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Understanding the Influence of Data Characteris-
tics on the Performance of Point-of-Interest Rec-
ommendation Algorithms

Abstract Point-of-interest (POI) recommendations are essential for travelers and the
e-tourism business. They assist in decision-making regarding what venues to visit and
where to dine and stay. While it is known that traditional recommendation algorithms’
performance depends on data characteristics like sparsity, popularity bias, and prefer-
ence distributions, the impact of these data characteristics has not been systematically
studied in the POI recommendation domain. To fill this gap, we extend a previously
proposed explanatory framework by introducing new explanatory variables specifically
relevant to POI recommendation. At its core, the framework relies on having subsam-
ples with different data characteristics to compute a regression model, which reveals
the dependencies between data characteristics and performance metrics of recommen-
dation models. To obtain these subsamples, we subdivide a POI recommendation data
set on New York City and measure the effect of these characteristics on different classi-
cal POI recommendation algorithms in terms of accuracy, novelty, and item exposure.
Our findings confirm the crucial role of key data features like density, popularity bias,
and the distribution of check-ins in POI recommendation. Additionally, we identify the
significance of novel factors, such as user mobility and the duration of user activity. In
summary, our work presents a generic method to quantify the influence of data char-
acteristics on recommendation performance. The results not only show why certain
POI recommendation algorithms excel in specific recommendation problems derived
from a LBSN check-in data set in New York City, but also offer practical insights
into which data characteristics need to be addressed to achieve better recommendation
performance.

Keywords point-of-interest recommendation, offline evaluation, regression analysis,
data characteristics

1 Introduction

Understanding which recommendation algorithm is most effective for a specific data set
is crucial, as it has been widely acknowledged that no single recommender can achieve
optimal performance in all scenarios (Im and Hars, 2007, Anelli et al., 2022). Apart from
the performance variation of the algorithms across different data sets, it should be taken
into account that the quality of any recommender can be evaluated through a wide array
of different dimensions (Gunawardana et al., 2022). While accuracy may be the primary
concern when recommending items that a user might actually consume, it is equally
important to prioritize recommending different items for the users (diversity), items
that may be unfamiliar to users and, hence, surprise them (novelty), or ensure that our
recommendations are not biased towards individual users or items (fairness) (Castells
et al., 2022, Ekstrand et al., 2022). However, designing models that perform well in all
these dimensions is challenging, as they need to deal with, for example, the accuracy-
diversity trade-off (Isufi et al., 2021). Whereas such analysis of accuracy versus novelty,
diversity, and other dimensions has been conducted in traditional recommendation
scenarios like movies or books, within the point-of-interest recommendation domain,
the problem has not been analyzed in such detail, although some researchers have
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started to examine these dimensions in this context (Massimo and Ricci, 2021, Sánchez
and Dietz, 2022).

Moreover, while most existing studies have primarily focused on evaluating the
quality of recommendations based on the accuracy of recommended venues through
offline experimentation metrics (i.e., using ranking accuracy metrics like Precision or
Recall), there remains a lack of consensus on the other crucial aspects of evaluation
methodology, such as data sets, data filtering, data partitioning, and other evaluation
metrics (Sánchez and Bellogín, 2022). In addition, it is important to consider that users
can be grouped based on simple touristically relevant information, such as their origin
or the categories of visited POIs, all of which can correlate with their preferences. It has
been shown that recommendation performance may fluctuate substantially depending
on the user group a user belongs to, especially between local users and visiting tourists
(Sánchez and Dietz, 2022).

Deldjoo et al. (2021) proposed a method to analyze the impact of different data
characteristics on the accuracy and fairness of matrix factorization algorithms in the
movie and book recommendation domains. As opposed to such classical recommenda-
tion problems, point of interest (POI) recommendations are influenced in a way larger
degree by further factors, such as seasonality, geographical influences of the venues to
be recommended, and the type of users of such system (Sánchez and Bellogín, 2022).
Hence, in this paper, we investigate the success factors of classical and POI recommen-
dation algorithms through the lens of data characteristics present in the data set used
as input by the recommendation models. To do so, we incorporate the most relevant
influences in a framework derived from (Deldjoo et al., 2021) to analyze the effect they
have on the performance of a set of recommenders.

1.1 Using Data Characteristics to Explain Recommender Performance

When proposing a new recommendation model, researchers often begin with intuitions
or anecdotal evidence, until they ultimately obtain empirical evidence through experi-
mentation to validate the model effectiveness. However, relying solely on intuitions or
anecdotal evidence to justify the quality of recommendations is insufficient. This ap-
proach may explain why some models obtain excellent results on some data sets while,
at the same time, they perform poorly in others, as recent efforts on reproducibility
have demonstrated (Dacrema et al., 2019, Said and Bellogín, 2014).

It should be noted that some studies have analyzed the effect of different aspects
in the recommendations, like the data partitioning (Meng et al., 2020) and the hy-
perparameters of the models (Anelli et al., 2019). The experiments presented in this
paper are based on the approach by the works of Deldjoo et al. (2021, 2020), where
the authors defined a set of explanatory variables that model the characteristics of the
data set (e.g., ratings per user, per item, population bias, etc.). On the basis of those
works, herein, we use a similar methodology as proposed by Deldjoo et al. (2021), but
adapt the framework towards POI recommendation by incorporating additional vari-
ables that capture the unique dynamics of the POI recommendation domain. The core
idea is that recommendation performance is influenced by quantifiable patterns in the
data, which result in easier or more difficult recommendation problems. For example,
a high density of the user-rating matrix, i.e., where many users have already rated a
large portion of items, generally provides recommendation models with ample signal to
compute suitable recommendations. Hence, many such data characteristics can poten-
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tially influence performance. In this paper, we study not only the impact of these data
characteristics on ranking quality, but we also analyze the effect on the recommenda-
tions in terms of both novelty and the amount of exposure each item receives across all
users. These aspects are important as they help identifying recommenders that may be
amplifying unfairness in the exposure of items. For example, if a model recommends
popular POIs significantly more frequently than they appear in the test set, it can lead
to low novelty values and greater disparities in item exposure. In e-tourism, this is a
key consideration as it can decide which businesses thrive.

Despite the commonalities with the approach presented in (Deldjoo et al., 2021),
we further develop several aspects of the general method, which requires generating a
sufficiently large number of recommendation data sets with varying data characteristics
to compute a regression model. To achieve this, we start from a widely-used check-in
data set based on the location-based social network Foursquare and generate domain-
driven subsamples; that is, considering characteristics of special importance in both
traditional and POI recommendation. The subsamples are created using filter-like rules
targeting the interaction density, popularity of venues, seasonality and origin of users,
e.g., locals visitors of a travel destination. This is in contrast with the original approach
which used a constraint-based random sampling method to derive subsamples. By
subdividing the set of all POI visits in the data set based on the aforementioned
domain-specific rules, we can better steer the subsampling process and simultaneously
obtain interpretable subsamples, which can be used to understand inherent attributes
and characteristics of the POI recommendation domain. As an outcome, we obtain
individual subsamples of the data set with varying data characteristics.

This variability in the data characteristics in the individual subsamples is impor-
tant as, in the next step, we independently perform recommendation experiments with
each subsample and record the outcome variables in terms of accuracy, novelty, and
item exposure. Herein, it is important to note that these subsamples are synthetic sim-
ulations of recommendation data sets. We compute regression models using the data
characteristics of the individual subsamples as independent variables and the perfor-
mance metrics as dependent variables. In other terms, we quantify data characteristics
using explanatory variables to explain the performance changes of the recommenders
in terms of ranking accuracy, novelty, and item exposure using the regression model.
Through the quantification of the statistical significance of the explanatory variables
within the regression model, we ensure that the determined influences are robust and
not spurious effects. To capture all potential influences on the recommendation out-
come in the POI recommendation domain, we further extend the variables proposed
for classical recommendation domains (Deldjoo et al., 2021, 2020, Adomavicius and
Zhang, 2012) with spatio-temporal features. An analysis of the statistical significance
of the coefficients in the regression model reveals which data characteristics are needed
to explain the recommenders’ performance.

1.2 Overview of Contributions

While the core concepts of this paper are based on previous approaches of Deldjoo
et al. (2021) and Adomavicius and Zhang (2012), we go beyond of simply adapting an
established method to the domain of POI recommendations. We make the following
conceptual and methodological contributions:
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1. We extend the corpus of explanatory variables for analyzing the effect of different
data characteristics, including geographic aspects, in a varied set of state-of-the-art
POI recommendation algorithms (Section 3.2). This analysis considers three com-
plementary evaluation dimensions: ranking accuracy, novelty, and item exposure.

2. We introduce a domain-specific subsampling algorithm for POI recommendation
(Section 4). This algorithm ensures that the simulated data sets are grounded in
the domain instead of random subsampling, as done in previous works.

3. We perform a comprehensive analysis of a set of recommendation algorithms by
considering 144 different simulations (Section 5). Each simulation corresponds to
a subsampled recommendation data set of a specific city within the Foursquare
check-in data set. In this way, we conduct an analysis of different samples with
disparate characteristics to detect which explanatory variables help us to better
explain the performance of the recommenders.

1.3 Impact on e-Tourism

This research can have significant implications for the tourism industry. POI recom-
mendations play a crucial role in shaping tourists’ experiences and guiding their choices
of which places to visit; thus, they are a key factor in decision-making. We offer valuable
insights that can enhance the tourism industry’s ability to provide more tailored and
satisfying experiences to travelers by determining which recommendation algorithms
should be used in which kind of specific recommendation scenarios. The analysis of the
beyond-accuracy metrics, i.e., novelty and item exposure, offers valuable perspectives
that cater to the user needs and local businesses. Novelty is especially relevant to local
users, as it fosters the exploration of their city, whereas item exposure is a precon-
dition to ensure that the flow of visitors is dissipated on many venues, contributing
to provider fairness (Deldjoo et al., 2023). By harnessing data characteristics such as
density, popularity bias, and user activity duration, the proposed methods can be used
to select algorithms that better align with the business goals of destination manage-
ment stakeholders. Thus, understanding how user behavior varies in different parts of
a destination can enable businesses to tailor their offerings and marketing efforts more
effectively. Our research underscores the value of data-driven decision-making in the
tourism sector. By leveraging the insights gained from this study, both providers of
POI recommendation platforms and the tourism industry can enhance their ability to
provide personalized and engaging experiences to users.

2 Background

2.1 Point-of-Interest Recommendation

The POI recommendation problem is typically defined as suggesting venues in a city
or particular region that the target user has not previously visited (Massimo and Ricci,
2022). These venues have a specific location, typically expressed as latitude and longi-
tude, and might be varied in nature, including museums, parks, restaurants, or bars,
among others. As in the traditional recommendation scenario, the objective is to max-
imize the number of relevant items (in this case, venues) that are being recommended
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to the user. Formally, as pointed in a recent survey by Sánchez and Bellogín (2022),
the POI recommendation problem can be formulated as follows:

p∗(u) = argmax
p∈P

g(u, p, Φ) (1)

where P denotes all POIs available in the region, p∗ is the optimal venue that maximizes
the utility for user u among all POIs1 in P, as defined by the utility function g, and
Φ represents the set of influences, also referred to as contextual information in some
works (Adomavicius et al., 2022). This contextual information should be considered to
perform meaningful POI recommendations (Manotumruksa et al., 2018).

Temporal, sequential, social, categorical, and, most importantly, geographical in-
formation are normally exploited in most POI recommendation approaches (Li et al.,
2015, Griesner et al., 2015, Zhang and Chow, 2015, Liu et al., 2014). In order to perform
POI recommendations, researchers often use the information available in location-based
social networks (LBSNs). Foursquare, Gowalla, or Yelp are examples of this type of
application where users are allowed to register the check-ins they perform at the differ-
ent venues they visit. Data sets extracted from such LBSNs are invaluable for under-
standing the visiting behavior of users. Information about friendship links, along with
the geographical coordinates of the venues, their categories, and the timestamps of the
check-ins, can be used to model the aforementioned influences and generate potentially
interesting recommendations to the users who are new in a specific geographical re-
gion, sometimes even requiring completely different approaches, such as reinforcement
learning (Massimo and Ricci, 2023).

It is important to note that LBSNs typically contain check-ins from different cities
around the world. However, as this type of recommendation is affected by all the
aforementioned influences (especially the geographical information), many researchers
perform recommendations considering each city/region as independent data sets (Liu
et al., 2014, Li et al., 2015). This strategy is not only practical from an experimental
point of view, but it is also quite reasonable since when a user is in a particular city,
she will be interested in visiting venues belonging to that region and not from distant
cities. Furthermore, each city may exhibit a unique distribution of POIs to visit, along
with distinct cultural characteristics and specific urban planning. In fact, this is one of
the reasons why POI recommendation is closely related to the tourism industry (Wang
et al., 2020a, Santos et al., 2019), since tourists, when they arrive to a new city, are
usually interested in visiting the most relevant venues of that specific city and immerse
themselves in the local culture. Besides, we need to consider that tourism is the base of
many economies, such as some countries in southern Europe (Cortés-Jiménez, 2008),
due to the large number of stakeholders involved, including tourists, venue owners, and
local residents.

2.2 Specific Considerations of the POI Recommendation Domain

When addressing the POI recommendation problem, it is necessary to regard several
domain-specific considerations and problems. Some of them include:

1 Even though we use the symbol P to refer to the POIs, in line with the standard notation
from the traditional recommendation problem, we shall use the letter I to refer to the items
of the system, i.e., the POIs.
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Sparsity: The ratio between the stored preferences in the data set and all the possible
interactions between the users and the venues is extremely low. While the densi-
ties of LBSNs data sets from Foursquare and Gowalla are approximately 0.0034%,
the density of the Netflix and Movielens20M data sets, typically used in classical
recommendation, are around 1.77%, hence showing much higher values of sparsity.

Additional influences: As discussed in Section 2.1, POI recommendation is influ-
enced by geographical aspects, social connections, and temporal information. Due
to the high data sparsity, it is crucial to leverage additional information to enhance
the performance of the algorithms. Among all the information sources, geographical
influence plays the most important role since users often prefer to visit nearby POIs
in accordance to Tobler’s Law: “[...]Everything is related to everything else, but near
things are more related than distant things” (Tobler, 1970). However, temporal in-
fluence can also provide valuable insights, such as the duration of users’ visits and
their movement patterns between POIs. Therefore, exploiting information suitable
to the respective use cases is essential for the success of the recommendations.

Implicit information: Traditionally, classical recommender systems model user-item
interactions using ratings. However, in POI recommendation data sets, we typically
lack of explicit ratings and we only have timestamps of user visits. Moreover, users
may check in multiple times at the same POI, which classical recommendation
systems typically do not account for (Nikolakopoulos et al., 2022). In POI recom-
mendation, repeated check-ins to the same venue can serve as implicit information,
refining the model of a user’s preference similar to explicit ratings. As normally we
do not have explicit information to create a user-item matrix, these repeated check-
ins provide valuable implicit feedback. POI recommender systems capture latent
user preferences using frequency matrices, providing better recommendations.

Popularity bias: Popularity bias is a well-studied problem in the recommender sys-
tems domain that occurs when popular items are recommended more frequently
than less popular ones, regardless of whether they actually match the interests of
the target user (Abdollahpouri et al., 2019). The effect of popularity bias is evident
in multiple layers within the context of POI recommendation. Firstly, at the city
level, an analysis of the original Foursquare data set reveals that out of the 415
cities worldwide, the top 1% of the most popular cities (based on the highest num-
ber of check-ins) represent the 20% of the total check-ins in the data set. However,
when considering the top 2% of the most popular cities, this percentage increases
to 28% of the total check-ins. Additionally, within each specific city, we can observe
the impact of popularity bias on individual POIs. Taking New York City and Tokyo
as examples, two extensively studied cities in the Foursquare data set (Sánchez and
Bellogín, 2022), we find that in New York City, the top 1% of the most popular
venues are responsible for 27% of all check-ins, while the top 2% of venues account
for 36% of the total check-ins. Similarly, in Tokyo, the top 1% of venues comprise
48% of all check-ins, and the top 2% represent 57% of the check-ins in the city.

2.3 Offline Evaluation in Point-of-Interest Recommendation

In offline evaluation of POI recommendation methods, most works follow the same
protocols used in the traditional recommendation scenario. The data set is split into
a training and test set with, occasionally, an additional validation set being used for
model parameter tuning. All models are trained on this data, and for each user in
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the test set, a top-N list of recommendations is generated based on predicted user
satisfaction (Cremonesi et al., 2010).

As in classical Machine Learning, subsets are often generated through random splits
or cross-validation from the original data set (Cheng et al., 2016, Wang et al., 2020b).
However, recently, temporal dimension has been considered in these splits (Zhao et al.,
2019, Huang et al., 2020). Currently, two main types of temporal splits are common:
per user, where the n oldest interactions for each user are used for training, and the
rest for validation and testing, and a global split, where interactions before a specific
timestamp are used for training and the rest, for validation and test (Sánchez and
Bellogín, 2022). The latter is more natural, mimicking production-scale recommender
system evaluation and avoiding data leakage to the test set (Ji et al., 2022).

Different metrics are used to evaluate recommendation algorithms, and most of
them focus on measuring recommendation accuracy. This is determined by the over-
lap between recommended and actually visited venues in the test set. Greater overlap
implies better recommendation quality. However, there is a recognition in the commu-
nity that solely focusing on items in the ground truth may overlook other user-centric
evaluation dimensions such as novelty (recommending non-popular items), diversity
(recommending items that are different), and serendipity (recommending items that
are novel and not easy to discover) (Castells et al., 2022). In the POI recommendation
domain, which is influenced by categorical, geographical, and social factors, additional
metrics can be used. For instance, category-level accuracy metric (Zhao et al., 2015)
and the error in geographical distance between recommended and visited POIs (Yin
et al., 2015) are used for measuring additional dimensions.

Another aspect that has received considerable attention in recent years in the rec-
ommender systems community, as in other areas of Artificial Intelligence and Machine
Learning, is trying to understand the inherent biases learned by these systems and how
they get reinforced by the recommendations. Thus, many researchers have focused on
analyzing potential biases that may be found in either the data sets or the recom-
mendations produced by the models. These biases vary widely, ranging from gender
(Ekstrand and Kluver, 2021, Melchiorre et al., 2021) to popularity bias (Abdollah-
pouri et al., 2019, Cañamares and Castells, 2017). Moreover, whereas in the classical
recommendation scenario it is currently established that analyzing different types of
biases is important, the POI recommendation domain appears to lack comprehensive
exploration in this regard. To the best of our knowledge, only a limited number of
studies have analyzed this aspect. For example, Sánchez and Dietz (2022) observed
biases in the recommendations provided to different groups of tourists and locals; and
Weydemann et al. (2019) studied three types of fairness in this domain, i.e., fairness
regarding the popularity of the venues, fairness with respect to the nationalities of
the users, and an assessment if the recommendations are aligned with the category
distribution observed in previous visits.

In light of the complexities and influences in the POI recommendation domain,
there is little known about the impact of data characteristics on the recommendation
performance. We address this gap using an explanatory framework, which was adapted
to this domain from Deldjoo et al. (2021).
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3 An Explanatory Framework for POI Recommendation

The overall goal of this work is to understand which factors influence the performance
of different recommendation models in the POI recommendation domain in terms of
different evaluation dimensions such as ranking accuracy, novelty, and item exposure.
Similar to previous approaches addressing this challenge (Adomavicius and Zhang,
2012, Deldjoo et al., 2021), we use data characteristics to describe subsamples of a
recommendation data set and use a regression model to capture the impact of each
feature on the recommendation outcome. The idea behind analyzing different subsam-
ples of the same data set is that the regression analysis would reveal the influence of
variations in data characteristics on dependent variables. The main difference to pre-
vious studies is that our analysis is regarding POI recommendation, which enables us
to define further explanatory variables capturing the geographical influences of users
visiting venues in a city. Moreover, we are able to use a domain-driven subsampling
approach, which yields additional insights into the performance of recommenders.

In this section, we describe the explanatory framework, which is a regression model
applied to a series of data characteristics for capturing the interactions of users with the
respective venues in a city. These data characteristics are computed for each subsample
independently using a domain-driven approach outlined in the subsequent Section 4.

3.1 Regression Model

Given all subsamples, we aim to model the relationship between the data characteristics
and the recommendation performance of each individual recommendation algorithm.
This allows us to test hypotheses regarding which explanatory variables are able to
describe the variations in the dependent variables in a statistically significant way.
Equation 2 shows the regression model, which is the core of the explanatory analysis.

yr = ϵr + θr0 +
∑

ev∈EV

θrevxev (2)

where ϵ is the error term (residuals), θ0 is the intercept, i.e., the mean value of the
dependant variable when the rest of the independent variables are zero, θev is the re-
gression coefficient of the respective explanatory variable ev (among the set of variables
EV ), xev represents the value of the explanatory variable in the current training ex-
ample, and y is the value of the dependent variable according to the recommendation
models. Since some of these values will depend on a specific recommendation model r,
the notation shows this with a superscript. In particular, this means that, for a specific
recommender system r, the value of the dependent variables will be potentially differ-
ent for each r. Then, the performance would be modeled upon the set of explanatory
variables xev, that will depend on the characteristics of the data set. Based on this,
the regression model will produce coefficients θrev specifically tailored for this particular
recommender, as it will consider the explanatory variables and the dependent variables
at the same time. When using the EVs within the regression model, we apply min-max
normalization to obtain coefficients that are directly comparable.
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3.2 Explanatory Variables

We define 32 explanatory variables (EVs) which serve as independent variables in
the regression analysis. Unlike the approaches of Adomavicius and Zhang (2012) and
Deldjoo et al. (2021), we do not have a user-rating matrix, but a user-check-in matrix,
since the interaction between the users and POIs is a visit and not a rating. While
the user-check-in matrix (UCM) is conceptually very similar to a user-rating matrix
(URM), the UCM is established based on unique visits, i.e., the cell values of the UCM
are 1 if a user has visited a venue; otherwise, it is 0. Multiple visits of one user to the
same venue also result in a value of 1. Despite this small conceptual difference, most
EVs proposed and used by Adomavicius and Zhang (2012) and Deldjoo et al. (2021)
can also be computed for a UCM. Since there is a significant geographic influence in
POI recommendation (Li et al., 2015), we also propose some further EVs that capture
such geographic information about the visited venues. Thus, the EVs we use can be
categorized in the following four categories:

1. EVs that describe the structure of the UCM.
2. EVs that describe the check-in distribution of the UCM.
3. EVs that are based on item and user properties in the UCM.
4. EVs that capture the underlying user activity and mobility.

3.2.1 EVs Based on the Structure of the UCM

These EVs capture the general structure of the UCM and are well established to
describe properties of recommendation data sets. Thus, we keep the discussion around
them succinct.

Definition 1 (SpaceSize) Given a UCM, SpaceSize is defined as:

ev1 = SpaceSize(UCM) = |U | · |I| (3)

We use the SpaceSize instead of its components, the number of users, |U |, and
the number of items |I| since it reduces the number of variables. As pointed out in
Section 2.1, although we are dealing with POIs, denoted in that section as P, we use
the letter I to refer to items in general.

Definition 2 (Shape) Given a UCM, Shape is defined as:

ev2 = Shape(UCM) =
|U |
|I| (4)

The ratio between the number of users and the number of items can be an ini-
tial indicator of whether user-based collaborative filtering or item-based collaborative
filtering approaches might be more successful (Nikolakopoulos et al., 2022).

Definition 3 (Density) Given a UCM, Density is defined as:

ev3 = Density(UCM) =
|C|

|U | × |I| (5)
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Density, or its inverse, sparsity, is a commonly reported metric to give an estimation
of the recommendation difficulty for collaborative recommendation algorithms. Here
we use C to refer to all the check-ins performed by the users and registered in a data
set. Generally, the higher the density, the more signal is available for the algorithm to
compute fitting recommendations. Density typically varies a lot depending on the data
set and the domain, as mentioned in Section 2.2.

Definition 4 (Cpu, Cpi) Given a UCM, check-ins per user (Cpu) and check-ins per
item (Cpi) are defined as:

ev4 = Cpu(UCM) =
|C|
|U | (6)

ev5 = Cpi(UCM) =
|C|
|I| (7)

The number of interactions per user/item is also a simple but effective measure
to put the recommendation quality into perspective. If the number of interactions is
remarkably small for a user or an item, it can be regarded as “cold”, indicating that
there is not sufficient information to compute meaningful recommendations. Given the
high sparsity of the data sets in the POI recommendation domain, it is very common
to impose a minimum number of interactions for both items and users, i.e., enforcing
a k-core, cf. Section 4.1. This is done to avoid evaluating cold-start recommendations.

3.2.2 EVs Based on the Check-in Distribution of the UCM

Naturally, some users are more active than others, and not all items get the same
attention. In the POI recommendation domain, this is a very natural phenomenon
since major highlights inherently attract more visits. This is a major challenge with
respect to several dimensions of the recommendation algorithms, including accuracy,
novelty, and fairness, as there is a delicate trade-off between recommending popular
POIs and items in the long-tail (Rahmani et al., 2022).

Definition 5 (GiniI , GiniU )
Given a UCM, |Ci| and |Cu| be the number of check-ins associated with item i and

user u and the users/items are sorted according to Ci and Cu, respectively; then GiniI
and GiniU are defined as follows (Deldjoo et al., 2021):

ev6 = GiniI(UCM) = 1− 2

|I|∑
i=1

|I|+ 1− i

|I|+ 1
× |Ci|

|C| (8)

ev7 = GiniU (UCM) = 1− 2

|U |∑
u=1

|U |+ 1− u

|U |+ 1
× |Cu|

|C| (9)

The Gini coefficient captures the frequency distribution of the check-ins for users or
items. It is scaled between [0, 1], where a score of 0 would correspond to a uniform
popularity distribution, and 1 to the extreme case of all check-ins being concentrated
on one user/item.



11

3.2.3 EVs Based on the Item and User Properties

The following two EVs, Popularity Bias and Long Tail Items, have been motivated by
Deldjoo et al. (2021) to be included in their explanatory framework. Arguably, the POI
recommendation domain is even more severely impacted by popularity bias (Massimo
and Ricci, 2021, Sánchez and Dietz, 2022), thus, it is imperative to include them
in our framework. Given the distribution of the metrics with outliers, we augment
the aggregation methods used in (Deldjoo et al., 2021) (mean, standard deviation,
skewness, and kurtosis) with the median value, as the median is more robust against
outliers compared to the mean value. Note that a higher kurtosis is related to heavier
tails, and hence, more outliers, while the skewness is related to the symmetry of the
distribution. If the skewness is positive, it means that the right-hand tail is longer than
the left-hand tail. If the skewness is negative, then the right-hand tail is shorter than
the left-hand tail.

Definition 6 (Popularity Bias) We follow the commonly accepted definition of popu-
larity bias proposed by Abdollahpouri et al. (2019), which should not be confused with
the popularity bias produced by the recommendation algorithm, as this applies to the
bias that exists in the original data:

ev8:12 = f

({∑
i∈Cu

ϕ(i)

|Cu|

}
u

)
(10)

where ϕ(i) is the popularity scoring function for an item i. The notation {·}u aims to
indicate that we iterate over the users and compute the value inside the brackets, which
is then processed by the outer function f . An item’s popularity score is thus defined
as the number of users who visited i over the entire number of users, and |Cu| is the
number of check-ins of user u. The term f is an aggregation operator over users to
capture inter-user differences in the popularity profiles of users. They include average
popularity bias (ev8, APB), median popularity bias (ev9, MedPB), standard deviation
of popularity bias scores (ev10, StPB), skewness popularity bias (ev11, SkPB), and
kurtosis popularity bias (ev12, KuPB).

Definition 7 (Long Tail Items) Analyzing the popularity of items, they can be sepa-
rated into a short-head and a long-tail.

ev13:17 = f

({
|i, i ∈ (Cu ∩ Γ )|

|Cu|

}
u

)
(11)

where Cu are, again, the check-ins of user u, Γ , on the other hand, represents long-
tail items, which is determined by splitting the items into short-head and long-tail
items. We define the split between short-head and long-tail in terms of the number of
different users that have visited the item. In the literature, typical cutoffs for separating
the short-head from the long-tail are at 20%–80%, cf. (Yin et al., 2012, Abdollahpouri
et al., 2017, Deldjoo et al., 2021), which we also use in our experiments.

As before, f is an aggregation operator over users to capture inter-user differences
in long-tail profiles of users. They include average long tail items (ev13, ALT), median
long tail items (ev14, MedLT), standard deviation of long-tail items scores (ev14, StLT),
skewness long tail items (ev15, SkLT), and kurtosis long tail items (ev17, KuLT).
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3.2.4 EVs Based on the User Activity and Mobility

In this section, we introduce a family of data characteristics that are specific to the POI
recommendation domain. The Radius of Gyration captures the size of a user’s activity
area. The distance from the city center is defined similarly, but the information it
captures is more about how central the check-ins of a user are. Finally, the user’s
activity duration is interesting to include as well, as one can assume that the longer a
user is within a city, the more familiar she becomes with the city, and it might result
increasingly difficult for recommendation algorithms to propose interesting items.

Definition 8 (Radius of Gyration) This is a common metric to capture the geographic
extent of user mobility.

ev18:22 = f

({√∑
i∈Cu

distance((lati, loni), (cxu, c
y
u))

|Cu|

}
u

)
(12)

cu = (cxu, c
y
u) =

 1

|Cu|
∑
i∈Cu

lati,
1

|Cu|
∑
i∈Cu

loni

 (13)

where cu is the centroid of all the user’s visited venues (González et al., 2008) and lati
and loni represent the latitude and the longitude of item i respectively.

Again, f is an aggregation operator over users to capture inter-user differences in
the Radius of Gyration of users. They include average Radius of Gyration (ev18, ARG),
median Radius of Gyration (ev19, MedRG), standard deviation of Radius of Gyration
scores (ev20, StRG), skewness of Radius of Gyration (ev21, SkRG), and kurtosis of the
Radius of Gyration (ev22, KuRG).

Definition 9 (Distance to City Center) This EV is very similar to the Radius of
Gyration, however, the center is not set to the centroid of the venues visited by the
user, but to the center of the city. It is useful to differentiate between users who perform
activities near the center of a city – typically of historic significance – and users who
are more active in the outskirts.

ev23:27 = f

({√∑
i∈Cu

distance((lati, loni), (ccx, ccy))
|Cu|

}
u

)
(14)

where cc = (ccx, ccy) is the geographic location of the city center. Again, we use
different aggregation functions: the average distance to the city center (ev23, ADCC),
median distance to the city center (ev24, MedDCC), standard deviation of the distances
to the city center (ev25, StDCC), skewness of distance to the city center (ev26, SkDCC),
and kurtosis of the distance to the city center (ev27, KuDCC).

Definition 10 (Duration Active) This EV is useful to provide insights into the effects
of how long the duration of user activity was. In this context, users who have been
active for a shorter duration may correspond to tourists, whereas those who have
been performing check-ins for a longer period can be considered local residents of the
city (Sánchez and Bellogín, 2021).

ev28:32 = f

({
t(i)l − t(i)0|i ∈ Cu

}
u

)
(15)
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where t(i)0, t(i)l is the time of the first and last check-in of the items i the user u has vis-
ited, respectively. Note that in this case, we took the duration from all check-ins of the
user, including repeated check-ins. Again, we use different aggregation functions: the
average duration active (ev28, ADA), median duration active (ev29, MedDA), standard
deviation of duration active (ev30, StDA), skewness of duration active (ev31, SkDA),
and kurtosis of the duration active (ev32, KuDA).

3.3 Dependent Variables

For the dependent variables, we decided to analyze three different dimensions of the
recommendations:

Ranking accuracy: We will focus on measuring how many recommended items ac-
tually match the ground truth of the user. For this purpose, we will use the nDCG
metric (Järvelin and Kekäläinen, 2002) that is defined in Equations 16 and 17.

nDCG@k =
1

U

∑
u∈U

DCG(u)@k

IDCG(u)@k
(16)

DCG(u)@k =
∑

in∈RLu@k

2reln − 1

log2(n+ 1)
(17)

where RLu is the recommendation list for user u, reln denotes the real relevance
of item in, and k denotes the first k items of RLu. In explicit rating data sets,
this relevance value is normally bounded in the [0, 5] interval, with 0 representing
a non-relevant value; in our experiments, as we do not have explicit ratings but
check-ins, the relevance of the items appearing in the test set will always be 1.
IDCG represents the ideal DCG, and it is computed in the same way as DCG
but using the ground truth as the ranking. Higher values in nDCG mean that
more relevant recommendations are being provided to the users; that is, more
recommended venues are actually visited by the user according to the test set.

Novelty: The novelty of a recommendation can be assessed by measuring the pro-
portion of popular venues being recommended. If a high percentage of the recom-
mended venues are already well-known or frequently consumed/visited, it indicates
that the recommendations lack novelty. To measure novelty, popularity is often
used as a proxy, especially in offline evaluation where direct feedback from users
is not possible. This is because it is generally assumed that whatever is popular
within a community is likely to be known by most users and, thus, not novel.
To measure this dimension, we use the Expected Popularity Complement (EPC)2

metric (Vargas and Castells, 2011), defined in the following equation:

EPC@k =
1

U

∑
u∈U

Z(u)
∑

in∈RLu@k

(1− p(seen | in)) (18)

2 Please, note that the original definition of the metric provided by Vargas and Castells
(2011) also incorporates a discount model (as the one used in the nDCG metric) and a relevance
model, in order to measure both the relevance and the novelty of the recommendations together.
However, in our work, as we are evaluating ranking accuracy with nDCG, we will use the pure
definition of EPC.
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where RLu is again the recommendation list for user u, Z(u) is a normalizing
constant (generally Z(u) = 1/

∑
i∈RLu@k 1), and p(seen | in) represents the prob-

ability of item in to be consumed. This probability is estimated as |Ui|/|U |, that
is, the number of users who have visited POI i in the training set, divided by the
total number of users in the training set. Higher values in EPC imply that more
novel recommendations are provided to the users.

Item exposure: In traditional recommendation domains, many algorithms tend to
emphasize only a few items from the entire catalog (Liu and Zheng, 2020, Abdol-
lahpouri et al., 2019), leading to a popularity bias which we discussed in Section 2.3.
This bias results in models favoring the most popular items, regardless of their rel-
evance. In our study, to account for this effect, we measure item exposure by means
of the so-called expected exposure loss, which slightly differs from plain popularity
(Shih et al., 2016, Ekstrand et al., 2022). While popularity bias means recommend-
ing the most popular items without considering the distribution in the ground
truth, poor performance with respect to expected exposure loss occurs when items
are over- or under-represented in recommendations compared to the test set.Thus,
we compare the number of times an item is recommended against the number of
actual interactions in the test set (Ekstrand et al., 2022):

IE@k =
∑
i∈I

∣∣∣∣Utest(i)

Utest
− Rec@k(i)

Utest

∣∣∣∣ (19)

where Utest denotes the number of users in the test set, Utest(i) refers to the number
of users that visited item i in the test set, and Rec@k(i) is the number of times
item i has been recommended considering all recommendations (i.e., rankings) until
position k, i.e., at cutoff @k. As we are comparing the recommended exposure and
the exposure of the items in the test set, the lower the values obtained in this
metric, the better the performance of the recommenders in terms of item exposure.

4 Constructing Subsamples with Different Data Characteristics

To apply the explanatory framework described in the previous section, it is necessary
to obtain several subsamples from a larger recommendation data set. We now discuss
our approach to constructing various data sets with different characteristics that will
serve as inputs for the explanatory framework. This aspect poses a challenge since
the recommendation data sets, specifically the user-item interaction matrices, exhibit
interdependencies that are complex to disentangle. The approach proposed by Deldjoo
et al. (2020) constructs subsamples by selecting a random number of users and items
while enforcing certain constraints, such as predefined data set densities.

As opposed to prior studies (Adomavicius and Zhang, 2012, Deldjoo et al., 2021),
we propose to use subsamples created by exploiting different data characteristics that
are grounded in the domain instead of randomly sampling users with constraints. Gen-
erating the subsamples in such a way has two advantages: first, the subsamples retain
meaningful semantics, which provides additional analytic insights into the domain;
second, it allows providers of recommender systems to understand in which real-world
situations different recommendation models are advantageous or unfavorable. In the fol-
lowing section, we describe our proposed domain-driven subsampling procedure, which
is based on subsetting a recommendation data set by factors that might be relevant to
recommending points of interest within a city.
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4.1 Data Characteristics for Creating Domain-driven Subsamples

Our design goals when developing the methods to construct subsamples are that i) the
subsamples must have a common basis to enable fair and meaningful comparisons,
ii) while at the same time, they show variability in terms of their resulting data char-
acteristics. iii) Further, we need to generate a sufficiently large number of subsamples
to obtain robust results from the regression model, but iv) each subsample should be
a tractable recommendation problem, i.e., there is sufficient signal for the individual
recommendation models to produce sensible recommendations.

As mentioned before, we take a different approach to construct subsamples com-
pared to the approaches in the literature (Deldjoo et al., 2021, 2020). We formulate
hypotheses regarding relevant factors that might have an influence on the outcome of
POI recommendations. The core idea is to introduce a number of data characteristics
relevant to the POI recommendation domain and use them as filters to include an
interaction in the UCM or not. Thus, each data characteristic represents the explicit
hypothesis that changing its value has an influence on the recommendation outcome.

The set of all subsamples is the cross-product of the data characteristics values
applied to the original data set. This means that the generation of the subsamples is
not only controlled by the outcome of the random processes that define the number
of items and users in the interaction matrix but by meaningful subsetting of groups
of users, items, or interactions. In the following subsections, we propose different data
characteristics for subsampling, as the POI recommendation domain offers possibility
for more complex hypotheses, since – unlike most classic recommendation data sets
– there is the temporal (when a venue is visited) and the geographical (where the
venue is and where the user is from) aspects to analyze. We leverage these aspects to
formulate hypotheses along with common strategies employed in the evaluation of POI
recommendation data sets to shape the recommendation outcome.

4.1.1 Enforce a Minimum k-core

To mitigate the extreme sparsity of typical POI recommendation data sets, it is com-
mon to remove interactions from the UCM until all users and venues have at least k

interactions. This is done to achieve a certain – higher – level of density in the UCM
and, thus, fewer ‘cold’ items/users which usually results in higher accuracy metrics for
interaction-based algorithms. Typical values for k are 2 (cf. Gao et al. (2015)), 5 (cf.
Yuan et al. (2013, 2014), Yao et al. (2015)), or 10 (cf. to Nunes and Marinho (2014),
Feng et al. (2015), Li et al. (2016)).

4.1.2 Drop Top n% Popular Venues

As previously discussed, popularity bias plays a large role in POI recommendation with
a substantial interplay between the popularity of items and recommendation accuracy
(Abdollahpouri et al., 2019, Massimo and Ricci, 2021, Sánchez et al., 2023). As check-
in-based data sets usually do not come with rating information, we limit the scope of
popularity to the number of people that have visited a venue (Jannach et al., 2015).

The method to analyze the impact of popularity bias is to generate different sub-
samples by removing the most popular venues in the data set. We propose to drop the
most n% popular items from the data set to obtain different distributions of the item
popularity (Abdollahpouri et al., 2017). The concrete values depend on the data set
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at hand, but as a general guideline, we propose values for n between 0% and 5% for
the specific point-of-interest recommendation domain after considering the popularity
bias discussed in Section 2.2.

4.1.3 Filter by Season

Seasonality is also a relevant factor that undoubtedly has an influence on the visited
venues both by locals and tourists (Liu et al., 2011). The exact split between seasons
can be tricky to make as a high granularity (e.g., weeks or months) can result in very
small subsamples. Further, seasons are not the same in different regions, potentially
requiring different segmentations for destinations in different climate zones (Trattner
et al., 2018). In the context of an explainability study, we recommend using broad
season categories, such as a two-season (warmer and colder months) or a four-season
model.

4.1.4 Filter by User Residence

In the context of POI recommendation, different groups of users exhibit different be-
havior (Sánchez and Dietz, 2022). Due to the differences in behavior between locals
and visitors, we argue that it is very promising to use such a division as a subsampling
variable. If the information about the user’s home is available in the recommendation
data set, the typical groups to analyze would be the locals of the city, domestic visitors,
or international travelers.

4.2 Discussion

In this section, we have formulated various hypotheses of what influences POI recom-
mendations. These hypotheses are manifested in different data characteristics to enable
a rigorous computational analysis. In the choice of data characteristics, we discussed
the ones that we deem to be most relevant based on the literature on the analysis POI
recommendation algorithms.

When setting up the experiments, it is still necessary to analyze the statistics of
the resulting subsamples to understand which value ranges of the data characteristics
to test. Here, it is important to retain tractable recommendation problems, i.e., not
result in too sparse or small subsamples. Also, depending on the data set, it is not
always possible to test all data characteristics discussed in Section 4.1. For example,
removing resident users in a city that is not very active as a tourist destination could
be counterproductive in making interesting recommendations that may attract more
tourists.

4.3 Visualizing the Subsampling Variations

To exemplify the effect of subsampling variables, Figure 1 visualizes the interplay of two
data characteristics: the k-core and the origin of the users. In this heat map showing
the density of check-ins in New York City, USA, the difference between the behavior of
the locals and travelers becomes apparent: travelers tend to visit venues in Manhattan
(with the exception of the airports), while the locals naturally have check-ins all over
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(a) k-core = 2, origin = NYC (b) k-core = 5, origin = NYC (c) k-core = 10, origin = NYC

(d) k-core = 2, origin = US (e) k-core = 5, origin = US (f) k-core = 10, origin = US

(g) k-core = 2, origin = other (h) k-core = 5, origin = other (i) k-core = 10, origin = other

Fig. 1: Heat map of the visited venues in New York with different parameters for the
k-core and the origin of the users (better viewed in color).

the map. A higher value for k-core leads to a higher density in the UCM but eliminates
many venues, which can be observed in the map visualization.

5 Experimental Setup

In this section, we describe the used data set and the process of selecting the sub-
sampling variables to obtain the subsampled recommendation data sets. We provide
details about the data preprocessing, how we conducted the recommendation experi-
ments, and give an overview of the outcomes. Finally, we outline the variable selection
process for the regression model, which is the core of the explanatory framework. The
full process explained in this section is shown in Figure 2.

5.1 Selecting a Suitable Data Set

To evaluate our proposed approach, it is essential to have a sufficiently large data set for
POI recommendation that enables us to perform meaningful subsampling. Revisiting
the literature (Bao et al., 2015, Sánchez and Bellogín, 2022), we decided to use the
Foursquare data set published by Yang et al., which has about 33 million check-ins in
415 different cities of the world (Yang et al., 2015) and has been frequently used to
benchmark POI recommendation performance3. Although the data set contains check-
ins from many cities, we conclude that it is infeasible to include multiple cities in the

3 Data set is available from https://sites.google.com/site/yangdingqi/home/
foursquare-dataset

https://sites.google.com/site/yangdingqi/home/foursquare-dataset
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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Fig. 2: Diagram representing the methodology followed in the paper. Each number cor-
responds to a step in the process: Initially, we clean the original check-in data set (1) to
obtain a recommendation data set, which we subsequently subdivide into the 144 sub-
samples (2). Each subsample is further split into training and test sets (3), where a
recommendation model is trained on each subsample individually (4) and the explana-
tory variables are computed based on the training sets (5). We determine the best
hyperparameters of each recommender in each subsample using the test set (6), and
record the metrics of the best performing recommendation configuration (7). Finally,
we perform the regression analysis towards the performance metrics of each recommen-
dation algorithm using the explanatory variables (8).

scope of the analysis. The number of check-ins per city is influenced by the number of
people and the popularity of Foursquare in the city, which results in a few cities having
a large number of check-ins but many not having sufficient interactions to further
subsample them. Furthermore, the behavior of users is influenced by the topological
realities of cities, such as centralized vs. decentralized cities. Therefore, each city needs
to be analyzed separately to account for the different geographic influences.

In this study, we focus on New York City (NYC), NY, USA, as it is one of the
most active cities on Foursquare and, hence, has been a common subject of analysis
in the POI recommendation domain, e.g., in (Albanna et al., 2016, Maroulis et al.,
2016, Jiao et al., 2019). Concretely, the scope of our analysis is the New York City
Metropolitan Area, which comprises the five boroughs of New York City and Newark,
NJ. The complete data set from New York City Metropolitan Area consists of 17,467
users, 71,310 venues, and 608,131 check-ins. The geographical scope of the analysis is
visualized in Figure 1. To adapt the data set for the POI recommendation domain,
we eliminated venues of the “Residences” category, as we do not consider them as
interesting POIs to recommend. Finally, we also removed duplicated check-ins, i.e.,
check-ins at the same venue and identical timestamps.

5.2 Generation of Subsampled Recommendation Data Sets

In Section 4, we discussed subsampling data characteristics to be used in an explanatory
framework for POI recommendation. In the context of this study we instantiated them
as follows: We imposed a minimum k-core of the recommendation data sets, excluded
varying levels of the most popular venues, and subdivided by season of the year and
the origin of the user.
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5.2.1 Subsampling Data Characteristics

UCM Density Traditionally, density (i.e., the inverse of sparsity) has been a key met-
ric to quantify the difficulty of a recommendation problem. The sparsity is normally
referred to as the situation where most of the user-item interactions are not observed
in the training data (Idrissi and Zellou, 2020).

However, density is a dependent variable, which is typically adjusted by enforcing
a k-core, i.e., requiring at least k interactions for each user and venue and discarding
users and venues that do not fulfill this threshold.

Following the practice in literature, we create subsamples using the following values
for k:

– 2: Enforce a k = 2-core.
– 5: Enforce a k = 5-core.
– 10: Enforce a k = 10-core.

Item Popularity Due to the large popularity bias in POI recommendation, we argue
that it is important to analyze the effect of disregarding the most popular venues. We
used the following values to analyze this effect:

– 0.5: Drop the most popular 0.5% venues from the current data set.
– 1: Drop the most popular 1% venues from the current data set.
– 2: Drop the most popular 2% venues from the current data set.
– 5: Drop the most popular 5% venues from the current data set.

Season The effect of seasonality on the recommendation outcome has not been an-
alyzed in depth so far, providing us with the opportunity to analyze this within the
explanatory study. The oceanic climate of New York City comes with relatively similar
precipitation throughout the year, thus, we used the temperature aspect of the climate
diagram to subdivide the year into the following groups:

– all: All check-ins irrespective of the season.
– summer: check-ins during the warmer months in New York City from May to

October.
– winter: check-ins during the colder months in New York City from November to

April.

By using only two groups, we hope to achieve a clear separation and keep the size
of the resulting subsamples larger.

User Origin The Foursquare data set contains check-ins from users from all around the
world. Although we are only running the recommendation experiments with check-ins
in New York City, we can use the complete data set to determine the home city of
the people in the recommendation data set. To achieve this, we use the open-source
tripmining library4 to obtain the residence of the different users (Dietz et al., 2020).
This library converts the check-in stream of users into periods of being at home and
on travel. It uses the plurality strategy, i.e., selecting the city with the most check-ins
as home city, to determine which is the user’s home city, which has been shown to be
accurate in a ground-truth study (Kariryaa et al., 2018).

We use this user home label as a subsampling data characteristic with the following
values:

4 https://github.com/LinusDietz/tripmining

https://github.com/LinusDietz/tripmining
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– all: considering all users.
– US: only domestic visitors from the United States, but not citizens of New York

City.
– NYC: citizens of New York City.
– other: travelers from outside of the US.

The intuition behind using the users’ home as a subsampling data characteristic is
that the behavior of locals is different than the one of visitors. This also has a significant
influence on the recommendation outcome, as shown by Sánchez and Dietz (2022).

5.2.2 Summary

Using these aspects, we generate 144 recommendation subsamples in the form of user-
check-in matrices. The result of the cross-product of applying the aforementioned sub-
sampling data characteristics as filters on the original data set is 144:

{origin = [all, NYC, US, international]} × {season= [all, summer,winter]} ×
× {k-core = [2, 5, 10]} × {drop top venues = [0.5, 1, 2, 5]}

5.2.3 Training and Test Set Generation

For each of the subsamples, we perform a temporal split per user, where 80% of the
oldest interactions of each user are sent to the training set and the rest to the test
set. Foursquare users might have performed check-ins at the same venue more than
once, but the algorithms we use are meant to recommend new items, which means
that we discard all duplicate check-ins of a user in the same venue both in the training
and the test set. We decided to proceed like this in the test set because the goal of
recommender systems is to recommend new venues to users to explore, not venues that
the user already knows, which is common practice in the POI recommendation domain.

Table 6 (in the Appendix) tabulates statistics regarding the subsamples with the
average values of different explanatory variables. For space reasons, we only tabulate
the 12 subsampling data characteristics independently to get an impression of their
individual impact. The experiments for the explanatory analysis used the cross-product
of the subsampling data characteristics, resulting in 144 subsamples.

5.3 Algorithms for POI Recommendation

In this section, we explain in detail the algorithms that we have used in our experiments.
Due to the nature of the application of the different models, we will divide them into
two main groups: classical recommendation algorithms and those specifically designed
for point-of-interest recommendation.

5.3.1 Classical Recommendation Algorithms

Random: performs recommendations of venues randomly.
Pop: recommends to the target user the venues ordered by decreasing popularity.

The popularity is measured by the number of different users that have visited that
venue.
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UB: user-based neighborhood. Non-normalized k-nn algorithm that recommends to
the target user venues that other similar users visited before (Nikolakopoulos et al.,
2022, Aiolli, 2013). We used the cosine similarity and Jaccard Index as similarity
metrics.

IB: item-based neighborhood. Non-normalized k-nn that recommends to the target
user venues similar to the ones that she visited previously (Nikolakopoulos et al.,
2022, Aiolli, 2013). We use the item variations of the same similarity metrics used
for UB.

HKV: matrix factorization (MF) algorithm that uses Alternate Least Squares for
optimization proposed by Hu et al. (2008).

BPRMF: matrix factorization (MF) algorithm that uses the pairwise Bayesian Per-
sonalized Ranking loss proposed by Rendle et al. (2009) as optimization algorithm.
For our experiments. we used the version from MyMedialite’s5 library.

5.3.2 Point-of-Interest Recommendation Algorithms

IRENMF: weighted matrix factorization method proposed by Liu et al. (2014). This
algorithm incorporates geographical information by assuming that users tend to
visit neighboring venues (instance-level influence) and also by considering that the
users check-ins are shared in the same geographical region (region-level influence).

GeoBPRMF: geographical Bayesian Personalized Ranking matrix factorization. Al-
gorithm proposed by Yuan et al. (2016) that assumes that the target user will prefer
to visit new venues that are close to the ones she visited previously.

RankGeoFM: a ranking-based matrix factorization model proposed by Li et al.
(2015). They also incorporate the geographical influence in the recommendations
by exploiting the neighboring venues (by geographical distance) with respect to the
candidate POIs to recommend.

PopGeoNN: hybrid algorithm combining popularity (Pop), a user-based neighbor-
hood method (UB), and a simple geographical component that recommends to the
target user the venues closer to the average geographical position of all the venues
visited by the user in the training set. This recommender has been used in previ-
ous works such as (Sánchez and Dietz, 2022). The final score is an aggregation of
every item score provided by each recommender after normalizing its values by the
maximum score of each method.

To achieve optimal parameters for each recommendation subsample, we systemati-
cally chose the optimal hyperparameters for each recommendation model by nDCG@5.
We do this as it is a standard procedure in the area, despite the models could be opti-
mized independently for each evaluation dimension, however, this would not be practi-
cal, as accuracy is typically understood as a first order-objective of any recommender
system. The tested hyperparameter ranges are listed in the Appendix, Table 7.

5.4 Recommendation Results on Subsamples

Using the recommendation models presented in Section 5.3 with the optimal parame-
ters, we achieve the following recommendation outcomes regarding nDCG (Figure 3a),

5 MyMedialite library: http://www.mymedialite.net/

http://www.mymedialite.net/
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Table 1: Mean value of the performance results of the recommenders in all subsamples.
All values are reported at a cutoff of 5. We represent in bold the best value obtained
when computing the mean in each metric.

Family Recommender nDCG EPC Item Exposure

mean std mean std mean std

Classic

Rnd 0.000 0.001 0.999 0.001 5.602 0.737
Pop 0.004 0.004 0.987 0.009 7.820 1.430
UB 0.011 0.006 0.997 0.003 6.128 1.230
IB 0.010 0.005 0.999 0.001 6.137 1.026

HKV 0.003 0.005 0.998 0.002 7.689 1.482
BPRMF 0.010 0.008 0.994 0.005 6.618 1.223

POI

IRENMF 0.011 0.009 0.996 0.004 6.818 1.089
GeoBPRMF 0.009 0.010 0.995 0.004 7.223 1.348
RankGeoFM 0.003 0.004 0.998 0.002 5.336 0.708
PopGeoNN 0.009 0.006 0.992 0.006 6.784 1.123

EPC (Figure 3b), and Item Exposure (Figure 3c) in the 144 subsamples. We also report
in Table 1 the average (denoted as avg) and the standard deviation (denoted as std)
by each recommender in nDCG, EPC, and Item Exposure, all of them measured at a
ranking cutoff of 5.

Table 1 reveals that the performance of the recommenders, in terms of nDCG, is
relatively low. This is a common phenomenon in the POI recommendation domain,
given the vast number of candidate POIs and the scarcity of user visits to train the
models. However, some recommenders, like HKV or RankGeoFM, consistently show a
lower performance overall, with limited standard deviation. With respect to novelty,
we generally obtain high results, even in the Pop recommender. This can be attributed
to the data sparsity, where although certain popular POIs have a significant number of
visits, they have been explored by only a small percentage of users relative to the total
number of potential users. Notably, the Pop algorithm exhibits the highest deviation,
indicating that each subsample may feature different popular POIs. This also shows
that the popularity bias is different in each subsample, being more exaggerated in those
subsamples where we remove a smaller percentage of popular items (dtv=0.5). This
popularity bias impacts the performance of other recommenders with a bias towards
popularity, such as BPRMF or PopGeoNN, while others like IB or RankGeoFM are
less affected. In terms of Item Exposure, we can observe notable variations among the
algorithms. While the Pop recommender achieves higher exposure results by focusing
solely on recommending popular venues, other models such as RankGeoFM, UB, or IB
can offer recommendations that encompass a more diverse range of POIs. The behavior
of the IB recommender is particularly interesting: as derived from the results, it ranks
fourth in terms of Item Exposure, highlighting its ability to provide fair recommenda-
tions for items appearing in the test sets; simultaneously, its performance in novelty
stands out while it also obtains a competitive level of relevance, falling slightly behind
the UB and IRENMF recommenders. However, both UB and IRENMF do not obtain
results as competitive as IB in both Item Exposure and Novelty.

Visualizing the distribution of recommendation results in Figure 3, we see that
the recommendation accuracy varies substantially between the 144 subsamples, which
is an expected and desired outcome (Figure 3a). The random recommender is the
one with the least variance and performance, however, the HKV matrix factorization
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c) Item Exposure@5

Fig. 3: The recommendation outcomes using the following metrics: a) nDCG@5, b)
EPC@5, and c) Item Exposure@5. The boxplot indicates the 25%, the median, and
the 75% quantiles. Overlayed is a violin plot emphasizing the density of values and the
overall range of the outcomes and the mean value with an x. The dashed line in the
nDCG plot of Figure 3a) indicates the mean value of the Popularity algorithm.
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model is also consistently low in performance, indicating that it can not deal well with
many of the smaller subsamples. Furthermore, the Pop, IB, UB, and RankGeoFM
models seem to be more robust regarding their outcomes compared to the purely matrix
factorization-based approaches that do not consider the geographical component, as
their interquartile ranges are smaller.

There are no surprises regarding the novelty of the recommendations, which we
measure using the EPC metric, cf. Section 3.3. The models that involve some as-
pect of popularity (Popularity, PopGeoNN) and the BPR models produce relatively
fewer novel recommendations, which is expected due to how the recommendations are
computed (Figure 3b). On the contrary, as mentioned before, the behavior of IB is
interesting in terms of novelty since it is the second-best model (after Rnd) in all sub-
samples, obtaining relatively competitive accuracy results. This makes the IB a model
that should be considered to try to achieve a balance between accuracy and novelty.

Finally, the Item Exposure (Figure 3c) shows a low variation between most mod-
els, with the quantiles all being between 5 and 7.5. Again, the recommenders that
generated fewer novel recommendations or exhibited a higher popularity bias, such
as Pop, BPRMF, GeoBPRMF, or PopGeoNN, also achieved higher scores in terms of
item exposure. This indicates a notable disparity in the distribution of recommended
POIs compared to the POIs that the user has visited during the test set. This is con-
sistent with previous work (Sánchez et al., 2023), where different biases are analyzed
in the POI recommendation domain, and the effect on the performance of a set of
recommenders in different cities around the world is compared.

The plots in Figure 3 also tell much about the outcome of the subsampling process.
With respect to the nDCG and the EPC metrics, the mass of the density plots is
relatively compact, with some outliers to the top or bottom, respectively. In the Item
Exposure plot, the shapes of the density plots are strung out, generally matching the
interquartile ranges better. An interesting observation is that in the recommendation
outcomes of the worse-performing models in terms of accuracy, i.e., Random, Pop,
HKV, and RankGeoFM two groups become visible, i.e., the density plot looks tapered
just below the mean value, meaning that the subsamples could be divided into 2 groups
according to their performance. Even though a deep analysis of this aspect is out of the
scope of this paper, it might be interesting to understand in the future which samples
belong to each group and the impact the number (and frequency) of these groups may
have on the explanatory power of the methodology followed in this work.

5.5 Excluding Low-performing Recommendation Models from the Explanatory Study

The pure Popularity-based recommendation algorithm is a very simple, parameter-free
model, but nevertheless a useful baseline in POI recommendation due to the inher-
ent popularity bias of the domain (Bellogín et al., 2017). Even though computing the
recommendations solely on the popularity of the items contradicts the principle of per-
sonalization, visitors tend to visit the popular highlights of a destination. Thus, we
argue that any model in POI recommendation should at least outperform the Popu-
larity model in terms of accuracy.

When it comes to the explanatory analysis, we remove the Random, HKV, and
RankGeoFM models from the pool of algorithms for the explanatory study since the
mean recommendation accuracy over all subsamples is lower than the simple Popularity
baseline. The reason for this is that the purpose of the explanatory study is that we
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want to learn what the success factors of recommendation models are in terms of their
data characteristics measured using EVs. By including models that are not “successful”
(by outperforming the popularity baseline in terms of nDCG), we would analyze the
factors contributing to poor recommendations, which is a meaningless endeavor.

This sets the final pool of 7 recommendation models to Pop, IB, UB, BPRMF,
GeoBPRMF, IRENMF, and PopGeoNN.

5.6 Selecting Relevant Explanatory Variables

In Section 3.2, we defined 32 potential explanatory variables that can be used to ex-
plain the dependent variables (Section 3.3) using the regression model. Naturally, not
all independent variables possess equal levels of informative signal, i.e., they can be
noisy. The regression model is useful in identifying noisy or unrelated independent vari-
ables as these will not be statistically significant coefficients with respect to the target
variable. However, when using multiple variables in a regression model, multicollinear-
ity can arise, i.e., two or more explanatory variables being correlated with each other.
While this does not impede the outcome of the regression model, multicollinearity in
the explanatory variables decreases the predictive contribution of the individual coef-
ficients. To obtain meaningful results in the significance analysis of the coefficients, we
mitigate collinearity by eliminating such redundant variables.

To do this in a reproducible way, we propose a procedure to remove highly correlated
variables until the collinearity is mitigated to an acceptable level. The multicollinearity
of a regression model is measured by the variance inflation factor (VIF), but the sci-
entific literature is divided on what maximum VIF value is acceptable (Robinson and
Schumacker, 2009, O’brien, 2007, Stine, 1995). Reflecting on this, we systematically
analyzed the outcome of applying Algorithm 1 with VIF thresholds between 5 and 25,
ultimately choosing 12, which retains 8 EVs and explains on average R2 = 0.79 of
the variance in our regression models towards the nDCG@5. The choice of the VIF
threshold is a trade-off between the number of variables, the resulting variance the
regression model can explain, and the level of multicollinearity, which any analyst or
researcher must consider carefully on a case-by-case basis. Our proposed procedure is
useful with an increasing amount of variables, as it removes human judgement from
the process of choosing which variables to eliminate. This is an improvement on the
previous work (Adomavicius and Zhang, 2012, Deldjoo et al., 2020, 2021), where this
step was not precisely specified.

Algorithm 1: Elimination of EVs Based on Correlation Analysis
1 features← {EV s};
2 while max(VIF(features)) > TR_VIF do
3 correlation_matrix ← PCC(features);
4 c1, c2 ← argmax( | correlation_matrix | );
5 if max(| PCC(c1, { features \ c2 })|) > max(| PCC(c2, { features \ c1 })|) then
6 features ← features \ c1 ;
7 else
8 features ← features \ c2 ;
9 end

10 end
11 return features;
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The goal is to determine a set of input variables for the regression analysis that have
low collinearity, which is measured by the variance inflation factor (VIF). To determine
variables that cause unwanted collinearity, a correlation analysis is required to discard
correlated variables. Algorithm 1 describes our proposed procedure: while there is still
an EV with a VIF over the threshold (TR_VIF), we compute all pairwise Pearson
Correlation Coefficients (PCC) of the features, obtaining the correlation matrix, and
determining the two different features with the highest positive or negative correlation
as our candidates for elimination. From these two candidates (c1, c2), we eliminate
the candidate that has the highest correlation to any other feature in the remaining
features. This elimination of EVs is repeated until the VIF values of all remaining EVs
satisfy the threshold.

Table 2: Final EVs after controlling for multicollinearity.

EV VIF before VIF after

SpaceSize 25.90 -
Shape 71.79 1.51
Density 30.95 5.10
Cpu 69.71 -
Cpi 304.45 -
GiniI 103.34 -
GiniU 130.78 6.13
APB 9138.49 -
MedPB 6802.78 -
StPB 316.46 3.27
SkPB 31.19 -
KuPB 15.47 1.36
ALT 519.42 -
StLT 661.18 -
SkLT 567.80 -
KuLT 449.43 -
ADCC 5711.40 -
MedDCC 1229.74 -
StDCC 1731.52 -
SkDCC 354.85 -
KuDCC 225.33 -
ARG 2749.51 -
MedRG 561.53 -
StRG 129.15 11.32
SkRG 1002.16 -
KuRG 204.44 -
ADA 561.36 -
MedDA 66.90 2.77
StDA 52.75 -
SkDA 429.65 -
KuDA 146.96 4.95

Table 2 shows the outcome of applying Algorithm 1 to the data from the experi-
ments comprising the recommendation outcome of the well-performing recommenders
as established previously in Section 5.5 on the 144 subsamples. The target metric of
the linear model to compute the VIF was nDCG@5. We retain 8 EVs, namely Shape,
Density, GiniU , StPB, KuPB, StRG, MedDA, and KuDA. This outcome is interesting
as it puts emphasis on the EVs that capture the structure of the user-check-in matrix,
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such as Shape, and Density. This is not surprising, as these are very common metrics
to quantify the difficulty of a recommendation problem. Furthermore, some aspect of
most families of EVs was included, with the exception of the distance to city center
and long-tail items. While we will come to the explanatory power of the EVs in the
following section, this result alone underlines that the newly introduced EVs regarding
mobility and user activity broaden the perspective of POI recommendation problems.
We plot the pairwise correlations of the EVs in the Appendix, Figure 7, where we
find that the maximum (in absolute terms) pairwise PCC is −0.69 between GiniU and
Density, after removing highly correlated variables.

6 Results

Recall from Section 3 that in its core, the explanatory framework is a linear regression
(cf. Equation 2) with the data characteristics of the 144 subsamples quantified in
the explanatory variables as input variables and nDCG, EPC, and Item Exposure as
dependent variables. What we are interested in are the coefficients of the model (θev
in Equation 2), as these coefficients quantify the impact of the individual EV on the
outcome variable. We run the explanatory framework for each recommendation model
that produced competitive results (cf. Section 5.5) independently using the EVs that
did not suffer from multicollinearity (cf. Section 5.6).

In the analysis of the results, we assessed three key aspects: Accuracy, Novelty,
and Item Exposure. Our findings revealed notably high R2 values for each of these
aspects. This suggests that, even after discarding numerous explanatory variables, our
regression models still have substantial explanatory power. In this section, we make
a detailed discussion of our results, using a cutoff value of 5 for each metric (i.e., we
evaluate the top 5 recommendations), as in the POI recommendation domain, it is
common to report small cutoffs (Liu et al., 2014, Li et al., 2015, Yuan et al., 2016). For
additional results at cutoff values of 10 and 20, please refer to Appendix C.

Our structure for presenting the experimental results follows this format: firstly, we
tabulate the regression coefficients (θev) and then visualize these coefficients through
coefficient plots. The result tables, i.e., Tables 3, 4, and 5, provide an overview of
the goodness-of-fit with the R2 and adjusted R2 values. Subsequently, we present
the coefficients θev for each model. These coefficients are annotated with stars, which
indicate the significance level of the relationship between the explanatory variable and
the outcome variable. The significance levels and the corresponding p-values used are
*** to indicate that p < 0.001, ** for p < 0.01, and * for p < 0.05.

Furthermore, we visualize the values of the tables in coefficient plots (Figures 4,
5, and 6). The dots show the coefficient θev; the whiskers span the 95% confidence
interval.

6.1 Accuracy

First, we analyze the recommendation accuracy in terms of nDCG in Table 3. The R2

coefficients of determination of the regression models are all between 0.68 and 0.88,
indicating that the 8 EVs could explain 68%–88% of the nDCG@5 variation. This
result is consistent with the two previous studies of Adomavicius and Zhang (2012)
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Table 3: Coefficients of the Regression Model for nDCG@5.

name

R2

R2 (adj)
Shape
Density
GiniU
StPB
KuPB
StRG
MedDA
KuDA

Popularity

0.768
0.754
-0.003***
0.006***
-0.001
0.005***
-0.002.
-0.006**
-0.004***
0.001

IB

0.698
0.68
0.002
0.009***
0.015***
0.003.
0.002
-0.009**
0.01***
0.011***

UB

0.72
0.704
-0.002.
0.009***
0.014***
0.005*
0.002
-0.014***
0.003*
0.011***

BPRMF

0.845
0.836
0.001
0.018***
0.015***
0.006***
0.005***
-0.009**
0.011***
0.004.

GeoBPRMF

0.886
0.879
0
0.019***
0.012***
0.011***
0.006***
-0.009***
0.01***
0.002

IRENMF

0.798
0.786
0.003*
0.009***
0.006
0.007**
-0.004*
-0.018***
0.01***
0.009**

PopGeoNN

0.799
0.787
-0.003*
0.011***
0.003
0.009***
-0.002
-0.01**
-0.001
0.012***

***: p < 0.001, **: p < 0.01, *: p < 0.05

and Deldjoo et al. (2021). The least predictable algorithm was the IB recommendation
model, while the GeoBPRMF algorithm had the highest R2.

When it comes to the general patterns in the coefficients (cf. Figure 4), we observe
that an increase in the standard deviation of the Radius of Gyration has clearly the
most negative influence on the recommendation accuracy of all variables. On the con-
trary, a higher Density, GiniU , standard deviation of the Popularity Bias, and kurtosis
of the Duration Active generally tend to improve the accuracy. The EVs Shape, me-
dian of Duration Active, and the kurtosis of the Popularity Bias have mixed influences,
with Shape overall having the smallest (but still statistically significant in three cases)
influence.

Turning our attention to the significance levels of the coefficients regarding the out-
come variable, we observe that Density and StRG are always highly significant with
p < 0.01 for all recommendation models. These consistently low p-values across the
board of all recommendation models underline their importance for the success of POI
recommendation algorithms. All EVs were a significant predictor towards the nDCG@5
in some of the recommendation models, although the Shape was only significant to-
wards the accuracy of the Popularity and the PopGeoNN models.

6.2 Novelty

The second aspect of our analysis is novelty, which we measure using the EPC metric.
Again, we tabulate the coefficients in Table 4. Comparing the R2 values to the ones in
Table 3 (accuracy), we see a slightly better regression fit with values ranging from 0.73
(GeoBPRMF model) to 0.95 (Item-based model). This indicates that despite the fact
that the explanatory variables were selected based on their collinearity with respect
to the nDCG@5 (cf. Section 5.6), the regression model for the EPC metric is similarly
accurate and even slightly more expressive compared to the one for nDCG@5.

Analyzing the patterns within the coefficients presented in Figure 5, we can dis-
cern a noteworthy observation: our experiments reveal an inverse relationship between
novelty and accuracy, which is a well-known trade-off in recommender systems. For all
considered EVs, except for the statistically non-significant StRG and KuPB (except in
the Pop model), and across various recommender models a distinct change in the sign of
coefficients is evident. Specifically, many coefficients switch from a positive association
to a negative one and vice versa. The coefficients for the Item-based model converge
near zero, indicating that this model produces recommendations with a stable Novelty
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Fig. 4: Coefficient plot for nDCG@5. StRG has a negative influence on nDCG@5,
Shape, KuPB, and MedDA are mostly neutral, whereas the other EVs have a positive
impact.

Table 4: Coefficients (θev) of the Regression Model for EPC@5.

name

R2

R2 (adj)
Shape
Density
GiniU
StPB
KuPB
StRG
MedDA
KuDA

Popularity

0.88
0.873
0.01***
-0.024***
0.009**
-0.021***
-0.004*
0.005
0.004**
-0.002

IB

0.953
0.951
0
-0.004***
0.
-0.001***
0
0
0
-0.001***

UB

0.803
0.791
0.003***
-0.008***
0.001
-0.004***
0.002.
0.003.
0.003***
0.001

BPRMF

0.769
0.755
0.004***
-0.013***
0.009***
-0.01***
0.003.
-0.001
0.004***
0

GeoBPRMF

0.749
0.734
0.006***
-0.017***
0.007*
-0.013***
0.002
-0.001
0.004**
-0.005.

IRENMF

0.861
0.852
0.004***
-0.01***
0.006***
-0.011***
0.001
-0.001
0.001*
-0.003*

PopGeoNN

0.869
0.861
0.006***
-0.017***
0.006**
-0.014***
0
0.002
0.003***
-0.002

***: p < 0.001, **: p < 0.01, *: p < 0.05

regardless of the data characteristics. Among the EVs, the Shape, GiniU , and MedDA
display positive coefficients for EPC@5. Conversely, the other EVs exhibit a negative
impact (Density, StPB) or a neutral influence (StRG, KuDA) on this particular out-
come variable. The observation of a neutral influence of the standard deviation of the
Radius of Gyration is bolstered by the finding that its coefficients do not achieve statis-
tical significance across any of the recommendation models. In contrast, we note that
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Fig. 5: Coefficient plot for novelty measured using EPC@5. We observe an inverse
relationship compared to nDCG@5 with Density, StPB, and KuDA having a negative
impact and Shape, GiniU , and MedDA having a positive impact on the EPC metric.

certain EVs exhibit a high level of significance (p < 0.001) across all recommendation
models. Specifically, these influential EVs are Density, Shape, StPB, and MedDA.

6.3 Item Exposure

Lastly, we shift our focus to the assessment of item exposure, as measured by the metric
defined in Section 3.3. Notably, the R2 values for this analysis are remarkably high,
exceeding 0.86 in all cases, except for BPRMF, where the EVs can still account for 0.65
of the variance, as detailed in Table 5. We would like to emphasize that higher values
in the item exposure metric indicate a larger disparity between the number of times
items are recommended and the number of times they should ideally be recommended
(as defined in Equation 19).

The coefficients that exhibit high levels of significance across all recommendation
models include Shape, StPB, and MedDA. In contrast, Density fails to achieve signifi-
cance in any of the models. Lastly, the significance of the coefficient for GiniU in the
IB and UB models is noteworthy as this EV quantifies the inequality in the frequency
distribution of item check-ins.

Upon analyzing the grouping of coefficients and models in Figure 6, again certain
patterns emerge: Shape and KuPB consistently exert a negative influence on Item Ex-
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Table 5: Coefficients (θev) of the Regression Model for Average Item Exposure@5.

name

R2

R2 (adj)
Shape
Density
GiniU
StPB
KuPB
StRG
MedDA
KuDA

Popularity

0.932
0.928
-1.609***
0.547.
1.813***
1.573***
-0.514*
0.688
3.388***
0.496

IB

0.907
0.902
-2.631***
-0.069
1.302***
0.985***
-0.264
0.193
1.719***
0.019

UB

0.902
0.896
-2.421***
0.273
1.052*
1.222***
-0.326
0.477
2.595***
0.422

PopGeoNN

0.873
0.866
-1.924***
0.36
0.839.
1.232***
-0.889***
0.934.
2.553***
1.348***

GeoBPRMF

0.874
0.866
-2.165***
0.106
0.351
1.743***
-0.525*
1.371**
1.988***
1.583***

BPRMF

0.666
0.646
-1.515***
0.561
-1.486*
2.26***
-1.418***
2.249**
1.503***
2.517***

IRENMF

0.917
0.912
-2.347***
-0.361
2.126***
0.814**
-0.015
0.849*
2.23***
0.563.

***: p < 0.001, **: p < 0.01, *: p < 0.05

posure within all recommendation models. As their values increase, the item exposure
metric decreases, which means that the item exposure is closer to the expected item
exposure from the test set. This observation is in line with the intuition that a relatively
higher number of check-ins within the user-check-in matrix results in a more dispersed
distribution, which in turn helps mitigate the influence of popularity bias. Conversely,
the median of the Duration Active (MedDA) consistently exhibits a positive impact on
the item exposure metric across all the recommendation models. One plausible expla-
nation for this trend is that when users spend longer periods in a city, they are more
likely to explore and visit a large number of popular POIs, further accentuating the
effect of popularity bias. The other EVs typically have an overall positive influence on
the Item Exposure metric, with many (but not all) being significant predictors.

7 Discussion

The obtained results shed light on the strengths and weaknesses of POI recommenda-
tion models in terms of the data characteristics of the recommendation problem. Using
the domain-driven subsampling approach to create specific subsamples from a large
POI recommendation data set, we noticed that several established POI recommenda-
tion models are unsuited for smaller problems (cf. Figure 3a), which warranted their
exclusion from the explanatory analysis.

In terms of the quality of the linear model, it is striking that it was possible to
explain 68–88% variation of the nDCG with the remaining 8 out of 32 EVs after the
elimination of the collinear EVs. Besides, we also obtained high results in terms of
explaining item exposure (65–86%) and novelty (73–95%) variations. This result con-
firms that the collinearity analysis is necessary and helps to focus on the interesting
variables without losing explainability. In terms of accuracy, we find a clearly positive
influence of Density on the nDCG@5, which confirms the findings from other domains
that a higher density creates an easier recommendation problem (Deldjoo et al., 2021).
Furthermore, we provide evidence that a higher standard deviation of the Radius of
Gyration leads to diminished accuracy. This shows that geographic information is de-
terminant in predicting the results in terms of ranking accuracy in POI recommenda-
tion. In this scenario, an increase in the standard deviation of the Radius of Gyration
suggests a greater diversity in user movement patterns, making it more difficult (for
algorithms) to identify consistent global movement trends among users.
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Fig. 6: Coefficient plot for Average Item Exposure@5. Shape and KuPB exert a negative
influence on average item exposure, meaning that the difference to the expected item
exposure is smaller, which is better. StPB and MedDA have a clearly positive influence
on the item exposure metrics, whereas the remaining EVs are mostly slightly positive
or neutral (Density).

In terms of novelty of recommendations, we see a similar trend as for the accuracy;
however, our results showed once more that these two concepts are inverse due to
the popularity bias and related trade-offs discussed in the literature (Kaminskas and
Bridge, 2016, Zhao et al., 2019). Unsurprisingly, we could show that a higher variance in
the popularity bias in the interaction data helps to promote novel recommendations.
Thus, these two targets still need to be balanced in any POI recommender system
in accordance with business needs. Emphasizing these dimensions is also important
from the user’s point of view, as it would allow the system to surprise them with
recommendations that are different from what they may be familiar with beforehand.

Regarding Item Exposure, we observe negative coefficients of the Shape (which
is the ratio between the number of users and items) on this metric, signifying that
relatively more users compared to items tend to yield lower values of the item exposure
metric. In this context, lower values are preferable, as it means that they are closer
to the exposed values in the unbiased test set. However, we should also consider that
an increased Duration Active and standard deviation of the Popularity Bias leads to a
higher item exposure than desired, as this variable always obtains positive coefficients
in the regression model. Platforms need to monitor such effects closely, as the exposure
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of small local travel enterprises in the recommendations can determine whether they
have a means of existence in the market.

7.1 Practical and Theoretical Implications

In this paper, we go beyond evaluating recommendation models by employing a frame-
work that reveals the associations between various data characteristics and different
dimensions of performance. While this framework is not without its imperfections, as
discussed below, its application carries significant implications for the training and
evaluation of POI recommender systems. For instance, our observations highlight the
impact of explanatory variables such as Density, GiniU , and StPB which have a pos-
itive influence on nDCG@5, as opposed to EVs like StRG, which displays a negative
influence. Based on our findings, developers, analysts, and researchers of POI recom-
mender systems should be aware of the importance of these data characteristics. In
practice this means that countermeasures against adverse data characteristics can be
undertaken: The Density can be addressed by defining a minimum number of interac-
tions before a user is served by the main recommendation model (for “warm” users)
instead of computing cold-start recommendations to a user with too little interactions.
By directly asking “cold” users for venues they have visited, relevant information can be
collected. At the same time, the geographic scope of candidate items can be adjusted
to deal with the adversary effects of the Radius of Gyration.

Furthermore, it is worth noting that the effect of these explanatory variables is
dependent on the specific recommendation algorithm employed; however, we see sys-
tematic common effects on related recommendation models. Nevertheless, researchers
should be mindful of this when comparing baseline methods against proposed models.
Unintentionally, they might report comparisons that are not fair because some methods
are either positively or negatively impacted by the data characteristics. Notably, this
observation extends to beyond-accuracy metrics, as we have observed similar trends in
novelty and item exposure.

From a more theoretical perspective, this work introduces the prospect of learning
these data dependencies directly from the data themselves and incorporating them into
recommendation models and user profiles. Specifically, our work gives guidance to the
choice of models for recommendations in automated ways, e.g., through Auto-RecSys
(Anand and Beel, 2020, Vente et al., 2023), analogous to Auto-ML (Karmaker et al.,
2021). As our approach is entirely data-driven, the only ad-hoc decisions we made
were related to the selection of the original explanatory variables, which could vary
depending on the specific target domain. However, once the explanatory and depen-
dent variables are established, it becomes conceivable to integrate the methodology
presented here into a reinforcement learning framework. In such a setup, data could be
fed to the recommenders in accordance with the predicted effects they are anticipated
to have, thus optimizing recommendation outcomes, as addressed in some works based
on specific user characteristics to improve overall performance (Said and Bellogín, 2018,
Penha and Santos, 2020).

Even in the absence of a reinforcement learning framework, the current methodol-
ogy can provide valuable insights into designing and enhancing existing recommenda-
tion algorithms, at least in the POI recommendation domain. For instance, we observed
that IB is less sensitive to Density than GeoBPRMF across the three metrics analyzed.
Given that their accuracy metrics are similar, one way to leverage this insight is to
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explore how to make GeoBPRMF more resilient in scenarios where data sets exhibit
varying levels of density. To achieve this, researchers and practitioners could consider
incorporating strategies from IB or similar robust methods into an improved version
of the GeoBPRMF algorithm. This integration might involve adapting the underlying
model or introducing additional mechanisms that allow GeoBPRMF to handle data
sets with different density levels more effectively. By doing so, GeoBPRMF could be-
come more versatile and capable of delivering consistent performance across a wider
range of data set characteristics, enhancing its practical applicability in diverse POI
recommendation scenarios.

Most importantly, whether it is hotels, restaurants, or other POIs, this work gives
guidance to recommendation platforms of the e-tourism sector to characterize their
recommendation data and understand the benefits and drawbacks of their recommen-
dation model from the perspective of different users groups and businesses. It can also
inform methods to self-audit biases in the recommendations of platforms, e.g., with re-
gards to the expected and achieved item exposure of items in certain recommendation
models (Srba et al., 2023).

7.2 Limitations & Future Work

While being a widespread drawback of offline analyses of POI recommendation algo-
rithms using location-based social network data, we still acknowledge that there is a
gap between actual user behavior and what is recorded in LBSNs. Although this is uni-
versal for all recommendation models in all studies, it is worth mentioning that such
studies analyze a proxy concept of check-ins that have been actively submitted instead
of the actual ground truth of the temporal visitation of all POIs, venues, and other
places. Thus, the generalization of the analyses in this study is – just as in all other
studies – constrained by the limited availability of high-quality POI recommendation
data sets. This limitation can only be overcome by collecting data sets that reflect user
interactions from actual POI recommender systems, which would be a crucial next step
in advancing the field.

Although we utilized the widely employed global Foursquare data set containing
33 million check-ins (Yang et al., 2015), its sparsity posed a significant challenge since
the actual number of check-ins per destination dwindled, limiting our ability to create
meaningful subsamples for most of the cities within the data set. To prevent biases
stemming from geographic influences of the topological features of different cities, we
focused our study on a single destination, the New York City metropolitan area, due to
its prominence and the number of check-ins in the data set. This decision to focus on
one city was essential because many less popular destinations on Foursquare lacked the
volume of check-in data to support the explanatory analysis with subsamples of suf-
ficient size, which would lead to a deterioration in recommendation quality and lower
statistical significance. In fact, while New York City provided ample interaction data
for addressing the recommendation problem, it is a city less susceptible to seasonal
variations in travel behavior, as evidenced by the minor differences in data characteris-
tics between the summer and winter subsamples shown in Table 6, hence the obtained
results cannot be considered universal, since this analysis in only based on one data
set from one city. As future work, analyzing the generalizability of the explanatory
framework between cities and to further data sources would be an obvious extension
to our work. If one would repeat the experiments in many cities, how robust would
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the set of significant explanatory variables (i.e., the coefficients in the respective linear
regression models for the individual algorithms) be? Such an analysis would be inter-
esting, however, it would involve computing explanatory variables whose values are
comparable, i.e., normalized between different cities. Generalizing the method towards
incorporating different data sources would be a further step to understand the impact
of different data collection methods on the data characteristics and the performance
of POI recommender systems. Herein, the challenge lies in establishing comparable
check-ins data sets, both in terms of geographic and temporal coverage.

In this context, another distinct line of future work would be to compute a uni-
versal regression model, with the aim to predict the performance of recommendation
algorithms in different cities. The relevant research questions are two-fold: a) under
which circumstances is it permissible to mix data characteristics of samples from dif-
ferent cities, as they have different sizes, which might result in incomparable values of
the same explanatory variables?, and b) are other influences, such aspects that cannot
be directly quantified as explanatory variables, like cultural or climatic aspects, small
enough so that they do not have a practical influence on the predictions?

In our study, we incorporated EVs capturing both spatial and temporal aspects, ad-
ditional variables capturing more of the users’ context were omitted for the subsampling
for practical reasons. With the currently used data sets, a finer temporal subdivision
of check-ins by different times of the day or weekdays and weekends would be possible
in theory but are practically prevented by the size of the resulting subsamples. While
further contextual information is not available in the data set, the performance of a
POI recommendation is known to be influenced by many contextual factors, such as
the weather on a given day (Trattner et al., 2018). User context has been the focus
of various approaches in literature (Wörndl et al., 2011, Cai et al., 2017, Yang et al.,
2017, Zhao et al., 2019), this gives opportunity for future works to analyze the im-
portance of different contextual factors, including more information about the users
and their needs, which has been analyzed in literature on traveler types (Gibson and
Yiannakis, 2002, Neidhardt et al., 2014, Dietz et al., 2020), which offers various roles
that one could use as subsampling data characteristics. Specifically, since it has been
shown that locals and tourists showcase different behavior in the same city (Sánchez
and Dietz, 2022), it would be worthwhile identifying which explanatory variables are
more relevant for various user groups.

8 Conclusions

In both the classical recommendation domain and specialized fields, such as point
of interest recommendation, a multitude of algorithms have been proposed. However,
the effectiveness of these algorithms often varies significantly depending on the data
set under evaluation. While addressing this challenge has been explored previously
in classical recommendation scenarios, there remains a research gap within the POI
recommendation domain. This gap is particularly significant, given the relevance of
POI recommendations in the tourism sector, affecting a multitude of businesses and
consumers. Unlike the traditional recommendation domain, like purchasing a book or
watching a movie, recommending POIs involves algorithms that utilize various signals,
such as popularity and geographic locations of venues.

In this paper, we expanded upon the framework introduced by Deldjoo et al. (2021),
incorporating additional explanatory variables specific to the POI recommendation do-
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main. Our objective was to investigate which data characteristics affect the performance
of both classical and state-of-the-art POI recommendation algorithms. We assessed
these algorithms across three dimensions: accuracy, novelty, and item exposure. The
results we obtained shed light on the robustness of recommendation models concern-
ing the data characteristics inherent in recommendation data sets, offering valuable
insights for the field. Among the various explanatory variables we analyzed, it became
evident that certain factors pertaining to the data structure (Shape, Density), as well
as those associated with the distribution of check-ins (GiniU , StPB, and KuPB), along
with geographical and temporal variables (StRG, MedDA, and KuDA) are critical for
explaining the performance of POI recommender systems. In terms of ranking accuracy,
Density, GiniU , StPB, and KuDA generally tend to be conducive to higher accuracy,
whereas an increase in the standard deviation of the Radius of Gyration is detrimental.
The significance of newly introduced spatio-temporal explanatory variables (Radius of
Gyration and Duration Active) in the coefficient analysis of the regression models un-
derlines our conclusion that the well-known data characteristics from the analysis of
classical recommendation domains are insufficient to explain algorithmic performance
in the POI recommendation domain.
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Appendix

A Statistics of Subsamples

Table 6 presents the values obtained by independent subsamples in the explanatory
variables defined in Section 3.2.

Table 6: Summary statistics of the impact of the subsampling on the explanatory vari-
ables. Note that for space reasons the table only contains the independent subsamples
and not the combination of the subsampling data characteristics. Cpu and Cpi cor-
respond to check-ins per user and check-ins per item (definition 4), GiniU and GiniI
refers to Gini for users and for items (definition 5), and APB, ALT, ARG, ADCC, and
ADA terms represent the averages of the popularity bias, long tail items, distance to
the city center and duration active (definitions 6, 7, 9, and 10, respectively).

subsample SpaceSize Shape Density Cpu Cpi GiniU GiniI APB ALT ARG ADCC ADA

k = 2 5.57E+08 0.36 4.45E-04 17.44 6.32 0.62 0.66 254.24 0.02 5.12 6.39 119.12
k = 5 1.97E+08 0.47 1.04E-03 21.28 10.07 0.51 0.62 176.72 0.02 5.74 5.93 158.40
k = 10 7.04E+07 0.55 2.24E-03 25.27 13.96 0.40 0.59 120.08 0.02 5.96 5.96 200.77
dtv = 0.5% 5.29E+08 0.35 3.85E-04 15.02 5.22 0.65 0.59 22.50 0.02 3.93 6.03 110.57
dtv = 1% 5.15E+08 0.34 3.68E-04 14.27 4.88 0.65 0.57 17.15 0.03 3.89 6.18 109.86
dtv = 2% 4.98E+08 0.34 3.43E-04 13.18 4.45 0.65 0.54 13.00 0.03 3.83 6.35 108.96
dtv = 5% 4.56E+08 0.33 3.02E-04 11.25 3.70 0.64 0.48 8.41 0.03 3.77 6.77 108.86
o = NYC 1.99E+08 0.14 9.66E-04 36.41 5.09 0.44 0.62 71.39 0.04 6.38 7.41 215.42
o = US 5.09E+07 0.46 6.01E-04 6.31 2.91 0.46 0.56 104.55 0.06 4.68 6.55 81.60
o = other 3.27E+07 0.51 7.81E-04 6.23 3.20 0.48 0.61 88.59 0.05 4.03 4.89 39.66
s = summer 3.67E+08 0.33 3.80E-04 12.62 4.22 0.59 0.61 154.02 0.03 4.75 6.96 108.58
s = winter 3.29E+08 0.32 4.02E-04 12.84 4.15 0.57 0.61 140.04 0.04 4.70 6.71 105.17

Key for the subsample column: k: value for the k-core, dtv: drop top venues (in terms of popularity),
o: origin, s: season (cf. Section 5.2.2) The definition of the EV acronyms in the header row can be
found in Section 3.2.
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B Hyperparameters

Table 7 shows the search space of the hyperparameters for each recommendation model.
Refer to Section 5.3 for context.

Table 7: Hyperparameters tested in the recommenders. The best configurations are
selected by maximizing nDCG@5.

Rec Hyperparameters

Random None

Pop None

UB Sim = {Vector Cosine, Set Jaccard}, k = {20, 40, 60, 80, 100, 120}

IB Sim = {Vector Cosine, Set Jaccard}, k = {20, 40, 60, 80, 100, 120}

HKV Iter = 20, Factors = {10, 50, 100}, λ = {0.1, 1}, α = {0.1, 1}

BPRMF Factors = {10, 50, 100}, BiasReg = {0, 0.5, 1}, LearnRate = 0.05, Iter = 50,
RegU = RegI = {0.0025, 0.001, 0.005, 0.01, 0.1}, RegJ = RegU/10

GeoBPRMF Factors = {10, 50, 100}, BiasReg = {0, 0.5, 1}, LearnRate = 0.05, Iter = 50,
RegU = RegI = {0.0025, 0.001, 0.005, 0.01, 0.1}, maxDist={1, 4}

IRENMF Factors = {50, 100}, geo-α = {0.4, 0.6}, λ3 = {0.1, 1}, clusters = {5, 50}

RankGeoFM Factors = {50, 100}, α = {0.1, 0.2}, c = 1, ϵ = 0.3, neighs = {10, 50, 100, 200}
iter = 120, decay = 1, boldDriver = True, learnRate = 0.001

PopGeoNN Sim = {Vector Cosine, Set Jaccard}, k = {20, 40, 60, 80, 100, 120}
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C Supplementary Result Tables

The following tables correspond to the results presented in Section 6 at cutoffs of 10
and 20, respectively. The results generally follow the same patterns as presented for a
cutoff of 5, however, we can observe a tendency that with a higher cutoff, the absolute
impact of coefficients becomes smaller in the item exposure metric.

C.1 Result Tables at a Cutoff of 10

Table 8: Coefficients of the Regression Model for nDCG@10

name

R2

R2 (adj)
Shape
Density
GiniU
StPB
KuPB
StRG
MedDA
KuDA

Popularity

0.801
0.789
-0.004***
0.008***
-0.002
0.007***
-0.001
-0.009**
-0.006***
0.002

IB

0.717
0.701
0.003**
0.012***
0.018***
0.003
0.003.
-0.011**
0.012***
0.009**

UB

0.724
0.708
-0.003.
0.012***
0.018***
0.008**
0.002
-0.019***
0.004*
0.011**

PopGeoNN

0.827
0.817
-0.004**
0.012***
0.003
0.011***
-0.001
-0.013***
-0.003*
0.013***

GeoBPRMF

0.861
0.852
0
0.022***
0.014***
0.013***
0.007***
-0.013***
0.012***
-0.001

BPRMF

0.825
0.815
0.002
0.023***
0.019***
0.007**
0.007***
-0.012***
0.012***
0.002

IRENMF

0.817
0.806
0.005***
0.011***
0.005
0.008**
-0.004.
-0.021***
0.011***
0.008*

Table 9: Coefficients of the Regression Model for EPC@10

name

R2

R2 (adj)
Shape
Density
GiniU
StPB
KuPB
StRG
MedDA
KuDA

Popularity

0.892
0.886
0.008***
-0.021***
0.009**
-0.019***
-0.002
0.004
0.003**
-0.002

IB

0.955
0.953
0
-0.004***
0.
0**
0
0
0
-0.001**

UB

0.82
0.809
0.003***
-0.008***
0.001
-0.004***
0.002*
0.002.
0.002***
0.001

PopGeoNN

0.896
0.89
0.005***
-0.017***
0.007***
-0.014***
0
0.001
0.002*
-0.002

GeoBPRMF

0.739
0.723
0.005***
-0.014***
0.006*
-0.012***
0.002
-0.002
0.003**
-0.004.

BPRMF

0.764
0.75
0.004***
-0.011***
0.009***
-0.01***
0.002.
-0.001
0.003***
0

IRENMF

0.873
0.865
0.003***
-0.009***
0.006***
-0.01***
0.001
-0.001
0.001*
-0.003**

Table 10: Coefficients of the Regression Model for ItemExposure@10

name

R2

R2 (adj)
Shape
Density
GiniU
StPB
KuPB
StRG
MedDA
KuDA

Popularity

0.933
0.929
-1.593***
0.518.
1.843***
1.521***
-0.515*
0.697
3.403***
0.483

IB

0.851
0.842
-3.224***
-0.277
2.059***
0.894**
-0.015
-0.968.
1.048***
-1.908***

UB

0.835
0.825
-3.208***
-0.026
1.125.
1.45***
-0.258
-0.574
1.844***
-1.037*

PopGeoNN

0.818
0.807
-1.712***
0.537
1.083*
0.758*
-1.241***
1.009.
2.569***
1.598***

GeoBPRMF

0.811
0.799
-2.339***
-0.179
-0.188
1.8***
-0.526*
1.53**
1.308***
1.926***

BPRMF

0.476
0.445
-1.509***
0.394
-2.266**
2.282***
-1.613***
2.4**
0.77**
2.902***

IRENMF

0.897
0.891
-2.662***
-0.626*
2.123***
0.687**
-0.074
0.817.
1.638***
0.839*
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C.2 Result Tables at a Cutoff of 20

Table 11: Coefficients of the Regression Model for nDCG@20

name

R2

R2 (adj)
Shape
Density
GiniU
StPB
KuPB
StRG
MedDA
KuDA

Popularity

0.834
0.824
-0.005***
0.011***
-0.005.
0.011***
-0.002
-0.01**
-0.009***
0.003

IB

0.746
0.731
0.005***
0.014***
0.021***
0.003
0.004.
-0.015***
0.014***
0.007*

UB

0.747
0.732
-0.003
0.017***
0.024***
0.01**
0.004
-0.025***
0.006**
0.009*

PopGeoNN

0.831
0.821
-0.005***
0.014***
0.001
0.015***
-0.001
-0.016***
-0.006***
0.013***

GeoBPRMF

0.858
0.85
0.001
0.026***
0.018***
0.017***
0.009***
-0.017***
0.015***
-0.005

BPRMF

0.844
0.835
0.003.
0.029***
0.021***
0.012***
0.008***
-0.016***
0.015***
0

IRENMF

0.821
0.811
0.008***
0.014***
0.005
0.011***
-0.003
-0.025***
0.014***
0.007.

Table 12: Coefficients of the Regression Model for EPC@20

name

R2

R2 (adj)
Shape
Density
GiniU
StPB
KuPB
StRG
MedDA
KuDA

Popularity

0.903
0.897
0.007***
-0.018***
0.009***
-0.017***
0
0.003
0.002*
-0.002

IB

0.96
0.958
0
-0.004***
0
0*
0
0
0
0*

UB

0.841
0.831
0.002***
-0.007***
0.002
-0.004***
0.001*
0.002
0.002***
0

PopGeoNN

0.912
0.907
0.004***
-0.015***
0.007***
-0.014***
0.002.
0
0.001.
-0.003.

GeoBPRMF

0.731
0.715
0.004***
-0.012***
0.006*
-0.01***
0.002.
-0.002
0.002*
-0.003.

BPRMF

0.758
0.744
0.003***
-0.01***
0.008***
-0.009***
0.002.
-0.001
0.003**
0

IRENMF

0.889
0.882
0.003***
-0.007***
0.005***
-0.009***
0.001
-0.001
0.001
-0.002**

Table 13: Coefficients of the Regression Model for ItemExposure@20

name

R2

R2 (adj)
Shape
Density
GiniU
StPB
KuPB
StRG
MedDA
KuDA

Popularity

0.933
0.929
-1.58***
0.44
1.885***
1.443***
-0.519*
0.682
3.415***
0.446

IB

0.717
0.7
-4.227***
-0.135
5.417***
1.389
0.604
-4.454**
1.056.
-7.898***

UB

0.714
0.697
-4.517***
-0.118
3.738**
2.253*
0.1
-3.889**
1.368*
-6.694***

PopGeoNN

0.715
0.698
-1.474***
0.635
1.362*
0.127
-2.026***
1.088
2.639***
2.106***

GeoBPRMF

0.69
0.672
-2.5***
-0.473
-0.73
1.726***
-0.496.
1.648**
0.405*
2.294***

BPRMF

0.29
0.248
-1.515***
0.112
-2.924***
2.178***
-1.795***
2.376**
-0.061
3.135***

IRENMF

0.868
0.861
-2.915***
-0.899**
2.023***
0.463.
-0.144
0.754.
0.91***
1.103**

D Pairwise Correlations of Explanatory Variables

The following Figure 7 showcases the effect of the reduction of EVs using pairwise
correlation plots.
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Fig. 7: Above: Pairwise Pearson Correlations between all explanatory variables. Below:
Pearson Correlation between explanatory variables after removing highly correlated
variables using Algorithm 1.
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