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Abstract Location-Based Social Networks stimulated the rise of services such
as Location-based Recommender Systems. These systems suggest to users
points of interest (or venues) to visit when they arrive in a specific city or
region. These recommendations impact various stakeholders in society, like the
users who receive the recommendations and venue owners. Hence, if a recom-
mender generates biased or polarized results, this affects in tangible ways both
the experience of the users and the providers’ activities. In this paper, we focus
on four forms of polarization, namely venue popularity, category popularity,
venue exposure, and geographical distance. We characterize them on different
families of recommendation algorithms when using a realistic (temporal-aware)
offline evaluation methodology while assessing their existence. Besides, we pro-
pose two automatic approaches to mitigate those biases. Experimental results
on real-world data show that these approaches are able to jointly improve the
recommendation effectiveness, while alleviating these multiple polarizations.
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1 Introduction

Artificial Intelligence (AI)-based systems are known to typically perform worse
for minorities and marginalized groups (Buolamwini and Gebru 2018; Koe-
necke et al. 2020; Obermeyer et al. 2019). This lower effectiveness might have
a concrete impact on the users interacting with these systems, such as alloca-
tional and representational harms (Jacobs et al. 2020; Blodgett et al. 2020).
One of the research areas where AI-based systems are commonly used and
where the analysis of these biases might be particularly relevant is the recom-
mendation domain. Recommender Systems (RSs) are software tools that help
users finding relevant items. Due to their ability to adapt to users’ needs, they
have been applied in various disciplines (Ricci et al. 2015). As such, they are
one type of AI technique that is being increasingly used nowadays, and hence,
may affect society as a whole by amplifying existing biases or guiding people’s
decisions. In fact, RSs are known to be multi-stakeholder environments (Ab-
dollahpouri et al. 2019a), since they affect multiple actors in a direct way,
mainly the users receiving the recommendations (consumers) and those be-
hind the recommended objects (providers). Because of that, research on bias
analysis and fairness measurements is needed; in particular, specific defini-
tions, dependency variables, and mitigation approaches beyond those already
studied for general Machine Learning (Zehlike et al. 2020).

Tourism is a domain where the needs of consumers and the services offered
by providers naturally meet in the real world. In the tourism industry, travel
guides/blogs have always been used to organize trips. However, while travel
portals and travel guides tend to focus on the most popular places (which can
be useful in many cases), recommendation algorithms should also offer users
more novel recommendations, to provide them satisfying experiences (Massimo
and Ricci 2022). For this reason, tourism recommendation, where AI models
automatically support decision-making processes, clearly impacts on society.
Hence, it is an area that is particularly sensitive to these effects and biases.
Several recommendation tasks related to tourism have been addressed, such as
tour recommendation to groups (Herzog and Wörndl 2019), trajectory recom-
mendation (Chen et al. 2016), suggestion of travel packages (Benouaret and
Lenne 2016), etc. Probably, the most important recommendation task related
to tourism is the Point-Of-Interest (POI) or venue recommendation problem,
which focuses on suggesting to users new places to visit when they arrive in a
city (Zhang and Chow 2015; Liu et al. 2014). The POI recommendation prob-
lem is usually defined upon data stored in Location-Based Social Networks
(LBSNs) (Doan and Lim 2019). These social networks allow users to check-in
in venues; thanks to these check-ins, platforms such as Foursquare can provide
services to the users, like the possibility to share information between them,
together with venue search and/or recommendation. At the same time, based
on reviews, ratings, and venue check-ins available in LBSNs, users decide what
to buy or consume and where to go. However, generating recommendations in
LBSNs introduces new challenges with respect to traditional recommendation,
such as different contextual dimensions (temporal, geographical, social, and so
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on), and a higher sparsity on the user preferences (Li et al. 2015; Wang et al.
2013; Liu et al. 2017; Kapcak et al. 2018). From now on, we will refer to RSs
that operate in LBSNs as Location-Based Recommender Systems (LBRSs).

In this context, it is critical to assess the extent to which LBRSs have a
concrete impact on the tourism domain as a whole. Besides the users accept-
ing the recommendations (the consumers), whose experience in a city depends
on these suggestions, the business of venue owners/managers (the providers)
strongly depends on them. Hence, we must think of properties of a RS that go
beyond accuracy, to provide equitable suggestions. Thus, RSs might be polar-
ized towards certain undesired properties (e.g., by recommending only popular
items) and this would concretely impact the involved stakeholders in different
ways. In the end, not exposing the full catalog of candidate venues to the users
might not be fair from a business perspective (Wasilewski and Hurley 2018)
and may also lead to a lack of novelty and diversity in the recommendations.
As a consequence, the most widely known type of polarization in recommender
systems is towards item popularity, which means that only a subset of popular
items is recommended to the user. Polarized recommendations towards popu-
lar venues would worsen user experience, since they might get too crowded, and
it might also strengthen inequalities between venue owners/managers. Venue
category can also be characterized by a certain popularity, which can impact
POI recommendation and society at a broader (and probably more dangerous)
level. Indeed, users might not be recommended possibly interesting but unpop-
ular categories of POIs (thus probably ignoring their fine-grained preferences)
and the owners of an entire sector/type of business might be affected as a whole
by it. Item popularity may also affect the exposure of the venues, since pop-
ular venues are always ranked in higher positions. Hence, these venues would
increase their chances of being noticed and selected by the users (Singh and
Joachims 2018), while other interesting items may go unnoticed by the user
(exposure bias). Finally, a geographical polarization towards far away or close
POIs with respect to those the user is currently visiting, might ignore their
preferences and previous interactions. This polarization would affect the trust
of the users on the recommender system (and, again, their experience) and
impact owners of more relevant venues. The problem of under-recommending
and under-exposing providers is well known in the recommender systems lit-
erature (Mehrotra et al. 2018), but to the best of our knowledge, it has never
been studied for LBRSs.

It should be clear that polarization might be related to the concept of algo-
rithmic bias, which has been widely studied in recommender systems (Jannach
et al. 2015; Belloǵın et al. 2017; Boratto et al. 2019; Abdollahpouri et al. 2017;
Adamopoulos et al. 2015; Adomavicius et al. 2014; Ekstrand et al. 2018; Guo
and Dunson 2015; Jannach et al. 2016). Algorithmic bias assumes that RSs
reinforce a previously existing bias in the data. While a pre-existing bias might
be the cause of polarization, our focus is at a societal level, to study the impact
of polarization for the involved stakeholders. In other words, it does not really
matter in the context of this work if a venue is popular in the recommenda-
tions because it already was or because the system made it popular. Heavily
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polarized recommendations have a negative impact on tourism stakeholders,
so we study these phenomena, without any assumption of the prior distribu-
tion of the data. To summarize, in this work, we use the term polarization
to quantify to what extent an algorithm deviates from what it is observed in
the training data1. We use the term bias to describe, in a more generic way,
the inclination of an algorithm to go towards polarization. As our results will
show, in LBRSs, polarization is a phenomenon that appears independently of
how the data were generated. This, in particular, includes cases where data is
biased towards some algorithms (such as popularity) or sensitive features of
users (gender or race) or items (higher advertising budgets).

In this work, we characterize the four previously mentioned forms of po-
larization (i.e., towards venue and category popularity, venue exposure, and
geographical distance) through metrics that have not been used before. Then,
we assess if the use of check-ins to capture the interactions of the users with
a LBSN to produce recommendations may lead to polarized suggestions from
these perspectives. To do this, we consider an evaluation methodology that
mimics the real world, by using a temporal split of the user check-ins. We then
compare different families of recommender systems to inspect these forms of
polarization. In order to show to what extent a recommender might be affected
by different forms of polarization, it is useful to characterize these phenomena
independently. However, at the same time, mitigating these forms of polariza-
tion separately would not be adequate, since the objective is to produce rec-
ommendations that are as non-polarized as possible (regardless of the type of
polarization). As previously mentioned, each polarization affects stakeholders
in different and negative ways; hence, dealing only with a form of polarization
would still lead to negative outcomes. For this reason, we propose two forms
of mitigation based on the concept of hybrid recommendation (Burke 2002)
and re-ranking (Abdollahpouri et al. 2019b). Both approaches will allow us to
deal with multiple forms of polarization at the same time by combining the
outcomes of different recommenders.

2 Background and related work

2.1 Recommender Systems

The purpose of a Recommender System is to provide recommendations of
different types of items to a particular user by analyzing their interests and
tastes (Ricci et al. 2015). These items vary considerably depending on where
we apply the recommender (e.g., movies, books, online dating, businesses, etc).
This wide variety of applications has led to the development of a large num-
ber of different recommendation techniques. The most extended ones are the
content-based models (de Gemmis et al. 2015), which exploit the features of

1 Note that polarization cannot be computed in an absolute way as no ground truth is
available. As a surrogate, we assume the observed interactions in the system (i.e., training
data) represent, to some extent, the target distributions against which we want to compare.
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users and items to make the recommendations, and the collaborative-filtering
approaches, that can be divided into two different families. The first of them,
memory-based or k-nn methods (Ning et al. 2015), compute similarities be-
tween users and/or items to build recommendations. The second family, known
as model-based algorithms (e.g., classic matrix factorization models or more
recent proposals based on neural networks) (Koren and Bell 2015), uses the
information of the interactions between the users and items in order to create
a predictive model. Finally, another popular technique in the area are hybrid
approaches. These methods combine different types of algorithms to allevi-
ate the possible drawbacks that each recommender may have independently
(Burke 2002).

Regardless of the recommendation algorithm, normally all of them have
to deal with a fundamental problem: sparsity, that is, the ratio between the
actual number of interactions made by users on items in the system and the
potential number of interactions considering those users and items. Generally,
this sparsity is severe, being common to work with datasets with a sparsity
higher than 97% (i.e., only 3% of the possible information is available to es-
timate the recommendations). At the same time, in classical recommendation
(e.g., movies) researchers usually make use of the ratings that the users gave
to the items explicitly (generally a score between 1 and 5). However, in other
recommendation domains such as web, music, or Point-Of-Interest recommen-
dation, there might not be ratings available, but rather the number of times a
user has visited/consumed an item (as in the Foursquare dataset used in this
paper).

2.2 Location-based recommender systems

While POI recommendation has the same goal as traditional RSs, there are
aspects that make LBRSs different. First, the sparsity in these domains is
considerable; for example, the densities, i.e., the inverse of sparsity, of the
MovieLens20M and Netflix datasets are 0.539% and 1.177%, respectively. On
the other hand, the Foursquare dataset we use in our experiments shows a den-
sity of around 0.0034%. Second, the use of one-sided or one-class information,
where LBSNs normally only record positive values (check-ins) indicating that a
user has visited a venue. Besides, users may check-in the same venue more than
once, something that it is not considered in the traditional recommendation.
And third, and more importantly, venue recommendation is highly affected
by geographical, temporal (Sánchez and Belloǵın 2022), and sometimes even
social (user friends) (Gao et al. 2018) influences. The former is possibly the
most critical aspect to consider in LBRSs, as it is usually assumed that users
prefer to visit venues that are close to each other (Miller 2004). That is the
reason why existing algorithms have incorporated geographical influence for
generating recommendations (Liu et al. 2014; Ye et al. 2011; Lian et al. 2014).

Each model incorporates these influences differently, and although there
are a large number of LBRSs (see Liu et al. (2017) for an experimental survey
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of the state-of-the-art models), many of them use traditional recommendation
techniques. For example, Matrix Factorization (MF) approaches are used in
the IRenMF model (Liu et al. 2014), which also takes into account the neigh-
bor POIs of the target one by distance and uses a clustering algorithm to
group all the POIs to model the geographical influence. Similarly, the GeoMF
method (Lian et al. 2014), which uses two additional matrices, one to model
the user activity areas by dividing the geographical space in a set of grids and
the other to represent the influence of the POIs, and the LRT algorithm (Gao
et al. 2013), which models the temporal component by factorizing the check-in
matrix for every hour in a day. User-neighborhood approaches are also used in
some LBRSs, like the USG model (Ye et al. 2011), which computes user similar-
ities based on their check-in activities and combines them with the probability
of visiting the target venue. LORE (Zhang et al. 2014) and iGLSR (Zhang and
Chow 2013) are two other user-neighborhood approaches, which compute the
similarities based on the distance of the users’ residences, combined with the
geographical influence modeled using Kernel Density Estimation (KDE).

2.3 Realistic evaluation in Recommender Systems

When evaluating recommendation quality in an offline setting, the RSs liter-
ature usually considers a random split with cross-validation methods to avoid
the overfitting problem (Said et al. 2013). However, a RS should be evaluated
as realistically as possible, not knowing anything about future interactions,
to avoid obtaining unrealistic results and avoid data leakage (Kaufman et al.
2012).

Because of this, the community is slowly shifting the offline evaluation
towards using temporal splits, where the recommendation algorithms should
predict the present (or, actually, future) user interactions based on their past
activity (Campos et al. 2014). However, different strategies may arise for per-
forming such a temporal split. We can split by selecting a percentage of in-
teractions to use in the training/test splits. A common approach would be to
select the 80% of the oldest interactions to build the training set and the rest
would form the test set. Other strategies would be to choose a timestamp,
so as to use all interactions that happened after that timestamp for testing
the recommenders. In alternative, one can order the interactions for each user
separately and assign the most recent ratings of each user to the test set.

Each of these strategies has advantages and disadvantages in terms of the
characteristics of the training/test splits derived and how close they represent
real-world scenarios. Based on these descriptions, the most realistic protocols
would be those that allow for a training set temporally separated from the
test set, which can be achieved by either using a common splitting timestamp
for the entire dataset or by selecting a percentage of the data according to the
moment of interaction. This conclusion is in line with recent analyses made
by the community regarding data leakage (Meng et al. 2020; Ji et al. 2021).
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It is worth noting that, even if some of the existing POI recommenders
perform a temporal split (Li et al. 2015; Zhang et al. 2014; Zhang and Chow
2015), to the best of our knowledge there is no thorough research about the
effects of this type of evaluation split on typical recommendation approaches
in this domain.

2.4 Impact of Recommender Systems

As described before, RSs analyze users’ preferences in order to make person-
alized recommendations to users. However, it has been observed that some-
times the recommendations of the algorithms can be discriminatory for differ-
ent groups (e.g., by ethnicity, age, occupation, or gender) (Edizel et al. 2019;
Sánchez and Belloǵın 2019; Weydemann et al. 2019). This effect can also cause
certain types of users to receive the same type of items, isolating them accord-
ing to these biases (the so-called filter bubble (Pariser 2011)). This was one
of the main reasons to propose metrics in the field so that we could measure
complementary dimensions beyond accuracy, such as novelty and diversity
(Castells et al. 2015).

One of the most recognizable biases in RSs that has received much at-
tention in recent years is the popularity bias, which shows how the recom-
mendations produced are generally biased (or polarized) to the most popular
items, affecting negatively the novelty and diversity of the suggestions. Some
researchers have proposed different mechanisms to palliate this problem; for
example, Abdollahpouri et al. (2017) presented a regularization framework to
retrieve long-tail items with a small performance loss in ranking evaluation,
whereas Abdollahpouri et al. (2019b) proposed re-ranking techniques to reduce
the popularity bias in recommendations. Alternatively, Belloǵın et al. (2017)
defined two new split protocols to counter the effect of the popularity bias.
Additionally, recent work has focused on the theoretical impact of popularity
bias on the algorithms (Cañamares and Castells 2017, 2018). In any case, this
is an issue that has been studied in different domains (Jannach et al. 2015;
Boratto et al. 2019). Our goal is to go beyond the assessment/reinforcement
of pre-existing polarized data recorded in a system or biases in algorithms, to
study more broadly polarization in POI recommendation.

Another related topic associated with the societal impact of recommen-
dations on the users is algorithmic fairness. A recent work by Weydemann
et al. (2019) studied to what extent LBRSs can provide suggestions to groups
characterized by sensitive features. More recently, Sánchez and Belloǵın (2021)
analyzed the recommendations of two different groups of users using LBRSs,
i.e., locals and tourists, concluding that the latter suffers from a greater popu-
larity bias. As we introduced in our motivation, polarized recommendations do
not impact only consumers, but also providers (venue owners). In this work, we
study a broader phenomenon, which complements and does not overlap with
the studies on algorithmic fairness (indeed, we are neither considering demo-
graphic information of the users/providers, nor notions of similarity between
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them), by providing insights on the polarization generated by different algo-
rithms. Hence, no direct comparison is possible and the connection between
this study and algorithmic fairness is left as future work.

3 Polarization Characterization

Given the peculiarities of the POI recommendation problem with respect to
the traditional recommendation, it is important to control which forms of po-
larization occur in this domain. In this section, we explain how to measure
different forms of polarization: towards popular venues (Section 3.1) and cat-
egories (Section 3.2), regarding the venue exposure (Section 3.3), and with
respect to the geographical distance (Section 3.4) between the user and the
recommended venues. At the end of this section (Section 3.5), we also show
several toy examples to better understand the proposed polarization metrics.

3.1 Measuring venue popularity polarization

From the multiple definitions that “novelty” has in the RSs and Information
Retrieval areas, one of the most commonly used definitions is that something
is novel when it is not popular (Gunawardana and Shani 2015). To measure
novelty, Vargas and Castells (2011) defined the Expected Popularity Comple-
ment (EPC) metric, by computing the number of users who rated that item,
divided by the number of users in the system; then, they proposed to subtract
that value to 1, so that values closer to 1 indicate that the items are more
novel (less known by the users in the systems). A similar metric called Inverse
User Frequency (IUF), defined in Castells et al. (2015) measures novelty in a
similar way, but considering the logarithm between the user that rated that
item and the total users in the system. However, these metrics are too sensi-
tive to the actual number of ratings, or interactions, in general, received by
each item. For instance, if an algorithm always returns the same top-n items
but the item distribution is too skewed, we may obtain similar novelty values
between that algorithm and another one that recommends more items which
have been rated by a similar number of users.

Because of this, in this work, we analyze the polarization towards popular
venues by analyzing the popularity distribution derived from each recommen-
dation algorithm. In this way, we can compare whether some algorithms are
more or less tailored to return more popular items. Moreover, we propose a
metric that summarizes such distribution in an empirical value for each algo-
rithm; however, since we cannot assume the inherent distribution of the data,
there is no general skewness function to measure it (such as kurtosis, which
assumes data is normal); because of that, we resort to empirical metrics aware
of the domain we analyze.

Definition 1 (Venue Popularity Polarization) The polarization of a rec-
ommendation model rec towards popular venues is the probability that a more
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popular venue is ranked higher than a less popular one, when considering the
top-n items recommended to a user.

Our proposed metric to characterize the polarization of a model towards
popular venues is computed by measuring the area under the curve generated
by the cumulative distribution of the recommended items by rec; this is done by
approximating the analytical integral by the trapezoidal rule. More specifically,
given the unique set of items R(rec, n) returned by recommender rec up to
cutoff n, i.e., the length of the recommendation list, for all users, we propose
the following formulation to measure the venue popularity polarization:

PopI@n(rec) =
1

2|m|

|m|∑
k=2

(
F

R(rec,n)
pop (xk−1) + F

R(rec,n)
pop (xk)

)
(1)

where |m| are the items in the training set, ordering them by the number of
times they have been recommended by the recommender rec. FR

pop(x) mea-

sures the cumulative popularity distribution2 for an item x, depending on
whether it belongs to R, in such a way that it is updated only for those items
contributed by the corresponding recommender used to create such list R. Fi-
nally, to measure the popularity of a venue, we count the number of users who
visited it divided by the total number of users that visited all recommended
venues. By definition, the larger the area, the more uniform (less skewed) the
distribution is. Hence, this metric produces lower values for recommenders
polarized towards popular items, which is bounded in [0, 1] thanks to the
trapezoidal rule applied on a square [0, 1]× [0, 1]. It is important to note that
obtaining a high value in this metric does not imply that the ranking accuracy
of the recommendations is higher, it implies that more items with different
popularity values are being recommended. Therefore, in order to obtain the
“expected” value of this metric, we should compute it with the data available
in the test set as it represents the real visiting patterns of the users in the
dataset. We shall do this later in the experiments by contrasting the behavior
of recommenders against a method that provides suggestions based on the test
set.

3.2 Measuring category popularity polarization

Intuitively, a user who likes rock music would probably prefer recommenda-
tions of groups such as Led Zeppelin or the Rolling Stones rather than classical
music. In the case of POI recommendation, users may prefer some venues over
others depending on the venue type. In this domain, the venue type is unam-
biguously linked to the venue category, such as restaurant, museum, public
park, etc. Because of this, it is important to consider the polarization with re-
spect to well-known groups of items, such as genres in movies or music, venue
categories in POIs, or verticals in e-commerce.

2 More specifically, since the distribution is discrete, we compute a cumulative histogram.



10 Pablo Sánchez et al.

Moreover, the interactions between users and these groups of items are not
uniformly distributed in typical recommendation systems, and in particular in
LBSNs, as we show later for different cities with respect to venue categories.
Hence, it is important to distinguish the popularity of a specific POI from
that of the associated categories (e.g., a particular museum may be the most
popular venue in a city, but museums may be the least represented category
in that city).

Definition 2 (Category Popularity Polarization) The polarization of a
recommendation model rec towards popular categories is the likelihood of rec-
ommending venues belonging to categories associated with the highest number
of user interactions.

We analyze the polarization towards popular categories by grouping the
top-n recommended POIs by each category, while sorting the different cate-
gories by increasing popularity, measured as the number of interactions each
category has received in the entire dataset.

Thus, we summarize this analysis in the following metric value:

PopC@n(L) =
1

min(n, |L|)
∑
i∈L

bin
(
cat(i)

)
|{cat(·)}|

(2)

PopC@n(rec) =
1

|U |
∑
u∈U

PopC@n(R(rec, u, n)) (3)

where, as before, n denotes the cutoff at which we measure the metric (i.e.,
the number of items to consider from the recommendation list), R(rec, u, n)
denotes the top-n recommended items to user u by recommender rec. Note
that |L| and n will be, in general, equal, since L = R(rec, u, n), except when the
recommender has a low recommendation coverage (i.e., number of items that
the recommender is returning to the target user). In case of low coverage, |L|
might be smaller than n, that is why we prefer to make this situation explicit in
the formulation. Here, cat(i) returns the associated category to each item, and
bin(·) returns the category bin, where the least popular category is associated
to the first bin (i.e., bin

(
cat(i)

)
= 1) and popular categories are assigned the

last bins. In this way, a larger value is obtained for popular categories and we
can use this as an indicator of how polarized an algorithm towards popular
categories is. We consider the number of categories, |{cat(·)}|, to be fixed3.
In those cases where the category information is not available, an implicit
clustering of the venues might be used (for instance, those items whose name
contains a special keyword might be classified into a pre-defined group, e.g.,
‘Museum’ or ‘Cafe’).

The metric is in the [0,1] range, where 0/1 indicates that a model only
recommended venues associated with the most unpopular/popular category.

3 In Foursquare, as an example, the categories are organized using a 3-layer hierarchy tree
structure. This number would then depend on the category level used; for instance, for the
first level, the one covering the most generic types of POIs, there are 9 different categories.
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As in the previous case, to obtain the expected value, we should compute this
metric with the data available in the test set.

3.3 Measuring polarization in terms of item exposure

When measuring the quality of a recommender system, in most cases only the
users’ opinions are taken into consideration, either in terms of relevance or
other dimensions such as novelty and diversity. However, the perspective of
the items should be equally important because we may be over-representing
the most popular items in the recommendations (Ariza et al. 2021). For several
years, researchers in the recommender systems area have analyzed the effect of
over-representing the most popular items, observing that the most unpopular
items actually belong to the long-tail item distribution (Park and Tuzhilin
2008). Although a large number of users consume popular items, according
to Anderson (2006), vendors should focus on such long-tail items as unpop-
ular items are often more profitable. In the POI recommendation domain,
the items are venues, ranging from major tourist sites to minor ones, e.g.,
food establishments, bars, or small businesses. By recommending less popular
venues in the long-tail, we may introduce users to new places that they had
not thought they might be interested in, and also make these less popular sites
receive more visits, which means that they end up having more customers. As
these venues are sometimes businesses that generate trade activity in the cities,
a poor exposure of these venues might negatively affect the city’s economy.

Definition 3 (Venue Exposure Polarization) The polarization of a rec-
ommendation model rec in terms of exposure is the likelihood of the model to
suggest a venue proportionally to the number of times the users will consider
that venue in the future.

While, in the characterization of item popularity, we assessed the prob-
ability of recommending a popular item, in order to measure the exposure
of venues, we compare the number of times an item has been recommended
(Recommender Exposure, RE) against its actual exposure (i.e., the number of
times that venue should be recommended regarding a subjective policy) (Ac-
tual Exposure, AE). However, differently from the metrics proposed by Ariza
et al. (2021), instead of dividing RE and AE, we will compute the squared dif-
ference since it is a more common mechanism to measure errors, as in Ekstrand
et al. (2021b):

RE@n(i, rec) =
1

|U |
∑
u∈U

1/log2(pos(i, R(rec, u, n)) + 1)∑
j∈R(rec,u,n) 1/log2(pos(j, R(rec, u, n)) + 1)

(4)

AE(i;π) = p(i|π) (5)

IE@n(rec;π) =
∑
i∈I

(RE@n(i, rec)−AE(i;π))2 (6)
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where R(rec, u, n) denotes, as before, the top-n recommended list by rec for
user u, whereas pos(j, L) denotes the position of item j in a recommendation
list L. Finally, π denotes the exposure of the item under the target policy
(ideal exposure). In this paper, we will work with two different policies – see
(Ekstrand et al. 2021b) for an overview of reasonable choices over these policies
–, namely: Parity, where we assume that all items should be recommended
equally, i.e., following a uniform distribution, and Relevance, in which we
assume that each item should be recommended following the same distribution
observed in the test set. According to this, IE would denote the final Item
Exposure based on a target policy π, for a recommender rec measured at
cutoff n. Hence, the lower the IE, the better (low polarization, similar to the
expected exposure) the recommender is.

3.4 Measuring polarization towards geographical distance

According to the first law of geography, “Everything is related to everything
else, but near things are more related than distant things” (Miller 2004), which
is why many LBRSs model geographical influence. Because of this, exposing
the polarization (or the lack of it) towards this aspect might be a critical signal
of the type of venues provided by a recommendation algorithm. Despite the
fact that geographic influence has been used extensively to make recommenda-
tions to users, we have not found many works that analyzes the geographical
relationship between the actual recommended POIs (e.g., if they are close
to each other or to the user midpoint). Hence, we consider this analysis an
important contribution of the presented work.

Definition 4 (Geographical Distance Polarization) The polarization of
a recommendation model rec towards geographical distance is the likelihood
of the model to suggest a venue that is close to / far from the current position
of the user.

As a first approximation, we propose two metrics that consider the dis-
tance of recommended POIs in their evaluation. The first one, DistT, shown
in Equation (7), sums the distance of the recommended POIs as if the user
accepted those recommendations and visited those venues in order4. With this
metric, we account for the polarization towards longer or shorter recommended
routes or trajectories, even though this metric could be applied to any type of
recommender system, not only for those producing routes. The second met-
ric, DistU, shown in Equation (8), computes the total distance between each
recommended POI and the user historical midpoint, obtained by averaging
the coordinates of every venue visited by the user in the training set. In this

4 Existing literature shows that users pose higher trust in highly ranked results, and
measures of exposure in a ranking introduce a discount for lower-ranked results (Singh
and Joachims 2018). The assumption is that the lower an item is ranked, the lower is the
likelihood that the user will choose it. So we can assume that the ranking generated by a
recommender system is a proxy for the sequence of choices for the users.

https://orcid.org/0000-0003-1792-1706


Biases in Location-based Recommender Systems 13

way, we aim to capture how sensitive each recommendation algorithm is to
the history of previous locations of the user. This concept connects to the re-
cent literature on calibrated recommendations (Steck 2018), by studying how
adherent the recommendations are to the previous behavior patterns of the
users, which in our case are modeled by their locations. Note that Equation 8
cannot be used if the user has not checked-in in any venue in the training set.
However, in a real environment where a tourist arrives at a city, instead of her
midpoint we could make use of the coordinates of the venue she is staying at
or the actual geographical position of the user.

DistT@n(Ru) =

min(n,|Ru|)∑
i=2

Hav(Ru,i−1, Ru,i) (7)

DistU@n(Ru) =

min(n,|Ru|)∑
i=1

Hav(um, Ru,i) (8)

where Ru,i is ith item recommended to user u, um is user u historical mid-
point, and Hav is the Haversine distance of the coordinates of two geographical
points. In order to interpret the geographical polarization values found using
these metrics, we need to compare those values obtained by the recommenders
we are analyzing with respect to those found using the user’s ground truth.
Thus, obtaining high values in these metrics (which indicate that the recom-
mended venues are either far away from each other or from the user’s midpoint)
might not be intrinsically bad if the users actually exhibit those mobility pat-
terns in the ground truth. However, obtaining very different values from those
exhibited by the users in the test set would be a sign that the recommenders
are actually showing a geographical distance bias far from the expected one.

3.5 Toy examples

In this section, we show a toy example for every proposed metric to illustrate
how they work, in order to help the reader to have a better understanding of
all the different analyzed polarizations.

First, in Figure 1, we compare the performance of two different recom-
menders (rec1 and rec2) using our Venue Popularity Polarization metric (Equa-
tion 1), and we compare it against other novelty metrics like EPC and IUF
(they were both defined at the beginning of Section 3.1). As we can observe
in that figure, both recommenders would obtain the same values in terms of
Expected Popularity Complement (EPC) or Inverse User Frequency (IUF) be-
cause they are recommending items that have been rated by the same number
of users (i.e., their popularity is the same). However, the second recommender
is able to recommend both the black and white items while the first one is not.
Thus, the area under the curve of the second recommender would be higher, as
it is recommending a higher number of items, showing less polarized results.
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Fig. 1: Visual example of the popularity polarization of two different recom-
menders, rec1 and rec2. The second recommender would obtain higher values
in our metric due to the fact that it is recommending more different venues,
and hence the area under the curve would be higher than in the first recom-
mender.

Secondly, in Figure 2, we show a comparison between two recommenders
in terms of Venue Category Polarization. Both of them recommend three dif-
ferent items, but the first one is only recommending items with the feature
denoted as “A”, which is the most popular one. On the other hand, rec2 is
recommending venues belonging to all categories, and hence obtaining a lower
category polarization.

Thirdly, in Figure 3, we show a comparison between two different recom-
menders using our formulation for Venue Exposure Polarization by applying
a relevance-based target policy or ideal exposure. In that example, we observe
that the second recommender obtains a lower result in terms of exposure than
the first one due to several reasons. Firstly, rec2 is not recommending one of
the items (the one with the dotted pattern), which actually does not appear
in any of the test sets. Secondly, this model is also recommending the black
item twice, which is the same number of times that item appears in the test
set; however, the first method only recommends this item once. Finally, rec2
is the only model that recommends the item with vertical lines; moreover, this
item appears in as many recommendation lists as in the test set. Hence, rec2
achieves the expected exposure for this item, and the value of IE is decreased
since both RE and AE are closer to each other.

Finally, in Figure 4, we show a comparison between two recommenders in
terms of our Geographical Distance Polarization metrics (Equations 7 and 8).
In this example, the second recommender would obtain lower values in the
metrics as the recommended venues are closer with respect to the user mid-

https://orcid.org/0000-0003-1792-1706
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Fig. 2: Visual example of the category popularity polarization of two different
recommenders, rec1 and rec2. The second recommender would be preferred as
it is recommending venues from different categories.

Fig. 3: Visual example of how the value of Item Exposure (IE) changes ac-
cording to the behavior of recommenders, for a relevance-based policy. Here,
rec1 and rec2 denote the first and second recommenders, R(recn, u, 3) denotes
the recommendations from recommender recn for user u, while Tu1 and Tu2

represent the test set of the two users. In this situation, rec2 would obtain a
lower value because it is recommending the black item 2 times, as in the test
set, and it is not recommending the dotted item, which does not appear in
the test set. Hence, as the recommended items from rec2 are more similar to
the ground truth of the user than the ones recommended by rec1, the venue
exposure polarization of rec2 would be lower.
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Fig. 4: Visual example of the geographical distance polarization of two different
recommenders, rec1 and rec2. In this example, the second recommender will be
preferred as the recommended venues are more geographically related between
them and with respect to the user midpoint (represented by Um).

point (Um) and also closer between them than the recommendations produced
by the first algorithm.

4 Evaluation Settings

4.1 Evaluation methodology

We performed experiments on the Foursquare global check-in dataset5 used
in (Yang et al. 2016). This dataset is formed by 33M check-ins in different
cities around the world. We selected the check-ins from the cities of Tokyo,
New York, and London from this dataset and, once we selected the check-
ins of all three cities separately, we performed a 5-core, that is, we removed
both users and POIs with less than 5 interactions. Next, aiming for a realistic
evaluation, we split the check-ins so that the 80% of the oldest interactions
were used to train the recommenders and the rest 20% to test them.

5 https://sites.google.com/site/yangdingqi/home/foursquare-dataset

https://orcid.org/0000-0003-1792-1706
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Fig. 5: Plot showing the 50 most popular cities (in terms of number of check-
ins) in the Foursquare dataset before preprocessing. In black, the cities of
Tokyo, New York, and London are highlighted.

The statistics of the datasets and their splits are shown in Table 1. Finally,
we removed from the test set all interactions that appeared in the training set
(as the purpose is to recommend new venues to the users) and the repetitions,
that is, we consider that the users just visit the same POI once in the test
set. These evaluation methodology issues, combined with the sparsity of the
dataset and the fact that we do not force test users to have a minimum number
of training interactions, means that the results in terms of ranking accuracy
will be low. However, we decided to not focus only on those users with enough
locations visited in their profile, as this would make our experimental analysis
too limited. However, we leave as a future work the analysis of cold-start
users (Lika et al. 2014).

Moreover, for the training set, we maintain three different versions due to
the intrinsic characteristics of some of the aforementioned models: the one with
repetitions (RTr), the one adding all interactions (FTr), and the one binarizing
all possible user-POI interactions (BTr). Please note that in this dataset there
are no explicit ratings as we typically find in classic recommendation datasets,
such as MovieLens. In Foursquare, we only know when a user has visited
a certain POI, unlike other LBSNs such as Yelp6, where we do find ratings
and reviews. Hence, the training set with repetitions (RTr) is being used by
the recommenders that build sequences for performing the recommendations.
The frequency training set (FTr) is being used by the recommenders that can
exploit the explicit information, to give more importance to those interactions
with a higher score. In this case, by aggregating the check-ins, we can obtain
a frequency matrix that can be used in the models as if it was the classic
matrix of user ratings. However, these frequencies are not entirely comparable

6 https://www.yelp.com/dataset

https://www.yelp.com/dataset
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Table 1: Statistics of the three cities used in the experiments. We show the
number of users (|U|), number of venues (|V|), number of check-ins (|Cr|),
number of unique check-ins (|Cr|, without repeated interactions), and data
density computed according to whether repetitions are considered or not. We
present these values for the entire city, together with the corresponding train-
ing and test splits. In the case of Tokyo, New York, and London, there are
7,301, 4,188, and 1,958 users appearing in both training and test sets, respec-
tively.

City Split |U| |V| |Cr| |Cr| |Cr|
|U|·|V|%

|Cr|
|U|·|V|%

Tokyo
Complete 10,057 24,892 921,874 381,165 0.3683 0.1523
Training 9,735 24,614 737,499 317,213 0.3078 0.1324
Test 7,623 18,901 184,375 97,554 0.1280 0.0677

New York
Complete 7,832 12,975 315,472 154,639 0.3104 0.1522
Training 7,319 12,713 252,377 126,453 0.2712 0.1359
Test 4,701 9,275 63,095 37,256 0.1447 0.0855

London
Complete 4,443 7,384 141,402 73,295 0.4310 0.2234
Training 3,968 7,284 113,121 59,243 0.3914 0.2050
Test 2,433 5,329 28,281 18,109 0.2181 0.1400

to ratings because they are not bounded at the system level (there may be
users with a wide range of frequencies). Finally, the binarized training set is
used by both the implicit and explicit recommenders. This final training set
will denote with a ‘1’ if a user has visited a particular POI (regardless of
the number of times it has been visited) and will present a ‘0’ otherwise. For
generating the recommendations, we follow the TrainItems methodology (Said
and Belloǵın 2014), i.e., we consider as POI candidates for a target user u those
venues that appear in the training set but that have not been visited by u.

4.2 Recommenders

In order to analyze and characterize the biases that may exist in the Foursquare
dataset, we now describe the state-of-the-art algorithms that have been con-
sidered in our experiments, grouped in different families:

– Non-Personalized: we tested a Random (Rnd) and a Popularity (Pop)
recommender. The latter recommends the venues that have been checked-
in by the largest number of users.

– Collaborative-filtering: we used a User-Based (UB) (non-normalized k-nn
algorithm that recommends to the target user venues that other similar
users visited before) and an Item-Based (IB) (non-normalized k-nn that
recommends to the target user venues similar to the ones that she visited
previously) collaborative filtering algorithm. We also included a matrix
factorization algorithm that uses Alternate Least Squares for optimization
(HKV) from (Hu et al. 2008), and the Bayesian Personalized Ranking (a

https://orcid.org/0000-0003-1792-1706
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pairwise personalized ranking loss optimization algorithm) using a matrix
factorization approach (BPR) from (Rendle et al. 2009). For the BPR, we
use the MyMediaLite library7.

– Temporal/Sequential: we include a user-based neighborhood approach with
a temporal decay function (TD) (that gives more weight to more recent
interactions), and several algorithms based on Markov Chains: Factorized
Markov Chain (MC), Factorized Personalized Markov Chains (FPMC)
and Factorized Item Similarity Models with high-order Markov Chains
(Fossil). All three Markov Chains approaches are obtained from (He and
McAuley 2016).

– Purely geographical: we used the Kernel Density Estimation (KDE) from
(Zhang et al. 2014), and a recommender that suggests to the user the
closest venues to her centroid (AvgDis).

– Point-of-Interest: we used the fusion model proposed by Cheng et al. (2012)
that combines the Multi-center Gaussian Model technique (MGM) with
Probabilistic Matrix Factorization (PMF) (FMFMGM), a POI recom-
mendation approach from (Yuan et al. 2016) that uses BPR to optimize
the model (GeoBPR), a weighted POI matrix factorization algorithm
(IRenMF) from (Liu et al. 2014), and a hybrid POI recommendation al-
gorithm that combines the UB, Pop, and AvgDis recommenders (PGN).

We also include a perfect recommender that uses the test set as the ground
truth, named Skyline. This recommender will return the test set for the user,
in order to check the maximum values that we can obtain with ranking-based
accuracy metrics (Skyline). At the same time, it helps to evidence the biases
and polarizations that already exist in the test split.

4.3 Metrics

Since we have already defined in previous sections our proposed metrics to
measure different types of polarization, we will now show the formulation of
the metrics used for measuring the item accuracy, novelty, and diversity.

– Accuracy: oriented at measuring the number of relevant items recom-
mended to the user (Gunawardana and Shani 2015). We will use Precision
(P) and the normalized Discounted Cumulative Gain (nDCG):
– Precision:

P@n(u) =
Relu@n

k
(9)

where Relu@n denotes the set of relevant items recommended at top n.
– nDCG:

nDCG@n(u) =
DCG@n(u)

IDCG(u)@n
(10)

7 MyMedialite: http://www.mymedialite.net/.

http://www.mymedialite.net/
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DCG@n(u) =

n∑
k=1

2relk − 1

log2(k + 1)
(11)

where relk denotes the real relevance of item k in the test set. In a
rating-based dataset, this real relevance would be the rating that the
user gave to that item in the test set. In our case, as we only know
whether (and when) a user has performed a check-in, we fix this ideal
relevance to 1 as long as the venue appears in the test set of the user
(every venue visited by the user in the test set is equally relevant).

Higher values of P and nDCG imply a better recommendation quality.
– Novelty: oriented at measuring the number of popular venues, since they

are inversely related to novel venues (Vargas and Castells 2011). We use a
simplified version of the Expected Popularity Complement (EPC) metric:
– EPC:

EPC@n(u) = C

min (n,|Ru|)∑
i=1

(1− p(seen | Ru,i)) (12)

where C is a normalizing constant (generally C = 1/
∑min (n,|Ru|)

i=1 ). In

our case, p(seen|ik) = |Ui|
|Utraining| , with Ui being the number of users

that checked-in in venue i and Utraining the set of users in the training
set. Higher EPC implies better recommendation novelty.

– Diversity: oriented at measuring how many different venues we are recom-
mending to the user (Vargas and Castells 2011). We use the Gini Coefficient
to measure the diversity.
– Gini:

Gini@n = 1− 1

|I| − 1

|I|∑
k=1

(2k − |I| − 1)p(ik | s) (13)

p(i | s) =
|{u ∈ U|i ∈ Rs

u,n}|∑
j∈I |{u ∈ U|j ∈ Rs

u,n}|
(14)

where p(in | s) is the probability of the n-th least recommended item
being drawn from the recommendation list generated by s, that is, when
considering all rankings @n (Rs

u,n) for every user. In this paper, we will
use the complementary of the Gini Index proposed in Castells et al.
(2015), as defined in Vargas and Castells (2014). Higher Gini implies
better recommendation diversity.

– User Coverage: aims to measure whether the recommender system covers
all the users or items in the catalog (Gunawardana and Shani 2015). We
focus on the User Coverage (UC), that accounts for the number of users to
whom at least one recommendation is made. This metric is useful because
there might be some models that are not be able to recommend to all users
of the test set (e.g., users with very few interactions who are difficult to
model properly). Higher user coverage means that our model is able to
recommend to more users.

https://orcid.org/0000-0003-1792-1706
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Table 2: Parameters of evaluated recommenders; the values that are not be-
tween the symbols {} are considered fixed and not tuned.
Family Rec Parameters

Non-Personalized
Rnd None
Pop None

Collaborative-filtering

UB k = {20, 40, 60, 80, 100, 120}, sim = {Jac, Cos }, Tr = {FTr, BTr}
IB k = {20, 40, 60, 80, 100, 120}, sim = {Jac, Cos }, Tr = {FTr, BTr}
HKV k = {10, 50, 100}, α = {0.1, 1, 10}, λ = {0.1, 1, 10}, Tr = {FTr, BTr}
BPR k = {10, 50, 100}, λu = λi = {0.001, 0.0025, 0.005, 0.01, 0.1}, λ0 = {0, 0.5, 1}, λj =

λu/10, iter = 50, learnR = 0.05

Temporal/Sequential

TD k = {20, 40, 60, 80, 100, 120}, sim = {Jac, Cos }, λ = {0.1, 0.05}, Tr = {FTr, RTr}
MC k = {2, 5, 10, 20}, λ = {0.1, 0.2}, Tr = {FTr, RTr}
FPMC k = {2, 5, 10, 20}, λ = {0.1, 0.2}, Tr = {FTr, RTr}
Fossil k = {2, 5, 10, 20}, λ = {0.1, 0.2}, L = {1, 2, 3}, Tr = {FTr, RTr}

Geographical
KDE Tr = {FTr, RTr}
AvgDis ScoreFreq = {True, False}

POI

FMFMGM Factors = {50, 100}, α = {0.2, 0.4}, α2 = {20, 40}, θ = {0.02, 0.1}, maxDist = 15,
iter = 30, β = 0.2, sigmoid = false, learnR = 0.0001

, Tr = {FTr, BTr}

GeoBPR Factors = {10, 50, 100}, λu = λi = {0.001, 0.0025, 0.005, 0.01, 0.1}, λ0 = {0, 0.5, 1},
iter = 50, learnR = 0.05, MaxDist = 1, 4

IRenMF k = {50, 100}, α = {0.4, 0.6}, λ1 = λ2 = 0.015, λ3 = {0.1, 1}, #Clust = {5, 50},
GeoNN = 10, Factors = 100, α = 10, Tr = {FTr, BTr}

PGN k = {40, 60, 80, 100, 120}, sim = {Jac, Cos }, Tr = {FTr, BTr}

Skyline Skyline None

Table 3: Performance results on Tokyo city. All metrics computed at cutoff 5. In
bold the best values are shown without considering the Skyline recommender.
In italics the best value for each family is shown.

Accuracy Novelty Diversity Popularity Exposure Distance Coverage

Recommender P nDCG EPC Gini PopI PopC ExpP ExpR DistT DistU UC

Rnd 0.000 0.000 0.999 0.551 0.303 0 .760 0.000 0.001 37.2 34.7 7,253
Pop 0.071 0 .087 0.746 0.000 0.000 0.960 0.131 0.121 24 .9 26 .4 7,253

UB 0 .070 0 .087 0.769 0.001 0.002 0.968 0.103 0.093 26.0 25.8 6 ,931
IB 0.063 0.080 0.819 0 .025 0 .026 0 .911 0.064 0.057 23.2 25.0 6 ,931

HKV 0.064 0.078 0 .845 0.002 0.003 0.921 0 .038 0 .031 22 .0 21 .7 6 ,931
BPR 0.066 0.081 0.754 0.000 0.003 0.955 0.123 0.112 25.6 27.7 6 ,931

TD 0.071 0.088 0.776 0.001 0.003 0.965 0.097 0.087 25.9 25.4 6 ,931
MC 0.051 0.062 0.804 0.001 0.003 0 .939 0.107 0.098 26.5 30.9 6,879

FPMC 0.053 0.064 0.807 0.001 0.001 0.943 0.103 0.096 31.0 30.1 6,884
Fossil 0.058 0.074 0 .851 0 .003 0 .006 0.878 0 .046 0 .040 22 .0 21 .7 6,879

KDE 0 .004 0 .005 0.999 0 .318 0 .212 0.753 0.000 0.001 0.4 15.5 6,879
AvgDis 0.001 0.001 0.999 0.202 0.187 0.719 0.000 0.001 0.6 4.2 6 ,931

FMFMGM 0.063 0.079 0.772 0.001 0.002 0.979 0.105 0.095 23.7 22.7 6,931
GeoBPR 0.065 0.081 0.756 0.000 0.001 0.957 0.120 0.110 23.7 24.2 6,931
IRenMF 0 .069 0.083 0 .799 0.003 0.008 0.951 0 .072 0 .063 23.9 23.8 6,931
PGN 0.068 0 .086 0.777 0 .014 0 .023 0 .932 0.110 0.100 23 .6 20 .9 7,253

Skyline 0.784 0.996 0.982 0.231 0.087 0.796 0.000 0.000 17.5 18.8 7,241

5 Polarization Assessment

Tables 3, 4, and 5 show the results of the aforementioned recommenders in
terms of accuracy (P and nDCG), novelty (EPC), diversity (Gini), and our
metrics to measure popularity polarization (PopI, for item popularity and
PopC for category popularity), item exposure (ExpP using Parity and ExpR
using Relevance as target policies), polarization towards geographical distance
(DistT and DistU), and user coverage (UC). Recall that higher values indicate
better accuracy, novelty, diversity, and coverage. On the contrary lower values
of popularity polarization (except PopI that, in this case, higher values means
a higher area under the curve and hence lower popularity bias), exposure, and
distance measure the optimal situation with less polarization. The parameters
tested of the recommenders can be found in Table 2. We selected the best
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Table 4: Performance results on New York city. Same notation as in Table 3.

Accuracy Novelty Diversity Popularity Exposure Distance Coverage

Recommender P nDCG EPC Gini PopI PopC ExpP ExpR DistT DistU UC

Rnd 0.000 0.001 0.999 0.579 0.347 0 .702 0.000 0.001 35.6 30 .9 4,416
Pop 0.069 0.099 0.837 0.000 0.000 0.758 0.173 0.154 26 .2 31.2 4,416

UB 0.056 0.087 0.868 0.002 0.005 0.734 0.102 0.087 36.3 34.5 3 ,903
IB 0.025 0.036 0 .967 0 .175 0 .118 0.693 0 .006 0 .004 20 .2 25 .1 3 ,903

HKV 0.054 0.079 0.907 0.003 0.004 0 .681 0.044 0.034 31.3 29.9 3 ,903
BPR 0 .060 0 .092 0.841 0.000 0.000 0.755 0.167 0.148 29.3 36.8 3 ,903

TD 0 .055 0 .087 0.884 0 .005 0.012 0.736 0 .085 0 .071 36.4 35.3 3 ,903
MC 0.048 0.071 0.862 0 .005 0 .013 0.773 0.132 0.116 35.7 36.0 3,819

FPMC 0.039 0.057 0 .889 0.001 0.002 0 .685 0.116 0.104 33 .1 33.7 3,819
Fossil 0.053 0.075 0.875 0.001 0.003 0.725 0.099 0.085 35.5 31 .6 3,819

KDE 0 .005 0 .006 0.998 0 .332 0.219 0.708 0.000 0.001 0.5 13.7 3,821
AvgDis 0.002 0.001 0.999 0.247 0.221 0.670 0.000 0.002 0.8 4.2 3 ,903

FMFMGM 0.029 0.042 0 .894 0.001 0.003 0 .716 0 .127 0.117 11 .7 17 .9 3,903
GeoBPR 0.055 0.068 0.850 0.000 0.001 0.738 0.169 0.154 30.9 30.7 3,903
IRenMF 0.057 0.087 0.854 0.002 0.006 0.743 0.130 0 .113 32.4 34.1 3,903
PGN 0 .065 0 .097 0.859 0 .019 0 .034 0.769 0.141 0.124 30.8 26.8 4,416

Skyline 0.726 0.991 0.981 0.230 0.114 0.762 0.001 0.000 13.3 14.1 4,390

Table 5: Performance results on London city. Same notation as in Table 3.

Accuracy Novelty Diversity Popularity Exposure Distance Coverage

Recommender P nDCG EPC Gini PopI PopC ExpP ExpR DistT DistU UC

Rnd 0.001 0.001 0.998 0.549 0.328 0 .694 0.000 0.001 35.8 27.6 2,301
Pop 0 .039 0 .047 0.898 0.001 0.001 0.878 0.195 0.185 15 .3 15 .3 2,301

UB 0 .037 0.048 0.923 0.004 0.007 0.781 0.045 0.036 20 .7 22 .4 1,824
IB 0.021 0.028 0 .980 0 .234 0 .131 0 .693 0 .003 0 .002 22.6 26.9 1,824

HKV 0.040 0 .052 0.933 0.005 0.006 0.781 0.029 0.022 25.5 27.6 1 ,826
BPR 0.034 0.044 0.942 0.012 0.018 0.731 0.045 0.038 24.2 24.5 1 ,826

TD 0 .037 0.049 0.927 0.007 0.012 0.813 0.044 0.036 24.9 24.6 1 ,824
MC 0.028 0.038 0.920 0.001 0.002 0 .740 0.136 0.128 31.2 31.2 1,778

FPMC 0.031 0.043 0 .955 0 .031 0 .030 0 .740 0 .014 0 .009 19 .6 22 .5 1,785
Fossil 0.039 0 .054 0.928 0.003 0.006 0.789 0.069 0.006 24.3 25.1 1,778

KDE 0 .007 0 .009 0.998 0 .372 0.220 0.691 0.000 0.001 0.9 13.7 1,779
AvgDis 0.003 0.004 0.998 0.319 0 .222 0.669 0.000 0.001 0.7 0.9 1 ,826

FMFMGM 0.029 0.039 0.921 0.003 0.006 0.860 0.091 0.083 11 .7 15.7 1,826
GeoBPR 0.041 0.054 0.915 0.002 0.004 0 .780 0.079 0.070 13.9 17.5 1 ,826
IRenMF 0.036 0.047 0 .932 0 .021 0 .024 0.812 0 .044 0 .037 22.2 23.0 1 ,826
PGN 0.042 0.052 0.912 0.008 0.015 0.856 0.118 0.109 16.4 14 .4 2,301

Skyline 0.729 0.996 0.986 0.254 0.118 0.742 0.001 0.000 13.7 12.7 2,292

configuration of each recommender according to nDCG@5 obtained in the
test set8.

In order to validate the different forms of polarization we presented, we
performed three sets of experiments:

1. Impact on accuracy metrics. Before assessing polarization, we evalu-
ate the models shown in Section 4.2, considering the metrics presented in
Section 4.3. This will allow us to assess the behavior of these models from
accuracy and beyond-accuracy perspectives, to then contextualize it to the
polarization these models generate.

2. Measuring recommendation polarization. We address to what extent
the considered recommendation models are polarized towards the four per-
spectives considered in this work (i.e., venue and category popularity, venue

8 It should be noted that other cutoffs do not produce significantly different results. This
has been tested in additional experiments not reported here, in agreement with other authors
reporting strong correlations between metric values at low and high cutoffs (Valcarce et al.
2018).
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exposure, and geographic distance), by measuring the metrics proposed in
Section 3.

3. Polarization mitigation. We evaluate the capability of hybrid and re-
ranking mitigation strategies to counter polarization.

Since no validation set is used in these experiments, the reported perfor-
mance is an overestimation. Such an experimental setting is not uncommon
in recommender systems, especially when dealing with temporal splits as we
have here (Sun 2022).

In what follows, we analyze these perspectives in depth.

5.1 Impact on accuracy metrics

The analysis of these results highlighted some interesting behaviors. First, we
observe in Tables 3, 4, and 5 that the Skyline does not have full coverage
for the users and it is not obtaining a value of 1 in the accuracy metrics.
This is because we follow the TrainItems methodology (see Section 4.1) and
therefore the items that did not appear previously in the training set cannot be
recommended. Besides, there might be some users that have a smaller number
of relevant items than the used cutoff. These two reasons could prevent some
metrics from obtaining a perfect score.

Regarding the rest of the algorithms, we observe that one of the best per-
forming recommender (in terms of accuracy, if we ignore the Skyline) is the
Pop recommender in all cities, even though in Tokyo the TD model and in
London the GeoBPR and PGN models obtain a slightly better value than Pop.
This could be due to several causes, including (i) the high sparsity found in
the datasets, (ii) the test set that only contains new interactions (and hence
popular venues are safe recommendations), and (iii) the temporal evaluation
methodology, as there could be users in the test set that do not appear in
the training subset (for whose, again, popular venues can be very useful rec-
ommendations). This is an interesting conclusion, because it is a clear sign
that this algorithm, despite its simplicity, is able to beat more complex mod-
els that incorporate temporal and/or geographical influences. However, this is
somewhat surprising, because despite being such a competitive baseline, it is
not so common to analyze the performance of this baseline in POI recommen-
dation (Sánchez and Belloǵın 2022). Indeed, the authors of IRenMF and the
FMFMGM did not test their approaches against the Pop recommender.

With respect to the POI algorithms, we observe that, in terms of accuracy,
their performance is very similar to other classical approaches, like the UB
or the BPR. This may be due to the high number of both hyper-parameters
and parameters that these models have, making it sometimes difficult to find
a good configuration of hyper-parameters that obtains a decent performance.
In fact, it is interesting to highlight the low values achieved by the FMFMGM
algorithm in New York and London, while in Tokyo it is competitive against
other models. This demonstrates that although we might find good configu-
rations in terms of accuracy, the parameter settings in some circumstances is
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critical. In the end, classical proposals such as those based on neighbors, might
be easier to explain and optimize due to its simplicity and lower number of
parameters (Ning et al. 2015). This also affects the PGN recommender since,
despite its simplicity, its performance is rather high. In New York and London
it is the best recommender of the POI family and in Tokyo it has a very similar
performance to IRenMF. The low number of parameters of this recommender,
combined with the fact that it merges different sources of information such as
popularity and geographical influence, may be the reason for this behavior.

5.2 Measuring recommendation polarization

When measuring the distance (DistT and DistU), we observe that both Rnd
and Pop algorithms obtain high values, showing us that the recommended
venues of these models are far from each other. Analyzing this geographical
information is also important because, as we observe in the Skyline, users tend
to visit POIs that are relatively close to each other, meaning that the distance
between the relevant items, and also between the recommended items and the
user’s center, should be low. Nevertheless, the geographical influence alone is
not enough to obtain high values in terms of relevance, as evidenced by the
poor performance of the pure geographical algorithms (AvgDis, KDE).

At the same time, if we analyze the rest of the recommenders, we observe
that, although all of them seem to perform personalized recommendations,
regarding PopI, PopC, ExpP, and ExpR metrics we observe a pronounced
popularity bias. Let us focus, for example, in the PopI and exposure metrics.
The only recommenders with decent values of accuracy that seem to obtain
high values on these metrics are PGN and IB, while the rest only obtain results
slightly higher than Pop. In fact, when analyzing the exposure metrics (ExpP,
ExpR), the random recommender obtains lower values in terms of ExpP than
all algorithms (except the Skyline) due to the fact that it recommends items
in an arbitrary manner, without overrepresenting any subset of items. Simi-
larly, this recommender obtains good results in the ExpR metric because it
is recommending almost all the venues in the system, so it is very likely that
within those recommendations there are relevant venues. However, what the
Rnd recommender fails is in recommending the relevant venues to the correct
users, as discussed before regarding the accuracy metrics.

Hence, we conclude that most of the recommenders suffer from a great
popularity bias, evidencing the difficulty of finding good representatives for all
metrics. Therefore, among all the experimented recommenders, we consider IB
and PGN to be of particular interest, since even though they do not perform
as well in terms of accuracy as Pop, they obtain competitive results in terms
of other metrics like novelty, diversity, and item exposure; this is a direct
consequence of suffering less from the popularity bias. Let us now analyze the
effect of the popularity and the categorical polarization more in detail.

Figure 6 shows the cumulative plot of the cities of Tokyo (top), New York
(bottom-left), and London (bottom-right) of the most representative recom-
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Fig. 6: Popularity cumulative plots from the cities of Tokyo (top), New York
(bottom-left), and London (bottom-right) of the recommenders, considering
the top-5 items returned by each of them. Showing the 30% most popular
POIs.

menders shown in Tables 3, 4, and 5, showing the 30% of the most popular
venues. For this selection, we considered those models with better values in any
evaluation dimension that belong to different families. By considering those
results, we observe that some of the most competitive recommenders like UB,
TD, and BPR are just basically returning the most popular POIs (something
that we observed in the previous tables thanks to our proposed metrics PopI
and PopC). At the same time, those recommenders that are able to obtain a
higher area under the curve than the one obtained by the Skyline are the worst
in terms of performance (i.e., Rnd and KDE). This is a worrying result that
departs from the results previously reported for some recommenders in terms
of classical accuracy metrics, which slightly differed from the Pop algorithm.
However, when the recommended items are analyzed, a clear, strong popular-
ity bias is observed. In order to better visualize this effect, in Figure 9, in the
left column, we show the distribution of the top 30% most popular venues in
the three different cities. As we can observe, despite showing only 30% of the
most popular venues, most of the check-ins are concentrated in the most pop-
ular ones, leaving a large number of other venues in the long-tail unexplored.
If, for example, we analyze the same distributions at the user level (distribu-
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Fig. 7: In the left column, we represent distribution of the categories that
appear in the top-5 recommended items for each algorithm in the training set
for Tokyo (first row), New York (second row), and London (last row). In the
right column, we show the distribution of the categories of the venues in the
cities following the same order. The category bins in the latter case are ordered
by increasing category popularity.

tion of the check-ins performed by the users, shown in the right column in
Figure 9), we can observe how the distribution is not so unbalanced, although
we can find that there are a considerable number of users who have made
very few check-ins. Nevertheless, we believe there is potential in combining
different types of algorithms (those more biased towards popularity and those
less so) to see if it is possible to maintain an adequate level of accuracy while
increasing at the same time the performance of other metrics such as novelty,
diversity, or item exposure.

Now, let us move to the analysis of category popularity polarization. In the
Foursquare dataset, we have 9 categories of level 19: Arts & Entertainment (1),
Outdoors & Recreation (2), Food (3), Nightlife Spots (4), Shops & Services (5),
Professional & Other Places (6), Travel & Transport (7), Colleges & Univer-

9 There are at least two other levels in Foursquare, each level is more specific than the
previous one: level 2 includes 48 categories, whereas level 3 contains 337. An example of the
relation between the three levels is a soccer stadium (level 3), which would be categorized
as stadium (level 2) or as arts & entertainment (level 1).
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Fig. 8: Distance distribution of the users in the training sets of the cities of
Tokyo (top), New York (bottom-left), and London (bottom-right).

sities (8), and Residences (9); due to space restrictions, they will be presented
using their numerical IDs. We first show in the right column in Figure 7 the
distribution of the venue categories in the training set of the three cities. With
this image, we want to show that the categories are not distributed uniformly
and that venues related to both transport (airports, train stations, subways,
etc.) and food (restaurants) are the most numerous in these cities, while the
number of check-ins in residences is negligible. Taking this into account, we
show in the right column of Figure 7, the distribution of the categories of the
recommended venues by our models using a cutoff of 5, that is, only the top-5
items recommended by each of those models are considered when measuring
PopC. In these figures, we observe that the popularity of a category is not
always associated with the number of POIs that share that category; more
specifically, category 7 (Travel & Transport) concentrates the largest number
of check-ins in the city of Tokyo, while category 3 (Food) is the second most
popular category; however, since this category covers a large number of differ-
ent venues, those recommenders with a strong item popularity bias (such as
Pop) recommend almost no POIs from this category, since its corresponding
items are not globally popular. A similar behavior is observed in New York,
where category 3 is the most popular one in the number of check-ins but most
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personalized recommenders do not suggest as many items belonging to that
category as those from categories 7 or 1.

Interestingly, the analysis of the category bias allows discriminating be-
tween those recommendation methods that seem to have the same popularity
bias, according to Figure 6. For instance, it is now more clear that Pop and
BPR are recommending practically the same items. At the same time, IRenMF
and UB also include some of the least popular categories, evidencing different
patterns on the recommendations that, as we will discuss later, prompts differ-
ent effects on the accuracy of these algorithms. Finally, those techniques with
a less pronounced category bias exploit very different sources of information:
Skyline uses the test directly, KDE exploits the geographical coordinates, IB
computes collaborative similarities between items (probably favoring the less
interacted items, as discussed previously), and Rnd. This is an indication that
the mitigation of these types of biases requires additional information sources.
These additional sources should, in any case, be balanced with relevant rec-
ommendations, since the risk of providing not interesting items is higher for
less popular categories; for instance, Skyline and Rnd show similar plots but
have very different accuracy levels.

5.3 Polarization mitigation

As we observed in the previously reported results, it is impossible for one al-
gorithm to obtain the best performance in all reported metrics. In fact, the
Skyline, which would represent the best recommender in terms of accuracy,
performs worse than the Rnd recommender in terms of novelty and diversity.
For that reason, and considering accuracy as one of the most critical dimen-
sions to optimize, we aim to combine several algorithms to create models that
obtain decent levels of accuracy while overcoming the analyzed polarization
measurements: popularity, exposure, and geographical distance. In order to do
so, we propose two different but complementary approaches to mitigate the
aforementioned biases.

As a first approach, we create hybrid recommenders by combining several
models (Burke 2002); we apply simple models based on weighting differently
each of the combined recommendation algorithms. By means of these weights,
we will be able to enhance the quality of the recommendations by balancing
the contribution of the different models depending on the evaluation dimen-
sion that we are interested in maximizing in that particular moment, either
ranking accuracy, novelty, or diversity. In our second approach, we make use of
reranking techniques popular in the Information Retrieval and Recommender
Systems fields to address the tradeoff between accuracy and diversity (Santos
et al. 2010). In our context, we use these techniques in order to rearrange the
top-n recommended items by an algorithm according to another recommen-
dation technique. The objective of both proposals is to generate new recom-
mendation lists that are capable of maintaining acceptable levels of accuracy,
while improving performance in other dimensions, such as novelty (since it is
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the opposite to popularity), diversity, or geographical variability, thus miti-
gating some of the desired biases.

It should be noted, however, that all these measurements (and whether
an improvement was found) depend on having a test set as reference. Such a
set may contain biases itself, hence limiting the generalization and impact of
the proposed techniques. Collecting and using unbiased datasets is out of the
scope of this paper, but it is a direction worth exploring in the future.

To define our hybrid approaches, we assume we have collected the top-
n lists of a set of recommenders, denoted as R, and a weight vector W , so
that Rj ∈ R denotes the recommendations for all the users of the j-th rec-
ommender, and wj ∈ W denotes the weight for that recommender. As every
recommender may have a different range (for the scores generated for every
recommended item), we first combine all the recommendation lists using the
min-max normalization. The final score user u has for item i is computed as:

s(i, u;R,W ) =

|R|∑
j=1

wj s(i, Rj
u)−min (Rj

u)

max (Rj
u)−min (Rj

u)
(15)

where s(i, L) provides the score of item i within the recommendation list L,
whereas min (·) and max (·) denote the minimum and maximum score of the
list for user u by recommender Rj . Moreover, instead of using all the recom-
mended items from each method (which might be computationally expensive)
in our hybrid formulation, we decided to use the top-100 items of each recom-
mender being considered. This top-100 selection is only used for generating
recommendations, i.e., it is independent of the cutoff used to measure the
quality of the recommendations.

On the other hand, we base our re-ranker approach in the xQuAD frame-
work (Santos et al. 2010). Considering this, our proposed model can be for-
mulated as follows:

fobj(u, i;λ,R
j , Rk) = λ · fRj (u, i) + (1− λ) · fRk(u, i) (16)

where Rj and Rk are the two RSs to be combined (the second one is used
to re-rank the results from the first one), fobj is the objective function to
be maximized. Consequently, the final score of item i is a combination of the
ranking position in the original recommender Rj and the second recommender
Rk used to re-rank using the combination parameter λ. In both cases, we use
a score derived from the one presented before for the hybrid approach, that is,
fR(u, i) = rank(s(i, Ru), Ru). Then, a new ranking is created by sorting the
combined scores obtained through the objective function. As in this case we
re-rank a recommendation using another algorithm, we need to restrict the
number of items even more. Otherwise, the second method may push items
that are not very relevant since they were originally very low in the ranking.
Thus, we consider the top-20 items from Rj .

Even though both approaches may seem similar, there is a substantial
difference between them. While in the hybrid approach we combine two inde-
pendent recommendation lists, in the re-ranking approach the candidate items
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Table 6: Performance results on Tokyo city for hybrid (H) and re-ranker (RR)
methods to mitigate polarization. Rest of notation as in Table 3.

Accuracy Novelty Diversity Popularity Exposure Distance Coverage

Recommender P nDCG EPC Gini PopI PopC ExpP ExpR DistT DistU UC

Pop 0.071 0.087 0.746 0.000 0.000 0.960 0.131 0.121 24.9 26.4 7,253
H(0.2 Pop + 0.8 IB) 0.071 0.088 0 .801 0 .019 0 .022 0 .921 0 .078 0 .069 24.0 24.4 7,253
H(0.8 Pop + 0.2 IB) 0.072 0.089 0.746 0.000 0.000 0.962 0.131 0.120 24.9 26.3 7,253
H(0.5 Pop + 0.5 IB) 0.073 0.089 0.765 0.005 0.007 0.946 0.110 0.100 25.2 25.2 7,253

RR(Pop, IB) 0 .074 0 .093 0.758 0.000 0.000 0.968 0.111 0.101 23 .7 24 .2 7,253

UB 0.070 0.087 0.769 0.001 0.002 0.968 0.103 0.093 26.0 25.8 6 ,931
H(0.2 UB + 0.8 IB) 0.065 0.081 0 .811 0 .020 0 .022 0.918 0 .069 0 .061 24.1 25.2 6 ,931
H(0.8 UB + 0.2 IB) 0 .070 0 .087 0.768 0.001 0.002 0.966 0.104 0.094 26.0 25.6 6 ,931
H(0.5 UB + 0.5 IB) 0.068 0.085 0.786 0.008 0.010 0.943 0.089 0.080 25.6 25.2 6 ,931

RR(UB, IB) 0.068 0.086 0.778 0.001 0.006 0.954 0.092 0.083 23 .5 24 .6 6 ,931

TD 0.071 0.088 0.776 0.001 0.003 0.965 0.097 0.087 25.9 25.4 6 ,931
H(0.2 TD + 0.8 IB) 0.065 0.081 0.811 0 .020 0 .022 0.918 0.069 0.061 24.1 25.1 6 ,931
H(0.8 TD + 0.2 IB) 0 .071 0 .088 0.773 0.001 0.003 0.963 0.099 0.090 25.8 25.3 6 ,931
H(0.5 TD + 0.5 IB) 0.068 0.085 0.789 0.008 0.010 0.941 0.087 0.078 25.4 25.1 6 ,931

RR(TD, IB) 0.069 0.086 0.780 0.002 0.007 0.952 0.091 0.081 23 .6 24 .5 6 ,931

IRenMF 0.069 0.083 0.799 0.003 0.008 0.951 0.072 0.063 23.9 23 .8 6 ,931
H(0.2 IRenMF + 0.8 IB) 0.066 0.082 0 .811 0.020 0 .020 0.918 0 .069 0 .061 23.8 25.0 6 ,931
H(0.8 IRenMF + 0.2 IB) 0.071 0.087 0.788 0.003 0.008 0.954 0.081 0.072 24.4 24.1 6 ,931
H(0.5 IRenMF + 0.5 IB) 0 .071 0 .088 0.789 0.008 0.011 0.942 0.083 0.074 24.5 24.4 6 ,931

RR(IRenMF, IB) 0.070 0.087 0.784 0.003 0.007 0.951 0.087 0.078 23.5 24.2 6 ,931

PGN 0.068 0.086 0.777 0.014 0.023 0.932 0.110 0.100 23 .6 20.9 7,253
H(0.2 PGN + 0.8 IB) 0.072 0.089 0 .803 0 .019 0.021 0 .922 0 .076 0 .067 24.2 24.2 7,253
H(0.8 PGN + 0.2 IB) 0.073 0.091 0.760 0.003 0.006 0.956 0.117 0.107 25.3 23.9 7,253
H(0.5 PGN + 0.5 IB) 0.074 0.092 0.772 0.006 0.009 0.947 0.102 0.093 25.5 24.6 7,253

RR(PGN, IB) 0.075 0.093 0.766 0.001 0.003 0.961 0.103 0.093 23.7 23.5 7,253

Table 7: Performance results on New York city for polarization mitigation.
Same notation as Table 6.

Accuracy Novelty Diversity Popularity Exposure Distance Coverage

Recommender P nDCG EPC Gini PopI PopC ExpP ExpR DistT DistU UC

Pop 0.069 0.099 0.837 0.000 0.000 0.758 0.173 0.154 26.2 31.2 4,416
H(0.2 Pop + 0.8 IB) 0.043 0.058 0 .941 0 .140 0.112 0 .715 0 .021 0 .015 22 .6 23 .2 4,416
H(0.8 Pop + 0.2 IB) 0.068 0.099 0.837 0.000 0.001 0.761 0.172 0.153 25.4 30.7 4,416
H(0.5 Pop + 0.5 IB) 0.062 0.086 0.885 0.060 0.063 0.755 0.086 0.073 34.9 30.9 4,416

RR(Pop, IB) 0.063 0.085 0.876 0.001 0.001 0.692 0.082 0.068 29.2 27.2 4,416

UB 0.056 0.087 0.868 0.002 0.005 0.734 0.102 0.087 36.3 34.5 3 ,903
H(0.2 UB + 0.8 IB) 0.029 0.042 0 .958 0 .158 0 .109 0 .698 0 .010 0 .006 21 .9 25.9 3 ,903
H(0.8 UB + 0.2 IB) 0 .057 0 .088 0.872 0.004 0.009 0.736 0.098 0.084 35.7 33.7 3 ,903
H(0.5 UB + 0.5 IB) 0.047 0.070 0.915 0.078 0.063 0.720 0.043 0.033 33.0 31.3 3 ,903

RR(UB, IB) 0.045 0.064 0.916 0.011 0.021 0.697 0.035 0.027 23.4 25 .4 3 ,903

TD 0.055 0.087 0.884 0.005 0.012 0.736 0.085 0.071 36.4 35.3 3 ,903
H(0.2 TD + 0.8 IB) 0.030 0.043 0.959 0.161 0 .111 0 .698 0.009 0.006 21 .9 26.1 3 ,903
H(0.8 TD + 0.2 IB) 0 .056 0 .088 0.885 0.010 0.017 0.735 0.083 0.070 35.2 34.2 3 ,903
H(0.5 TD + 0.5 IB) 0.047 0.070 0.921 0.088 0.068 0.721 0.039 0.030 32.5 31.6 3 ,903

RR(TD, IB) 0.045 0.064 0.922 0.021 0.031 0.705 0.030 0.022 24.8 26 .0 3 ,903

IRenMF 0.057 0.087 0.854 0.002 0.006 0.743 0.130 0.113 32.4 34.1 3 ,903
H(0.2 IRenMF + 0.8 IB) 0.030 0.043 0 .956 0 .155 0 .108 0.698 0 .011 0 .007 21.3 25 .8 3 ,903
H(0.8 IRenMF + 0.2 IB) 0 .057 0 .088 0.854 0.002 0.006 0.743 0.129 0.112 32.4 33.9 3 ,903
H(0.5 IRenMF + 0.5 IB) 0.052 0.076 0.892 0.050 0.047 0.735 0.064 0.053 34.5 32.7 3 ,903

RR(IRenMF, IB) 0.053 0.075 0.896 0.006 0.011 0.676 0.053 0.042 27.2 27.9 3 ,903

PGN 0.065 0.097 0.859 0.019 0.034 0.769 0.141 0.124 30.8 26.8 4,416
H(0.2 PGN + 0.8 IB) 0.044 0.058 0 .941 0 .140 0 .111 0.714 0 .020 0 .014 22 .6 23.0 4,416
H(0.8 PGN + 0.2 IB) 0 .066 0 .098 0.858 0.015 0.027 0.767 0.140 0.123 31.4 27.4 4,416
H(0.5 PGN + 0.5 IB) 0.062 0.086 0.893 0.064 0.062 0.745 0.072 0.060 34.5 29.4 4,416

RR(PGN, IB) 0.060 0.080 0.887 0.008 0.014 0 .707 0.064 0.052 26.7 23.7 4,416

come only from the first recommender, i.e., the re-ranked items by the second
recommender belong to the first model. Additionally, we can only apply the
second approach to a pair of RSs ; hence, for the sake of comparability, we
restrict the size of the set R to hybrid recommenders of size two, although
in the future, we would like to investigate how to combine larger pools of
recommenders.

Hence, based on the proposed approaches, we present in Tables 6, 7, and 8
the results for the cities of Tokyo, New York, and London of the following
recommenders: Pop, UB, TD, IRenMF, and PGN. We decided to select these
recommenders because they are the ones that achieve the best values according
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Table 8: Performance results on London city for polarization mitigation. Same
notation as Table 6.

Accuracy Novelty Diversity Popularity Exposure Distance Coverage

Recommender P nDCG EPC Gini PopI PopC ExpP ExpR DistT DistU UC

Pop 0.039 0.047 0.898 0.001 0.001 0.878 0.195 0.185 15.3 15.3 2,301
H(0.2 Pop + 0.8 IB) 0.031 0.035 0 .958 0 .168 0.125 0 .740 0 .020 0 .017 20.8 20.8 2,301
H(0.8 Pop + 0.2 IB) 0.040 0.048 0.898 0.001 0.001 0.875 0.190 0.180 14.8 15 .2 2,301
H(0.5 Pop + 0.5 IB) 0.040 0.047 0.920 0.035 0.041 0.825 0.093 0.086 18.7 17.5 2,301

RR(Pop, IB) 0.044 0 .051 0.912 0.002 0.002 0.786 0.069 0.059 18.0 17.5 2,301

UB 0.037 0.048 0.923 0.004 0.007 0.781 0.045 0.036 20.7 22.4 1,824
H(0.2 UB + 0.8 IB) 0.023 0.031 0.976 0 .213 0 .122 0.698 0.004 0.003 22.5 26.3 1,824
H(0.8 UB + 0.2 IB) 0 .038 0 .049 0.923 0.005 0.008 0.782 0.044 0.036 20.6 22.2 1,824
H(0.5 UB + 0.5 IB) 0.032 0.043 0.948 0.078 0.056 0.735 0.020 0.015 22.6 23.2 1,824

RR(UB, IB) 0 .038 0.047 0.937 0.013 0.018 0.753 0.026 0.020 19 .9 21 .9 1,824

TD 0.037 0.049 0.927 0.007 0.012 0.813 0.044 0.036 24.9 24.6 1,824
H(0.2 TD + 0.8 IB) 0.022 0.030 0.976 0 .216 0 .121 0 .699 0.004 0.003 22.7 26.4 1,824
H(0.8 TD + 0.2 IB) 0 .038 0 .050 0.927 0.007 0.012 0.812 0.044 0.036 24.2 24.2 1,824
H(0.5 TD + 0.5 IB) 0.033 0.044 0.950 0.091 0.064 0.751 0.019 0.014 24.1 24.5 1,824

RR(TD, IB) 0.037 0.046 0.942 0.025 0.029 0.764 0.022 0.016 20 .8 22 .0 1,824

IRenMF 0.036 0.047 0.932 0.021 0.024 0.812 0.044 0.037 22.2 23.0 1,826
H(0.2 IRenMF + 0.8 IB) 0.023 0.031 0.976 0.221 0 .124 0 .702 0.004 0.003 22.1 26.2 1,826
H(0.8 IRenMF + 0.2 IB) 0 .038 0.050 0.933 0.024 0.025 0.810 0.042 0.035 21.8 22.5 1,826
H(0.5 IRenMF + 0.5 IB) 0.035 0.047 0.952 0.104 0.067 0.758 0.018 0.014 21.8 23.1 1,826

RR(IRenMF, IB) 0.040 0 .051 0.942 0.040 0.035 0.753 0.022 0.016 19 .1 21 .4 1,826

PGN 0.042 0.052 0.912 0.008 0.015 0.856 0.118 0.109 16 .4 14.4 2,301
H(0.2 PGN + 0.8 IB) 0.031 0.036 0 .959 0 .171 0 .124 0 .739 0 .020 0.016 20.7 20.6 2,301
H(0.8 PGN + 0.2 IB) 0 .043 0.054 0.911 0.007 0.013 0.856 0.115 0.105 16 .4 14.5 2,301
H(0.5 PGN + 0.5 IB) 0.041 0.049 0.931 0.060 0.057 0.800 0.060 0.053 19.6 17.3 2,301

RR(PGN, IB) 0 .043 0.050 0.921 0.007 0.012 0.769 0.050 0.042 19.0 16.7 2,301

to the accuracy metrics. For each recommender, we show three configurations
regarding the hybrid approaches denoted as H(R1, R2), where each model is
combined with the IB recommender with different weights. These weights are
designed to balance the contribution of each model in the final recommenda-
tions. As there might be a large number of possible configurations, we decided
to focus on three weights: 0.2, 0.8, and 0.5. These weights allow us to explore
the effect in the recommendations when giving less importance to the first rec-
ommender (0.2), the same weight to both models (0.5), and more importance
to the first algorithm (0.8). Thus, for example for H(0.2 Pop + 0.8 IB), the fi-
nal score of every item is created from Pop recommender and IB recommender
contributing 20% and 80% to the final score, respectively. We also include one
re-ranker configuration, denoted as RR(R1, R2), where, as explained before,
the IB recommender is used to re-rank the top 20 recommended items from
each method. The reason why we selected the IB approach is straightforward:
it is the personalized recommender (discarding the pure geographical ones)
that achieves the best values in novelty, diversity, and exposure while not
being the worst in terms of accuracy.

When analyzing these results, we notice some interesting outcomes. In New
York, we observe that the best recommender in terms of accuracy is still the
pure Pop model, however, when using the hybrid IB with a weight of 0.5 we
reduce the popularity bias (as we can see in the PopI metric) while improving
almost in half the exposure values. Better mitigation results are obtained when
the weight on IB is higher, but in that scenario, accuracy metrics decrease by
more than a 37% (from 0.069 to 0.043 in terms of P). For the rest of the
models (UB, TD, IRenMF, PGN) in this city we do observe that using a
hybrid with a weight of 0.2 in the IB component allows us to alleviate most
of the biases while also obtaining slightly higher values in terms of accuracy.
This is particularly interesting because we are able to maintain similar levels of
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accuracy while improving significantly the results obtained in terms of novelty,
diversity, and polarization mitigation using such a simple technique. With
respect to comparing the performance of the re-rankers with the hybrids, we
can observe that, in general, re-rankers obtain comparable results to those of
using a weight of 0.5 for the hybrids, which might be reasonable since the
IB re-ranker can only modify the ranking of the top-20 items returned by
the recommender, so the (biased) original recommendations still maintain a
strong effect in the final ranking. It is important to note that, regarding the
geographical polarization, we observe that in the case of New York we are
able to reduce this bias when using a weight of 0.8 with the IB approach in
the hybrid model (in the case of DistT, more than a 26%, from 30.8 to 22.6)
or when using the re-ranker (here, for DistT, more than a 13% improvement,
from 30.8 to 26.7). However, the reduction of the bias in these metrics is still
far from the values reported in the Skyline of Table 4. In fact, it should be
noted that any reduction of this bias would be surprising considering that
the IB recommender does not include any geographical component. Regarding
this, we performed experiments considering the KDE as a candidate algorithm
to build the hybrids and the re-rankers. However, we observed that when we
reduced the distance of the recommended venues to the user, the accuracy of
the recommendations decreased significantly. For example, in New York, we
observed that when using our reranking approach, the performance in terms of
ranking accuracy decreases, for all recommenders, more than a 50%, evidencing
that the KDE is not a good method to be used with these mitigation proposals.

The results for the Tokyo dataset, shown in Table 6, confirm a very inter-
esting case where the best algorithm in terms of accuracy outperforms the best
recommender reported in Table 3 (which was, in fact, the Pop recommender,
also reported in this table). Here, the best performing configuration is the
PGN with the IB re-ranker. Although this is a promising result, we observe
that in this case, the re-ranker is obtaining lower values in terms of novelty
and diversity while suffering from a larger popularity bias (but lower cate-
gory bias). Nevertheless, there is one example that shows a very good tradeoff
among all the metrics: H(0.2 PGN + 0.8 IB). In this case, it also obtains a
higher performance than the pure PGN; more specifically, we are able to im-
prove the accuracy a 5.88% in terms of P while reducing the ExpP and ExpR
by a 30.9% and a 33% respectively when compared against the result obtained
by the PGN. In the case of the city of London, we observe in Table 8 that
the best performing configuration in terms of P is the Pop algorithm with the
item reranker, and in terms of nDCG is the PGN combined with the IB with
a weight of 0.2. However, the most important conclusion about these cases is
that we again managed to improve performance in terms of ranking accuracy
(up to 14% in the case of the Pop), maintaining similar values in novelty and
diversity while reducing exposure polarization. This indicates that, as long as
we have a test set available, we are able to increase the performance of the
different models in other dimensions without degrading the accuracy ranking
dramatically. The geographical polarization, on the other hand, is more diffi-
cult to improve, as discussed for the New York city. However, all these examples
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confirm that it is possible to find configurations where better results than the
original recommenders are obtained, either in terms of accuracy while keep-
ing similar polarization values, or reduced polarization measurements while
keeping comparable accuracies.

6 Conclusions and future work

Research on the characterization of biases in Artificial Systems in general, and
Recommender Systems in particular, is an area of growing interest. In this
work, we have focused on polarization, that is, how far an algorithm deviates
from what was observed in the training data. We have characterized four types
of polarizations in Location-Based Recommender Systems, a specific type of
algorithms that suggest points-of-interest (or venues) to users, by exploiting
their preferences and other inherent characteristics from the touristic domain,
such as location and item categories. This type of suggestion is one of the
main means for users to explore a city and the business of venue owners is
directly affected by them, hence providing equitable recommendations is a key
aspect that may have a concrete impact on society. In detail, we have analyzed
the popularity polarization (both from venues and categories), the exposure
of venues, and the polarization related to geographical distance.

After the characterization, in the experiments, we have assessed these dif-
ferent sources of polarization by comparing several state-of-the-art recom-
menders. Our results show that popularity polarization is prevalent in many
of these recommendation algorithms, both in generic or tailored approaches
for location-based recommendation. In terms of exposure and distance, there
is a difficult tradeoff to satisfy with respect to accuracy. This is, as discussed
in the paper, tied to the test set available which may itself contain bias.

Finally, we propose two techniques based on combining recommendation
algorithms (either by building a hybrid or a re-ranker method) that have
demonstrated promising results to mitigate the analyzed polarizations. In par-
ticular, for some cases, these approaches are able to improve accuracy while
reducing the observed polarization. However, this effect depends on how the
recommenders to be combined are selected and also on the test set used to
analyze the quality of the recommendations.

That is why, in the future, a deeper analysis is necessary to be performed so
that other families of algorithms are also included. In particular, more dynamic
approaches based on sequences or other contexts available in the tourism do-
main might have different levels of sensitivity to these biases. Similarly, we
believe the polarization assessment performed herein should be extended to
analyze how it affects groups of different users, for example, according to sen-
sitive attributes such as user gender, age, or ethnicity. In the same way, a
more automatic approach to detect which recommendation algorithm should
be used to be combined with when using the proposed techniques, needs to be
analyzed to scale these approaches to larger datasets or other recommendation
tasks.
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At the same time, we would like to explore other strategies for reducing the
polarization of recommendations without the need for the users’ ground truth,
so that the polarization reduction is not so dependent on the test set. Indeed,
besides the algorithmic bias discussed in the introduction, another popular
source of bias is the fact that the data could be collected in a biased way, or
that users interact with the system in such a way that biased interactions are
recorded (Chen et al. 2020). In this paper, we aimed at understanding how bi-
ased or polarized the recommendations depending on the algorithm are, since,
even starting from the same data, some recommenders may output more po-
larized results than others. However, this only relates to training data, but this
could also affect the test data, since the original data from where the training
and test splits are generated are the same. To the best of our knowledge, there
are not many feasible and realistic solutions to this aspect, and the commu-
nity is still working on it. One possibility would be to collect complete and
unbiased datasets. This has been done for specific domains (Cañamares and
Castells 2018), evidencing the very high cost it is required for such construc-
tions. We may also focus on specific subsets of users or items (those items in
the long-tail or users with enough interactions in the system), however this is
not guaranteed to reduce the bias in the data, and may have generalization
problems. A potential solution that would require further analysis and proper
formalization is the use of simulations to generate synthetic data without bi-
ased ground truth. However, this alternative would depend on the possibility
of generating realistic user interactions, which is something quite challenging,
even more for location-based information (Ekstrand et al. 2021a; Hazrati and
Ricci 2022).

Finally, other ways to mitigate these and other biases should be explored in
the field of Point-of-Interest recommendation, beyond exposure polarizations,
such as selection biases – where the observed interactions are not a represen-
tative sample of all the interactions – and feedback loop effects – where the
exposed items by the recommender are used as training data for the same
recommender, intensifying the biases over time – (Chen et al. 2020).
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Appendix

As already discussed in Section 5.2, in Figure 9 we show the distribution of
the top 30% most popular venues in the three different cities (left column). On
the right column of this figure, the check-in distribution performed by users is
depicted. It is remarkable how strong the long-tail effect is in both situations,
meaning that there are items and users that concentrate most of the check-ins.
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Cañamares R, Castells P (2017) A probabilistic reformulation of memory-based collaborative
filtering: Implications on popularity biases. In: Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval, ACM,
pp 215–224
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