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Resumen

Este Trabajo de Fin de Grado presenta RecipeTime, una aplicación web full-stack cuyo objetivo

principal es ayudar a los usuarios a cocinar de manera más eficiente y sostenible mediante recomen-

daciones de recetas personalizadas. Aprovecha al máximo los ingredientes ya disponibles en la cocina

virtual del usuario, reduciendo así el desperdicio de alimentos, simplificando la planificación de co-

midas y fomentando la diversidad alimentaria, al tiempo que se adapta a los gustos y necesidades

nutricionales individuales a través de filtros detallados.

Para alcanzar estos objetivos, RecipeTime integra tres estrategias de recomendación. En primer

lugar, un recomendador basado en una cocina virtual clasifica las recetas según el número de ingre-

dientes que coinciden con el inventario del usuario. En segundo lugar, un recomendador de filtrado

colaborativo emplea un modelo de Alternating Least Squares (ALS) entrenado con más de 180 000

recetas y 700 000 eventos de guardado de un conjunto de datos de Food.com para identificar facto-

res de preferencia latentes y sugerir recetas populares entre usuarios con gustos similares. En tercer

lugar, recomendación mediante filtros ofrece opciones de búsqueda dinámicas (por ejemplo, tiempo

de preparación, número de ingredientes, etiquetas alimenticias y umbrales nutricionales) a través de

endpoints REST de Django protegidos por JWT y un frontend adaptable desarrollado con React y Vite,

asegurando una planificación de comidas completamente a medida.

Un estudio de usabilidad con dieciséis participantes evaluó las funciones clave de RecipeTime me-

diante tareas guiadas que incluyeron la configuración de la cocina, la exploración y filtrado de recetas

y la visualización de los detalles de las recetas, concluyendo con la Escala de Usabilidad del Sistema

(SUS). La aplicación obtuvo una puntuación “Excelente”, lo que confirma cómo de eficaz e intuitivo es

su diseño. Al priorizar recetas basadas en los ingredientes disponibles, RecipeTime promueve hábitos

de cocina más sostenibles, animando a los usuarios a cocinar con lo que ya tienen en casa en lugar de

comprar nuevos productos y, de este modo, reduciendo significativamente el desperdicio de alimentos.

Palabras clave

Inventario de cocina virtual, Recomendación de recetas personalizadas, Planificación de comidas,

Reducción del desperdicio de alimentos, Filtrado colaborativo (FC), Alternating Least Squares (ALS),

Escala de Usabilidad del Sistema (SUS)
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Abstract

This Bachelor thesis introduces RecipeTime, a full-stack web application whose primary objective

is to help users cook more efficiently and sustainably by delivering personalized recipe suggestions.

It maximizes the use of ingredients already owned in the user’s virtual kitchen, thereby reducing food

waste, simplifying meal planning and encouraging dietary variety, while adapting to individual tastes

and dietary needs through fine-grained controls.

To achieve these goals, RecipeTime combines three recommendation strategies. First, a kitchen-

based recommender ranks recipes by the number of matching ingredients drawn from the user’s inven-

tory. Second, a collaborative-filtering recommender uses an Alternating Least Squares (ALS) model

trained on over 180 000 recipes and 700 000 save events from a Food.com dataset to learn latent taste

factors and suggest recipes favored by similar users. Third, a filter-driven recommender offers dynamic

search controls (e.g., preparation time, ingredient count, dietary tags, nutritional thresholds) via secure

JWT-protected Django REST endpoints and a responsive React/Vite frontend, ensuring highly tailored

meal planning.

A formal user study with sixteen participants evaluated RecipeTime’s core features through guided

tasks covering kitchen setup, recipe discovery, filtering, and detail viewing, culminating in the System

Usability Scale (SUS). The app achieved an “Excellent” usability score, confirming its intuitive design.

By prioritizing recipes based on your existing kitchen inventory, RecipeTime fosters more sustainable

cooking habits, encouraging users to cook what they already have rather than buy new ingredients, and

in doing so significantly reducing household food waste.

Keywords

Virtual Kitchen Inventory, Personalized Recipe Recommendation, Meal Planning, Food Waste Re-

duction, Collaborative Filtering (CF), Alternating Least Squares (ALS), System Usability Scale (SUS)
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1
Introduction

This chapter opens with the main motivation of this work, by examining the environmental, economic,

and social dimensions of food waste. It then presents the project’s main goals and breaks the primary

objective into three key parts. Finally, it outlines the overall structure of the thesis.

1.1. Motivation

In recent years, the scale of food waste has become impossible to ignore. According to the Food and

Agriculture Organization, nearly one third of all food produced (about 1.3 billion tonnes) goes to waste

before it ever reaches our tables. Instead, it sits in landfills, where it breaks down and releases methane,

a greenhouse gas far more potent than carbon dioxide [1]. This is not just an environmental concern:

when perfectly good groceries spoil, families and businesses lose money, sometimes hundreds of euros

each year, as they toss unused food into the bin [2]. All the while, millions of people around the world

go hungry, highlighting a stark contrast between abundance and need [3].

At the same time, our eating habits are linked to a growing public-health burden. Diets high in pro-

cessed sugars, unhealthy fats, and excess salt contribute to rising rates of obesity, type 2 diabetes,

and heart disease [4]. Yet finding recipes that balance taste, nutrition, and personal dietary restrictions

can feel like a treasure hunt. Many home cooks spend valuable time hopping between websites, book-

marking recipes that may call for ingredients they do not have or cannot eat. Existing meal-planning

tools tend to offer broad collections of recipes or basic shopping lists but rarely tailor suggestions to the

ingredients sitting in your own kitchen, your health goals, or your budget.

That gap in the market and the frustration I faced as a university student juggling multiple food

intolerances inspired the creation of RecipeTime. First, it lets you keep an up-to-date virtual kitchen,

so you always know exactly what is on your shelves. Next, it recommends recipes that use as many of

those ingredients as possible, showing you how many ingredients of that recipe you already have. By

doing this, you cut down on impulse purchases and give old ingredients a chance to shine. On top of

that, the app learns your tastes: once you save a few favorites, it can suggest new recipes that users

with similar preferences have enjoyed. Finally, you can search through over 230 000 recipes using

1



Introduction

filters for cooking time, number of ingredients, tags such as easy or italian and nutrition targets like fats,

sugars, or sodium. By bringing these features together, we aim to help people waste less, spend less

money, and spend more time enjoying the food they cook.

1.2. Goals

The main objective of our project is to help users cook more efficiently and sustainably by delivering

personalized recipe suggestions. To achieve this, we divided the problem into 3 key parts.

The first key part is to help users maximize the ingredients they already have in their kitchens. By

recommending recipes that include as many ingredients from their kitchen as possible, with the aim

of reducing food waste and avoiding unnecessary purchases. The second key part is to simplify meal

planning and encourage dietary variety. Offering personalised suggestions by analysing the recipes a

user has saved and the preferences of similar users, using collaborative filtering. The third and last

key part is to be able to adapt to every individual tastes and dietary need. Providing filters for cooking

time, ingredient count, preparation steps, average rating, tags (for example, vegan, gluten-free), and

nutritional ranges such as calories, protein, sodium and so on.

By implementing these key parts in our application we aim to reduce food waste, lower household

grocery spending, and make meal planning easier for people with diverse dietary requirements and

lifestyles.

1.3. Thesis Structure

We will briefly explain the structure of our thesis. It is divided into five chapters, each covering a

different aspect of the process:

Chapter 1. Introduction: Presents the motivation, objectives and overall outline.

Chapter 2. State of the art: Reviews prior work on food recommendation systems and presents

the chosen algorithm.

Chapter 3. Design and Implementation: Details the design decisions and the development of each

module in the application.

Chapter 4. Experiments and results: Describes the usability tests conducted and analyses their

outcomes.

Chapter 5. Conclusions and Future Work: We summarised the main findings and outline what

ideas would be possible for future work

2 RecipeTime: A Web Application to Support Sustainable and Personalized Meal Planning



2
State of the Art

In this chapter, we explore the current state of the art in recipe recommendation. We begin by

examining four key types of food recommenders (home cooking, grocery shopping, restaurant selec-

tion, and health-focused) and highlight what makes each one unique. Next, we briefly discuss related

work in the food recommendation field, from broad systematic reviews to the seminal implicit-feedback

collaborative-filtering paper. With that context in place, we then explain the core algorithm used in our

work, showing how it learns from users’ saved events to deliver personalized suggestions. We then

review the technologies and design choices that bring these ideas to life. Finally, we discuss how to

select and evaluate recipe datasets.

2.1. Recommender Systems in the Food Domain

In domains like film, music, and online retail, recommender systems have become indispensable for

predicting user tastes and keeping people engaged [5]. Netflix’s matrix-factorization approach (Koren

et al [6]) truly transformed movie personalization, demonstrating that alternating-least-squares factor

models far outperformed neighborhood methods, van den Oord et al [7] show how deep convolutional

nets can predict collaborative-filtering latent factors directly from raw audio an approach that helps

streaming services (like Spotify) solve cold-start song recommendations and Sarwar et al’s [8] item-

to-item collaborative-filtering algorithm underpins Amazon’s “Customers who bought X also bought Y”

engine by precomputing item–item similarities from huge purchase logs.

When we move into food, however, the stakes and data complexity rise steeply. Meal choices intert-

wine with cultural identity, health considerations, and social context in ways that movie or product picks

rarely do. As Elsweiler et al. explain in [9], a food recommender must juggle structured inputs such as

ingredient lists, nutritional values, and unstructured sources like cooking instructions and user reviews,

all while honoring dietary restrictions and evolving tastes.

Unlike the movie and music realms, which enjoy standardized, large-scale datasets, the culinary

domain is fractured: recipe collections and review platforms vary wildly in format and quality. Bondevik

et al. [10] highlight this heterogeneity as a key challenge, showing that food recommenders must span

3
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content-based, collaborative-filtering, graph-based and hybrid paradigms to cope with such diverse

data sources. Together, these factors call for a comprehensive theoretical framework to guide search,

filtering, and hybrid recommendation techniques in the food setting.

2.1.1. Comparison with other food-related approaches

This section is inspired by the “Food Recommender Systems” chapter [9] in the Recommender

Systems Handbook by Elsweiler et al. [5]. We divide food recommenders into four categories: cooking,

grocery, restaurant, and health. We illustrate each with concrete examples from the literature.

Cooking recommenders aim to turn whatever is in the user’s kitchen into complete, workable reci-

pes. Some examples included in the chapter [9] would be the evaluation of the What’s Cooking dataset

where a model analyzes a partial ingredient list and predicts which items are missing to finish the re-

cipe, helping households reduce waste. The WikiTaaable dataset, which suggests safe substitutions

whenever allergens or dietary preferences rule out a given ingredient. Both systems rely on structured

recipe metadata (ingredient quantities, cooking steps) and also extract meaning from unstructured text

such as preparation instructions and flavor descriptors to rank options against constraints like time or

skill level.

Grocery recommenders switch the spotlight to individual products rather than full meals. Exam-

ples of work on recommending food products to buy during grocery shopping would be Lucky’s Market’s

augmented-reality app, for instance, overlays allergy warnings and healthier alternatives on store shel-

ves in real time, guiding shoppers toward safer, more nutritious choices. Open Food Facts taps into a

crowd-sourced database of product labels to recommend nutritionally similar items with lower environ-

mental impact. In each case, price, nutritional content, and sustainability scores become key signals

alongside user purchase history and profile data.

Restaurant recommenders suggest where to eat by weighing cuisine type, cost, distance and

individual or group tastes. For example, one study uses TripAdvisor data to cluster diners into segments

(families, business travelers, couples) and then ranks restaurants most popular within each segment.

Another system from Baidu Map dataset fuses geospatial check-in logs with aggregate user ratings to

generate a personalized list of nearby venues, displayed on a map and filtered by opening hours and

budget.

Health recommenders integrate medical and nutritional guidelines into every suggestion. We see

examples as a diabetes-focused planner described by Elsweiler et al. [9] which designs daily menus that

stabilize carbohydrate intake and adhere to caloric limits. Another example from the literature would be

a toddler-nutrition recommender, which generates recipe suggestions calibrated to meet age-specific

dietary standards by combining pediatric nutrient ranges with user flavor preferences.
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2.1.2. Previous Studies

The food recommendation literature has grown rapidly, spanning broad surveys and specialized

algorithmic innovations. Bondevik et al [10] provide a systematic review that divides existing systems

into content-based, collaborative filtering, graph-based, and hybrid approaches, and they highlight gaps

in recipe personalization.

Trattner & Elsweiler [11] extracted 60 983 recipes (with 1 032 226 ratings from 125 762 users) from

Allrecipes.com and pitted a range of collaborative-filtering methods (BPR, WRMF, UserKNN, ItemKNN)

against content-based recommenders. When they limit their experiments to very active users and items

(a “p-core” filter), collaborative-filtering needs as few as 13 users to outperform the best content-based

model. But under a more typical, sparsely sampled dataset, they did not see consistent CF wins until

they had over 600 users. Their work clearly shows that the choice of sampling strategy and evalua-

tion protocol can completely reverse which algorithm looks superior. Those same authors, Trattner &

Elsweiler in [12] analyze the healthiness of 60 983 recipes from Allrecipes.com using WHO and UK

FSA nutritional guidelines, investigate how user signals (ratings, bookmarks, comment sentiment) co-

rrelate with recipe health scores, and evaluate both single-item recommendation and daily meal-plan

generation to assess a recommender’s potential to nudge users toward healthier eating.

The following two papers push beyond traditional CF/CB by learning richer representation for com-

plex data. Majumder et al [13] use transformer encoder-decoder models with attention over user history

to generate personalized cooking instructions, demonstrating significant gains in user satisfaction. Teng

et al. [14] construct two “ingredient networks” (co-occurrence and user-driven substitution) from a lar-

ge Allrecipes.com corpus, extract structural features (community memberships, centralities), and show

that these network-derived features when combined with simple nutrition and metadata can predict user

recipe ratings with nearly 0.79 accuracy, revealing powerful latent relationships among ingredients that

support effective recipe recommendation.

Hybrid recommenders combine multiple paradigms to address cold-start and sparsity. Freyne &

Berkovsky [15] systematically compare six recipe recommendation strategies (including pure CF, pure

CB, and two hybrid algorithms that decompose recipes into ingredients before applying collaborative

and content-based reasoning) and show that their hybrid recipe-based methods (recipehr, recipehf)

achieve the lowest MAE (<0.20) and broadest coverage, outperforming both standalone CF and CB

approaches.

Graph-based and knowledge-driven approaches enrich recommendation with external structure.

Ahn et al [16] propose the Flavor Network, which links ingredients by shared chemical compounds and

supports harmonious flavor pairings. Haussmann et al [17] present FoodKG, a semantics-driven food

knowledge graph integrating recipes, ingredients, nutrients, and provenance to enable context-aware

dietary and allergy-safe recommendations.
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Although these prior works span a wide array of techniques, we focus on implicit-feedback collabo-

rative filtering, specifically alternating least squares approach.

2.1.3. Implicit-Feedback Collaborative Filtering Paper

Our work draws most directly on the paper “Collaborative Filtering for Implicit Feedback Datasets”

by Hu et al [18]. In this landmark study, the authors adapt matrix factorization to settings where users

express interest implicitly through actions such as clicks or saves rather than explicit ratings. They

introduce a confidence model that weights observed interactions more heavily than unobserved ones

and formulate recommendation as a regularized least-squares problem. The paper demonstrates how

alternating between solving for user factors and item factors leads to efficient, scalable learning on very

large implicit datasets. We chose this paper because it aligns perfectly with our save-based interaction

model and provides both the theoretical framework and practical implementation details needed to

handle hundreds of thousands of recipes.

2.1.4. The Alternating Least Squares Algorithm

Alternating least squares, or ALS, is a collaborative filtering technique that fits our save-based inter-

action data perfectly. At a high level, ALS assumes that both users and recipes can be represented by a

small number of latent “taste” factors. During training, the algorithm learns one set of vectors for users

and another set for recipes so that the dot product of a user’s vector and a recipe’s vector predicts the

strength of that user–recipe relationship.

Concretely, let R ∈ Rrecipes×users (recipes on rows, users on columns) be our interaction matrix,

where each element Riu records how many times recipe i was saved by user u. ALS approximates R

as the product of two lower-rank factor matrices, R ≈ XY T where

• X ∈ Rusers×f holds the user-factor vectors xu ∈ Rf (one row per user).

• Y ∈ Rrecipes×f holds the recipe-factor vectors yi ∈ Rf (one row per recipe).

The transpose in Y is because by writing R ≈ XY T , the (u, i) entry becomes (XY T )ui = xu · yi,
exactly the dot product of the user’s embedding xu and the recipe’s embedding yi. That dot product is

our model’s prediction of how likely user u is to save recipe i.

After decomposing R into X and Y , ALS trains these factor matrices by repeating two simple steps

until the model stops improving:

1.– Update user factors by holding all recipe vectors Y fixed, and for each user u solve a regularized least-

squares problem to find the vector xu that best predicts that user’s save history.

2.– Update recipe factors by holding all user vectors X fixed, and for each recipe i solve the analogous least-

squares problem to update yi.
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Because each subproblem reduces to standard ridge regression and only touches the observed

(nonzero) entries of R, ALS runs quickly even on extremely sparse data. Once the model converges,

making a recommendation is just a matter of computing the dot products xu ·yi and selecting the highest

scores.

Empirical studies confirm that ALS excels in this implicit-feedback setting. He et al [19] evaluated

several matrix-factorization variants on large real-world datasets (Yelp and KDD Cup) and report that,

with the right optimizations, ALS achieves both the fastest training times and the best ranking accuracy.

Their experiments show that ALS not only has solid theoretical footing but also proves to be a reliable,

scalable solution for recommending recipes at large scale.

2.2. Dataset Selection and Evaluation

We investigated several food-related datasets that we will present next, such as Food.com Recipes

and Interactions, RecipeNLG, Epicurious Recipes with Rating and Nutrition, the Recipe Ingredients

Dataset, AllRecipes, RecetasDeLaAbuela, Recetas Cocina, and two popular APIs (Spoonacular and

Edamam). The Food.com collection on Kaggle offers over 180 000 recipes and 700 000 user reviews

with 18 years of interaction history [20]. RecipeNLG provides a large corpus of ingredient lists and ins-

tructions but lacks any user feedback [21]. Epicurious brings ratings and nutrient data for around 20 000

recipes, though its scale is modest compared to other sources [22]. The Recipe Ingredients Dataset de-

livers JSON-formatted ingredient lists without interactions [23]. AllRecipes’ scraped data includes user

ratings but again falls short on nutritional details and interaction depth [24]. RecetasDeLaAbuela and

Recetas Cocina supply traditional Spanish recipes with ingredient and instruction metadata but no user

reviews or nutrient values [25, 26]. Finally, the Spoonacular API grants real-time recipe, ingredient, nu-

trition, and some interaction data for developers [27], while the Edamam API focuses on high-resolution

nutritional analysis alongside basic recipe search [28].

After weighing size, richness of user interactions, metadata quality, and ease of reuse, we settled on

the Food.com Recipes and Interactions dataset [20]. It combines over 180 000 recipes with 700 000

and save events covering from 2000 to 2018. More than just raw text, the dataset comes pre-packaged

into a set of files that make modeling straightforward:

• PP_recipes.csv lists each recipe’s title, ingredient list, preparation steps, tags, and nutritional values (calories,

protein, fat, sodium).

• PP_interactions.csv captures every save event, linking user IDs to recipe IDs with timestamps.

• PP_users.csv summarizes user activity, including total saves and average interactions per recipe.

• ingre_map.csv maps internal ingredient IDs to their human-readable names.

• train/validation/test splits let us evaluate models out of the box without custom data slicing.

Because the dataset comes in straightforward CSV files with clear labels it facilitates the next steps
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which would be loading, preprocessing, and experimenting with it. For instance, researchers like Ma-

jumder et al leveraged this dataset to develop transformer-based recipe generators [13], underscoring

its breadth and adaptability.

In addition, we also looked at Ethan Schacht’s exploratory analysis on Kaggle [29], where he digs

into ingredient popularity, recipe length, and text patterns. His findings confirmed what we suspected:

this dataset holds plenty of rich signals for advanced modeling. We intend to carry out our own data

analysis, but this prior study has guided our approach to data exploration.

2.3. Technological Framework and Tools

Choosing the right back-end and front-end frameworks has a major impact on how quickly a re-

commendation system can be developed and how easily it can be maintained. Selecting a back-end

framework begins with choosing the programming language: Python is widely regarded as the go-to

language for building web applications. In 2024 it was the third programming language most used with

a 51 % usage after HTML/CSS with 52,9 % and JavaScript with 62,9 % 1. Within the Python ecosystem,

Django leads with 63 % adoption, followed by Flask at 42 %, and FastAPI at 41 % 2, the latter’s growth

fueled by its native support for asynchronous operations.

We therefore first chose Python for its broad community, mature libraries, and strong tooling, and

then selected Django. Our decision to use Django builds on the practical experience I gained in my

PSI (Proyecto Sistemas Informáticos) coursework. Django’s integrated support for PostgreSQL via its

ORM, its out-of-the-box authentication system and admin interface lets us focus on implementing the

recommendation logic itself rather than wiring up boilerplate.

On the front end, modern JavaScript frameworks shape the user experience. The 2024 State of JS

survey reports that React is used by 82 % of developers, Vue.js by 51 %, Angular by 50 %, and Svelte

by 26 % 3. Additionally, Vite has emerged as the fastest-growing build tool, with a +25 % year-over-year

jump in usage 4, thanks to its instant hot-module replacement and zero-config setup.

By combining Django REST Framework on the back end with a Vite-powered React front end, we

maintain a clean separation of concerns: Django efficiently delivers JSON endpoints that our front end

can fetch without delay, and Vite ensures rapid rebuilds when we tweak UI components. This deco-

upled architecture accelerates our workflow, allowing back-end changes and front-end experiments to

proceed in parallel without blocking one another.

1https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/, last

accessed in May 2025.
2https://blog.jetbrains.com/pycharm/2024/12/the-state-of-python/, last accessed in May 2025.
3https://2024.stateofjs.com/en-US/libraries/front-end-frameworks/, last accessed in May 2025.
4https://2023.stateofjs.com/en-US/awards/, last accessed in May 2025.
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3
Design and Implementation

In this chapter, we aim to provide a clear and comprehensive overview of our system’s design,

explain the implementation details, and discuss the key decisions that guided its development. The

project, at its core, is divided into three major modules, each focusing on a distinct part of the overall

workflow. These modules are integrated to offer users a unified platform for accessing personalized

recipe recommendations.

3.1. Project Structure

Our project is organized into three interconnected modules, as depicted in Figure 3.1, each distin-

guished by a unique color in the system’s architecture diagram, that together create a robust recipe

recommendation platform.

The first module, Web Application (Blue), forms the user interface layer. Developed with React

and Vite, it is integrated alongside Django to deliver a dynamic and intuitive frontend, handle routing,

and interact with the backend via API endpoints. Its design ensures that users can search the recipe

database, view personalized recommendations, and manage their culinary preferences in real time.

The second module, API, Search, and Recommendation System (Orange), serves as the in-

termediary between the frontend and the underlying data. By taking advantage of the Django REST

Framework, this module processes incoming requests from the web interface and communicates with

the database to retrieve and update information. It offers advanced filtering and search functionalities,

including a specialized feature that suggests recipes based on the ingredients users have available in

their kitchens. Additionally, the collaborative filtering component analyzes users’ saved recipes and in-

teractions to recommend new recipes that align with their taste profiles. A general search function also

allows users to explore the entire dataset, ensuring comprehensive access to all available recipes.

The third module, Dataset and Database (Green), underpins the entire system by managing and

storing all essential data. For our project, we sourced a comprehensive dataset from Food.com and

applied preprocessing to clean, standardize, and enrich the raw recipe data addressing issues such

as duplicates, inconsistent formatting, and missing values. An in-depth analysis of this refined dataset
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informed the design of an Entity-Relationship schema that organizes recipes, user profiles, and inter-

actions, which we then used to populate a PostgreSQL database. This approach ensures reliable data

storage and efficient retrieval, supporting accurate search results and personalized recommendations.

Each of these primary modules is further divided into specialized submodules that address speci-

fic tasks, as it will be explained later. Together, these components interact to form a cohesive system,

enabling a dynamic and responsive experience for users exploring and discovering new recipes. Figure

3.1 provides a visual representation of the data flow and interactions among these modules, offering

a summary of the project’s architecture. The diagram outlines the data journey, beginning with the

pre-processing of the Food.com data set and culminating in the delivery of personalized recipe recom-

mendations through the Web application.

Figure 3.1: Structure diagram of the project.

3.2. Requirement Analysis

In this section, we present the requirements analysis for the various modules of the system. For each

module, the requirements are divided into two categories: functional requirements and non-functional

requirements. The functional requirements detail the specific capabilities and operations that each mo-

dule must support, while the non-functional requirements outline the performance, security, scalability,

and maintainability criteria that ensure overall system robustness.
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3.2. Requirement Analysis

3.2.1. Dataset and Database Module

Functional Requirements

FR-DD-1.– The module shall persistently store all recipe-related data in a PostgreSQL database managed via Djan-

go.

FR-DD-1.1.– The database schema must include key entities such as Recipe, Ingredient, RecipeIngredient,

Interaction, UserProfile, UserCategory, UserFavorite, UserKitchen, and UserShoppingList.

FR-DD-1.2.– All relationships (one-to-one, one-to-many, and many-to-many) must be correctly implemented and

enforced according to the design.

FR-DD-2.– The module shall ensure data integrity by validating incoming data for missing values, duplicates, and

proper foreign key references.

FR-DD-2.1.– Critical fields (e.g., recipe_id, ingredient names, date fields) shall be indexed to optimize query

performance.

FR-DD-3.– The dataset creation and ingestion process must be fully automated.

FR-DD-3.1.– The system shall include processes to inspect source data files for structure, quality, and rela-

tionships.

FR-DD-3.2.– Data population processes must insert records in batches with robust error handling to manage

duplicates and ensure efficiency.

FR-DD-4.– The module shall integrate with the user authentication system to support user-specific data manage-

ment.

FR-DD-4.1.– Each user must have an associated profile enabling features such as saving recipes, managing

kitchen inventory, and categorizing ingredients.

FR-DD-5.– The module shall support post-ingestion adjustments and validation processes.

FR-DD-5.1.– Mechanisms must be provided to verify that the final table counts and data integrity match expected

outcomes.

Non-Functional Requirements

NFR-DD-1.– The dataset creation and ingestion process must be efficient, capable of handling large volumes of

data with minimal memory overhead.

NFR-DD-2.– The module must provide high-performance query responses by leveraging optimized batch processing

and proper indexing.

NFR-DD-3.– The system must be scalable, allowing for future expansion and increased data volumes without com-

promising performance.

NFR-DD-4.– The module must be robust, with comprehensive error handling to ensure data consistency and inte-

grity.

NFR-DD-5.– The codebase shall be modularly structured, and should be able to be improved through iterative

enhancements (e.g., via Django migrations).

NFR-DD-6.– The system must enforce secure access controls following standard authentication and authorization

practices.

NFR-DD-7.– ER diagrams and model-design documents for the database shall be updated with every schema

change so they always reflect the current implementation.
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3.2.2. API, Search, and Recommendation System Module

Functional Requirements

FR-ASR-1.– The module shall provide a secure and structured REST API using Django REST Framework to me-

diate between the PostgreSQL backend and the React/Vite frontend.

FR-ASR-1.1.– The API shall convert complex Django models into JSON responses using well-designed seria-

lizers, including computation of additional fields (e.g., average ratings, rating counts) to support the frontend

display requirements.

FR-ASR-2.– The module shall support standard CRUD operations on recipe-related data via viewsets.

FR-ASR-2.1.– Viewsets shall handle listing, retrieving, updating, and deleting records.

FR-ASR-2.2.– Custom actions shall be implemented to support functionalities such as recommending recipes

based on user kitchen ingredients, aggregating collaborative recommendation scores, and filtering recipes ac-

cording to various criteria.

FR-ASR-3.– The module shall expose user-centric endpoints for managing personalized data.

FR-ASR-3.1.– Endpoints shall allow users to add ingredients to their virtual kitchen, manage organizational

categories, and save or unsave recipes (ensuring that all operations are specific to the authenticated user).

FR-ASR-4.– The module shall integrate robust authentication and account management mechanisms.

FR-ASR-4.1.– Endpoints need to be protected and shall require a valid JSON Web Token (JWT) in the Authori-

zation header to ensure secure access.

FR-ASR-4.2.– The account management system shall support secure user registration and login via custom

serializers.

FR-ASR-5.– The module shall enable efficient search and filtering of recipes.

FR-ASR-5.1.– The search functionality shall retrieve recipes based on matching ingredients from the user’s

virtual kitchen.

FR-ASR-5.2.– The filtering functionality shall support text-based search and filtering by criteria such as ratings,

preparation times, step counts, ingredient counts, and nutritional values.

FR-ASR-6.– The module shall support personalized recipe recommendations through collaborative filtering techni-

ques.

FR-ASR-6.1.– The system shall apply an algorithm to help manage and reduce the size of the interaction data

for improved processing efficiency.

FR-ASR-6.3.– A precomputed similarity table shall aggregate similarity scores from saved recipes and provide

a ranked list of recommendations.

Non-Functional Requirements

NFR-ASR-1.– The system shall leverage Django’s standard security framework for all user-related operations.

NFR-ASR-2.– The module shall be highly performant, with optimized query response times achieved through effi-

cient data processing, appropriate indexing, and the use of pagination where needed.

NFR-ASR-3.– The recommendation functionality shall scale effectively to handle large datasets and high volumes

of user interactions.

NFR-ASR-4.– The module shall be designed for maintainability and extensibility, following best practices in code

modularity, clear separation of concerns and easy to understand documentation.

NFR-ASR-5.– The overall system shall deliver a responsive user experience by minimizing latency through backend

processing optimizations.
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3.2.3. Web Module

Functional Requirements

FR-WEB-1.– The module shall provide a dynamic and responsive user interface using React coupled with Vite.

FR-WEB-1.1.– The frontend shall implement a single-page application (SPA) model, supporting smooth, client-

side routing and navigation via React Router.

FR-WEB-1.2.– The application architecture shall be component-based, ensuring reusability and maintainability.

FR-WEB-2.– The module shall reliably integrate with the backend through secure API calls.

FR-WEB-2.1.– All API calls shall include proper JWT-based authentication to ensure secure data exchange.

FR-WEB-2.2.– The module shall implement error handling and provide clear user feedback for any failed re-

quests.

FR-WEB-3.– The module shall offer an optimized search interface for recipes and associated tags.

FR-WEB-3.1.– Auto-complete functionality shall be provided for ingredient and tag search inputs, leveraging

efficient database query techniques to ensure rapid response times.

FR-WEB-4.– The module shall ensure that the user interface adapts to various screen sizes.

FR-WEB-4.1.– Modern visual design principles, including responsive layouts and contemporary styling (such as

“glass” effects), shall be implemented using dedicated CSS.

FR-WEB-5.– The module shall manage client-side state effectively.

FR-WEB-5.1.– Persistent storage solutions shall be used to retain user preferences such as search terms, active

filters, and sorting options.

FR-WEB-6.– The module shall provide clear and consistent feedback to users regarding their interactions, including

actions like logging in, saving recipes, or updating kitchen items.

Non-Functional Requirements

NFR-WEB-1.– The web module shall exhibit high performance and responsiveness, minimizing latency through

optimized API integration and efficient client-side processing.

NFR-WEB-2.– The system shall scale effectively to support a high volume of concurrent user interactions without

performance degradation.

NFR-WEB-3.– The web UI shall function correctly in the latest stable versions of Chrome, Firefox, and Edge.

NFR-WEB-4.– The user interface shall maintain visual consistency and offer a pleasing experience across multiple

screen sizes.

NFR-WEB-5.– The module’s codebase shall be modular, maintainable, and extensible, supported by clear docu-

mentation to facilitate future enhancements.

NFR-WEB-6.– The module shall incorporate resilient error detection.

3.3. Design

This section outlines the architecture of the recipe recommendation system, detailing the design

and interaction of its core components. It provides a foundation for understanding how data manage-

ment, advanced recommendation algorithms, and a responsive web interface work together to deliver

personalized recipe suggestions.
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3.3.1. Dataset and Database Module

This module is responsible for the structured organization and persistent storage of recipe-related

data. We developed a comprehensive class diagram to clearly define the core entities, such as Recipe,

Ingredient, RecipeIngredient, Interaction, UserProfile, UserCategory, and UserFavorites and their rela-

tionships (shown in Figure 3.2). The diagram served as a blueprint for designing the database schema

in Django, ensuring that relationships (one-to-one, one-to-many, and many-to-many)

Figure 3.2: Entity relationship diagram.

3.3.2. API, Search, and Recommendation System Module

This module employs Django Rest Framework to provide a comprehensive set of endpoints that

bridge the gap between the database and the user interface. It enables the dynamic retrieval and

filtering of recipe data, supporting personalized recommendation functions, such as suggestions based

on the user’s kitchen ingredients or recipes they have already saved. The Figure 3.3 illustrates a typical

interaction when a user requests detailed recipe information, checks whether the recipe is already

saved, and toggles its saved status. This sequence clarifies how the React/Vite frontend, the Django

REST API, and the PostgreSQL database work together to handle user-specific operations, ensuring

that any changes to the user’s saved recipes are accurately recorded and promptly reflected in the

interface.
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Figure 3.3: Sequence Diagram: Recipe Detail & Save/Unsave Recipe.

3.3.3. Web Module

The Web module provides a dynamic and responsive user interface using React coupled with Vite,

effectively integrating with the backend through API calls. The design emphasizes a smooth flow from

user interactions, such as logging in, browsing recommendations, and accessing personalized sidebar

features to the corresponding responses received from the API. To illustrate these interactions, this

module includes a high-level sequence diagram, shown in Figure 3.4. It captures the flow of actions

from initial user input, through API communication, to data retrieval from the database, thereby ensuring

a cohesive and user-focused experience throughout the system.

3.4. Implementation

In this section, we describe how each of the three modules introduced in the project structure was

brought to life. First, we outline the data acquisition and storage processes within the Dataset and Da-

tabase module, highlighting its preprocessing routines and PostgreSQL schema. Next, we detail how

the API, Search, and Recommendation System module manages filtering logic, collaborative filtering,

and general search capabilities. Finally, we explore the Web module, where a React and Django ba-

sed interface allows users to effortlessly interact with the system’s features. Through these steps, we

illustrate the core submodules and the practical considerations that guided their development.
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Figure 3.4: Sequence diagram: High-level application flow.
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3.4. Implementation

3.4.1. Dataset and Database Module

Data Preparation

Dataset Selection and Initial Analysis

The starting point for this module was identifying a comprehensive and well-structured dataset

suitable for a recipe recommendation system. The Food.com dataset emerged as the ideal choice,

offering a large volume of recipes, user interactions, and partial user profiles. Before any database

design or model creation, we created two main Python scripts, named food_database_analysis and

food_database_explore so we could inspect the CSV files. Each was in charge of checking different

aspects of the dataset.

1. food_database_analysis.py:

• Structure & Relationships: This script checks column data types, potential missing values, and overall table size.

It also validates foreign key relationships, such as whether every recipe in the interactions table actually exists in

the recipes table.

• Data Insights: The script computes averages like the mean number of ingredients per recipe and the average

number of recipes rated per user.

2. food_database_explore.py (extended version):

• Data Quality: Building upon the initial script, it delves into detecting duplicate rows, outliers, and potential string-

format inconsistencies.

• Patterns & Constraints: It examines text field lengths (e.g., name, description) and date ranges (submitted), which

guided decisions on field sizes and optionality in the Django models.

• Relationship Validation: It reaffirms key constraints, such as ensuring no invalid references exist between users

and recipes.

Both scripts offered valuable insights. For instance, they revealed that each recipe has an average

of roughly nine ingredients, descriptions can be very long, and user coverage in the interactions file

might not fully match the user IDs found in the user CSV. This knowledge shaped how the data would

be modeled and handled during insertion.

Ingredient Pickle Analysis

In addition to the CSV files, the dataset included a pickle file (ingr_map.pkl) containing ingredient

details. Attempting to load this file initially caused the error:

No module named ’pandas.core.indexes.numeric’

This issue stemmed from version mismatches in the local Python environment. Downgrading both

pandas (to 1.5.3) and numpy (to 1.24.2) resolved the conflict [30]. Afterward, a dedicated script named

ingredient_data_analysis.py was created to open the pickle, inspect its columns, and verify data consis-
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tency (e.g., checking for null values and data types). This analysis confirmed the presence of thousands

of distinct ingredient records, many of which were duplicated or required merging.

Database Setup

Models and Relationships

Following the data inspection phase, the core database schema was designed within Django’s ca-

talog/models.py. The schema leverages Django’s User model for authentication and introduces a User-

Profile model as a one-to-one extension to store additional attributes (e.g., csv_user_id, techniques,

preferences). Key entities include:

• Recipe: Holds metadata like name, minutes, description, and an array of ingredients (ingredients). It references

UserProfile via contributor, ensuring each recipe can be traced back to its author.

• Ingredient: Stores individual ingredient entries, each identified by a unique ingredient_id.

• RecipeIngredient: Resolves the many-to-many relationship between Recipe and Ingredient, capturing fields like

quantity and unit.

• Interaction: Tracks user ratings and reviews for specific recipes. It references Django’s default User (linked to a

UserProfile) and a Recipe.

• UserFavorite, UserKitchen, UserShoppingList, and UserCategory: Support additional user-specific features,

such as saved recipes, items in stock, shopping lists, and custom categories.

Each model corresponds to a table in the PostgreSQL database. Fields are indexed where high-

volume queries are expected (e.g., recipe_id, ingredient_name, or date) to optimize performance.

Hosting and Migrations

Initial attempts to host the PostgreSQL database on free-tier platforms (Neon, Railway, Render)

were hindered by strict storage limits. Ultimately, the project’s tutor offered to host the database on a

more flexible server.

Data Population

Given the dataset’s size (millions of records in total) a single script approach was neither efficient nor

easy to manage. Instead, three separate scripts handled distinct parts of the loading pipeline. Before

running them, we verified that the final schema in PostgreSQL matched the expectations derived from

the analysis scripts, using DBeaver to query and confirm table counts.

The first script is called populate.py. This script focuses on populating the core data structures
(Ingredients, Recipes, UserProfile, and RecipeIngredient) while performing essential cleanup and
handling duplicates.

1.– Clearing Tables: All related tables (RecipeIngredient, Recipe, Ingredient, UserProfile, and User) are trunca-

ted to start fresh.

2.– Loading Ingredients: Reads from ingr_map.pkl, where many duplicate IDs existed. Uses bulk_create(...,
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ignore_conflicts=True) to insert thousands of records efficiently while skipping duplicates.

3.– Loading Recipes and Contributors: Reads RAW_recipes.csv for recipe information, converting lists from

CSV fields (e.g., ingredients, steps) using ast.literal_eval. Creates a Django User and corresponding UserPro-

file for each unique contributor_id found in the CSV. Inserts recipes in batches of 5,000 to minimize memory

overhead.

4.– Mapping Recipes to Ingredients: Reads PP_recipes.csv to retrieve the final set of ingredient_ids for each

recipe, creating entries in the RecipeIngredient table in large batches.

During this phase, we also noted a few discrepancies in the data. For example, the original ingredient

pickle listed 11 659 items, whereas only 8 023 were finally inserted due to conflict handling. Additionally,

because many contributor_id values in the recipe file did not appear in PP_users.csv, the system ended

up with more UserProfile records than there were user entries in that CSV, leaving some profiles without

extra user information.

The second script is called populate_user.py. This script handles user-centric data beyond the

basic user profile:

• UserFavorite: To ensure the user_favorites table contained meaningful entries, each user was automatically

marked as a “favorite” all of the recipes they created. This approach guaranteed the table was not empty, providing

data useful for later analysis and recommendations.

• UserKitchen: To ensure every user has at least one record in the user_kitchen table by default, each user is

automatically associated with a “placeholder” ingredient (in this case, ingredient_id = 0). This placeholder corres-

ponds to a simplified version of Hershey’s semi-sweet baking chocolate (labeled as ’s baking chocolate), so that

the user’s kitchen did not start empty.

Finally, the Interaction table (ratings and reviews) is populated from RAW_interactions.csv with our

third script called populate_interactions.py:

1.– Skipping Missing Users: Interactions referencing user IDs not found in UserProfile are discarded. This

resulted in omitting 418 825 records.

2.– Batch Insertion: Each batch of 5 000 interactions is inserted into the database to manage memory usage.

3.– Confirmation: After insertion, around 713 542 interactions remained valid and were successfully loaded.

To summarize, Table 3.1 shows the registers that were finally loaded into the DB, excluding the

User_category which began empty.

Recipes Ingredients Recipe_ingredients User_profile User_kitchen User_favorites Interactions

231 637 8 023 1 602 903 27 926 27 926 231 637 713 542

Table 3.1: Every table in the Database with its corresponding number of loaded registers.
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Additional Data Adjustments

After these scripts were run, further refinements became necessary to support application features:

• Setting User Emails and Passwords: A script was introduced to assign placeholder emails (e.g., user_123@example.com)

to users who lacked one, and to encrypt their passwords via Django’s make_password. This ensured compatibility

with the standard Django authentication system.

• UserCategory Initialization: Another script was written to create default user categories for each user, ensuring

that related application functionalities could operate without encountering empty or missing category data.

These post-population scripts reflect how real-world development often involves iterative changes.

As the rest of the application took shape, new constraints emerged, prompting small but necessary

updates to the data already in the database.

Important decisions and validation

Throughout the data loading process, the use of large batch sizes greatly accelerated perfor-

mance, as it minimized the overhead of inserting records individually. In combination with the ig-

nore_conflicts=True parameter that allowed the scripts to bypass errors caused by duplicate keys,

although it was at the cost of some discrepancies from the original CSV totals.

The recipe dataset also included contributor IDs that did not appear in the user CSV, leading to

skipped interactions and explaining why the final count of interactions is lower than the total found in

the raw data. To reconcile CSV user IDs with Django’s authentication system, a custom UserProfile

model was introduced, extending Django’s built-in User model. This one-to-one relationship maintai-

ned standard login mechanisms while supporting additional user attributes. After each data population

script, queries run in DBeaver confirmed that table counts matched the script logs, ensuring data inte-

grity and consistency with prior analyses.

By the end of these steps, the Dataset and Database module provided a robust PostgreSQL foun-

dation of recipes, users, ingredients, and interactions. Although certain discrepancies such as missing

user records and duplicated ingredient IDs were inevitable, the final dataset remains clean, efficient,

and well-aligned with the Food.com domain.

3.4.2. API, Search, and Recommendation System Module

API Implementation

This API module uses Django REST Framework (DRF) [31] to provide a secure and structured

communication layer between our PostgreSQL backend and the React and Vite frontend. DRF con-

verts complex Django models into JSON using well-designed serializers and supports robust features

20 RecipeTime: A Web Application to Support Sustainable and Personalized Meal Planning



3.4. Implementation

like custom viewsets and actions. To maintain stateless, scalable security, the API utilizes JSON Web

Tokens (JWT) for authentication, ensuring that each request is associated with a verified user.

Serializers

The API employs a series of serializers such as RecipeSerializer, UserFavoriteSerializer, and User-

KitchenSerializer to transform Django model instances into consumable JSON data. These serializers

not only output basic recipe information but also compute additional fields like average ratings and ra-

ting counts, effectively bridging the gap between the raw database models and the frontend’s display

requirements.

Views and ViewSets

At the heart of our API, DRF’s viewsets manage common operations such as listing, retrieving,

updating, and deleting records, while custom actions enhance functionality. For example, the kitchen-

based action recommends recipes based on the ingredients in a user’s kitchen, and the saved-based

action aggregates similarity scores for collaborative recommendations. In addition, the filters-based

action allows users to choose filters based on text matching in names, descriptions, and tags, as well

as criteria like ratings, preparation times, step counts, ingredient counts, and nutritional values, providing

a versatile and customizable search experience.

User-Centric Endpoints

Specific endpoints have been developed to manage user-specific data. The UserKitchenViewSet,

for instance, allows users to add ingredients to their kitchen along with associated details such as

quantity, expiry date, and custom categories. Similarly, the UserCategoryViewSet empowers users to

create and manage their own organizational categories (e.g., “Fruits & Veggies”), ensuring that each

kitchen entry reflects their personal preferences.

Authentication and Accounts

Finally, the module integrates authentication using DRF’s JWT mechanism. The accounts app inclu-

des custom serializers such as RegisterSerializer and MyTokenObtainPairSerializer to handle user

registration and login. With every protected endpoint requiring a valid JWT token in the Authorization

header, the system guarantees that only authenticated users can access or modify their data.

Search Implementation

The search functionality is designed to efficiently handle large datasets and deliver precise recipe

results based on the ingredients users have added to their virtual kitchen. Users can add the ingredients

they have at home into the application, and these ingredients are stored in the UserKitchen model.

This ensures that recipe recommendations are personalized and closely aligned with the user’s current

inventory.
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Virtual Kitchen Integration and Recipe Ranking

When a user accesses the kitchen-based endpoint, the system automatically retrieves the ingre-

dients from their virtual kitchen. It compares these ingredients with those required by each recipe,

using Django’s annotation and aggregation functions to count the matching ingredients. This count is

then used to rank the recipes. For example, if a user has three ingredients in their virtual kitchen, re-

cipes that contain all three ingredients will appear at the top of the list, followed by recipes that only

match two, and so on.

Ranking Based on Matching Ingredients

The ranking mechanism is a key part of this feature. Recipes are sorted by the number of matching

ingredients in descending order. This means that the most relevant recipes (those that include the

highest number of ingredients from the user’s virtual kitchen) are prioritized and displayed first. This

approach ensures that users see recipe suggestions that best match what they already have available.

Performance Optimization and Response

To efficiently manage the large dataset, pagination is implemented to limit the number of recipes

returned per page. This minimizes processing overhead and ensures that the recommendations are

delivered quickly. Once the recipes are ranked, they are serialized into JSON format and sent to the

frontend, allowing for a smooth and responsive user experience.

Collaborative Filtering Implementation

In our recipe recommendation app, users maintain a personal collection of saved recipes. We as-

sume saved recipes reflect genuine preference, and we use them to generate new suggestions via

collaborative filtering. This functionality leverages (already known, but also new) user–recipe interaction

data. The following sections detail the implementation, key components, and optimization steps taken

to ensure efficient, high-quality recommendations.

Data Structures & Scripts

Our system begins with constructing a sparse rating matrix that captures user–recipe interactions

(ratings and reviews), with rows representing recipes and columns representing users. Given our da-

taset of 199 191 recipes and 17 777 users, a dense matrix would be largely empty. To overcome this,

we use the Compressed Sparse Row (CSR) format, which stores only nonzero entries, significantly

reducing memory usage and allowing rapid matrix construction in RAM.

From Brute-Force to Scalable Similarity Computations

Early attempts at computing recipe similarities using a brute-force approach quickly proved infeasi-

ble. With nearly 200 000 recipes, calculating pairwise cosine similarities directly would have required

tens of billions of comparisons, overwhelming both CPU and memory resources. Instead, building on
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prior work that couples ALS and neighborhood methods [32] we implemented a 2-stage hybrid pipeline:

1. Dimensionality Reduction via ALS

We apply the Alternating Least Squares (ALS) algorithm (explained in Section 2.1.4) to the sparse

user–recipe interaction matrix 199 191 × 17 777 by invoking the implicit library’s AlternatingLeastSqua-

res class [33]. In the train_als_model function, an ALS instance is created with three hyperparameters:

latent factors f , regularization λ, and iteration count N which together determine the embedding dimen-

sionality, shrinkage strength, and number of alternating updates (the CSR-format recipe × user matrix

is transposed internally to match the library’s [33] user × item expectation). During training, ALS alter-

nates for N iterations between solving a regularized least-squares problem for all user-factor vectors

xu ∈ Rf (with Y fixed) and for all recipe-factor vectors yi ∈ Rf (with X fixed). Upon completion, the

learned embeddings appear in model.item_factors as an array of shape (199 191 × f ), with each row

providing an f -dimensional representation of a recipe’s latent affinities. By embedding all n recipes into

an f -dimensional space via ALS, whose item-factor update runs in O
(
f2N + f3n

)
per (item-factor)

sweep [18] we obtain one f -length vector per recipe. A naive all-pairs similarity search over n recipes

costs O(n2f), but once the recipes are in Rf , a single nearest neighbor query only requires O(n · f)
and serves as the foundation for even faster Approximate Nearest-Neighbor lookups.

The choice of the hyperparameter values was guided by previous results from the recommendation

community. We set the embedding dimensionality to f = 64 which falls within the 20–200 factor range

originally advocated for implicit-feedback models by Hu et al [18] and reaffirmed in tuning guidelines by

Dhama [34]. The iteration count was configured as N = 15, following a comment by B. Frederickson (the

author of the implicit library) in a GitHub discussion on default hyperparameter values [35], a recom-

mendation that is further corroborated by his performance benchmarks presented in [36]. Finally, the

regularization parameter was fixed to λ = 0.1, matching with Dhama’s Stack Overflow recommendation,

which reports this value as effective for most cases [34].

The full implementation of the train_als_model function is listed in A.1

2. Approximate Nearest-Neighbor Search with Annoy

Once we obtain the f -dimensional recipe embeddings, we construct an Annoy index [37]. In function

build_annoy_index, Annoy builds a forest of random projection trees by repeatedly splitting the unit

sphere with random hyperplanes, organizing points into small leaf buckets, this code snippet is shown

in A.2. At query time, invoking get_nns_by_item(i, k) where k denotes the number of nearest neighbors

to retrieve, the implementation of this function is included in A.3. It traverses each tree to assemble

a candidate set in O(logN) time per query rather than O(N) [38] and returns the k closest items by

angular distance. The raw angular distance d is then transformed into a cosine-style similarity via:

sim = 1− d (3.1)
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where d is the angular distance returned by Annoy, producing a top-k similar-recipe list in milliseconds

(orders of magnitude faster than exhaustive pairwise scans). In this transformation, we exclude the

query itself, otherwise an item would appear as its own neighbor.

In our implementation, the Annoy index is built with 10 random-projection trees (Spotify’s recom-

mended default [37]) and, at query time, the top-50 nearest neighbors (k = 50) are retrieved per recipe

to balance lookup speed against recommendation quality.

Precomputed Similarity Table & Aggregated Recommendations

After obtaining the top-k (k = 50) similar recipes through Annoy, we store these relationships in a

precomputed similarity table. This table logs each recipe’s identifier along with the identifiers and simi-

larity scores of its most similar recipes. At runtime, when a user accesses their recommendations, the

system aggregates the similarity scores from all saved recipes and produces a ranked list of sugges-

tions, filtering out recipes the user has already saved to ensure fresh recommendations.

Loader Performance & Verification

Due to the large volume of data (around 10 million rows), we optimized the loading process by

converting the JSON data to CSV. This approach reduced the data load time from hours to minutes.

Verification queries (using tools like DBeaver) were then run to confirm the row counts and detect any

anomalies, ensuring that the similarity table accurately reflects the precomputed relationships.

3.4.3. Web Module

Frontend Operations and User Experience

Frontend Architecture and Component Organization

The frontend is developed using React’s modular structure, which promotes the reuse of compo-

nents and eases maintenance. The entry point of the application is an App.jsx file, where React Rou-

ter is used to define distinct routes for major pages such as login, registration, main dashboard, recipe

detail, kitchen management, shopping list, and various recommendation views. This method ensures

smooth transitions across pages and effective state management via React hooks and context. For

example, React hooks [39] are extensively utilized to manage state and side effects within the appli-

cation. In many components, the useState hook is applied to track local state such as toggling a modal

window open or closed when a user clicks a button. Similarly, the useEffect hook is used to handle side

effects like fetching recipe details when a component mounts or refreshing the list of ingredients after

an update, ensuring that the UI always displays the most recent data.

The code structure promotes reusability by centralizing components and utilities. The sidebar is a

shared component that consistently displays the application’s name and key navigation links, while the
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authentication fetch utility handles secure API requests.

Dynamic User Interface and Interaction

The Web Module enhances user engagement with a dynamic and responsive design. Every

component is styled using dedicated CSS files that introduce modern “glass” effects and responsive

layouts, allowing the interface to adapt to a variety of device sizes. Interactive elements including mo-

dals, forms, and auto-complete features for ingredient and tag searches are integrated into each page.

Recipe lists are paginated using a simple next/prev controls, ensuring fast, manageable browsing. [40]

Responsive Routing and Client-Side State Management

The application adopts a single-page application (SPA) model, taking full advantage of React

Router for client-side routing. This minimizes the need for full page reloads, allowing users to transition

quickly between the recipe detail view, main recommendations, and the kitchen view. Additionally, client-

specific data such as search terms, active filters, and sorting options are stored locally (using tools

like localStorage), ensuring that user preferences persist across sessions. This approach reduces

server round-trips and enhances the overall responsiveness and continuity of the user experience.

Backend Integration and Performance

Integration with Django Backend and API

A significant strength of the Web Module lies in its seamless connection with a Django-powered

REST API. The module uses a custom function, fetchWithAuthentication, which secures every API

call by attaching JSON Web Tokens (JWT). This function also manages token refreshes automatically

when tokens expire [41], ensuring uninterrupted and secure interactions.

Performance Optimization and Search Functionality Enhancements

Performance was an important goal for us. To meet this goal, both general and tag-based search

functionalities underwent significant optimization. Initially, substring searches were handled via the icon-

tains operator ; however, to enhance performance, these were replaced with exact-match lookups using

the __contains operator. This change leverages PostgreSQL’s Generalized Inverted Index (GIN) [42]

on the array fields storing tags, dramatically reducing search latency. Additionally, a dedicated tag sug-

gestion endpoint utilizes PostgreSQL’s array and text search functions employing operators like unnest

and istartswith to provide rapid and accurate auto-complete suggestions, thereby improving both the

speed and relevance of the search results.

Security and Unified System Integration

Security, Error Handling, and User-Centric Feedback

Security is a core focus of the Web module. By integrating with Django’s authentication system,
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every client-server interaction is safeguarded through the use of JWTs. The AuthenticationFetch.jsx

file manages this process, including automated token refreshes to gracefully handle expired tokens. In

addition, error checking is built into every API call so that if issues arise, such as failing to save a

recipe or add an ingredient, the user is immediately informed via on-screen alerts, ensuring clear and

user-friendly feedback.

Final Integration and Visual Consistency

The final Web module merges functionality with a clean, consistent design. The integration of React

components and Django APIs results in a front-end that is interactive, secure, and responsive. Each

element (from page layouts to modal dialogs) is designed for clarity and ease of use. Dedicated CSS

ensures consistent visual cues that support smooth, scalable data flow and reinforce a cohesive visual

identity throughout the application.

Visual Overview of Core Recommendation Flows

Figure 3.5 shows our “General search” interface, complete with the search bar, active filter chips

(e.g., rating, time, ingredient limits), and nutrition sidebar controls. These dynamic controls let users

instantly refine and explore hundreds of recipes. This screenshot belongs to one of our core recom-

mendation flows, alongside “Recipes Based on Your Kitchen” in Figure B.3 and “Saved-Based recom-

mendations” in Figure B.4.

Figure 3.5: General search.

A complete set of additional UI screens is available in the Appendix, including: the Login page

(Figure B.1), the Register page (Figure B.2), the Recommendations page (Figure B.5), the My Kitchen

page (Figure B.6), the Shopping List page (Figure B.7), and the Saved Recipes page (Figure B.8).
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Experiments and Results

In this chapter, we present the design and execution of our user study, conducted to evaluate Recipe-

Time’s core features and overall usability and present key conclusions drawn from participant feedback.

4.1. User Study

In this section, we describe the user study conducted to evaluate the usability of RecipeTime. We

outline its objectives and methodology. Specifically, we sought to determine whether prospective users

would actually use our recipe recommendation app, to assess the perceived usefulness of its recom-

mendation features, and to gather actionable feedback and suggestions from a diverse sample.

We recruited sixteen native Spanish speakers through personal networks, university contacts, and

community connections to ensure a diverse sample and accurate comprehension of the visual content.

All participants were at least eighteen years old and possessed basic English level, but to facilitate

comprehension the questionnaire was presented in Spanish. Consequently, all graphics and chart an-

notations appear in Spanish, even though the narrative and analysis below are provided in English for

broader accessibility.

Each participant attended a single session on our computer while filling a Google Form on their pho-

nes. After providing informed consent, users completed an initial questionnaire capturing demographic

data (age range, gender), cooking frequency, self-rated skill level, motivations for using a recipe appli-

cation, and criteria for selecting recipes. Next, they were guided through a standardized series of tasks

in RecipeTime: account registration and login, adding ingredients to “My Kitchen” and to the shopping

list, exploring recipe recommendations based on both kitchen contents and saved recipes, performing

a filtered search, viewing recipe details, saving and deleting recipes. After each task, participants rated

its difficulty on a five-point scale and noted any confusing or unexpected behavior.

Upon completing the guided tasks, users provided global ratings for ease of use, navigation clarity,

overall satisfaction, recommendation utility, and visual aesthetics, followed by open-ended questions

about unclear concepts and desired improvements. Finally, they completed 10 statements for the Sys-

tem Usability Scale (SUS) to yield a standardized usability score. All responses were anonymous to
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encourage sincere feedback. The sections that follow summarise the results for each questionnaire

item and present the most relevant charts.

4.1.1. Consent

Before beginning the survey, we asked all participants to confirm that they had read and understood

the study information and agreed to participate freely, voluntarily, and anonymously. As shown in Figure

4.1, all 16 respondents (100 %) checked the consent box, showing that every participant gave informed

consent before continuing.

Figure 4.1: Consent bar chart.

4.1.2. Demographics & Cooking Background

We collected basic demographic and participants’ own assessment of their cooking background

from all 16 participants. Figures 4.2 – 4.5 summarize their profiles:

Age Distribution

Half of our sample fell into the youngest bracket, with 50 % aged 18–29. Another 12.5 % were

between 30–47 years, and 37.5 % ranged from 48–65 years old. No one reported being over 65. As

shown in Figure 4.2 our participants primarily consisted of younger and middle-aged adults.

Figure 4.2: Age distribution.
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Gender

A slight majority of respondents identified as male (56.3 %), with the remaining 43.8 % identifying as

female. No one selected “Other” or “Prefer not to say.” As shown in Figure 4.3, the group was reasonably

balanced but leaned towards male.

Figure 4.3: Gender distribution.

How Often They Cook

Cooking frequency varied (see Figure 4.4): 6.3 % never cook, 12.5 % cook rarely, 37.5 % cook so-

metimes, 25 % cook frequently, and 18.8 % cook very frequently. This mix indicates both occasional

home chefs and regular cooks in our sample.

Figure 4.4: How often they cook.

Self-Assessed Kitchen Skill

When asked to rate their own kitchen level, 37.5 % described themselves as beginners, 43.8 % saw

themselves as intermediate cooks, and 18.8 % rated their skills as advanced. As shown in Figure 4.5,

the majority of users consider themselves at least moderately skilled in the kitchen.

Figure 4.5: Kitchen skill.
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4.1.3. Motivations & Preferences

Motivations for Using a Recipe Recommendation App

We asked participants to select up to three reasons why they would use a recipe recommendation

app. As shown in Figure 4.6, the overwhelming majority (93.8 %) chose “Save time on meal planning”,

making it by far the top motivation. The next most cited reasons were “Optimize use of ingredients

I already have” (68.8 %) and both “Try new recipes” and “Learn to cook better” at 50 % each. Over

one-third (37.5 %) indicated they wanted personalized suggestions, and no one selected “None.”

Figure 4.6: User motivations for using a recipe recommendation app.

Interest in Ingredient-Based Recommendations

We also asked whether users would like recipe suggestions based on the ingredients they have at

home. As shown in Figure 4.7, 15 out of 16 participants (93.8 %) said yes, they would welcome that

feature, while only one respondent (6.2 %) preferred to search on their own. This strong enthusiasm

confirms that ingredient-driven recommendations align closely with user needs.

Figure 4.7: Interest in ingredient-based recommendations.

Factors Influencing Recipe Choice

Participants were also asked which factors they consider when choosing a recipe (multiple selec-

tions allowed). As shown in Figure 4.8, 100 % of respondents rank cooking time as a key criteria,

followed closely by ease of preparation (93.8 %). Strong user reviews (“good ratings”) were important

for 75 %, while only 25 % cited number of ingredients, number of steps, or familiarity with the dish as

decision factors. This indicates that users choose recipes based more on quick, easy preparation and

good reviews rather than on complexity or familiarity.
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Figure 4.8: Recipe Selection Criteria.

4.1.4. Guided Task Walkthrough

In this section, all participants followed the same step by step path through the core features of

RecipeTime, allowing us to observe how different users tackled identical tasks under identical condi-

tions. After each task, beginning with account registration and continuing through kitchen setup, recipe

search, filtering, and recipe detail. Respondents rated the difficulty on a 1 (“Very difficult”) to 5 (“Very

easy”) scale and noted any points they found confusing or unexpected. We will now examine each task

in detail, using numerical ratings alongside participants’ written feedback to give a clear view of overall

usability and to identify specific challenges at every step of the user journey.

Login and Register

For the first task, participants were asked to create a new RecipeTime account and then log in.

Most participants found registration and login effortless 100 % rated it “Very easy.” In the open respon-

ses, most either wrote “No” or left the question blank, and only one user suggested adding a “show

password” toggle to verify their entry. As shown in Figure 4.9, every participant selected the highest

usability score.

Figure 4.9: Login and register task.

My Kitchen

In the kitchen management stage, participants were asked to create a “Fruits and Vegetables” ca-

tegory in My Kitchen and add “avocado”, “banana”, and “melon””. The vast majority found this step

straightforward 81.3 % rated it “Very easy” and 18.8 % rated it “Easy.” When asked if anything was

confusing, 75 % (12 of 16) either left the field blank or said there were no issues. Only four users left

comments, each suggesting a different tweak: one asked for a better sort order in the ingredient search,

another that the ingredient slide originate directly from the name input box, a third requested support

for decimal quantities, and a fourth noted surprise at the number of similar ingredient options. Overall,
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kitchen setup was intuitive, with just a few minor interface refinements needed as seen in Figure 4.10.

Figure 4.10: My kitchen task.

My Shopping List

In the Shopping List step, participants were instructed to add three items to their list, mark one

as purchased, and then remove it. This proved straightforward: 75 % (12/16) rated it “Very easy” (5)

and the remaining 25 % (4/16) rated it “Easy” (4). Here again, only four participants left any comments,

suggesting for example, adding a legend to the table, making the checkbox more visually clear, providing

a filter for purchased items, or improving the search function. As shown in Figure 4.11, all ratings fell at

the top end of the scale, reflecting a uniformly simple experience.

Figure 4.11: My shopping list task.

Recommendations based on your kitchen

Participants then navigated to the Recommendations section, chose the “I want to use my own

ingredients” button and sorted results by the fewest ingredients.Ease remained high: 87.5 % rated it a

5 (“Very easy”) and 12.5 % rated it a 4 (“Easy”). When asked if anything was confusing or unexpected,

only two users left suggestions, one asked to move the Sort control below the main search bar, and

another recommended displaying scores with different colors. The rest either wrote “No” or left the field

blank. As shown in Figure 4.12, all difficulty ratings sit at the top end of the 1–5 scale.

Figure 4.12: Recommendations kitchen-based page.
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Save recipe

In the Save Recipe step, users were asked to select four recipes they liked and save them from

the current page. This action was nearly effortless: 93.8 % (15/16) rated it a 5 (“Very easy”) and the

remaining 6.3 % (1/16) rated it a 4 (“Easy”). When asked if anything was confusing or unexpected, the

majority reported no problems, and only one user suggested enhancing the rating display by using the

style Amazon uses with colored stars filled proportionally to the average score. As shown in Figure

4.13, all difficulty scores fall at the top end of the 1–5 scale.

Figure 4.13: Save recipe task.

Delete recipe

In the Delete Recipe step, users where asked to go to their saved recipes and remove one of their

choice. Most participants found deleting a recipe straightforward: 68.8 % (11/16) rated it a 5 (“Very

easy”), 12.5 % (2/16) a 4, and 18.8 % (3/16) a 3. The vast majority reported no problems, and only

four users left comments, each mentioning difficulty spotting or understanding the delete control and

suggesting a clearly labeled “Delete” button or familiar bin icon. In later conversations, participants who

use social media apps frequently said the removal gesture felt intuitive and natural, while those less

accustomed to such interfaces preferred an explicit delete button to confirm their action. As shown in

Figure 4.14, most ratings sit at the top end of the 1–5 scale.

Figure 4.14: Delete recipe task.

Recommendations based on user’s saved recipes

In the “Recipes Based on Your Saved Recipes” task, participants navigated to Recommendations,

selected the option “I want to see recipes I’m sure I will like,” and moved to page 2 to view new sugges-

tions. All 16 users (100 %) rated this step “Very easy” (5/5). When asked if anything seemed confusing

or unexpected, 7 out of 9 respondents (77.8 %) reported no problems, and only one user commented

pointing out that many similarity scores appeared as “100 %”. As shown in Figure 4.15.
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Figure 4.15: Recommendations saved-based page.

General Search

In the General Search task, users went to Recommendations, selected “I want to discover new re-

cipes,” searched for “pasta,” applied the filters (minimum rating 5, max time 45 min, max ingredients

15, vegan tag), adjusted nutritional values, and clicked the Search button. Ease remained high: 81.3 %

(13/16) rated it “Very easy” and 18.8 % (3/16) rated it “Easy.” When asked if anything was confusing or

unexpected, 45.5 % of respondents (5/11) reported no issues, and the others offered individual sugges-

tions. One asked for an explanation that filters require clicking “Add,” another wanted more filter options

to apply automatically as they type, a third proposed clearer drop down icons, a fourth suggested listing

example values for the tags, and a fifth recommended a combined nutrition filter rather than separate

ones. As shown in Figure 4.16, all difficulty ratings lie at the easy end of the 1–5 scale.

Figure 4.16: General search task.

Recipe Detail

In the Recipe Detail step, participants selected a recipe and had to find its reviews. The vast majority

found this straightforward 87.5 % (14/16) rated it “Very easy” and 12.5 % (2/16) rated it “Easy.” When

asked if anything was confusing or unexpected, half of respondents reported no issues (writing “No”

or leaving the field blank). The other five users offered feedback: one asked for a dedicated “Details”

button to access full review text, another pointed out that you must click the recipe title to open the

recipe detail, a third said all the text was in lowercase making it hard to read. One user commented that

they did not understand the names of the users that were already in the reviews, this is because the

dataset we used did not contain specific usernames, so IDs like user_1, user_2, etc, were assigned.

A fifth complimented the thoroughness of the reviews and the visual aspect of this page. As shown in

Figure 4.17, all difficulty scores sit at the top end of the 1–5 scale.
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Figure 4.17: Recipe detail task.

4.1.5. Post-Test Experience & Feedback

After completing the task walkthrough, we asked participants to reflect on their overall interaction

with RecipeTime. In this section, users rated key aspects of the app like ease of use, navigational

clarity, overall satisfaction, usefulness of recommendations, visual design, and clarity of the various

score metrics on a 1–5 star scale. They also indicated whether the Kitchen Score, Recipe Score, and

Similarity Score were clear, and were invited to share any further improvement ideas. Their responses

here (summarized in Table 4.1) provide a comprehensive view of the user experience and help pinpoint

areas for refinement before moving on to the formal SUS questionnaire.

Ease of use Clarity of navigation Overall Satisfaction Usefulness of recommendations Application aesthetics

4.94 5.00 4.94 4.69 4.88

Table 4.1: Post-test experience summary.

Ease of use

Participants found the app remarkably easy to use: 15 out of 16 respondents (93.8 %) awarded it

the maximum 5-star rating, and the remaining user gave it 4 stars (6.3 %). There were no ratings below

4, yielding an overall average for the ease of use score of 4.94 out of 5.

Clarity of navigation

Participants unanimously agreed that the app’s navigation was crystal clear: 100 % of respondents

(16/16) awarded it a 5-star rating, resulting in a perfect average score of 5.00 out of 5.

Overall Satisfaction

Participants expressed very high overall satisfaction with the app: 15 out of 16 respondents (93.8 %)

awarded it 5 stars, while the remaining user (6.3 %) gave it 4 stars. Resulting in an average rating of

4.94 out of 5.

Usefulness of recommendations Participants found the recipe suggestions highly valuable: 75 %

(12/16) awarded 5 stars, 18.8 % (3/16) gave 4 stars, and 6.3 % (1/16) rated it 3 stars. This led to an

average usefulness score of 4.69 out of 5.
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Application aesthetics

Participants rated the application’s visual design very highly: 87.5 % (14/16) awarded it 5 stars, and

the remaining 12.5 % (2/16) gave 4 stars. This resulted in an average aesthetics score of 4.88 out of 5.

Clarity of Scoring Metrics

We asked whether the Kitchen Score, Recipe Score, and Similarity Score were clear to users. As

shown in Figure 4.18, 87.5 % of participants (14/16) answered Yes, indicating they understood all three

metrics, while 12.5 % (2/16) answered No. Of those who found them unclear, one respondent commen-

ted that the Similarity Score was confusing, specifically, they were not sure how it was calculated or

how to interpret differences between values.

Figure 4.18: Clarity of scoring metrics.

Improvements for RecipeTime

Throughout the walkthrough, participants flagged many opportunities for refinement. The following

suggestions are additional ideas gathered in the final survey. Participants suggested adding more food

imagery (recipes and ingredient photos), an FAQ/help page for score definitions, an Easy/Pro mode

switch to simplify or expand metrics, a background music toggle, online availability, and small UI touches

such as nutrition emoticons.

Additional Feature Ideas

When asked what they would love to see in any recipe app, users again asked for photos of recipes,

plus ideas like a user profile section, recipe difficulty labels, the ability to add personal recipes, and an

interactive “fridge” view to filter by ingredient storage (e.g., clicking on the freezer to only show frozen

items).

4.1.6. Measuring Usability with the SUS

To quantify overall usability we employed the System Usability Scale (SUS). It was originally deve-

loped by John Brooke in 1986 and described in detail in his 1995 article [43]. Brooke designed SUS

to be a rapid, reliable, context-independent tool for assessing global usability. He derived its ten items
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by having expert users rate two prototype systems (one very easy and one very difficult) and selecting

the statements that produced the most extreme, consistent responses. By balancing five positively wor-

ded items (e.g., “I thought the application was easy to use”) with five negatively worded items (e.g., “I

found the application unnecessarily complex”), SUS counters response bias while covering key aspects

of effectiveness, efficiency, and satisfaction. Each statement is rated on a 5 point Likert scale from 1

(“Strongly disagree”) to 5 (“Strongly agree”), yielding a single score from 0–100 for overall usability.

Scoring Procedure:

After collecting each participant’s raw ratings, we converted them into a 0–4 range. For positively

worded items (1, 3, 5, 7, 9), we subtracted 1 from the raw score. For negatively worded items (2, 4, 6,

8, 10), we computed 5 minus the raw score. This produced ten adjusted scores between 0 and 4, which

we summed and then multiplied by 2.5 to yield a 0–100 SUS score.

Example calculation:

A participant’s raw responses might be (5, 1, 5, 1, 4, 1, 4, 2, 5, 1). After converting each item, the

adjusted scores become (4, 4, 4, 4, 3, 4, 3, 3, 4, 4). Summing these gives 37, and multiplying by 2.5

yields a SUS score of 92.5 for that participant.

Once all sixteen scores were calculated, we computed the mean and standard deviation to assess

central tendency and variation. Our sample produced an average SUS score of 92.5 with a standard

deviation of approximately 4.3. According to the adjective ratings developed by Bangor et al [44], our

average SUS score of 92.5 falls into the “Excellent” usability category, confirming that RecipeTime

delivers an outstanding user experience and a low SD in our case 4.3 means most participants gave

very similar scores, indicating a consistent experience across our sample.

4.2. Analysis of results

Integrating usability testing into our development process proved exceptionally enriching. Usability

is a complex discipline, where even minor interface details (often overlooked in early development) can

significantly affect user engagement. Keeping our users’ needs at the forefront and striving to make the

interface both intuitive and enjoyable has been essential to our application. We are proud to report that

this emphasis on user centered design yielded a System Usability Scale score of 92.5, an excellent

result that met our expectations and affirmed the application’s overall usability.

We found that observing actual users interact with RecipeTime was both highly informative and

deeply reassuring of our work. From the very first questions, we gained valuable insight into who our

users really are: their ages, cooking habits, and self-rated skill levels helped us assess whether Recipe-

Time should aim for a broad audience or target a specific demographic. Discovering that “saving time

on meal planning” and “optimizing ingredients I already have” were the top motivations of ours users to
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use a recipe application validated the importance of our “Fewer Minutes” sort option and the ingredient-

based recommendation feature. Likewise, offering users the ability to sort by Kitchen Score (maximizing

use of existing ingredients) or Recipe Score (minimizing additional purchases) proved directly aligned

with their needs.

The guided task walkthrough proved equally enriching for us. By breaking the experience into small,

focused steps, participants felt comfortable experimenting and offering creative suggestions. We ori-

ginally assumed that toggling a recipe in and out of the user’s saved recipes collection via the same

“Save” and “Saved” button (just like social media interactions with the “like” toggle) would feel intuitive

for both adding and removing items. However, during testing many participants hesitated when there

was no trash bin icon or an explicit “Delete” label. Younger participants completed this task with ease,

perhaps reflecting their familiarity with social media, while other users strongly preferred for a clearly

marked “Delete” button for removal. Similarly, the dark checkboxes in the shopping list, while aesthe-

tically pleasing, lacked sufficient contrast. We will replace them with lighter, more distinct controls to

improve clarity.

Toward the end, we invited participants to share their thoughts, allowing users to give suggestions

without limits for future development. Several participants requested a “Show Password” toggle on the

login screen, a dedicated FAQ explaining the metric Scores and the functionality behind the recom-

mendations, and the ability to “Delete All” purchased items in the shopping list with a single action, and

deployment of the application as an accessible online service. Others recommended to facilitate vie-

wing the recipe details by enlarging the area on recipe cards where you can click or adding a “Details”

button. More ambitious requests such as adding recipe imagery, personalized user profiles, difficulty

badges, an original soundtrack that embodies the app and plays softly in the background and a visually

interactive kitchen where users could click on the “fridge” for example and only see frozen ingredients.

We are very grateful for all the time and cooperation of all of the participants in our study, thanks to

them we collected incredible recommendations and user feedback that could be implemented in future

versions.
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Conclusions and FutureWork

5.1. Conclusions

This thesis aimed to reduce food waste and enable more efficient home cooking by delivering perso-

nalized recipe suggestions that balance taste, nutrition, and individual dietary restrictions. We wanted

to address a clear gap in the current recommender system landscape.

To bring this vision to life, we developed RecipeTime, a full-stack application featuring three comple-

mentary recommendation strategies. The Kitchen-Based Recommender identifies recipes that ma-

ke the most of ingredients you already have, cutting down on unnecessary purchases and spoilage.

Meanwhile, the Collaborative-Filtering Recommender leverages users’ saved recipes and the prefe-

rences of similar users to surface new dishes they are likely to enjoy, promoting culinary exploration.

The Filter-Driven Recommender offers fine-grained control through a variety of parameters like mi-

nimum rating, maximum preparation time in minutes, maximum number of steps, maximum number of

ingredients, chosen dietary tags (e.g., diabetic), and set nutritional thresholds (for example, capping

sugar at 50 g) enabling highly customized meal planning. Underlying these features is a rich dataset

dataset of over 180 000 recipes and 700 000 implicit user interactions, which has been instrumental in

enhancing both the quality and diversity of its recommendations.

Throughout development and informal user testing, RecipeTime demonstrated rapid response times

and users reported that the tailored suggestions streamlined their meal planning process. Leveraging

such a large, high quality dataset proved invaluable, yet we also uncovered several areas for refinement.

Unfiltered tag searches can become sluggish when scanning 180 000+ recipes. Dataset limitations pre-

vented the addition of useful filters like recipe difficulty or explicit “healthy” labels. We recognized that

the absence of recipe photographs detracted from the user experience and may have limited engage-

ment and diminished visual appeal. Additionally, because of time limitations, RecipeTime’s scope was

confined to recommending existing recipes rather than allowing users to contribute their own. Although

we endeavored to create a polished, intuitive interface, users who are long habituated to the seam-

less experiences of large commercial platforms held high expectations. Nevertheless, every participant

found RecipeTime useful and was able to navigate it with ease.
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In completing this project, I was able to consolidate the wide array of skills I acquired throughout

my degree from academic research and dataset curation to backend API development and frontend

integration. The end-to-end system design process strengthened my expertise in data engineering,

machine learning, and user centered design. Above all, RecipeTime represents a tangible step toward

more sustainable food practices by encouraging users to cook with what they already own and thereby

reduce waste. It is my hope that this work contributes meaningfully to both home cooking efficiency and

the broader goal of planetary stewardship.

5.2. Future Work

Future work could explore automated inventory tracking by letting users upload grocery receipts or

photos to keep ingredient quantities up to date. Uploading a receipt [45] or a simple photo [46] of kitchen

shelves would update which items are on hand and how much remains. A new recommendation mode

could then generate full recipes based entirely on the current stock, optimizing for taste, nutrition, and

minimal waste.

To create a true cooking community, RecipeTime could introduce user profiles that let cooks sub-

mit their own recipes and then rate, review, and upload photos of the dishes they make. During reci-

pe submission, contributors would complete required fields like tagging with difficulty level, healthy or

allergy-friendly labels, and child-friendly or adult-only labels so every recipe is easy to discover and well

matched to individual needs. App messaging and discussion forums would give cooks a space to ask

questions, swap tips, and connect over a shared love of cooking [47].

Additional application improvements could involve an integrated meal planner calendar, allowing

recipes to be assigned to specific days or mealtimes and autommatically generate shopping lists [48].

Accessibility features such as text to speech recipe narration for hands free cooking and themes de-

signed for users with color blindness would ensure that everyone can interact comfortably. A dedicated

section could include an embedded Google Map to pinpoint nearby supermarkets and, when availa-

ble, display the price, helping users plan shopping trips more efficiently. Alongside that, an “Insights &

News” panel could curate timely articles on sustainable eating, food waste reduction tips, and seasonal

produce guides, raising awareness and inspiring users to cook and shop more responsibly [49].

Future studies could assess graph-based, transformer-driven, or context-aware recommendation

approaches to identify which best serve new users, changing dietary needs, and sustainability goals.

Finally, presenting different feature designs to separate user groups and analyzing their choices could

provide quantitative data on RecipeTime’s real world impact on reducing food waste, improving nutrition,

and boosting overall satisfaction [50].
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Appendices





A
Code Fragments

Code A.1: Applying the ALS algorithm from the implicit library

1 def train_als_model(sparse_ratings, factors=64, iterations=15, regularization=0.1):
2 """
3 Train an ALS model using the implicit library to obtain low-dimensional embeddings.
4 Returns the trained ALS model.
5 """
6 # The implicit library expects a (users x items) matrix.
7 # Our matrix is (recipes x users), so we transpose it.
8 model = implicit.als.AlternatingLeastSquares(
9 factors=factors,

10 regularization=regularization,
11 iterations=iterations,
12 calculate_training_loss=True
13 )
14 model.fit(sparse_ratings.transpose())
15

16 return model
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Code Fragments

Code A.2: Building an Annoy Index

1 def build_annoy_index(item_factors, n_trees=10):
2 """
3 Build an Annoy index from the given item embeddings (item_factors).
4 item_factors shape: (num_recipes, embedding_dim)
5 Returns the built Annoy index.
6 """
7

8 num_items, dim = item_factors.shape
9 ann_index = AnnoyIndex(dim, 'angular')

10

11 for i in range(num_items):
12 ann_index.add_item(i, item_factors[i])
13 if i > 0 and i % 10000 == 0:
14

15 ann_index.build(n_trees)
16

17 return ann_index

Code A.3: Retrieve top k nearest neighbors

1 def compute_topk_similarities_annoy(ann_index, recipe_ids, k=200):
2 """
3 Compute the top-k similar recipes for each recipe using the Annoy index.
4 Returns a dict: recipe_id -> list of (similar_recipe_id, similarity_score).
5 """
6

7 num_recipes = len(recipe_ids)
8 top_k_similarities = {}
9

10 for i in range(num_recipes):
11 # get_nns_by_item returns indices of the nearest neighbors
12 neighbor_indices = ann_index.get_nns_by_item(i, k + 1)
13

14 neighbor_indices.remove(i)
15

16 similar_list = []
17

18 for neighbor_idx in neighbor_indices:
19 dist = ann_index.get_distance(i, neighbor_idx)
20 sim_score = 1.0 -dist
21 similar_list.append((int(recipe_ids[neighbor_idx]), sim_score))
22

23 top_k_similarities[int(recipe_ids[i])] = similar_list
24

25 return top_k_similarities
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B
Web Application

B.1. Authentication

Figure B.1: Login page.

Figure B.2: Register page.

49



Web Application

B.2. Recommendations Flows

Figure B.3: Recipes based on your kitchen page.

Figure B.4: Recipes based on your saved recipes page.
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B.3. User Personal Space

B.3. User Personal Space

Figure B.5: Recommendations page.

Figure B.6: My kitchen page.
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Web Application

Figure B.7: My shopping list page.

Figure B.8: Saved recipes page.
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