is the user **midpoint** and Hav is the **haversine** distance between the coordinates.
- We need to **compare** these results with the ones **exhibited** by the users in test.

• the second recommender will be preferred as the recommended venues are more geographically related between them and with respect to the user midpoint (represented by U_m).

Mitigating biases

Hybrid recommenders

$$s(i, u; \mathcal{R}, W) = \sum_{j=1}^{|\mathcal{R}|} w^j \frac{s(i, R_u^j) - \min(R_u^j)}{\max(R_u^j) - \min(R_u^j)}$$
(6)

• where \mathcal{R} is a set of recommenders and W is a weight vector. We apply min-max normalization for every recommender.

Rerankers

$$f_{obj}(u,i;\lambda,R^j,R^k) = \lambda \cdot f_{R^j}(u,i) + (1-\lambda) \cdot f_{R^k}(u,i)$$
(7)

- where R^j is the original recommender and R^k is the recommender to rerank.
- We use the parameter λ to balance the contribution of the original recommender and the reranked one.

Performance of hybrid and rerankers. Tokyo @5.

	Accuracy		Novelty Diversity		Pop. Bias		Exp.		Distance		Coverage
Rec	Р	nDCG	EPC	Gini	PopI	PopC	ExpP	ExpR	DistT	DistU	UC
Popularity H(0.2 Pop + 0.8 IB) H(0.8 Pop + 0.2 IB) H(0.5 Pop + 0.5 IB) RR(Pop, IB)	$\begin{array}{c} 0.071 \\ 0.071 \\ 0.072 \\ 0.073 \\ 0.074 \end{array}$	$\begin{array}{c} 0.087 \\ 0.088 \\ 0.089 \\ 0.089 \\ 0.093 \end{array}$	0.746 0.801 0.746 0.765 0.758	$\begin{array}{c} 0.000 \\ 0.019 \\ 0.000 \\ 0.005 \\ 0.000 \end{array}$	$\begin{array}{c} 0.000 \\ 0.022 \\ 0.000 \\ 0.007 \\ 0.000 \end{array}$	$\begin{array}{c} 0.960 \\ 0.921 \\ 0.962 \\ 0.946 \\ 0.968 \end{array}$	$\begin{array}{c} 0.131 \\ 0.078 \\ 0.131 \\ 0.110 \\ 0.111 \end{array}$	$\begin{array}{c} 0.121 \\ 0.069 \\ 0.120 \\ 0.100 \\ 0.101 \end{array}$	24.9 24.0 24.9 25.2 23.7	$26.4 \\ 24.4 \\ 26.3 \\ 25.2 \\ 24.2$	7,253 7,253 7,253 7,253 7,253
$UB \\ H(0.2 UB + 0.8 IB) \\ H(0.8 UB + 0.2 IB) \\ H(0.5 UB + 0.5 IB) \\ RR(UB, IB) \\ RR(IRENMF, IB)$	$\begin{array}{c} 0.070 \\ 0.065 \\ 0.070 \\ 0.068 \\ 0.068 \\ 0.070 \end{array}$	$\begin{array}{c} 0.087 \\ 0.081 \\ 0.087 \\ 0.085 \\ 0.086 \\ 0.087 \end{array}$	$\begin{array}{c} 0.769 \\ 0.811 \\ 0.768 \\ 0.786 \\ 0.778 \\ 0.784 \end{array}$	$\begin{array}{c} 0.001 \\ 0.020 \\ 0.001 \\ 0.008 \\ 0.001 \\ 0.003 \end{array}$	$\begin{array}{c} 0.002 \\ 0.022 \\ 0.002 \\ 0.010 \\ 0.006 \\ 0.007 \end{array}$	0.968 0.918 0.966 0.943 0.954 0.951	$\begin{array}{c} 0.103 \\ 0.069 \\ 0.104 \\ 0.089 \\ 0.092 \\ 0.087 \end{array}$	$\begin{array}{c} 0.093 \\ 0.061 \\ 0.094 \\ 0.080 \\ 0.083 \\ 0.078 \end{array}$	26.0 24.1 26.0 25.6 23.5 23.5	25.8 25.2 25.6 25.2 24.6 24.2	6,931 6,931 6,931 6,931 6,931 6,931 6,931
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	0.068 0.072 0.073 0.074 0.075	0.086 0.089 0.091 0.092 0.093	0.777 0.803 0.760 0.772 0.766	$\begin{array}{c} 0.014 \\ 0.019 \\ 0.003 \\ 0.006 \\ 0.001 \end{array}$	0.023 0.021 0.006 0.009 0.003	$\begin{array}{c} 0.932 \\ 0.922 \\ 0.956 \\ 0.947 \\ 0.961 \end{array}$	0.110 0.076 0.117 0.102 0.103	0.100 0.067 0.107 0.093 0.093	23.6 24.2 25.3 25.5 23.7	20.9 24.2 23.9 24.6 23.5	7,253 7,253 7,253 7,253 7,253 7,253

Ξ

Performance of hybrid and rerankers. Tokyo @5.

	Accuracy		Novelty Diversity		Pop. Bias		Exp.		Distance		Coverage	
Rec	Р	nDCG	EPC	Gini	PopI	PopC	ExpP	ExpR	DistT	DistU	UC	
Popularity H(0.2 Pop + 0.8 IB) H(0.8 Pop + 0.2 IB) H(0.5 Pop + 0.5 IB) RR(Pop, IB)	0.071 0.071 0.072 0.073 0.074	0.087 0.088 0.089 0.089 0.093	$0.746 \\ 0.801 \\ 0.746 \\ 0.765 \\ 0.758$	$\begin{array}{c} 0.000 \\ 0.019 \\ 0.000 \\ 0.005 \\ 0.000 \end{array}$	$\begin{array}{c} 0.000\\ 0.022\\ 0.000\\ 0.007\\ 0.000\end{array}$	$\begin{array}{c} 0.960 \\ 0.921 \\ 0.962 \\ 0.946 \\ 0.968 \end{array}$	$\begin{array}{c} 0.131 \\ 0.078 \\ 0.131 \\ 0.110 \\ 0.111 \end{array}$	$\begin{array}{c} 0.121 \\ 0.069 \\ 0.120 \\ 0.100 \\ 0.101 \end{array}$	24.9 24.0 24.9 25.2 23.7	26.4 24.4 26.3 25.2 24.2	7,253 7,253 7,253 7,253 7,253 7,253	
$UB \\ H(0.2 UB + 0.8 IB) \\ H(0.8 UB + 0.2 IB) \\ H(0.5 UB + 0.5 IB) \\ RR(UB, IB) \\ RR(IRENMF, IB)$	$\begin{array}{c} 0.070 \\ 0.065 \\ 0.070 \\ 0.068 \\ 0.068 \\ 0.070 \end{array}$	$\begin{array}{c} 0.087 \\ 0.081 \\ 0.087 \\ 0.085 \\ 0.086 \\ 0.087 \end{array}$	$\begin{array}{c} 0.769 \\ 0.811 \\ 0.768 \\ 0.786 \\ 0.778 \\ 0.784 \end{array}$	$\begin{array}{c} 0.001 \\ 0.020 \\ 0.001 \\ 0.008 \\ 0.001 \\ 0.003 \end{array}$	$\begin{array}{c} 0.002 \\ 0.022 \\ 0.002 \\ 0.010 \\ 0.006 \\ 0.007 \end{array}$	0.968 0.918 0.966 0.943 0.954 0.951	$\begin{array}{c} 0.103 \\ 0.069 \\ 0.104 \\ 0.089 \\ 0.092 \\ 0.087 \end{array}$	$\begin{array}{c} 0.093 \\ 0.061 \\ 0.094 \\ 0.080 \\ 0.083 \\ 0.078 \end{array}$	26.0 24.1 26.0 25.6 23.5 23.5	25.8 25.2 25.6 25.2 24.6 24.2	$egin{array}{c} 6,931\ 6,931\ 6,931\ 6,931\ 6,931\ 6,931\ 6,931\ 6,931\ 6,931\ 6,931\ \end{array}$	
$\begin{array}{c} {\rm PopGeoNN} \\ {\rm H}(0.2 \ {\rm PopGeoNN} + 0.8 \ {\rm IB}) \\ {\rm H}(0.8 \ {\rm PopGeoNN} + 0.2 \ {\rm IB}) \\ {\rm H}(0.5 \ {\rm PopGeoNN} + 0.5 \ {\rm IB}) \\ {\rm RR}({\rm PopGeoNN} \ {\rm IB}) \end{array}$	0.068 0.072 0.073 0.074 0.075	0.086 0.089 0.091 0.092 0.093	$\begin{array}{c} 0.777 \\ 0.803 \\ 0.760 \\ 0.772 \\ 0.766 \end{array}$	$\begin{array}{c} 0.014 \\ 0.019 \\ 0.003 \\ 0.006 \\ 0.001 \end{array}$	0.023 0.021 0.006 0.009 0.003	$\begin{array}{c} 0.932 \\ 0.922 \\ 0.956 \\ 0.947 \\ 0.961 \end{array}$	$\begin{array}{c} 0.110 \\ 0.076 \\ 0.117 \\ 0.102 \\ 0.103 \end{array}$	0.100 0.067 0.107 0.093 0.093	23.6 24.2 25.3 25.5 23.7	20.9 24.2 23.9 24.6 23.5	7,253 7,253 7,253 7,253 7,253 7,253	

• The H(0.2 PopGeoNN + 0.8 IB) configuration improves the performance in terms of accuracy and novelty and diversity while reducing the biases of the recommendations.

Performance of hybrid and rerankers. Tokyo @5.

	Accuracy		Novelty	Diversity	Pop. Bias		Exp.		Distance		Coverage	
Rec	Р	nDCG	EPC	Gini	PopI	PopC	ExpP	ExpR	DistT	DistU	UC	
Popularity H(0.2 Pop + 0.8 IB) H(0.8 Pop + 0.2 IB) H(0.5 Pop + 0.5 IB) RR(Pop, IB)	0.071 0.071 0.072 0.073 0.074	$\begin{array}{c} 0.087 \\ 0.088 \\ 0.089 \\ 0.089 \\ 0.089 \\ 0.093 \end{array}$	$\begin{array}{c} 0.746 \\ 0.801 \\ 0.746 \\ 0.765 \\ 0.758 \end{array}$	0.000 0.019 0.000 0.005 0.000	$\begin{array}{c} 0.000 \\ 0.022 \\ 0.000 \\ 0.007 \\ 0.000 \end{array}$	$\begin{array}{c} 0.960 \\ 0.921 \\ 0.962 \\ 0.946 \\ 0.968 \end{array}$	$\begin{array}{c} 0.131 \\ 0.078 \\ 0.131 \\ 0.110 \\ 0.111 \end{array}$	$\begin{array}{c} 0.121 \\ 0.069 \\ 0.120 \\ 0.100 \\ 0.101 \end{array}$	24.9 24.0 24.9 25.2 23.7	$26.4 \\ 24.4 \\ 26.3 \\ 25.2 \\ 24.2$	7,253 7,253 7,253 7,253 7,253 7,253	
$UB \\ H(0.2 UB + 0.8 IB) \\ H(0.8 UB + 0.2 IB) \\ H(0.5 UB + 0.5 IB) \\ RR(UB, IB) \\ RR(IRENMF, IB) \\ RR(IRENMF, IB) \\ H(1000000000000000000000000000000000000$	$\begin{array}{c} 0.070 \\ 0.065 \\ 0.070 \\ 0.068 \\ 0.068 \\ 0.068 \\ 0.070 \end{array}$	$\begin{array}{c} 0.087\\ 0.081\\ 0.087\\ 0.085\\ 0.086\\ 0.087\end{array}$	$\begin{array}{c} 0.769 \\ 0.811 \\ 0.768 \\ 0.786 \\ 0.778 \\ 0.784 \end{array}$	$\begin{array}{c} 0.001 \\ 0.020 \\ 0.001 \\ 0.008 \\ 0.001 \\ 0.003 \end{array}$	$\begin{array}{c} 0.002 \\ 0.022 \\ 0.002 \\ 0.010 \\ 0.006 \\ 0.007 \end{array}$	$\begin{array}{c} 0.968 \\ \textbf{0.918} \\ 0.966 \\ 0.943 \\ 0.954 \\ 0.951 \end{array}$	$\begin{array}{c} 0.103 \\ 0.069 \\ 0.104 \\ 0.089 \\ 0.092 \\ 0.087 \end{array}$	$\begin{array}{c} 0.093 \\ 0.061 \\ 0.094 \\ 0.080 \\ 0.083 \\ 0.078 \end{array}$	26.0 24.1 26.0 25.6 23.5 23.5	25.8 25.2 25.6 25.2 24.6 24.2	$egin{array}{c} 6,931 \\ 6,931 \\ 6,931 \\ 6,931 \\ 6,931 \\ 6,931 \\ 6,931 \end{array}$	
$\begin{array}{c} PopGeoNN \\ H(0.2 \ PopGeoNN + 0.8 \ IB) \\ H(0.8 \ PopGeoNN + 0.2 \ IB) \\ H(0.5 \ PopGeoNN + 0.5 \ IB) \\ RR(PopGeoNN , IB) \end{array}$	0.068 0.072 0.073 0.074 0.075	0.086 0.089 0.091 0.092 0.093	$\begin{array}{c} 0.777 \\ 0.803 \\ 0.760 \\ 0.772 \\ 0.766 \end{array}$	$\begin{array}{c} 0.014 \\ 0.019 \\ 0.003 \\ 0.006 \\ 0.001 \end{array}$	0.023 0.021 0.006 0.009 0.003	$\begin{array}{c} 0.932 \\ 0.922 \\ 0.956 \\ 0.947 \\ 0.961 \end{array}$	$\begin{array}{c} 0.110 \\ 0.076 \\ 0.117 \\ 0.102 \\ 0.103 \end{array}$	0.100 0.067 0.107 0.093 0.093	23.6 24.2 25.3 25.5 23.7	20.9 24.2 23.9 24.6 23.5	7,253 7,253 7,253 7,253 7,253 7,253	

• Similar behavior is observed in H(0.2 Pop + 0.8 IB).