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Resumen

La disponibilidad limitada de datos etiquetados puede dificultar la aplicación de modelos de re-

des neuronales para la Recuperación de Información (Neu-IR) en ámbitos como el sector inmobiliario.

Este trabajo investiga el uso de Modelos de Lenguaje Grandes (LLMs) abiertos (open-weights) pa-

ra la extracción automática de características de propiedades inmobiliarias de anuncios en portales

web como Idealista. Esto nos permite desarrollar un proceso de creación de conjuntos de datos para

fine-tuning de modelos usando representación vectorial de texto. Entrenamos un modelo basado en

BERT, real-bert, en este conjunto de datos y evaluamos su efectividad en la búsqueda de propiedades

inmobiliarias utilizando técnicas de recuperación por similitud vectorial.

Los resultados demuestran que real-bert supera significativamente a los modelos de referencia. Es-

to demuestra el potencial de utilizar LLMs locales para la extracción no supervisada de características,

y permite la aplicación de Neu-IR en dominios con datos y recursos computacionales limitados.

Este trabajo investiga además distintas configuraciones de entrenamiento y demuestra la aplicación

práctica de nuestro sistema de búsqueda a través del desarrollo y despliegue de una aplicación web.

Esta investigación contribuye al avance de técnicas avanzadas de Recuperación de la Información

en dominios con escasez de datos, abriendo nuevas vías de exploración con LLMs cada vez más

sofisticados y el uso de datos multimodales.

Palabras clave

Recuperación de Información por Redes Neuronales (Neu-IR), Búsqueda Inmobiliaria, Fine-Tuning,

Aprendizaje No Supervisado, Procesamiento de Lenguaje Natural (NLP), BERT, Aplicaciones Web,

Modelo de Lenguaje Grande (LLM)
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Abstract

The limited availability of labeled datasets often hinders the application of advanced Neural Infor-

mation Retrieval (Neu-IR) techniques in specialized domains like real estate. This thesis explores the

use of open-weights Large Language Models (LLMs) for automated feature extraction from property

listings, enabling the creation of a comprehensive dataset for fine-tuning text embedding models.

A BERT-based model, real-bert, is trained on this dataset and evaluated for its effectiveness in

real estate search using vector similarity retrieval techniques. The results demonstrate that real-bert

significantly outperforms baseline models, highlighting the potential of local LLMs for unsupervised

feature augmentation and enabling the application of Neu-IR techniques in domains with limited data

and computational resources.

The thesis further investigates optimal training configurations and showcases the practical applica-

tion of the approach through a demo web application. This research contributes to the advancement of

Neu-IR in data-scarce domains, opening avenues for further exploration with increasingly sophisticated

LLMs and multimodal data integration.

Keywords

Neural Information Retrieval (Neu-IR), Real Estate Search, Fine-Tuning, Unsupervised Learning,

Natural Language Processing (NLP), BERT, Web Applications, Large Language Model (LLM).
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1
Introduction

1.1. Motivation

In the last two decades, the real estate industry has found an indispensable ally in digital platforms,

which have become a central hub for property listings [1]. With Europe’s real estate market projected

to grow annually by 3.27 % 1, and the rise in online leasing platforms and services 2, it can be inferred

that the digital segment of the industry could see an even bigger growth.

Despite the increasing reliance on real estate portals, current property search methods pose cha-

llenges, even though it attracted researchers from the very beginning of the field [2], including in-

dustry [3]. Traditional search methods, which often rely on predefined filters or keywords, can be inef-

ficient, inflexible, and unintuitive for both customers and agents [4]. These methods can also result in

’filter bubbles’ [5], limiting the diversity of search results by confining users to properties within their

usual search parameters or neighborhoods. Furthermore, information gaps in property ads can compli-

cate the process [5], potentially leading to overlooked properties or missed opportunities.

At the same time, Neu-IR [6] has advanced significantly with the incorporation of deep learning tech-

niques, particularly in Natural Language Processing (NLP) tasks [7], with the introduction of Transfor-

mer models [8]. These advancements have been applied to web search engines [9], e-commerce [10],

and social networks [11]. Despite their success in these domains, the application of these techniques

remains largely unexplored in real estate, presenting unique opportunities.

The common issue of limited datasets for model training in new domains is addressed in our work by

leveraging the capabilities of LLMs for feature extraction, utilizing a small, open-weights model (llama2

13B) for its computational efficiency and accessibility in experimental contexts. We investigate effective

prompting strategies to unlock their potential while acknowledging potential limitations in reasoning and

multilingual understanding. Through this exploration, we aim to demonstrate the feasibility of applying

small LLMs for high-quality, effective dataset creation in this domain.

1https://www.statista.com/outlook/fmo/real-estate/europe (last accessed on 2024-04-10)
2https://www.grandviewresearch.com/industry-analysis/real-estate-market (last accessed on 2024-04-10)

1

https://www.statista.com/outlook/fmo/real-estate/europe
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Introduction

1.2. Goals

The primary objective of this study is to introduce a novel approach in real estate search by applying

Neu-IR techniques. We propose an Embedding-based Retrieval (EBR) method, leveraging a BERT-

based model that has been fine-tuned for our specific task, which we refer to as real-bert .

Our aim is to utilize a small open-weights Large Language Model (LLM) (Llama2 13B) to obtain

more than 20 structured features for each property ad from a textual corpus of hundreds of real estate

properties, primarily sourced from Idealista 3, known for its large, high-quality, and diverse listings. By

prompting Llama2 13B with this corpus, we enable the automated creation of a fine-tuning dataset.

This dataset, alongside a dedicated evaluation corpus, allows us to rigorously assess the performan-

ce of our fine-tuned model compared to other baseline models, utilizing traditional and novel metrics.

To further validate the practicality and effectiveness of our approach in a real-world scenario, we de-

velop a web application that allows users to search for properties using natural language queries and

directly compare the results obtained with different models. This user-centered evaluation, conducted

in a production environment, complements our quantitative analysis and offers valuable insights into

the user experience. It showcases our system’s potential for a more intuitive and efficient real estate

search process, emphasizing practicality alongside theoretical advancements.

1.3. Work Structure

This thesis is structured into five chapters, each addressing a crucial aspect of the research and

development process:

Chapter 1. Introduction: Outlines the limitations of current real estate search methods and

motivates the exploration of Neu-IR and LLMs as potential solutions.

Chapter 2. State of the Art: Review of relevant background information, covering NLP tech-

niques, LLMs, and Neu-IR, with a specific focus in real estate search.

Chapter 3. Design and Implementation: Details the development process of the proposed

search system, including data preparation, feature extraction with LLMs, dataset creation,

model fine-tuning, and demo web application implementation.

Chapter 4. Experiments and Results: Describes the evaluation methodology, compares the

performance of the fine-tuned model with various baseline models, and analyzes the impact

of different training configurations.

Chapter 5. Conclusions and Future Work: Overview of our key findings, implications of the

results, and potential directions for future research and development.

3https://www.idealista.com/ (last accessed on 2024-04-10)
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2
State of the Art

In this chapter, we take a closer look at the current state of the art in several key areas related

to our study. We will explore the existing technologies and challenges in property search, delve into

the foundational aspects of Natural Language Processing, and discuss the most relevant and success-

ful applications of Neural Information Retrieval. We will also provide a concise overview of the latest

research around Large Language Models (LLMs) with special emphasis on their evolution, characteris-

tics, training methodologies, and practical applications. Each of these areas plays a crucial role in our

work, and understanding the current landscape will provide valuable context for later chapters.

2.1. Natural Language Processing

NLP is a subfield of Artificial Intelligence (AI) which aims to bridge the gap between computers

and humans through natural language understanding (comprehending human language input) and ge-

neration (creating human-like language output). In today’s technological environment, where data is

abundant and mostly unstructured, NLP plays a crucial role in deriving understanding and insights from

such data.

Building upon the foundation of NLP, early systems were predominantly rule-based [12]. These

systems relied on a pipeline architecture where syntax, semantics, and pragmatics were treated as

separate modules. For instance, a syntactic parser would take raw text as input and output a parse

tree, which would then be used by a semantic analyzer to determine the sentence’s meaning. An exam-

ple of a rule-based system is MYCIN [13], an early expert system developed for diagnosing bacterial

infections.

The advent of neural networks marked a significant transition in NLP. Unlike rule-based systems,

which rely on predefined linguistic rules and structures, neural network-based NLP systems learn di-

rectly from data. This learning is achieved through a process known as training. This involves feeding

the model a large dataset of sentences and optimizing the model’s parameters to minimize the differen-

ce between its predictions and the actual data. This way, the model learns to recognize patterns and

structures in the language, guided not by explicit rules, but rather by the statistical properties of the data.
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Once the patterns in the language are learned, neural NLP systems can use them to understand and

generate language. This is called inference, where the pre-trained model is used to make predictions

on some data.

2.1.1. Word Embeddings

Figure 2.1: 2D visualization of word embeddings

Techniques such as word embeddings have been instru-

mental in this transition. A word embedding is a represen-

tation of a word in a high-dimensional space. In this space,

semantically similar words appear closer together. This is

clearly seen in Figure 2.1, where clusters of related words

are formed.

The Word2Vec model [14] was a breakthrough in lear-

ning word embeddings. It utilized a neural network which

learnt to predict a word based on its context (the words

around it), thereby capturing semantic and syntactic rela-

tionships between words. However, Word2Vec generates a

single embedding for each word, regardless of context. This

means that it cannot generate embeddings for larger pieces of text like sentences or documents, which

we refer to as sentence embeddings.

2.1.2. Transformer Models and Sentence Embeddings

To address these challenges, the field explored new architectures that could capture the intricate

interplay of words in their specific contexts. This led to the development of Recurrent Neural Networks

(RNNs) [15], including their variant Long Short-Term Memory (LSTM) networks [16], which were de-

signed to handle sequential data and context in sentences. However, they processed sentences se-

quentially, leading to computational inefficiencies and struggles with long-range dependencies in the

text.

The Transformer model addressed these issues by introducing self-attention [17], allowing each

word to compute its context independently and in parallel. Rather than processing sentences in a linear

sequence, the model dynamically identifies and prioritizes relevant parts of the input during inference

to generate contextually appropriate segments of the output.

Figure 2.2: Attention Mechanism in Transformer Models

Figure 2.2 shows a minimal representation of

the attention mechanism in the task of machi-

ne translation, where the intensity of the boxes
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around each word in the input sentence represents the attention weight. The output token being gene-

rated is highlighted.

The efficiency and accuracy of Transformer models have revolutionized the field of NLP. Their ver-

satility has enabled the creation of numerous cutting-edge applications. These include machine trans-

lation services (Google Translate 1), instruction-following chatbots (ChatGPT 2), high-accuracy speech

recognition (Whisper [18]), and sentiment analysis, among many others.

We now delve into the specifics of BERT (Bidirectional Encoder Representations from Transfor-

mers), a particular implementation of the Transformer architecture that we have utilized in our project.

BERT

The Bidirectional Encoder Representations from Transformers (BERT) model has been a significant

milestone in the application of Transformer models [19].

The initial input for BERT, akin to other language models, consists of tokens, which are numerical

representations of words or characters in a text. In the realm of NLP, sentences are segmented into

these tokens. BERT is designed to support a maximum of 512 tokens per input. This limit is a practical

decision made during the design of BERT to balance the ability to handle reasonably long sequences

of text with computational efficiency (since the attention score computation grows quadratically with the

number of tokens). These tokens are then transformed into embeddings through an embedding layer,

serving as the intermediate input for the subsequent layers of the model.

BERT’s primary innovation is its bidirectional training, which allows the model to understand the

context of a word based on all its surroundings (left and right of the word). This bidirectional approach

enables BERT to generate a new set of word-level embeddings that carry richer contextual information.

BERT then aggregates these embeddings to capture the overall semantic meaning of a given text,

making it highly useful for many NLP tasks. However, to harness its full potential, fine-tuning BERT with

domain-specific data is a common practice. This process allows the model to better understand and

generate higher quality embeddings for the specific task at hand. The intricacies of our approach to this

fine-tuning process will be unveiled in the subsequent sections.

2.2. Large Language Models

Large Language Models (LLMs) have significantly broadened the reach of NLP in everyday appli-

cations. While BERT, discussed in section 2.1.2, is indeed a type of LLM, the term ’LLMs’ often refers

to a newer generation of models that are larger and more capable. These include models such as the

1https://blog.research.google/2017/08/transformer-novel-neural-network.html
2https://openai.com/research/instruction-following
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GPT series [20–22], Llama 2 [23], and PaLM 2 [24]. These advanced models, built upon the founda-

tion laid by BERT and other transformer-based models, have introduced additional advancements and

capabilities that have democratized NLP, propelling it into a wide array of everyday applications.

2.2.1. Characteristics and Training of LLMs

LLMs are Transformer-based models that predict the next token in a document. They are trained

on a massive corpus of text data from various sources, such as Wikipedia, GitHub, Reddit, books, etc.

These models have been found to be particularly effective for text generation tasks, setting them apart

from other transformer-based models.

Figure 2.3: Summary of the most important LLMs and their sizes.

Model Size (parameters)

BERT [19] 110M

GPT-3 [20] 175B

LLAMA-2 [23] 7B/13B/70B

PALM [24] 540B

PALM-2 [24] Unknown (smaller than PALM)

GPT-4 (speculative) 1.76T (eight 220B models)

The size of these models, as shown in

Table 2.3, varies significantly, ranging from

millions to trillions of parameters. This varia-

tion in size is indicative of the diverse ca-

pabilities and complexities of different LLMs.

For instance, larger models with trillions of

parameters are typically capable of more

sophisticated tasks and exhibit better per-

formance on a range of NLP tasks. Howe-

ver, they also require more computational

resources for training and inference, which can be a limiting factor in their use and deployment.

The performance of LLMs hinges on the quality and volume of their training data. They are trained

on a corpus of high-quality, expertly curated data and further refined on a significantly larger internet

dataset, adhering to the principle of scaling laws [25].

Additional fine-tuning methods are used for optimizing model performance. One such strategy is

chat-finetuning, which is specifically designed to enhance the model’s conversational abilities, inclu-

ding instruction-following [21]. Another key strategy is Reinforcement Learning from Human Feedback

(RLHF) [26], a process where human helpers handpick the best answer from a set of model-generated

responses, or through a system of community voting. Lastly, post-training alignment is utilized as a stra-

tegy to further refine the model’s performance, factuality, and adherence to desired behavior, ensuring

the model’s output aligns closely with human expectations [22].

6 Exploration of Neural Embeddings and Feature Generation for Enhanced Real Estate Search
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2.2.2. Practical Approaches to LLMs

Prompting Techniques

In this subsection, we aim to introduce some recent prompt engineering techniques, used to levera-

ge the power of LLMs and handle their limitations, for a wide range of tasks.

Zero-shot prompting, introduced in [27], is a method of using natural language instructions to make

an instruction-tuned language model perform a specific task without any training examples.

Following the concept of zero-shot prompting, another technique known as few-shot prompting has

emerged. Introduced in [28], few-shot prompting involves providing the model with a small number of

examples of the task at hand, as seen in Table 2.1. This allows the model to ”learn” the task from these

examples and apply that learning to generate an appropriate response. This technique is particularly

effective when the task is complex or when the desired output format is not easily described through a

prompt alone.

Limitations of these methods include, for instance, zero-shot prompting might not always yield the

desired results due to the lack of training examples, and few-shot prompting requires careful selection

of high-quality relevant examples. A strategy of trial and error, active oversight, and critical assessment

of language model outputs allows for iterative refinement of the prompts and examples used, leading to

improved performance over time.

Zero-shot [27] Few-shot [20]

Input Premise: At my age you will probably

have learnt one lesson.

Hypothesis: It’s not certain how many

lessons you’ll learn by your thirties.

Does the premise entail the hypothesis?

OPTIONS:

-yes

-it is not possible to tell

-no

A ”whatpu” is a small, furry animal

native to Tanzania. An example of a

sentence that uses the word whatpu is:

We were traveling in Africa and we saw

these very cute whatpus.

To do a ”farduddle” means to jump up

and down really fast. An example of a

sentence that uses the word farduddle

is:

Output It is not possible to tell When we won the game, we all started to

farduddle in celebration.

Table 2.1: Examples of zero-shot and few-shot prompting.

Chain-of-Thought (CoT) prompting [29] is a technique designed to enhance the reasoning capa-

bilities of LLMs. It encourages them to break down complex problems into a series of intermediate

reasoning steps. Instead of directly providing the LLM with a question and expecting a single-step ans-

wer, CoT prompting involves guiding the model through the reasoning process. This can be done by

providing explicit steps or by prompting the model to “think step-by-step” and perform the reasoning

Fernando Ónega Rodrigo 7
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by itself. Each logical step in the thought process helps the model arrive at the final answer through a

chain of interconnected deductions. This approach has been shown to significantly improve the accu-

racy and logical coherence of LLM responses. It is especially effective for tasks that require common

sense knowledge, as it encourages the model to generate more human-like responses. By explicitly

modeling the reasoning process, we aim to utilize this prompting technique during our feature extrac-

tion step. This will aid our understanding of the reasoning behind LLM answers and reveal areas where

its understanding breaks down, including due to logical connections or language limitations.

Knowledge Distillation

In addition to the aforementioned prompt engineering techniques, knowledge distillation has been

explored by many researchers [30–32] due to the challenges associated with the deployment of large

models. Many of these models are either proprietary, making them expensive to use, or they are too

large and slow for practical use in a production or research environment.

Knowledge distillation is a process that relies on expertly crafted prompts, which guide the teacher

model (a larger model) to generate high-quality training data. This data is then used to train the smaller

student model. The objective of this process is to transfer the knowledge from the larger model to the

smaller one, thereby enhancing the capabilities of the smaller model.

The goal of knowledge distillation is to improve the zero-shot capabilities of the smaller model. With

the help of another expertly crafted prompt, the smaller model can generate responses that are similar

in quality to those of the larger model, even without any additional training examples.

A clear example of the application of this technique is RankVicuna [30], an open-source LLM that

performs listwise document reranking (the reordering of items in a list to improve output quality). It is

based on Vicuna (a 7B parameter fine-tuned Llama 2 model) and is further trained on data generated

by a larger LLM using knowledge distillation. Despite being 30 times smaller than other proprietary

LLMs such as GPT-4, it achieves comparable performance in reranking tasks. Additionally, other recent

studies [32, 33] have showcased the potential of LLMs in generating high-quality, contextually relevant

synthetic data for training.

However, our research takes a different path. We explore the task of feature extraction, leveraging

the ability of these models to capture complex patterns and relationships in textual data, specifically,

from property ads. We hypothesize that such an approach would provide greater control, flexibility, and

a lower error likelihood, in comparison to directly generating text using an LLM to build the dataset.

Quantization

Quantization is a straight-forward approach that has been utilized to deploy these large models

on devices with limited computational resources. It involves reducing the precision of the weights in
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neural network models. In standard models, weights are typically represented as 32-bit floating-point

numbers. However, through quantization, these can be represented as lower-precision formats, such

as 16-bit integers or even lower.

The process of quantization, while beneficial in reducing memory requirements and computational

cost, does potentially degrade the performance of the model due to the reduced precision of the weights.

According to [34], an 8-bit quantization should be preferred over smaller full precision models. For

instance, an 8-bit 30B quantized model outperforms a 13B model of similar size and should have lower

latency and higher throughput in practice. This also holds for an 8-bit 13B model compared with a 16-bit

7B model.

One of the latest advancements in this field is GPTQ [35], a method for quantizing LLMs to 3 or 4

bits per weight, without retraining or significant accuracy loss.

Quantization enables the deployment of powerful LLMs in resource-constrained environments without

a substantial compromise in performance and enabling the use and research of LLMs on more afforda-

ble consumer-level hardware.

2.3. Neural Information Retrieval

Neu-IR represents a significant advancement in the field of information retrieval [36]. It applies neural

network models to enhance the understanding of query semantics, providing a more nuanced approach

compared to traditional keyword-based search systems.

One common approach in Neu-IR is the use of embedding-based methods. These methods are

particularly effective due to their ability to capture semantic similarities in text, a crucial aspect for

understanding and processing natural language data.

2.3.1. Embedding-based Retrieval

Building on the concept discussed in the previous section, where words of similar meaning are closer

in the embedding space, embedding-based methods in Neu-IR extend this principle to documents and

queries. They map these entities into a shared vector space, enabling the computation of relevance

based on proximity.

In embedding-based retrieval, documents are transformed into embeddings using a pre-trained mo-

del and stored in a vector database. Upon receiving a query (e.g., question, description, criteria), it is

also converted into an embedding. The system retrieves documents by comparing embeddings to the

query embedding using a measure such as Cosine Similarity, resulting in a ranked list of documents by

similarity. This system is generally considered very efficient and can handle large document corpora.
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Recent research has shown that Transformer models, when pre-trained with carefully designed

tasks, can significantly enhance the effectiveness of embedding-based retrieval, outperforming tradi-

tional methods and other embedding models [37]. Furthermore, several practical cases have recently

demonstrated the utility of these methods [38–40]. For instance, Facebook has applied embedding-

based retrieval to their search system [41]. They developed a unified embedding framework to model

semantic embeddings for personalized search.

2.3.2. SentenceTransformers

The SentenceTransformers 3 library is a Python framework that simplifies the generation and use

of sentence and document embeddings using transformer models such as BERT. It is built on top of

the Hugging Face’s Transformers library and PyTorch, providing an accessible interface for working with

these models.

This is enabled by the Sentence-BERT (SBERT) paper [42], which introduces a modification of the

BERT network that significantly enhances the efficiency of embedding-based retrieval, making it much

more suitable for tasks like semantic similarity search.

The SentenceTransformers library provides an API for encoding (embeddings generation) and mo-

del fine-tuning, making it an invaluable resource for our work. Furthermore, a variety of pre-trained

models based on the BERT architecture, or its variants are offered in the library, such as all-MiniLM-L6-

v2 known for its efficiency and compact size, multi-qa-mpnet-base-dot-v1 trained on a large question-

answering dataset, and paraphrase-multilingual-MiniLM-L12-v2 designed for cross-lingual tasks. These

models, fine-tuned using unique datasets for different input lengths and NLP tasks, provide high-quality

embeddings and will be evaluated in Chapter 4.

2.3.3. Evaluation

The evaluation of text embeddings, including retrieval, is a challenging task due to the complexity

and subjectivity of language, the diversity of domains and tasks, the lack of standardized metrics and

the scalability issues associated with the increasing size of language models and the volume of data

they are trained on.

One way of addressing these issues is through comprehensive benchmarks like the Massive Text

Embedding Benchmark (MTEB) [43]. MTEB spans 8 embedding tasks, covering several datasets and

languages, providing a more robust and diverse basis for evaluation. For the retrieval task, which is

the focus of our project, the main metric used in MTEB is normalized discounted cumulative gain at 10

(nDCG@10).

3https://www.sbert.net/
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nDCG is a widely used metric for measuring the effectiveness of a ranking (retrieval) system [44].

Each item in the ranked list is assigned a relevance score. The gain of each item is then discounted

based on its position in the list. This is calculated as the Discounted Cumulative Gain (DCG):

DCGp =

p∑
i=1

reli
log2(i+ 1)

where p is the position in the ranked list and reli is the relevance of the result at position i.

However, DCG does not consider the varying lengths of the ranked lists. Therefore, DCG is norma-

lized by the Ideal Discounted Cumulative Gain (IDCG), which is the DCG value for the ideal ranking of

the items. The nDCG is then calculated as:

nDCGp =
DCGp

IDCGp

nDCG values range from 0 to 1, where 1 indicates the perfect retrieval and ranking of the items.

Additionally, F1 score is another commonly used metric in the evaluation of text embeddings. The

F1 score is the harmonic mean of precision and recall, providing a balance between these two metrics.

It ranges from 0 to 1, where 1 indicates perfect precision and recall.

F1 = 2 · precision · recall
precision+ recall

where precision is the proportion of true positive results among the total number of cases classified as

positive, and recall is the proportion of true positive results among the total number of positive cases.

In addition to these traditional metrics, task-specific metrics are often used to measure system

performance against specific objectives, such as user satisfaction, increased engagement, or higher

conversion rates. A/B testing is a useful for assessing the impact of system configurations or algorithms

on user behavior and goals.

In the context of real estate search, A/B testing can be used to compare different ranking algorithms,

interface designs, or embedding models. It measures their effect on metrics like click-through rates, time

spent on listings, or explicit user votes. This approach provides insights into the practical effectiveness

of the system and guides further development and optimization efforts. Evaluation data can be used to

improve the performance of existing models through RLHF, as introduced in Section 2.2.1.

Fernando Ónega Rodrigo 11



State of the Art

2.4. Real Estate Search

The advancements in Neu-IR techniques have demonstrated significant potential in various do-

mains, among which real estate stood out as an area ready for disruption and improvement. Existing

research in this domain has primarily focused on recommendation systems, often utilizing structured

data and collaborative filtering techniques, overlooking the potential of EBR for enhancing search and

retrieval tasks [45].

Early efforts, such as RentMe [46], relied on knowledge-based systems, employing structured infor-

mation and predefined rules to match users with properties. Both [47] and [48] propose the integration

of embeddings with collaborative filtering models for generating property recommendations. However,

these methods primarily focused on user-item interactions and did not explicitly leverage any property

data. Other works proposed alternative techniques for incorporating textual information. For instan-

ce, [49] explored the application of Neural Tensor Networks for ranking property recommendations,

utilizing word2vec representations of structured property features. [50] employed TF-IDF based on pro-

perty titles, descriptions, and addresses to estimate user interest. However, this approach relies on

bag-of-words representations, which fail to capture the contextual relationships and semantic nuances

present in natural language descriptions. This limitation reflects the current state of online real estate

listings, where, aside from some platforms that offer keyword-based search 4, the complexity of their

search engine is primarily determined by the quantity and precision of the filters provided.

In contrast, our work proposes utilizing EBR, representing both the document (full real estate ad with

textual description) and the user query as dense vectors capturing semantic meaning, as detailed in

Section 2.3.1. This allows users to directly search using natural language queries, potentially improving

the accuracy, flexibility, and accessibility of the search experience.

The embrace of other cutting-edge technologies showcases the readiness of this industry for in-

novation. These technologies include Virtual Reality (VR) and Augmented Reality (AR) for tours and

renovations 5, Big Data for price estimation 6 and identifying market trends, and advanced machine

learning (diffusion models) for automatic room decoration 7. This strengthens our argument for a po-

tential reinvention of the search engine paradigm focused on the real estate domain.

4https://www.zoopla.co.uk/ (last accessed on 2024-04-10)
5https://www.schwoererhaus.com/es-es/casas/visitas-virtuales/ (last accessed on 2024-04-11)
6https://www.idealista.com/valoracion-de-inmuebles/ (last accessed on 2024-04-11)
7https://stageinhome.com/ (last accessed on 2024-04-11)
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3
Design and Implementation

In this chapter, we aim to provide a clear and comprehensive view of our system. We delve into its

design, detail the implementation process, and discuss the decisions made throughout its development.

3.1. Project Structure

The project is structured into three interconnected modules, each addressing a crucial stage in

developing an enhanced real estate search system based on embedding-based retrieval and language

models.

1. Dataset Creation. Lays the groundwork by collecting property listings, extracting structured

features, generating synthetic queries, and creating training and evaluation datasets. This

module leverages web scraping techniques and the capabilities of large language models

to transform unstructured data into a format suitable for model training.

2. Model Training and Evaluation. Focuses on optimizing an embedding model for the real

estate domain. It encompasses the selection of a pre-trained model, fine-tuning using the

generated datasets, and empirical evaluation against baseline models to assess performan-

ce improvements.

3. Web Application and Deployment. Bridges the gap between the underlying technology

and the user. It involves developing a backend API for processing user queries and a fron-

tend user interface for interacting with the system. This module demonstrates the practical

application of the project and facilitates real-time comparison of the performance of different

models.

Figure 3.1.1 provides a visual representation of the data flow and interactions between the various

modules within our project, offering a comprehensive overview of its architecture. The diagram outlines

the journey of data, starting from the initial web scraping of property listings and culminating in the

evaluation of our fine-tuned embedding model.
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Figure 3.1.1: Data flow of the project, organized by modules, from acquisition to evaluation, highligh-

ting key processes within the system.

3.2. Requirements Analysis

3.2.1. Dataset Creation

Functional Requirements

FR-DC-1.– The dataset must be created from real estate property listings.

FR-DC-1.1.– Property listings should be sourced from a reliable and diverse online platform (e.g., Idealista).

FR-DC-1.2.– The dataset should include a representative sample of property types, locations, and features.

FR-DC-2.– Each property listing in the dataset must have structured features extracted from its textual description.

FR-DC-2.1.– Feature extraction should be automated using a large language model (LLM) like Llama2.

FR-DC-2.2.– The extracted features should encompass key property attributes such as property type, size, number of
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rooms, amenities, and location information.

FR-DC-3.– The dataset must include synthetically generated queries that align with the extracted property features.

FR-DC-3.1.– Query generation should incorporate variations in phrasing, terminology, and complexity to reflect real-world
user search behavior.

FR-DC-3.2.– Queries should cover a range of property features and search criteria.

FR-DC-4.– Each query-property pair in the dataset must have a corresponding relevance score.

FR-DC-4.1.– The relevance score should quantify the degree of match between the query and the property features using
the Query-Property Alignment Score (QPAS).

FR-DC-4.2.– The QPAS calculation should consider partial matches and attribute-specific scoring criteria to reflect the
flexibility of real estate search.

FR-DC-5.– The dataset must be divided into training and evaluation sets.

FR-DC-5.1.– The split should ensure no overlap to prevent data leakage during model training and evaluation.

FR-DC-5.2.– The evaluation set should include a diverse and representative sample of properties and queries.

Non-functional Requirements

NFR-DC-1.– The dataset creation process must be automated and efficient to handle a large volume of property listings.

NFR-DC-2.– The data collection and scraping process must respect website limitations and ethical considerations.

NFR-DC-3.– The feature extraction process using LLMs should maintain a low error rate to ensure data quality.

NFR-DC-4.– The dataset size and balance should be configurable to allow for experimentation and optimization.

3.2.2. Model Training and Evaluation

Functional Requirements

FR-MTE-1.– The system must allow evaluating different pre-trained embedding models for their suitability for fine-tuning.

FR-MTE-2.– The system must be able to fine-tune a pre-trained embedding model using the generated dataset.

FR-MTE-3.– The fine-tuning process should adapt the model for semantic similarity in real estate search.

FR-MTE-4.– The system should allow for experimentation with different hyperparameters during fine-tuning, including:

FR-MTE-4.1.– Batch size

FR-MTE-4.2.– Learning rate

FR-MTE-4.3.– Number of epochs

FR-MTE-4.4.– Loss function (e.g., Cosine Similarity, Softmax)

FR-MTE-5.– The fine-tuning process must be reproducible with consistent results.

FR-MTE-6.– The system should allow for saving and loading the fine-tuned model for further use and evaluation.

FR-MTE-7.– The system must allow comprehensive evaluation of fine-tuned and baseline models, including the metrics:

FR-MTE-7.1.– Normalized Discounted Cumulative Gain (NDCG)

FR-MTE-7.2.– F1 Score

FR-MTE-7.3.– Adaptive NDCG (aNDCG)

FR-MTE-8.– The evaluation should be conducted using the evaluation dataset and a defined evaluation pipeline.

FR-MTE-9.– The system should provide structured reporting of evaluation results.

Non-functional Requirements

NFR-MTE-1.– The fine-tuning process must be computationally efficient and utilize available hardware resources optimally.

NFR-MTE-2.– The system should provide clear logging and monitoring of the training process.

NFR-MTE-3.– The evaluation process should be automated and efficient.
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3.2.3. Web Application and Deployment

Functional Requirements

FR-WAD-1.– The system must include a web application that allows users to interact with the real estate search system.

FR-WAD-2.– The web application must provide a user-friendly interface for inputting natural language queries.

FR-WAD-3.– The application must display search results ranked by their similarity score, ensuring the most relevant properties
are shown first.

FR-WAD-4.– The results must be displayed including relevant property details and images.

FR-WAD-5.– The application should allow users to compare search results obtained from different embedding models (real-
bert and baseline models).

Non-functional Requirements

NFR-WAD-1.– The web application must have a responsive and intuitive user interface.

NFR-WAD-2.– The system must be deployable to a cloud platform or server infrastructure.

NFR-WAD-3.– The application must be secure and protect user data.

NFR-WAD-4.– The application must be maintainable and allow for easy updates and future development.

NFR-WAD-5.– The deployment should be cost-effective and utilize resources efficiently.

3.3. Design

This section outlines our real estate search system’s architecture, detailing the design and interac-

tion of its essential components, and providing a foundation for understanding the system’s comprehen-

sive functionality and workflow.

3.3.1. Dataset Creation

Figure 3.3.1 illustrates the sequence of interactions involved in our feature extraction process utili-

zing the Llama2 language model and storing the results in a relational database. The user interacts with

a Command-Line Interface (CLI) to select the dataset and specify the number of properties to parse.

The main program handles data loading, prompt construction, communication with the Llama2 server,

answer parsing, and database operations. The diagram highlights key steps such as prompt building,

question processing with dependency checks, answer validation, and data storage.

After our structured corpus is constructed, as will be further detailed in Section 3.4, we shift our

focus to the generation of synthetic queries, the dynamic counterpart to our static corpus. Figure 3.3.2

illustrates our different query generation classes within this pipeline, employing a modular design. The

RandomQueryGenerator simulates diverse, real-world search behaviors. The InverseQuery-

Generator generates queries matching some given property attributes, mostly utilized for model trai-

ning. Lastly, the AttributeQueryGenerator focuses on specific features, ensuring comprehensive

attribute coverage and natural language variations.
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Figure 3.3.1: Sequence Diagram: Real Estate Property Feature Extraction Process.

Figure 3.3.2: Class Diagram: Query Generation Strategies.
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3.3.2. Model Training and Evaluation

To evaluate our selection of fine-tuned and baseline embedding models, a structured system for ma-

naging and utilizing these models is essential. This system must efficiently handle the storage, loading,

and diverse generation APIs of the models within the evaluation pipeline. Figure 3.3.3 presents a class

diagram that illustrates the core components and relationships essential for this task. It emphasizes the

modularity and flexibility of the design, achieved using abstract classes and inheritance, which enables

the seamless integration of various embedding models and their generation methods.

Figure 3.3.3: Class Diagram: Embedding Model Management Structure

3.3.3. Web Application and Deployment

Bridging the gap between the underlying technology and the user experience, this section details

the design of our demo web application. Figure 3.3.4 presents a sequence diagram that delineates the

interactions between the components of our deployment during a typical user search and subsequent

model comparison. It depicts the data and control flow, starting from the initial user query through

to the display of ranked search results and the option to compare rankings from different embedding

models. Furthermore, it highlights the utilization of several frameworks: Vite for the build tooling, Vue.js

for constructing the frontend user interface, Gradio for facilitating the backend API, and Milvus as the

vector database.
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Figure 3.3.4: Sequence Diagram: Demo Web Application Component Interaction

3.4. Implementation

In this section, we will examine in detail the specific implementation of all the modules that collabora-

te in our system. To achieve this, we aim to present a narrative that follows the flow of data from its initial

collection to its ultimate application in property search. This approach enables us to align the discussion

with the actual data pipeline, offering a transparent and thorough understanding of our methodology.

3.4.1. Data Preparation

This section outlines our initial data preparation phase with the creation of our unstructured corpus.

We focus on collecting property listings and transforming them into documents suitable for retrieval and

feature extraction.

Data Collection

To obtain high-quality and authentic data, we turned to web scraping the Idealista online property

listing. A basic web crawler was developed using Scrapy 1, a fast and powerful open-source web craw-

ling framework. The crawler operates in two steps to ensure efficient data collection. In the first step

of our pipeline, the crawler navigates through a given area listing to identify links to individual property

ads. Our goal is to collect data from any given number of properties in several distinct areas, creating

a sufficiently large data source for robust model training and evaluation. In the second step, the crawler

1https://scrapy.org/ (last accessed on 2024-04-12)
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extracts several text attributes using the HTML tag and class of all identified property ad fields. This

gathering forms the initial raw data of our research, which maintains the same level of structure as the

original website layout. A sample of this data is displayed in Figure A.1. To ensure an uninterrupted data

collection process, we implemented a simple 50ms delay adhering to the website request rate limits.

Data Preprocessing

The property ad comment was of particular interest as it often contained additional, unstructured

information about the house attributes and amenities. This information is crucial as it provides a more

detailed and nuanced understanding of each property, beyond what is captured in the structured data

fields, utilized in traditional search methods.

The next step in our pipeline is to generate the document. In information retrieval, this term refers

to a single unit of retrievable information. Here, our document is a string representing a single property,

containing all its relevant details.

To manage the token limit of BERT-based models (see Section 2.1.2), we summarize the comment

text before creating the document. We employ an extractive summarization method by defining a set

of labels for categorizing each paragraph within the text. This approach allows us to systematically

assign categories to paragraphs using a zero-shot classification model, specifically the Zero-shot Spa-

nish ELECTRA [51] (fine-tuned on the XNLI dataset [52]). Paragraphs labeled with categories deemed

irrelevant–such as paragraphs containing real estate company data–are then excluded from the text.

These categories were designed utilizing a form of few-shot prompting where keywords are included

in the category definition to aid the model and improve performance. They were tested and refined

multiple times to ensure their effectiveness. A sample of these categories can be found in Table A.1.

The ’Relevance’ column indicates if a category is included in the summary (’Relevant’) or excluded (’Not

relevant’). After this process, most comments were found to be well under 512 tokens, ensuring that our

data is manageable by most embedding models and ready for the subsequent document creation step.

Unstructured Corpus

The document, as shown in Figure A.2, contains the property ad values from the raw data corpus

(title, location, price, list of key characteristics, and energy efficiency labels) along with the summarized

comment. It follows a rigid, predefined format, where the relevant attributes are added in this general

pattern. This implied text structure will serve as the training foundation. By fine-tuning on a large dataset

of similarly formatted property ads, the model learns to recognize this pattern, enhancing its ability to

extract information from new ads in the same format and potentially improving its overall performance

on properties using this consistent document structure. The collection of these documents, each repre-

senting a single property ad, forms our unstructured corpus. The detail and diversity inherent in this

corpus are crucial for the feature extraction, fine-tuning, and evaluation processes that follow.
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3.4.2. Feature Extraction

While the documents from our unstructured corpus could indeed be embedded using a pre-trained

model to establish a basic embeddings-based property search system, we aim to push the boundaries

of this initial setup. As it will be evidenced in Section 4.2.1, existing models, despite their capabilities,

still leave a considerable margin for improvement.

A common obstacle in many domains, including real estate, is the lack of publicly available datasets

for model training, making the fine-tuning process unfeasible. To overcome this challenge, we employ a

novel feature extraction approach which aims to effectively transform the diverse and complex content

of property descriptions into a structured set of features.

The novelty of our approach lies in its utilization of Large Language Models (LLMs) for semantic

interpretation and subsequent automatic labeling based on the extracted features, ultimately fine-tuning

our model. These LLMs, introduced in Section 2.2.1, are a key component of our work.

Utilizing LLMs

The latest advancements in open-weights LLMs (Llama2 [23], phi-1 [53], Falcon [54], etc.) provide

an unprecedented opportunity to automate language-related tasks in our feature extraction process.

One key improvement is the reduction in hallucinations [55], instances where the model generates

false information that is not present in the input data. Figure A.3 illustrates our feature extraction pro-

cess using the 4-bit Llama2-Chat 13B model. As shown, this model can effectively address potential

misconceptions in property ads, making it suitable for question-answering tasks in this domain.

The Llama2-Chat model is an open-weights chat aligned LLM, trained on a massive corpus of di-

verse text data [23]. It comes in three different sizes: 7B, 13B, and 70B, where the number indicates the

number of parameters in the model. Due to hardware limitations, even with the smaller-sized models,

running LLMs locally posed a challenge. To address this issue, we opted to use a 4-bit GPTQ quanti-

zed 13B Llama2. This model reduces the memory requirement by 2.6x compared to the original 32-bit

13B model and can run on consumer hardware requiring less than 11GB of VRAM. We deployed this

model using the llama.cpp library 2, which provides an efficient inference server accessible via HTTP

requests. Despite its smaller size, this compressed model performs well on our domain-specific task,

with a detailed discussion on its performance and error rate to follow (Section 3.4.2).

Question-Answer Mechanism

By leveraging the language understanding capabilities of Llama2, we implement a question-answer

mechanism to automatically extract property features from our unstructured corpus. These features,

such as number of rooms, floors, parking spaces, and the presence of amenities like pools, align with the

2https://github.com/ggerganov/llama.cpp (last accessed on 2024-05-04)
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diverse and specific queries that potential property seekers may have. This ensures a comprehensive

structured corpus of property ads and features.

To achieve better accuracy and alignment in multi-turn question answering with Llama2, we use

a chat template to dynamically include the history of answered questions for a given property, post-

instruction delimiter. The model integrates this as a starting point into its internal representation of the

conversation, enhancing its ability to produce contextually relevant subsequent responses. Essentially,

the model continues the conversation during inference as if the appended answers were its own. This

few-shot prompt engineering technique, together with custom stop sequences, ensure that only a mini-

mal number of completion tokens need to be generated.

Figure A.4 illustrates the dynamically constructed prompt string, including the document, instruction,

history, question, and the model’s completion, halfway through the feature extraction process for a

sample document. This dynamic prompt construction process is fully automated for every property ad in

our corpus. Completions from the model are parsed to extract structured data, accounting for potential

variations in phrasing and terminology. The parsed data is stored in a relational database for further

analysis and serves as the foundation for our fine-tuning dataset. By automating this, we establish a

robust and efficient process applicable to large volumes of data.

Error Analysis and Mitigation

To assess the accuracy of Llama2’s feature extraction capabilities, we manually annotated a set

of properties and compared the results to the model’s output. Initial attempts to extract features using

arbitrary questions often yielded inaccurate results, necessitating an iterative refinement process. For

each targeted feature, we formulated a question and meticulously refined it through manual inspection

of the model’s output across numerous examples from our dataset. This iterative human-in-the-loop

approach ensured that the questions elicited the most accurate responses possible from Llama2 for the

maximum number of properties within the corpus.

The system demonstrated high accuracy for basic features like the number of bedrooms and bath-

rooms, with error rates consistently below 1%. Questions about the presence of specific amenities

presented a greater challenge for the model, with missed detections ranging from 4% to 7%. These

error rates are calculated as the ratio of missed detections (false negatives) to the total instances of

properties with the feature in question. Reported error rates are included in Table A.2.

Our main approach for question refinement was directly querying the LLM to understand its reaso-

ning. By asking the LLM “why” questions after it provides incorrect answers, we can delve into its

reasoning processes. This allows us to uncover comprehension gaps, assess the quality of its logic,

and understand limitations in handling multilingual input. Explanations from the model can reveal areas

where its understanding breaks down, including difficulties in making logical connections or aligning its

thought processes with human intuition. This developer-LLM dialogue often highlights either a lack of
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sufficient evidence in the provided property ad text or challenges related to synonyms and translations.

Analysis revealed that precise questions and the few-shot prompting technique significantly impro-

ved the accuracy. Our approach was to incorporate relevant examples and synonyms into the question

itself (e.g., “Is it a house (chalet) or apartment (including duplex, studio, flat, etc.)?”). Interestingly, Spa-

nish questions often yielded false positives, while purely English questions resulted in false negatives.

This was addressed by using English questions with key Spanish keywords, such as “Is it a penthouse

top-floor apartment (ático)?”. Samples of the revised questions utilized can be found in Table A.2.

3.4.3. Query Generation System

With the ability to represent property ads as structured features, we can now explore synthetic

query generation to create a diverse set of search queries that directly correspond to these features.

This approach offers several advantages for effectively fine-tuning our embedding model. First, it allows

us to easily create a large and diverse set of queries, eliminating the need for specialized datasets

or user search history data. Second, it leverages the duality of query representation: we generate

both natural language query strings and their corresponding feature dictionaries, enabling the model to

learn from both the explicit features and the implicit linguistic nuances, as further elaborated in Section

3.4.5. However, we acknowledge that synthetic queries may not fully capture the implicit context and

unpredictable nature of real user search behavior.

Natural Language Attribute Dictionaries

Each query is generated by randomly selecting both the property features themselves (e.g., number

of bedrooms, parking availability) and their values (e.g., 3 bedrooms, 2 parking spaces), except for

boolean features which are simply present or absent (e.g., terrace, elevator).

Then, the natural language query string is constructed using predefined dictionaries containing

synonyms, hypernyms, and other linguistic variations such as different phrasings, connectors, gram-

matical elements and word orders. These dictionaries are designed with both linguistic and domain

knowledge in mind, allowing us to generate diverse and realistic queries that reflect the various ways

users might express their search criteria.

Random and Semi-Random Query Generation

Building upon the foundation of attribute dictionaries, we employ random and semi-random gene-

ration techniques to further tailor the diversity and variability of our synthetic queries, ensuring their

relevance to actual property listings.

Random query generation exposes the model to a wide range of search criteria, including those
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queries that may not have a perfect match within the available properties. This is crucial, as partially-

correct queries are arguably the most prevalent query type encountered in real-world search scenarios.

In contrast, semi-random generation uses a specific property ad as input and generates perfectly

matching queries. Despite perfect feature matches, the linguistic variations within the query remain ran-

dom. This improves fine-tuning by boosting recognition of similar properties despite query variations.

Query-Property Alignment Score (QPAS)

To measure the relevance of generated queries to specific property ads, we introduce the Query-

Property Alignment Score (QPAS). This score quantifies how good of a match a property ad is for a

specific search, playing a crucial role in training and evaluation.

The QPAS considers all features present in the query (e.g., house type, number of bedrooms, ame-

nities) and compares them to the corresponding features extracted from the property ad (Section 3.4.2).

Each attribute is assigned a weight reflecting its perceived importance in the search process. The final

score is a weighted average of the individual attribute matches.

To capture the inherent flexibility of real-world search queries, our QPAS implementation supports

partial scoring and incorporates attribute-specific scoring techniques. Taking ’3 bedrooms’ as an exam-

ple query, a property with 4 bedrooms could still be considered a match, thus contributing positively to

the overall score. Similarly, “swimming pool” would match both urbanization and private pools unless

“private pool” is explicitly specified. Figure A.5 displays scored property-query tuples from our dataset.

3.4.4. Dataset Creation

This step in our pipeline transforms our real estate ad corpus into a format suitable for model trai-

ning, with the aid of our robust query generation and scoring system. The dataset shapes the learning

process and ultimately determines the effectiveness of our embedding model for real estate search. In

this section, we detail the variables and settings that guide the automated dataset generation process.

The impact of these configurations is analyzed in Chapter 4, where we experiment with various para-

meters to identify the optimal combination for dataset size, query type, balance, and loss function to

enhance model performance. A dataset preview sample can be found in Figure A.5.

Dataset Shape and Balance

To ensure no overlap between training and evaluation, we set aside a selection of properties to be

used exclusively for evaluation, as will be further discussed in Section 4.1.2.

Our training dataset structure draws upon the format of the Stanford Natural Language Inference

(SNLI) corpus [56], widely used in natural language inference tasks. Each entry comprises a pair of
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texts: a query and a property ad. However, instead of using categorical labels as in SNLI, we employ

a continuous value, Query-Property Alignment Score (QPAS), to represent the degree of relevance

between the two texts. Score representation in the dataset varies with the loss function, as will be

detailed in Section 3.4.5. The size of the dataset is determined by the number of queries generated per

property.

The dataset is created by utilizing the random and semi-random query generation process detailed

above (Section 3.4.3), computing QPAS for each resulting query-property pair, with the property ad

text sourced from our unstructured corpus (Section 3.4.1). The score distribution, both overall and per

property, significantly influences learning. To manage this, we implement several balancing strategies

that control the frequency of each score. For example, a ”flat” balance ensures an equal number of

queries for each score, while a ”increasing ramp” balance results in a dataset in which queries with

higher scores are more prevalent. Figure 3.1 illustrates this concept. The x-axis represents scores from

lower to higher, and the y-axis represents the frequency of queries with those scores.

Figure 3.1: Illustration of different score distribution strategies.

Query Types

To enhance the model’s ability to learn various property features, our dataset is composed of three

distinct query types. Each type includes queries that focus on a specific subset of the extracted property

features. Basic queries concentrate on essential features such as house type, number of bedrooms

and bathrooms, and parking availability, providing the model with a foundational understanding of core

property attributes. Extended queries build upon the basic queries by also requesting specific amenities

or equipment, such as a pool, garden, or terrace. Their goal is to ensure comprehensive coverage of

the real estate domain and enhance the model’s generalizability. Lastly, attribute-specific queries are

designed to focus on a single feature, aiming to enhance the model’s understanding of textual variations

within that specific attribute.

We adjust the proportion of each query type in our dataset to reflect both potential user search

patterns and the distribution of amenities in the actual data. This approach creates a more realistic

training environment and helps prevent overfitting to less common property features, crucial for fine-

tuning an effective and generalizable model.
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3.4.5. Fine-Tuning

This section will delve into the specifics of fine-tuning our embedding model for real estate search.

Building upon the dataset created in the previous section (Section 3.4.4), we will discuss the resources,

techniques, and considerations involved in optimizing the model’s performance for this specific task.

Computational Resources

We employed the SentenceTransformers framework for fine-tuning (see Section 2.3.2), leveraging

its high-level API including the fit() method, which handles batch processing, loss calculation, back-

propagation, and model optimization. Additionally, the Adam optimizer [57] was utilized, a popular choi-

ce for training large deep learning models due to its efficient memory usage and adaptive learning rate

(adjusted individually for each weight).

Large transformer models require significant memory to store parameters and intermediate values

during training. GPUs are commonly employed to accelerate this process by parallelizing the matrix

operations involved. However, they can be limited by memory capacity. In our experiments, we utilized

an RTX 2080Ti GPU, which has a VRAM capacity of 11GB–the largest available to us. We also con-

sidered using the free T4 GPU provided by Google Colab, which offers 15GB of VRAM. However, we

found that training on this platform was approximately four times slower. We utilized the full 11GB of

VRAM available on the 2080Ti. However, the actual VRAM usage can vary depending on the specific

model being trained and the batch size, which we will discuss now.

Hyperparameters

Determining the optimal hyperparameters for training is typically an iterative process guided by both

theoretical understanding and empirical results, rather than a deterministic process.

The batch size hyperparameter refers to the number of training examples used per iteration of

gradient descent during the training process. While larger sizes can accelerate training, smaller ones

can mitigate overfitting. In our experiments, hardware limitations dictated a batch size of 14.

Another hyperparameter, the loss function, defines the objective the model aims to minimize during

training. We explored both Cosine Similarity Loss and Softmax Loss (see Chapter 4). Cosine Similarity

encourages representations where similar items are closer together in the embedding space, often used

for semantic similarity. Softmax Loss, typically used for classification tasks, assigns inputs to categories

using a probability distribution. In our context, it is used for classifying properties into five discrete

relevance categories (from ’highly irrelevant’ to ’highly relevant’). We anticipate Cosine Similarity Loss

to be more effective due to its ability to achieve nuanced and flexible matching compared to discrete

classification.
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The number of epochs, another crucial hyperparameter, determines how many times the learning

algorithm will work through the entire training dataset. Balancing the epochs is key to avoid underfitting

and overfitting. We found that 2 epochs was optimal for our dataset, as detailed in Chapter 4.

We retained the default settings for other hyperparameters in SentenceTransformers, including the

learning rate of 0,001, learning rate decay, weight decay, among others, under the assumption that

these defaults would be well-suited for our task.

BERT-based Model Selection

Rather than training a model from scratch, we opted to fine-tune an existing embeddings model.

This allows us to leverage pre-existing knowledge captured by the model from large-scale datasets,

increasing the potential generalization capabilities and saving computing time. Resources utilized for

this task include the SBERT model evaluation 3 and the MTEB Leaderboard 4.

Table 3.1 presents a comparison of several pre-trained models considered for fine-tuning. The table

highlights key attributes of each model, including the dimensionality of the embeddings, the maximum

sequence length (in tokens) the model can handle, the language of the training data, and the typical

text granularity (sentence or paragraph level) the model is designed for. Additionally, we also consider

the model’s size and performance score on semantic search benchmarks, as reported in 3.

Model Dim. Seq. Len. Purpose Language Granularity Performance Size
all-MiniLM-L6-v2 [58] 384 256 General English Sentence, 49.54 80MB

Short Paragraph

all-MiniLM-L12-v2 [58] 384 256 General English Sentence, 50.82 120MB
Short Paragraph

multi-qa-distilbert-cos- 768 512 Semantic English Sentence to 52.83 250MB
v1 [59] Search Paragraph

sentence-similarity- 768 512 Textual Spanish Sentence N/A 450MB
spanish-es 5 Similarity

all-mpnet-base-v2 [60] 768 384 General English Sentence 57.02 420MB

all-distilroberta-v1 [61] 768 512 General English Sentence 50.94 290MB

instructor-xl [62] 768 512 Multi-task English Flexible N/A 5GB

Table 3.1: Comparison of Selected Pretrained Models for Fine-Tuning and Evaluation.

Both MiniLM models [58] (all-MiniLM-L6-v2 and all-MiniLM-L12-v2) offer an attractive size-performance

balance. However, their limitation lies in the shorter maximum sequence length (256 tokens). The multi-

qa-distilbert-cos-v1 model [59], pre-trained on a large dataset of question-answer pairs for the semantic

search task, aligns well with our fine-tuning dataset, comprised of shorter queries and longer docu-

ments. Conversely, the sentence-similarity-spanish-es model 5 is trained for the sentence-level textual

similarity task. However, it is based on BETO (spanish-BERT) [63] and further fine-tuned on the spanish

subset of the multilingual STS Benchmark (STSb) [64], which could provide a solid foundation given

3https://www.sbert.net/docs/pretrained_models.html#model-overview (last accessed on 2024-04-14)
4https://huggingface.co/spaces/mteb/leaderboard (last accessed on 2024-04-14)
5https://huggingface.co/hiiamsid/sentence_similarity_spanish_es (last accessed on 2024-04-15)
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our Spanish-only data. The all-mpnet-base-v2 [60] and all-distilroberta-v1 [61] models, both trained for

general sentence similarity tasks, present a trade-off between performance and sequence length. The

former, delivering superior accuracy, is limited by a shorter (384-token) input capacity. The latter of-

fers the ability to handle longer sequences at the cost of average performance. Lastly, the instructor-xl

model [62] stands out for its versatility and high performance across a range of NLP tasks4, uniquely

leveraging task instructions for embedding.

The sentence-similarity-spanish-es model was chosen as the foundation for our real-bert model due

to its strong performance in preliminary evaluations, which will be detailed and discussed in Chapter 4.

3.4.6. Embedding-based Retrieval

Having established the foundation for our real estate search system through the meticulous creation

of a fine-tuning dataset (as explored in Section 3.4.4) and the overview of suitable pre-trained embed-

ding models for our task (detailed in Section 3.4.5), we now delve into an essential component of our

work: the implementation of the EBR system.

This section outlines the storage, indexing, and utilization of document embeddings for efficient pro-

perty retrieval and ranking in response to user queries. The system introduced here is pivotal, forming

the basis for our demo web application (Section 3.4.7) and systematic evaluation (Chapter 4).

Vector Database and Indexing

Introduced in Section 2.3.1, the vector database handles the storage and retrieval of document em-

beddings and texts. We sought a scalable, efficient, developer-friendly, and robust database, choosing

Milvus 6, an open-source solution optimized for vector and traditional queries. Its Python SDK inte-

grates well with our data pipelines, simplifying the implementation process. The database is set up in a

standalone Docker container. However, Milvus also supports Kubernetes, which aligns with our mindset

of implementing a realistic and almost production ready EBR system.

Each Milvus collection uses a schema to define entry structure. Our schema includes document text

(from the unstructured corpus in Section 3.4.1), a unique property ID, and document embeddings gene-

rated with the encode function from SentenceTransformers. Additionally, property metadata, including

extracted features and property descriptors (e.g., price, location), stored in the relational database from

Section 3.4.2, is linked to the vector database via property ID.

Similar to relational databases, indexes are used to improve the speed of similarity searches. We

chose the IVF_FLAT index, which partitions the embedding space into clusters. Initially for each

search, only the distances between the input vector and the center of each cluster are computed.

6https://milvus.io/(last accessed on 2024-04-15)
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To eliminate potential index-related recall errors and ensure every element is factored in, we set the

nlist parameter to a small value for finer partitioning and the nprobe parameter to a high value to

query as many clusters as possible. Other index types based on IVF quantize the vector embeddings

to reduce CPU and disk resource usage, such as IVF_SQ8.

Ranking and Retrieval

Having established how to populate our vector database, we now delve into the actual search fun-

ctionality, which details how the real estate properties are selected and ranked given a search query.

We employ a two-step retrieval with the IVF_FLAT index. First, the query is transformed into a vec-

tor by an embedding model, guiding the selection of relevant clusters in the collection index. Then, the

embedded query is compared to the individual elements within these clusters for reranking, returning

a list of results sorted by similarity. It is important to note that both the relative values among these

distances and their magnitudes can vary significantly, depending on the embedding model used. Each

result is a dictionary which includes the fields defined in our collection schema, providing the necessary

information to evaluate or present the results to the user.

The collection.search() method in Milvus abstracts the search process, accepting argu-

ments like embeddings, similarity metric (we use cosine similarity for relevance), k for the maximum

number of results, offset, and an optional expression to filter the results based on traditional queries.

For evaluating retrieval and embedding quality, we utilize well-established metrics such as F1 and

Normalized Discounted Cumulative Gain (NDCG), to measure precision and ranking accuracy. Additio-

nally, we introduce a novel metric: adaptive-NDCG (aNDCG), which aims to address the shortcomings

of considering a fixed number of relevant results in sparse corpora, leveraging our structured corpus.

aNDCG adjusts the number of considered results (k) in NDCG@k based on the actual perfect matches

in the corpus, identified via structured queries in our database. This count is doubled to include per-

fect and near-matches, with k set between predefined limits of 4 and 10 to highlight the most relevant

results. These metrics and their impact will be discussed in Chapter 4.

3.4.7. Demo Web Application

Building upon the solid foundation of our comprehensive EBR system (Section 3.4.6) and embed-

ding model fine-tuning implementation (Section 3.4.5), we now shift our focus to developing a tangible

solution for real estate search. This section delves into the development of a demo web application,

comprised of a back-end REST API and a front-end public static site. Together, they bridge the connec-

tion between our vector database, embedding model and the user, with the goal of demonstrating the

practical application of our work and providing a user-friendly interface for intuitive real estate property

search.
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In addition to the standard search functionality and visualization of ranked real estate ads, our web

app aims to compare model performance in real-time by showing results from both our fine-tuned model

and a baseline model, potentially highlighting the ranking improvements from fine-tuning.

Back-end Design with Gradio

Gradio, introduced in [65], is an open-source Python library for quickly creating demos or web appli-

cations for machine learning models. It is employed to build the REST API for our application, offering

easy deployment, rapid prototyping, and flexible integration with machine learning frameworks.

The API exposes a single endpoint, /search, designed to handle user queries and return relevant

property listings. This is defined using a Gradio Interface class, which encapsulates a search function

that is invoked for each request. The /search interface requires the query and collection_name

parameters as inputs, which are strings containing the natural language user query and the name

of the vector database collection to search within, respectively. The code snippet A.1 illustrates the

instantiation of this Interface class.

The search function embeds the user query, conducts a similarity search in Milvus, and returns

a JSON response with ranked results and relevant details (see Section 3.4.6). To avoid deploying a

relational database and ensure each API response includes comprehensive property information, we

expanded the Milvus collection schemas to include additional property descriptors such as the listing

ad title, description, price, location, and image URLs. This way, each element in the response encom-

passes all the necessary details from the original property ad, ready to be displayed to the user.

In this implementation, two distinct embedding models are employed for the real-time comparison of

search results. We avoid the significant latency of initializing the embedding models by pre-loading them

at startup. The models are downloaded from the Hugging Face Hub 7 using the SentenceTransformers

library (see Section 2.3.2). Additionally, the backend establishes a connection to our Milvus server,

utilizing the pymilvus library 8. Credentials and host information are securely stored and accessed via

environment variables.

The deployment of our Milvus database and Gradio API is detailed in the conclusion of this section.

Front-end Design with Vite

The end-user interacts with our backend API via a static web application built with Vite 9 and

Vue.js 10. We utilize Vite as our front-end build tool due to its support for rapid iterative development with

Hot Module Replacement (HMR), faster startup with ES Modules (ESM), and efficient build optimiza-

7https://huggingface.co/ (last accessed on 2024-04-16)
8https://github.com/milvus-io/pymilvus (last accessed on 2024-04-16)
9https://vitejs.dev/ (last accessed on 2024-04-17)

10https://vuejs.org/ (last accessed on 2024-04-17)
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tions. The User Interface (UI) is constructed using Vue.js, leveraging its component-based architecture

and reactivity system, which are well-suited for the dynamic and interactive visualization of the search

results. Instead of relying on external UI frameworks, we opt for a custom CSS approach for simplicity.

Figure 3.2 displays the home screen UI. It features a distinct header, which contains a search bar

for user input. Below the search bar, there are pre-defined search suggestions that users can select to

populate the search input. These suggestions serve as examples to inspire users and showcase the

system’s ability to understand and respond to natural language queries.

Figure 3.2: Web application user interface for natural language real estate search.

The client-side search function, triggered via the suggested queries or by pressing the Enter key

within the input field, transmits a POST request to the designated /search API endpoint. This request

contains both the user query and the collection name and awaits a JSON-formatted response dictionary.

For an API response sample, refer to Figure A.6 in the appendix.

A list of UI property cards is dynamically created with the response, displaying the property data, as

shown in Figure A.7. The results appear ordered by relevance to the user query. The Swiper 11 library

is utilized for image slideshows. To optimize performance, we employ lazy loading for images, ensuring

that they are only loaded when they become visible within the user’s viewport. During this process, the

UI provides visual indicators to signal loading states and potential errors.

To enable model performance comparison, we utilize a predefined keyword ”all” for the collection

name in the API request and create a specific UI button labeled ”Toggle Comparison”. This button

triggers the display of a new list of property cards, each created from the results of the baseline model

being compared. The cards themselves are aligned between both lists to facilitate direct comparison

and easily evaluate the behavior and quality of the embeddings of each model. Figure A.8 displays an

example.

Additionally, each property card features ’thumbs up’ and ’thumbs down’ icons. While currently non-

functional, these icons could potentially be used for user feedback to perform A/B testing, gather user

appraisals on the relevance of search results, and ultimately enhance our training corpus.

11https://swiperjs.com/ (last accessed on 2024-04-17)
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Deployment

Upon completing the development of our web application, our primary objective was to deploy our

site ensuring its broad availability. Although local deployments of Milvus, Gradio, and Vite were utili-

zed during our research, evaluation, and development process, creating and managing our own high-

availability, secure and reliable server infrastructure is a task that falls outside the scope of this work.

To overcome this, we opted for a distributed deployment strategy, leveraging the unique advantages

of different platforms and capitalizing on the free-tier offerings of various platform-as-a-service com-

panies. This approach, though it adds a layer of complexity in orchestrating service interactions and

managing a distributed architecture, mirrors more closely a real-world deployment scenario, evaluating

the scalability and resilience of our system.

We employ Milvus, a high-performance vector database discussed in Section 3.4.6, for storing and

retrieving property listing data, including embeddings, via Zilliz Cloud’s managed service 12. The da-

tabase is populated from our unstructured corpus of properties, which are embedded utilizing two pre-

selected models and stored into different collections in our Zilliz serverless cluster, for later retrieval.

Property listings and embeddings are uploaded to Zilliz through a pymilvus script executed within our

development environment.

The back-end API is hosted on Hugging Face Spaces 13, a platform for sharing ML demo apps

in the Hugging Face Hub ecosystem. It offers built-in support for Gradio, automatically providing the

API endpoint and a web interface for testing from the platform itself. Its Git integration and automated

builds upon code updates furthermore facilitated deployment. The selected, most minimal, hardware

configuration (2 virtual CPUs, 16GB of RAM, no persistent storage), fulfills the operational requirements

of our back-end system, at no cost.

The front-end Vue.js application, responsible for user interaction and presentation of search results,

is hosted on Render.com 14 The platform offers a straightforward solution for deploying our front end,

including resources for serving the static assets of our app.

To provide open access to the application while safeguarding sensitive code and credentials, we

implement a public Hugging Face Space that acts as a gateway to the private API endpoint. This de-

ployment strategy and the interactions between the distributed components are detailed in the sequence

diagram shown in Figure 3.3.4.

12https://zilliz.com/cloud (last accessed on 2024-04-18)
13https://huggingface.co/spaces (last accessed on 2024-04-18)
14https://render.com/ (last accessed on 2024-04-18)
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4
Experiments and Results

This chapter delves into the empirical evaluation of our proposed approach for enhancing real estate

search through EBR, domain-specific fine-tuning and a unique dataset created leveraging LLMs.

We present a comprehensive performance analysis of our fine-tuned embedding model, real-bert,

comparing it with various baseline models to demonstrate the effectiveness of our methodology. Ad-

ditionally, we investigate the impact of different training and dataset configurations, providing valuable

insights into the factors that influence the model’s accuracy and generalizability. Through a rigorous

evaluation process, we aim to validate the hypothesis that our approach significantly improves the effi-

ciency and intuitiveness of property search within the real estate domain.

4.1. Experimental Setup

This section delves into the experimental framework designed to evaluate the efficacy of our propo-

sed approach for enhancing real estate search through fine-tuned embedding models. It builds upon the

structured corpus and query generation processes detailed in Sections 3.4.2 and 3.4.4, respectively. It

includes a detailed data preparation step for diversity, an EBR deployment for retrieval using synthetic

evaluation queries, and a scoring system based on established metrics like NDCG and F1 score, along-

side our novel aNDCG metric (see Section 3.4.6), tailored to address the unique characteristics of our

structured corpus and query sets.

4.1.1. Data Preparation

To facilitate a robust evaluation, we partition the property listings from our unstructured corpus (see

Section 3.4.1) into an 80% training set and a 20% test set. The selection of properties was manually

revised to ensure a diverse and representative sample for evaluation. The diversity is reflected in the

variety of locations, property types, and range of amenities. The 20% test set, out of a total of 120 pro-

perties, comprises our evaluation corpus of 25 properties. It will be employed to assess the comparative

performance of each embedding model by conducting EBR and comparing the features of the retrieved
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results with those specified in the query. This evaluation leverages the previously extracted features of

each property in the test set (see Section 3.4.2) to assess the alignment between retrieved properties

and the corresponding query, utilizing the QPAS as a measure of similarity. The extracted features were

revised to ensure their accuracy and mitigate potential errors.

The queries utilized for evaluation are organized into distinct query sets, as outlined in Section 3.4.4,

with each set being independently evaluated. This approach allows to report evaluation scores for each

query set individually, providing insights into the strengths and weaknesses of each model in handling

specific property features. Our dataset is divided into 307 basic, 391 extended, and 53 attribute-specific

queries, among which 13 specify variations of pools and 40 request specific house types (e.g., duplex,

penthouse, chalet).

The queries are automatically generated, utilizing the semi-random query generation methodology

outlined in Section 3.4.3. We generate 20 queries for each property listing and query set to guaran-

tee enough diversity, all of which are created to align perfectly with the property but keeping random

linguistic nuances and feature quantities. Duplicate queries within each set are removed. Although

this approach facilitates an accurate and controlled evaluation of the performance of each model, we

acknowledge the limitations of procedurally generated queries, which may not fully encompass the

variability and complexity inherent in real-world user queries.

Refer to Table B.1 for a concise summary of our evaluation dataset.

4.1.2. Evaluation Pipeline

Upon populating the evaluation corpus and query sets for EBR, we establish an evaluation pipeline

to assess the performance of various embedding models within this specific domain and corpus. The

evaluation utilizes the same underlying tools and techniques as described in Section 3.4.6, with a local

Milvus deployment serving as the vector database and the relational database holding our structured

corpus of extracted property features.

For each embedding model under evaluation (see Section 3.4.5), we create a dedicated Milvus

collection to store the property representations. Each collection entry comprises a property ID, linking

it to the corresponding structured data within our relational database, and the property’s embedding

vector generated by the respective model.

The core evaluation step involves embedding each query and performing a similarity search within

the corresponding Milvus collection for each model. This retrieves the top-10 most similar property ads

based on cosine similarity. However, the exact number of retrieved results considered for evaluation

varies depending on the specific metric used, as detailed later.

To assess the relevance of retrieved results, we employ QPAS as a measure of similarity between
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each property-query pair. As explained in Section 3.4.3, QPAS considers the overlap of features present

in the query and the corresponding structured data for each retrieved property. These scores serve as

the foundation for calculating various evaluation metrics, enabling a comprehensive assessment of both

ranking accuracy and retrieval effectiveness.

For each query type and model, the individual query scores obtained from the evaluation metrics are

aggregated to provide an overall performance measure. This allows for a comprehensive comparison of

model effectiveness across varying levels of query specificity and property feature types. The evaluation

results are presented in a table (see Section 4.2.1), highlighting the best-performing model for each

query set and showcasing relative scores to demonstrate performance improvements compared to the

baseline models.

4.1.3. Evaluation Metrics

This section outlines the evaluation metrics employed to quantify the performance of each embed-

ding model. We combine traditional information retrieval metrics with a novel approach leveraging our

unique structured corpus, with the goal of offering a clear framework for interpreting our evaluation

results and assessing model strengths and limitations.

We employ two widely used metrics in Information Retrieval: Normalized Discounted Cumulative

Gain (NDCG@10) [44] and F1@10 score, as previously introduced in Section 2.3.3. NDCG evaluates

the ranking quality of the retrieved results, considering the position and relevance of each property. The

F1 score balances precision and recall, offering a comprehensive measure of retrieval effectiveness

by considering both result accuracy and the capture of all relevant properties. Both NDCG and F1

scores are calculated using only the top 10 retrieved results, denoted by ”@10”. This cutoff makes the

evaluation focus on the most relevant items, aligning more closely to user behavior. In our evaluation, the

relevance score for each retrieved property, determined by the QPAS, is a continuous value ranging from

0 to 1. While NDCG directly utilizes this continuous value for ranking assessment, F1 score calculation

employs a 0,7 threshold to determine binary relevance (relevant or irrelevant) for precision and recall.

Additionally, our novel aNDCG score leverages our structured corpus for a more nuanced evaluation.

By considering the varying number of relevant results for each query, it provides a fairer assessment of

retrieval performance compared to traditional NDCG, as detailed in Section 3.4.6.

4.2. Model Comparison and Analysis

Having established a robust evaluation framework, we now delve into the comparative analysis of

various embedding models in our task and domain. This section meticulously examines the perfor-

mance of our fine-tuned model, real-bert, against several baseline models, providing insights into the
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effectiveness of our proposed approach. Additionally, through empirical investigation, we explore the im-

pact of various training and dataset configurations, aiming to identify the optimal settings that enhance

accuracy and generalizability within the real estate domain.

4.2.1. Baseline vs. Fine-Tuned Model Performance

To validate the efficacy of our fine-tuning methodology, we compare the performance of real-bert

against a selection of baseline models, previously discussed in Section 3.4.5. The choice to fine-tune

real-bert on the sentence-similarity-spanish-es model was primarily influenced by its superior perfor-

mance in this evaluation compared to other baseline models, possibly stemming from its initial advanta-

ge of being pre-trained on Spanish data. Table 4.1 presents the results obtained for each model across

both basic and extended query types. The evaluation was conducted utilizing the pipeline, dataset, and

metrics outlined in Section 4.1.

Basic Extended
Model aNDCG NDCG@10 F1@10 aNDCG NDCG@10 F1@10
all-MiniLM-L6-v2 0.54 0.51 0.41 0.55 0.52 0.42
all-MiniLM-L12-v2 0.55 0.52 0.41 0.54 0.51 0.40
multi-qa-distilbert-cos-v1 0.51 0.47 0.37 0.51 0.50 0.41
all-mpnet-base-v2 0.50 0.48 0.38 0.51 0.50 0.39
all-distilroberta-v1 0.52 0.49 0.38 0.57 0.54 0.44
instructor-xl 0.54 0.5 0.38 0.58 0.55 0.44
sentence-similarity-spanish-es 0.51 0.48 0.38 0.57 0.54 0.44
real-bert 0.78 0.69 0.63 0.75 0.69 0.62

Table 4.1: Model performance on Basic and Extended query types.

Our model, real-bert , outperforms all the base models by a large margin on all metrics and query

types. This indicates that our approach to leveraging an unsupervised, automatic feature augmentation

process, for creating a fine-tuning dataset allows to greatly improve the quality of the embeddings for

real estate search.

The superior performance of real-bert is not only reflected in its ability to rank perfect and near-

perfect matches more accurately, as evidenced by the higher aNDCG and NDCG@10 scores (up to

41% and 29% relative improvement with respect to the best baseline for each query type in terms of

aNDCG), but also in its capacity to retrieve relevant properties with a higher degree of precision, as

indicated by the F1@10 score.

4.2.2. Fine-Tuning Experiments and Results

To explore the nuances of the fine-tuning process and its impact on model performance, we conduc-

ted a series of experiments investigating the influence of various training and dataset configurations.
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Dataset Size and Balance

We fine-tuned and evaluated real-bert by varying both the number of queries per property and the

score balance within the training dataset. Our goal is to identify the optimal dataset size and assess

the impact of different score balancing strategies (introduced in Section 3.4.4). A training set of 95 pro-

perties and optimal hyperparameters were kept constant throughout this experiment. Figure 4.1 shows

model performance according to aNDCG obtained by training on 20, 50, 75, 150, and 250 synthetic

basic queries per property, using a normal distribution as balance. For testing the balance, we consi-

der the following distributions: inverted normal distribution, uniform distribution (flat), increasing function

(ramp), and normal distribution, all trained with 150 queries.

Figure 4.1: Line chart of model performance for varying query numbers (left) and balance types

(right). The dotted horizontal line denotes the model using normal balance and 150 queries.

These results evidence that increasing the number of queries beyond 150 does not lead to significant

improvement in the aNDCG score, potentially indicating overfitting. With respect to the balance types,

the normal distribution balance yields the highest score, likely due to its alignment with real-world query

score distributions. In contrast, an inverted balance may introduce biases, whereas a flat distribution

assigns equal probability to all data points, failing to capture the natural variability in the data. This

suggests that the model learns better from a dataset that matches the actual similarity of properties in

the real estate domain, rather than from a dataset that is artificially balanced or skewed.

Epoch Number & Loss Function

To optimize training, we explored the effect of epoch number (1 or 2) and loss function (Cosine

Similarity vs. Softmax) on model performance. The training dataset is constructed from 95 properties

with normal score distribution, using 300 queries per property for 1 epoch and 150 queries for 2 epochs.

Table 4.2 reveals that training for 2 epochs with Cosine Similarity Loss, particularly with the inclusion

of the house-type-query set, yielded the best performance in basic and extended query evaluations.

This suggests that cosine similarity captures the semantic relationships between embeddings more

effectively than the softmax function in this task. Regarding the epoch number, the results indicate

that training for 2 epochs with cosine similarity yields mixed outcomes: it slightly reduces performance
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for pool-specific queries, maintains high performance for basic and extended queries, and notably

enhances performance by 16% in the house-type query evaluation.

Hyperparameters Basic Extended Pools House Type
1 epoch, Softmax Loss 0.68 0.67 0.83 N/A
2 epochs, Softmax Loss 0.68 0.65 0.81 N/A
1 epoch, Cosine Similarity 0.76 0.77 0.80 0.42
1 epoch, Cosine Similarity* 0.77 0.76 0.81 0.49
2 epochs, Cosine Similarity* 0.77 0.77 0.78 0.58
*With new house type attribute-specific query set

Table 4.2: aNDCG scores for training on different epoch and loss function combinations.

Attribute-Specific Query Types

We investigate how attribute-specific query types, introduced in Section 3.4.4, affect model un-

derstanding of features such as pool presence and variations (e.g., community, private), and house

types (e.g., duplex, penthouse, chalet). The proportion of attribute-specific queries in the training da-

taset is 3,72% and 11,45%, for pool and house type, respectively. Figure 4.2 illustrates the impact

of incorporating these queries on model performance, evaluating the model both on the extended and

attribute-specific query evaluation sets. Initial fine-tuning including pool-specific queries led to improved

performance in both extended and pools queries, with scores up to 0,76 and 0,8, respectively. Adding

house-type-specific queries and extending training to 2 epochs enhanced house type performance by

32% and extended query performance by 1%. These results highlight the effectiveness of this targe-

ted training approach to improve specific attribute recognition while maintaining a robust overall model

understanding, as evidenced by sustained performance on the extended queries evaluation. Howe-

ver, the inclusion of house-type-specific queries slightly reduced pools performance, underscoring the

importance of balanced training for uniform improvements across query types.

Figure 4.2: Impact of Fine-Tuning Configurations on aNDCG Scores.
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5
Conclusions and FutureWork

5.1. Conclusions

This thesis aimed to improve real estate search by applying neural information retrieval techniques,

specifically embedding-based retrieval with a fine-tuned BERT model named real-bert. A novel dataset

was created using the Llama2 large language model (LLM) to extract features from property listings and

generate synthetic queries. The research involved data preparation, feature extraction, dataset creation,

model fine-tuning, evaluation, and the development of a demo web application for user interaction.

The evaluation results demonstrably confirm the effectiveness of our approach. Our fine-tuned em-

bedding model significantly outperformed all selected top-performing BERT models across all evalua-

tion metrics and improved baseline model performance (by 41%, 35%, and 49% in aNDCG, NDCG@10

and F1@10, respectively). Our model showcases its superior understanding of property features and

user requests through its ability to both retrieve and rank relevant properties.

Our dataset generation approach combined organic real estate listings with synthetic queries based

on extracted features. Our evaluation demonstrates the effectiveness of this approach, which harnesses

the richness and diversity of real-world data while providing greater control, flexibility and lowering the

likelihood of errors, in comparison to directly generating dataset text using an LLM. Llama2, even in its

smaller, quantized version, proved to be a valuable tool for automated feature extraction, achieving high

accuracy for most features (with error rates below 1% for basic attributes and 4-7% for amenities) after

several iterations of prompt refinement. Additionally, fine-tuning experiments revealed that a normal

score distribution and 150 queries per property were ideal. Cosine similarity loss and the use of attribute-

specific queries, strategically with a higher epoch number, further optimized performance.

Our demo public web application was deployed to tfg-embeddings-static.onrender.com, showcasing

the intuitive nature of the proposed methodology for real estate search, utilizing document samples not

used in training. It uses our API at huggingface.co/spaces/Onegafer/tfg-embeddings-public, featuring a

fast and responsive user interface that allows users to directly compare search results.

Despite this significant progress, some limitations and challenges remain. The effectiveness of the

proposed system relies on the quality of textual property descriptions. Incomplete or poorly written
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descriptions can hinder accurate retrieval and matching of properties, potentially leading to suboptimal

search results. Additionally, these descriptions also limit the accuracy of the feature extraction process.

Factual errors, colloquial language and regional dialects can lead to misinterpretations by the LLM.

Synthetic queries used for evaluation and training, though controlled, may not fully capture real user

search complexities. Real-world queries often include implicit preferences and subjective language,

hard to mimic synthetically. This impacts the ability of the model to interpret implicit preferences, such

as stylistic choices or neighborhood characteristics, due to their absence in the fine-tuning dataset.

Our extensive fine-tuning experiments revealed that enhancing our training dataset with a single

attribute-specific query set greatly increased performance for that attribute. However, when the model

was trained on multiple query sets, attribute-specific evaluation scores slightly decreased. This sug-

gests potential limitations in the capacity of the model architecture or the training process. Moreover,

the generalizability of our model to other languages or regions remains an open question. The model

potentially requires adaptation and retraining to ensure effectiveness in diverse real estate markets.

Furthermore, while we have addressed potential biases and ethical concerns in our data collection

processes, we acknowledge that training data (for all real-bert, its baseline model, and Llama2) may

contain inherent societal biases or reflect historical discrimination in the housing market.

5.2. Future Work

Future work will focus on enhancing the system’s ability to further understand implicit user preferen-

ces, improve the dataset quality, and explore the use of latest-generation language and vision models.

Enhancing our training and evaluation datasets could involve using real user search data, A/B testing

and RLHF [26] to incorporate explicit human feedback for more realistic and diverse data. Furthermore,

expanding query generation to include subjective attributes and property descriptors will improve the

understanding and generalizability of the model.

Future work could explore recent embedding models such as E5 and its multilingual variant [66,

67]. Similarly, other state-of-the-art LLMs, released after the research conducted in this study (e.g.,

Llama3 [68]) and latest generation Small Language Models (e.g., Phi-3 [69]) could enhance feature

extraction performance. This could unlock more complex features (e.g., property condition, subjective

descriptions, neighborhood ambience). Integrating visual feature extraction from property images using

vision models (e.g., LLaVa [70]) could provide valuable complementary data. These advancements

present promising future work avenues.

Potential web application enhancements include a hybrid retrieval with filter-based search. A recom-

mendation system leveraging our pipeline could offer user-specific suggestions. To mitigate potential

biases, the use of NLP (e.g., labeling, sentiment analysis), and fairness-aware ranking algorithms [71]

could aim to enhance user experience to ensure unbiased and inclusive search results.
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Acronyms

AI Artificial Intelligence.

aNDCG adaptive-NDCG.

CLI Command-Line Interface.

EBR Embedding-based Retrieval.

ESM ES Modules.

HMR Hot Module Replacement.

LLM Large Language Model.

LLMs Large Language Models.

LSTM Long Short-Term Memory.

MTEB Massive Text Embedding Benchmark.

NDCG Normalized Discounted Cumulative Gain.

Neu-IR Neural Information Retrieval.

NLP Natural Language Processing.

QPAS Query-Property Alignment Score.

RNNs Recurrent Neural Networks.

SBERT Sentence-BERT.

SNLI Stanford Natural Language Inference.

STSb STS Benchmark.

UI User Interface.
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Appendices





A
Implementation Details

A.1. Dataset Creation

A.1.1. Raw Data Extraction

Figure A.1: Sample of JSON-formatted data collected from Idealista, compared directly with the

original property listing.
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Implementation Details

A.1.2. Summarization Category Examples

Category Relevance

Descripción de la propiedad: tipo, tamaño,

metros cuadrados (m2), plantas, reforma,

dormitorios, plantas, etc.

Relevant

Características de la urbanización:

piscina, pista de pádel, zona infantil,

zonas comunes, zonas verdes, seguridad,

etc.

Relevant

Beneficios de la zona y servicios de

alrededor

Not relevant

Servicios y ocio en la zona: centros

comerciales, médicos, farmacia, deportivos,

culturales, educación, universidad,

restaurantes cercanos, etc.

Not relevant

Información de la inmobiliaria: web,

ubicación, etc.

Not relevant

Table A.1: Sample categories for extractive text summarization.

A.1.3. Sample Document from Unstructured Corpus

Figure A.2: Document Sample.
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A.1. Dataset Creation

A.1.4. Llama2 Potential Misconception Samples

Figure A.3: Llama2 addresses potential misconceptions effectively.

A.1.5. Llama2 Feature Extraction Prompt String Sample

Figure A.4: Llama2 QA Prompt Example with Model Completion.
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A.1.6. Revised Question Samples for Feature Extraction

ID Type Question Dependencies Error Rate

Q1 Integer “Number of bedrooms:” N/A 0-1 %

Q2 Integer “Number of bathrooms:” N/A 0-1 %

Q3 Multiple-choice “Is it a house (chalet) or apartment (including duplex,

studio, flat, etc.)?”

N/A 0-1 %

Q4 Yes/No “Is it a semi-detached (adosado or pareado) house

(yes/no)?”

Q3 = House 0-1 %

Q5 Yes/No “Is it a penthouse top-floor apartment (ático)?” Q3 = Apartment 5 %

Q6 Yes/No “Is the apartment a duplex (2-stories)?” Q3 = Apartment 5 %

Q7 Yes/No “Is the apartment multi-story (more than 2 stories)?” Q3 = Apartment, Q6 = No 5 %

Q8 Yes/No “Does it have a garden, or a plot of land?” N/A 3-4 %

Q9 Yes/No “Does it mention having a private swimming pool?” Q8 = Yes 6 %

Q10 Yes/No “Does it have a pool in the zona comunitaria, urbani-

zación or conjunto residencial?”

Q9 = No 0-1 %

Q11 Yes/No “Does it have an elevator?” Q3 = Apartment 0 %

Q12 Yes/No “Does it have a terrace?” Q3 = Apartment 0-1 %

Q13 Yes/No “Is the terrace really large and spacious (yes/no)?” Q3 = Apartment, Q12 = Yes N/A

Table A.2: Samples of the final, revised questions utilized for feature extraction of property data

prompting Llama2.

A.1.7. Dataset Preview Sample

Figure A.5: Dataset preview sample from the Hugging Face Dataset Viewer tool. Scores have been

normalized to range from -1 (lowest) to 1 (highest).
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A.2. Web Application and Deployment

A.2. Web Application and Deployment

A.2.1. Gradio Interface Implementation

Code A.1: Definition of the Gradio Interface for our REST API, showcasing the setup of the search

function, input parameters, and additional interface properties.

1 gradio_interface = gradio.Interface(

2 fn=search,

3 api_name="search",

4 inputs=[

5 "text", # user query

6 "text" # collection name

7 ],

8 outputs="text", # JSON search results

9 examples=[

10 ["apartamento con 3 habitaciones", "real_bert"],

11 ["chalet con piscina", "all"]

12 ],

13 title="TFG Web Demo REST API",
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A.2.2. API Response

Figure A.6: Sample API response for request with body: query ’apartamento con 3 habitaciones’,

collection_name ’all’.
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A.2. Web Application and Deployment

A.2.3. Search Results UI

Figure A.7: User interface for exploring property listing search results in our web app.

Fernando Ónega Rodrigo 59



Implementation Details

A.2.4. Comparison View UI

Figure A.8: User interface for comparing the results from two different embedding models in our web

app.
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B
Experiments and Results

B.1. Experimental Setup

B.1.1. Evaluation Dataset Summary

Corpus Size Query Type Query Count Sample Query
Number of Perfect

Matches

25 Basic 307
apartamento con 3 habi-

taciones
10

25 Extended 391
vivienda unifamiliar con

pista de pádel
6

25 Attribute: House Type 40 dúplex ático 4

25 Attribute: Pools 13 piscina privada 5

Table B.1: Query Types and Distribution of Perfect Matches. The ’Perfect Matches’ column indicates

the number of properties in the corpus that perfectly match the features specified in the respective

example query.
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