
Bachelor thesis

Escuela Politécnica Superior

Application of sentiment analysis on music recommendation

Universidad Autónoma de Madrid

w
w

w
.u

am
.e

s

23
24

Javier Wang Zhou

Escuela Politécnica Superior

Universidad Autónoma de Madrid

C\Francisco Tomás y Valiente nº 11

UNIVERSIDAD AUTÓNOMA DE MADRID
ESCUELA POLITÉCNICA SUPERIOR

Bachelor as Computer Science and Engineering

BACHELOR THESIS

Application of sentiment analysis on music
recommendation

Author: Javier Wang Zhou
Advisor: Alejandro Bellogín Kouki

septiembre 2023

All rights reserved.

No reproduction in any form of this book, in whole or in part
(except for brief quotation in critical articles or reviews),
may be made without written authorization from the publisher.

© July 18, 2023 by UNIVERSIDAD AUTÓNOMA DE MADRID
Francisco Tomás y Valiente, no 1
Madrid, 28049
Spain

Javier Wang Zhou
Application of sentiment analysis on music recommendation

Javier Wang Zhou
C\ Francisco Tomás y Valiente Nº 11

PRINTED IN SPAIN

To my dear mother

We are not thinking machines that feel; rather, we are feeling machines that think.

Antonio Damasio

Agradecimientos

Primero que nada, agradecer a mi tutor Alejandro Bellogín, por brindarme su apoyo y consejo a lo

largo del año. En varias ocasiones no hubiera podido seguir con el trabajo si no fuera por su guía, y

mucho menos finalizarlo con la calidad presentada.

Mi más sincero agradecimiento también a todos mis amigos y conocidos, en concreto a los compa-

ñeros que tuve la suerte de conocer en estos años de universidad, con quienes tanto he compartido

dentro y fuera de clase. Especialmente, a Ángel, Juan y Rodrigo, por pasar hora tras hora realizando

prácticas conmigo, depurando código y aguantando mis manías.

Asimismo, me gustaría expresar mi gratitud a la Escuela Politécnica Superior, por ser un nexo de

conocimiento, ingeniería y camaradería, donde de tantos compañeros y profesores he podido aprender

y depender durante la carrera.

Finalmente, gracias a mi familia, por ofrecerme la motivación y ser la razón por la cual siempre doy

lo mejor de mí. En particular, a mi madre, por apoyarme este último año y a lo largo de mi vida.

Con todo mi ser, muchas gracias.

vii

Resumen

Los sistemas de recomendación musical desempeñan un papel fundamental al atender a diver-

sas preferencias de usuarios y fomentar experiencias musicales personalizadas. De igual manera, el

sentimiento puede influir profundamente en la música al dar forma a su expresión emocional y evocar

estados de ánimo específicos en los oyentes. Dicho sentimiento se puede analizar mediante técnicas

de procesamiento del lenguaje natural para medir emociones u opiniones expresadas en contenidos

textuales, con la esperanza de aumentar la relevancia o significado al aplicarse en procesos de reco-

mendación.

Este proyecto se adentra en el campo del análisis de sentimiento y su posible impacto en la re-

comendación musical, buscando mejorar los modelos de recomendación al incorporar atributos de

sentimiento derivados de un conjunto de datos y un analizador de sentimientos obtenidos con este fin,

con objeto de encontrar relaciones significativas entre las emociones y el gusto musical.

Como culmen de este trabajo, se desarrolla una aplicación web para mostrar las herramientas

utilizadas y los modelos de mejor rendimiento. Esta plataforma ilustra el potencial de la recomendación

consciente de emociones, ofreciendo una perspectiva sobre la dimensión de los sentimientos y su

representación de preferencias personales.

Palabras clave

Sistemas de recomendación, recomendación de música, análisis de sentimiento, scraping de datos,

procesamiento del lenguaje natural

ix

Abstract

Music recommendation systems play a pivotal role in catering to diverse user preferences and

fostering personalized listening experiences. Likewise, sentiment can profoundly influence music by

shaping its emotional expression and evoking specific moods onto listeners. This sentiment may be

analyzed through natural language processing techniques to gauge emotions or opinions expressed

in textual content, hopefully increasing relevance or significance when applied to the recommendation

process.

This project ventures into the field of sentiment analysis and its potential impact on music recom-

mendation, attempting to enhance recommendation models by incorporating sentiment attributes de-

rived from a manually retrieved dataset and a bespoke sentiment analyzer — in pursuit of insightful

correlations between emotion and musical taste.

As a culmination of this research endeavor, a web application is developed to showcase the ap-

plied tools and the finest-performing recommender models. This platform illustrates the potential of

emotion-aware recommendation, offering a view into the dimension of sentiment and its representation

of personal preferences.

Keywords

Recommender systems, music recommendation, sentiment analysis, data scraping, natural langua-

ge processing

xi

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

1.3 Work structure . 2

2 State of the Art 3

2.1 Recommender systems . 3

2.1.1 Model classification . 3

2.1.2 Context-aware recommendation . 4

2.1.3 Music recommendation . 5

2.1.4 Evaluation . 7

2.2 Natural Language Processing . 9

2.2.1 Text Processing . 9

2.2.2 Sentiment Analysis . 10

2.2.3 Word Embeddings . 11

2.3 Web applications . 12

2.3.1 Django Framework . 12

2.3.2 Database Management . 13

3 Design and Implementation 15

3.1 Project structure . 15

3.2 Requirements analysis . 16

3.2.1 Web application . 16

3.2.2 Dataset . 17

3.2.3 Database . 18

3.3 Design . 19

3.3.1 Web application . 19

3.3.2 Dataset . 24

3.3.3 Database . 25

3.4 Implementation . 26

3.4.1 Web application . 26

3.4.2 Dataset . 27

3.4.3 Database . 30

4 Experiments and Results 31

xiii

4.1 Testing environment . 31

4.2 Data analysis . 32

4.3 Experiments . 34

4.3.1 Data used in experiments . 35

4.3.2 Recommendation libraries and model selection . 35

4.4 Results . 36

4.4.1 Performance analysis . 37

5 Conclusions and Future work 39

5.1 Conclusions . 39

5.2 Future work . 40

Bibliography 43

Acronyms 45

Appendices 47

A Web Application 49

B External Libraries 53

C Data Preprocessing 55

D Model Implementations 57

xiv

Lists

List of codes

2.1 SQLAlchemy example . 14

D.1 Implementation of RandomRecommender . 57

D.2 Implementation of CosineSimilarityRecommender . 58

D.3 Implementation of HybridVADRecommender . 59

List of equations

2.1 Cosine similarity . 6

2.2a Term Frequency (TF) . 6

2.2b Inverse Document Frequency (IDF) . 6

2.2c TF-IDF vectorization . 6

2.3a Precision . 7

2.3b Recall . 7

2.3c F1-Score . 7

2.4a Average Precision (AP) . 8

2.4b Mean Average Precision (mAP) . 8

2.5a Discounted Cumulative Gain (DCG) . 8

2.5b Ideal Discounted Cumulative Gain (IDCG) . 8

2.5c Normalized Discounted Cumulative Gain (NDCG) . 8

2.6a Reciprocal Rank (RR) . 8

2.6b Mean Reciprocal Rank (MRR) . 8

2.7 Sentiment Ratio . 11

List of figures

2.1 Text processing techniques . 9

2.2 Valence-Arousal-Dominance sentiment models . 10

2.3 Django’s Model-View-Template architecture . 13

3.1 Web application architecture . 16

xv

3.2 Sequence diagram: Track Previewer . 20

3.3 Sequence diagram: VAD Analyzer . 20

3.4 Sequence diagram: User Scraper . 21

3.5 Sequence diagram: Recommendations . 22

3.6 Class diagram: Recommendation models . 23

3.7 Dataset collection . 24

3.8 Entity-Relationship diagram . 25

3.9 Example music recommendations . 26

3.10 Steps of data scraping . 27

3.11 Sentiment analyzer . 29

4.1 Zipf’s law in Last.fm’s tags . 32

4.2 Correlation heatmap of sentiment attributes . 33

4.3 Univariate histograms of sentiment attributes . 33

4.4 Bivariate histograms of valence, arousal and dominance . 34

A.1 Web application: Home Page . 49

A.2 Web application: Track Previewer . 50

A.3 Web application: VAD Analyzer . 50

A.4 Web application: User Scraper . 51

A.5 Web application: Recommendations . 52

B.1 RecBole Framework . 53

B.2 spaCy NLP Pipeline . 53

C.1 Data Preprocessing . 55

List of tables

2.1 NRC-VAD lexicon example entries . 11

3.1 Database statistics . 30

4.1 Testing environment specifications . 31

4.2 Testing results . 38

xvi

1
Introduction

The field of music recommendation has witnessed significant advancements in recent years, with

various techniques and algorithms being employed to deliver personalized tracks to users, and ap-

plied on the most popular music platforms. However, the incorporation of sentiment analysis into music

recommendation systems remains an area of research ripe for exploration. This analysis could provi-

de additional attributes exploitable by recommender systems to perhaps improve the accuracy or true

value of their recommendations.

1.1. Motivation

Music is inherently emotional and has the ability to evoke strong feelings in listeners; therefore,

understanding the sentiment of music could provide valuable insights into the emotional characteristics

and appeal of different songs. By applying sentiment analysis on music content, we could identify the

emotional factors of tracks, such as the level of happiness, sadness, excitement, or relaxation. This

information could be used to tailor recommendations based on the user’s current emotional state or

mood, providing a more personalized and engaging music experience.

Additionally, sentiment analysis could potentially assist in addressing the cold-start problem in re-

commendation, where limited user data is available. By analyzing the sentiment of music tracks, we

could bridge the gap between user choice and music attributes, allowing for effective recommendations

even for new users with sparse data.

By embedding sentiment into music recommendation, we aim at measuring the effectiveness of

emotion, and the role it plays, in the representation of user preferences and the task of generating

suitable candidates that cater for such preferences. Thus, we contribute to the development of music

recommenders that not only consider user-item similarities or contextual information, but also incorpo-

rate the emotional aspects of music.

1

Introduction

1.2. Goals

The primary objective of this project is to explore and understand the effectiveness of applying

sentiment attributes in the domain of music recommendation, by investigating the role of mood in music

choice and its representation of user preferences. This will be accomplished through the collection of

a new dataset using Last.fm’s Application Programming Interface (API), followed by the generation of

sentiment attributes using a text sentiment analyzer. This dataset will be used to train different models

and to test their integration of sentiment by evaluating recommendation accuracy. For this goal, context-

aware models are of interest, as these algorithms are able to seamlessly embed additional attributes

into the recommendation process. Finally, a web application will be developed as a platform to showcase

the tools used throughout the project, along with the final recommendation models.

However, it is worth mentioning that the real value of the thesis lies in the process rather than the

outcome since, throughout its making, it entailed the deepening of topics such as natural language

processing, music recommendation and web scraping, which were not touched upon thus far; together

with the opportunity to put into practice all the knowledge acquired during these years, namely software

engineering, web development, database management and machine learning.

1.3. Work structure

This document is organized into five chapters, which can be summarized as follows:

Chapter 1. Introduction. Description of the topic around which the project revolves, the thesis

motivation and work structure.

Chapter 2. State of the Art. Review of the concepts that serve as the theoretical foundation

for the thesis, studying the latest advancements in recommender systems, music recom-

mendation, natural language processing and web applications.

Chapter 3. Design and implementation. Definition of the design decisions made for each

core component of the project, analyzing their functional and non-functional requirements,

structure and lifecycle; along with an explanation of the technical aspects of the thesis, such

as code architecture and implementation details.

Chapter 4. Experiments and results. Description of the tests conducted on the different mo-

dels using the collected dataset, analyzing features and evaluating the settings and results

obtained for each.

Chapter 5. Conclusions and future work. Overview of the conclusions drawn from the the-

sis, summary and discussion of the final results, as well as a review of potential improve-

ments and areas for further research.

2 Application of sentiment analysis on music recommendation

2
State of the Art

This chapter serves as an introduction and brief insight into the main concepts explained and dis-

cussed throughout the project, involving recommender systems focused on music, natural language

processing with sentiment analysis, web applications and database management.

2.1. Recommender systems

Recommender systems are a type of intelligent systems designed to provide users with items of

interest. This is usually achieved by building user profiles based on their preferences, past actions or

information from their environment [1].

With the explosion of digital content and the growing complexity of user preferences, recommender

systems have become indispensable for a satisfactory user experience, being present in industries

such as e-commerce, social media, and more relevant to the matter at hand, entertainment, including

music on platforms such as Spotify, SoundCloud or Last.fm. Recommendation of music, and media in

general, is a particularly daunting task due to the variety of items and the subjectivity involved in every

interaction, making it an interesting topic of research.

The latest developments in recommender systems encompass a range of techniques explained in

the following sections, including collaborative filtering, content-based recommendation, hybrid systems,

and deep learning methods. These techniques aim to provide accurate and personalized recommen-

dations by making the most of user preferences, item characteristics, and contextual information.

2.1.1. Model classification

Recommender systems can be classified into different types based on their techniques and focus.

These types include:

• General Recommenders, consisting of various techniques including collaborative filtering algo-

rithms, which analyze user-item interactions to identify similar users or items, or content-based sys-

3

State of the Art

tems, which focus more on items’ characteristics and attributes (e.g. category, language, author. . .),

analyzing their content to suggest similar items according to the user’s preferences. Non-personalized

methods, such as popularity-based recommendation, also fall into this category [2].

• Context-Aware Recommenders, which incorporate contextual information, such as time, location,

demographics, and user behavior, to provide personalized recommendations that adapt to the user’s

current situation. Additionally, these recommenders could also be content-based, incorporating re-

levant content as embeddings, for instance, to increase the amount of useful training data [3].

• Sequential Recommenders, which consider the temporal order of user interactions and exploit se-

quential patterns to make recommendations. They utilize historical sequences of user actions to

predict the next item of interest [4, Chapter 3.5].

• Knowledge-Based Recommenders, which make use of external knowledge sources, such as know-

ledge graphs or semantic networks, to enhance the recommendation process. They utilize domain-

specific knowledge and semantic relationships to generate more accurate and meaningful recom-

mendations [5].

Hybrid approaches that combine multiple types are also common, allowing for leveraging different tech-

niques to improve recommendations. The ultimate choice of model depends on the recommendation

problem, available data, desired personalization and contextual relevance.

2.1.2. Context-aware recommendation

Context-aware recommender systems have garnered significant attention in recent years for their

ability to take into account the specific context in which users interact while generating recommenda-

tions. Said context is comprised of contextual factors, which can be fully observable (explicit informa-

tion), unobservable (the model extracts the latent variables implicitly) or partially observable.

Feature engineering

Observable factors might be obtained and processed through feature engineering, which plays a

crucial role in context-aware recommendation. In particular, it involves selecting or creating relevant

data that captures users’ and items’ characteristics or context through domain knowledge. These fea-

tures may be tested and evaluated of their relevance and impact on the model’s performance, some

enhancing its accuracy, and some being more redundant.

Popular applications

Typically, this type of recommenders are not exclusively dependent on context, but instead incorpo-

rate methods to embed contextual information into the final model, some popular examples being:

4 Application of sentiment analysis on music recommendation

2.1. Recommender systems

• Collaborative Filtering with Context: By incorporating contextual information into the recommen-

dation process, these systems extend traditional collaborative filtering and combine user-item prefe-

rences with contextual features to improve the model [3, Classical Approaches].

• Matrix Factorization with Side Information: Matrix factorization models are enhanced to incorpo-

rate contextual factors as additional input features. By jointly factorizing the user-item matrix and the

context (or content) matrix, these models capture the influence of context on user preferences and

generate contextually relevant recommendations. One popular application of this are Factorization

Machines (FM) [3, Classical Approaches, Tensor Factorization].

• Contextual Bandits: Contextual bandit algorithms select items to recommend based on contextual

information and observed user feedback. These algorithms aim to strike a balance between explora-

tion and exploitation, considering the context to optimize recommendation choices over time [3, Re-

inforcement Learning].

• Deep Learning with Context: Deep Learning (DL) models, such as neural networks, can effectively

learn complex patterns in contextual data. By integrating contextual information into the architecture,

DL models capture the nuances of the user’s preferences in different contexts [3, Deep Learning].

As it can be deduced, these type of recommenders perform best when hybridized with techniques

that work on other aspects of the process or the data, in order to provide users with truly useful recom-

mendations.

2.1.3. Music recommendation

Music recommendation is a specialized domain of recommender systems that focuses on provi-

ding personalized music suggestions to users. Modern day advancements on music recommendation

involve sophisticated algorithms and machine learning models, as well as rich music data to enhance

recommendation accuracy and user satisfaction [4].

Collaborative and Content-based filtering

Two popular techniques applied to music recommender systems are collaborative filtering and

content-based filtering:

• Collaborative Filtering: This technique analyzes user behavior and preferences to identify similari-

ties between users or items. It recommends music that is popular among users with similar tastes,

enabling the discovery of new songs or artists according to collective preferences [4, Chapter 3.1].

• Content-Based Filtering: To find similar songs, this technique utilizes user-specific features, such as

listening history, favorite genres or preferred artists; music-specific features, such as genre, tempo,

acoustic properties or lyrics; and contextual features, such as time of day, location or mood. It tailors

Javier Wang Zhou 5

State of the Art

recommendations characterized by the attributes of the music that the user has enjoyed, providing

songs that align with their individual tastes [4, Chapter 3.2].

Both techniques are often centered around similarities between users or items and common inter-

actions or characteristics, which can be obtained from metrics such as Euclidean distance or cosine

similarity. In the context of recommendation, cosine similarity is a popular choice for content-based sys-

tems, as the content usually consists of tokens or pieces of text (e.g., summaries, comments, tags).

First, however, these texts need to be vectorized, using methods like counting the number of occurren-

ces for each word, or TF-IDF vectorization.

Cosine similarity

Cosine similarity is an effective measure for assessing text similarity in recommendation systems.

It operates on vector representations of texts, capturing the semantic similarity between them by com-

paring the orientation of the vectors and their angle. It is robust to variations in text length, focusing

on semantic content rather than the absolute magnitude of vectors, and also computationally efficient,

making it suitable for large-scale datasets.

cos(A,B) =

∑n
i=1Ai ·Bi

|A| · |B|
(2.1)

Where A and B are vectors, with |A| being the vector magnitude of A.

TF-IDF

Term Frequency-Inverse Document Frequency (TF-IDF) [2.2c] is a text vectorization technique that

assigns weights to words in a document, based on their importance in both the document and the

corpus as a whole. It calculates a score by multiplying the Term Frequency (TF), which measures how

frequently a term appears in a document, with the Inverse Document Frequency (IDF), which measures

the rarity of a term across the entire corpus. By highlighting terms that are both frequent within a specific

document and relatively rare in the overall corpus, it allows for the identification of more important and

discriminative terms.

tf(t, d) =

1 + log freq(t, d), if freq(t, d) > 0

0, otherwise
(2.2a)

idf(t) = log
|D|
|Dt|

(2.2b)

tf -idf(t, d) = tf(t, d) · idf(t) (2.2c)

Where |D| denotes the total number of documents in the corpus, and |Dt| those containing the term t.

6 Application of sentiment analysis on music recommendation

2.1. Recommender systems

Music datasets and APIs

To test and evaluate music recommendation models, researchers and developers often utilize popu-

lar datasets available in the field, such as the Million Song Dataset, which provides a vast collection of

audio features and metadata for a million songs. Furthermore, platforms like Spotify and Last.fm offer

APIs that allow access to music data, user listening history, and other relevant information, enabling

researchers to experiment and assess their approaches with diverse and representative real-world da-

ta. In this project, sentiment attributes were extracted from Last.fm’s tags associated with tracks, artists

and albums, with the resulting dataset being evaluated on different models.

2.1.4. Evaluation

Evaluating recommender systems is essential to assess their utility and accuracy, and involves com-

paring the system’s output recommendations with some ground truth data, such as user ratings, implicit

feedback, or user interactions. Several evaluation metrics have been developed to measure different

aspects of recommender system performance, tightly related to Information Retrieval (IR) evaluation.

Among them, some of the most popular metrics include Precision, Recall, F1 score, Mean Average

Precision, Normalized Discounted Cumulative Gain and Mean Reciprocal Rank. Moreover, a cutoff is

typically given to test with the top K results, since in the vast majority of cases the most interesting

results are those shown first to the user.

Precision, Recall & F1 Score

Precision [2.3a] is a metric that measures the proportion of relevant items among the recommended

items. It focuses on the accuracy of the system by calculating the ratio of true positives (relevant items

recommended) to the total recommended items.

However, precision alone does not consider the number of relevant items that were not recommen-

ded, which is where Recall comes into play. Recall [2.3b] measures the proportion of relevant items

that were actually recommended, providing insights into the system’s coverage of relevant items. The

F1 score [2.3c] combines Precision and Recall into a single metric, providing a balanced measure of

both metrics.

P =
|Relevant ∩Returned|

|Returned|
(2.3a)

R =
|Relevant ∩Returned|

|Relevant|
(2.3b)

F1 =
2 · PR

P +R
(2.3c)

Javier Wang Zhou 7

State of the Art

Mean Average Precision

Mean Average Precision (mAP) is a widely used metric in recommender systems evaluation, es-

pecially in IR scenarios [2.4b]. It measures the Average Precision (AP) across different recall levels

and is particularly useful when dealing with varying lengths of recommendation lists. mAP takes into

account the position of relevant items in the ranked list of recommendations, penalizing systems that

place relevant items lower in the list.

APk =
1

|Rel@k|
∑

k∈relevant
P@k (2.4a) mAP =

1

|Rel|

|Rel|∑
i=1

APi (2.4b)

Normalized Discounted Cumulative Gain

Normalized Discounted Cumulative Gain (NDCG) is another popular metric in IR or recommender

systems evaluation [2.5c]. It considers both the relevance and the rank of recommended items, and

stems from the normalization of the Discounted Cumulative Gain (DCG) [2.5a], with the ideally orde-

red DCG or IDCG [2.5b]. Higher scores are assigned to relevant items that are ranked higher in the

recommendation list, applying a discount based on the position in the list. By considering the graded

relevance of items, NDCG provides a more fine-grained evaluation of the system’s performance.

DCG =

|Rel|∑
k=1

Relevance(dk)

log2(k + 1)
(2.5a)

IDCG = DCGIdeal order (2.5b)
NDCG =

DCG

IDCG
∈ [0, 1] (2.5c)

Mean Reciprocal Rank

Reciprocal Rank (RR) takes into account the rank of the first relevant item in the recommendation

list [2.6a]. Likewise, the Mean Reciprocal Rank (MRR) averages the Reciprocal Rank from the results

of several queries [2.6b]. These metrics are most useful to assess systems where the user requires just

one relevant item from the recommendation list.

RR =
1

mı́n{k ∈ relevant}
(2.6a) MRR =

1

|Q|

|Q|∑
i=1

RRi (2.6b)

It is important to note that the choice of evaluation metrics depends on the specific application do-

main, the nature of the recommendation problem, and the available ground truth data. Different metrics

provide insights into different aspects of the recommender system’s performance, and multiple metrics

are usually applied to obtain a comprehensive evaluation.

8 Application of sentiment analysis on music recommendation

2.2. Natural Language Processing

2.2. Natural Language Processing

Natural Language Processing (NLP) is a field of artificial intelligence that focuses on the interaction

between computers and human language. It encompasses a wide range of techniques and applications,

enabling computers to understand, interpret, and generate human language text. Three important areas

within NLP are text processing, sentiment analysis and word embeddings.

2.2.1. Text Processing

Text processing involves analyzing and manipulating textual data to extract valuable information. It

includes tasks like tokenization, part-of-speech tagging, dependency parsing and lemmatization [2.1],

which enable the extraction of insights and facilitate various applications such as sentiment analysis

and information retrieval. Popular libraries have been developed that provide extensive functionalities

for these tasks, such as spaCy [6] and Natural Language Toolkit (NLTK) [7], both used in this project.

(a) Tokenization (b) Part-of-speech tagging

(c) Dependency parsing (d) Lemmatization

Figure 2.1: Text processing techniques

a) Tokenization is the process of splitting text into smaller units called tokens, which can be individual

words, phrases, or even characters — fundamental for subsequent analysis.

b) Part-of-speech tagging, or POS tagging, is the process of assigning grammatical tags to words

in a text, indicating their syntactic category and role in a sentence. It helps in understanding the

grammatical structure and meaning of sentences.

c) Dependency parsing analyzes the grammatical structure of a sentence by identifying the rela-

tionships between words and representing them as a hierarchical structure or dependency tree. It

helps to uncover the syntactic dependencies between words and is typically useful for sentence

segmentation and token dependency labelling.

Javier Wang Zhou 9

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://universaldependencies.org/en/dep/

State of the Art

d) Lemmatization is the process of reducing words to their base or canonical form, known as a lemma,

by considering their context and morphological features. It allows for better text analysis by treating

different inflected forms of a word as a single normalized entity.

2.2.2. Sentiment Analysis

Sentiment analysis, also known as opinion mining, aims to determine the sentiment or subjective

information expressed in a piece of text. It involves analyzing text data to identify the overall sentiment,

such as positive, negative, or neutral, and sometimes even more nuanced emotions. One popular model

used in sentiment analysis is the Valence-Arousal-Dominance (VAD) model [8].

VAD Sentiment Model

The traditional VAD model assigns scores to words based upon three dimensions: valence, arousal,

and dominance. Valence represents the pleasantness or positivity of the sentiment, arousal represents

the level of excitement or intensity, and dominance represents the degree of control or influence.

V
a

le
n

c
e

 (
+

)

V
a

le
n

c
e

 (
-)

Arousal (+)

Arousal (-)

Neutral

Sad

Depressed

Bored

Happy

Excited

Alert

Angry

Tense

Distressed

Content

Calm

Relaxed

(a) Circumplex Valence-Arousal model (b) Three-dimensional Valence-Arousal-Dominance model

Figure 2.2: Sentiment models based on valence, arousal & dominance, left representing the Valence-

Arousal model [9], right representing the Valence-Arousal-Dominance model [10].

Frequently, valence and arousal have been considered sufficiently independent to convey mood and

musical emotions [2.2(a)], since two dimensions are enough to represent a reliable sentiment spectrum,

striking a balance between complexity and predictive potential; with dominance being necessary for

a wider range of emotions [2.2(b)], at the expense of simplicity and scoring accuracy. These scores

provide a more comprehensive understanding of the emotions conveyed in the text [11].

10 Application of sentiment analysis on music recommendation

2.2. Natural Language Processing

Sentiment Ratio

Another common approach in sentiment analysis is to calculate a sentiment score from the fre-

quency of positive and negative words in the text [2.7]. This score can be computed by subtracting the

number of negative words from the number of positive words and dividing it by the total number of words

in the text. This technique provides a sentiment ratio, a quantitative measure of sentiment polarity that

is akin to valence but ignoring neutral words [12].

Sentiment Ratio =
|Positive words| − |Negative words|

|Total words|
∈ [−1, 1] (2.7)

2.2.3. Word Embeddings

Word embeddings are a representation of words in a continuous vector space, where words with

similar meanings are placed closer together. Word embedding models, such as Word2Vec [13] and

GloVe [14], learn these vector representations by considering the context in which words appear in

large amounts of text data. These representations capture semantic relationships between words and

enable various downstream NLP tasks to benefit from this contextual understanding.

Word embeddings have proven to be effective in a wide range of NLP applications, including senti-

ment analysis, named entity recognition, machine translation, and document classification. They enable

machines to capture the meaning and context of words, enhancing their ability to understand and ge-

nerate human language.

The NRC-VAD lexicon, used in this project, is a collection of over 20,000 words to which fine-grained

VAD scores were manually assigned, in the form of emotion-aware word embeddings. Table 2.1 shows

the highest and lowest scored words for each dimension, fitting the descriptions from Section 2.2.2 with

fair reliability [15].

Dimension Word Score ↑ Word Score ↓

valence love 1.000 toxic 0.008

happy 1.000 nightmare 0.005

happily 1.000 shit 0.000

arousal abduction 0.990 mellow 0.069

exorcism 0.980 siesta 0.046

homicide 0.973 napping 0.046

dominance powerful 0.991 empty 0.081

leadership 0.983 frail 0.069

success 0.981 weak 0.045

Table 2.1: NRC-VAD lexicon entries showcasing words with the highest and lowest scores for each

of the three dimensions.

Javier Wang Zhou 11

State of the Art

2.3. Web applications

With the aim of showcasing the tools used throughout the data acquirement process, as well as

providing a user-friendly testing experience on the better models, a web application has been developed

using popular toolkits and frameworks, namely SQLAlchemy and Django.

Web applications are typically comprised of three core components:

• The backend, often powered by frameworks like Django, handles the business logic, user requests

processing, database communication. It manages the application’s functionality, authentication, se-

curity, and API endpoints.

• The frontend, on the other hand, focuses on the user interface, utilizing technologies such as HTML,

CSS, JavaScript and, in the case of Django, the Jinja2 template engine, to create visually appealing

and interactive experiences.

• The database, powered by management systems like PostgreSQL or MySQL, stores and manipula-

tes the application’s data, providing efficient data storage, retrieval, and management.

2.3.1. Django Framework

In the latest years, several frameworks have gained popularity due to their ease of use and ro-

bust features, with Django being one of the most prominent [16, 17]. Django is a web framework built

on Python, renowned for its simplicity, scalability, and rapid development capabilities. It provides a

comprehensive set of tools and libraries that simplify the development process, including an Object-

Relational Mapping (ORM) for database management, a powerful templating engine for user interface

rendering, and a routing system for handling URL requests. Django follows the Model-View-Template

(MVT) software design pattern, an extension of the traditional Model-View-Controller (MVC) pattern.

MVT design pattern

The Model-View-Template pattern separates the different aspects of a web application, providing a

structured approach for handling data (Model), presentation logic (View), and user interface (Template).

• The Model interacts with the database. It defines the data structure and provides methods for quer-

ying, updating, and manipulating the database. When a URL is accessed, it is responsible for retrie-

ving relevant data from the database or updating existing data depending on the request.

• The View handles the logic behind processing the user’s request. After receiving the necessary

parameters from the URL request, it interacts with the Model to retrieve or modify data as needed,

and may perform additional operations based on the request parameters. Finally, the View prepares

the data to be passed to the Template for rendering.

12 Application of sentiment analysis on music recommendation

2.3. Web applications

• The Template is responsible for handling the user interface. It defines the structure, layout, and

presentation of the page, incorporating any necessary data from the View to populate the page

with the requested information. Once the Template has processed the data, it generates the HTML

response to be sent back to the user’s browser.

User

url View

Model

Template

Figure 2.3: Django’s Model-View-Template architecture

When users access a webpage built on Django, all pattern components work together to handle the

requests and generate the corresponding responses, as depicted in Figure 2.3. This division of respon-

sibilities allows for a clean separation of concerns and promotes code modularity and maintainability,

making it easier to modify or update specific components without affecting the others.

2.3.2. Database Management

Efficient database management is a critical aspect of web application development, and Django ex-

cels in this area. It offers seamless integration with various databases, including PostgreSQL, a powerful

open-source relational database management system.

Relational databases are known for their reliability, robustness, data integrity and Structured Query

Language (SQL), and are inherently supported by Django as its primary way of persisting the data and

relationships between tables.

Django’s built-in ORM layer simplifies database interactions by allowing developers to work with

databases using models defined in Python, which serve as blueprints for creating database tables and

managing data. Nevertheless, when the amount of data is too large and querying speed is paramount,

Django’s ORM might be outperformed by other libraries such as SQLAlchemy.

Javier Wang Zhou 13

State of the Art

SQLAlchemy Toolkit

SQLAlchemy is a popular Python library for advanced database operations, which offers a higher

level of abstraction and flexibility when working with database systems, including PostgreSQL, which

was used in this project. It provides a powerful toolkit for creating complex queries, performing data

manipulations and optimizing database interactions [18]. While not an integral part of Django, SQLAl-

chemy can be seamlessly embedded into Django projects, to provide a more versatile, efficient and

scalable database management when needed.

In addition, this toolkit includes its own ORM, which abstracts away the complexities of raw SQL

queries and allows developers to focus on application logic and development speed. Being built in

Python, SQLAlchemy provides additional flexibility and capabilities for customizing and parameterizing

queries.

Code 2.1: Example usage of SQLAlchemy’s ORM interacting with an existing database. Function

get_user_id filters a user by the given username, returning their ID.

3 db = sqlalchemy.create_engine("postgresql://alumnodb:alumnodb@localhost:5432/lastfm_db",
4 client_encoding="UTF-8")
5

6 # Load table definitions from DDBB
7 metadata = sqlalchemy.MetaData()
8 metadata.reflect(bind=db)
9

10 # Mapping for table 'user'
11 USER = metadata.tables['user']
12

13 def get_user_id(username: str):
14 stmt = sqlalchemy.select(USER.c.id).filter(USER.c.username == username)
15 result = db.execute(stmt).first()
16 return result

For many projects, Django’s ORM provides ample functionality, eliminating the need for an additional

library like SQLAlchemy. The choice between Django’s ORM and SQLAlchemy ultimately depends on

the database requirements and complexity of the project, which is accounted for in this case.

14 Application of sentiment analysis on music recommendation

3
Design and Implementation

This chapter presents a comprehensive overview of the project’s key components, encompassing

their structure, requirements analysis, design decisions, and implementation details.

3.1. Project structure

The project is divided into three core modules:

• Web application. System that provides a user interface to illustrate the tools used thoughout the

project, as well as the final recommendation models.

◦ Recommendation models. Trained on the collected dataset, they were provided by RecBole, a

library which will be described in following sections.

• Dataset. Data scraped from Last.fm and complemented with sentiment analysis, in order to have the

experimental data for model training. This chapter will detail the process of obtaining such dataset.

◦ Data scraper. Script that handles data collection through API calls, web scraping from Last.fm, and

generation of sentiment attributes.

◦ Sentiment analyzer. Script that analyzes textual content and generates sentiment scores, using the

NRC-VAD lexicon and optimized NLP libraries such as spaCy and NLTK.

• Database. Storage system into which the dataset is inserted, in order to maintain an organized, stable

and efficient way of accessing the data used by the recommendation models.

The web application serves as a link between all modules due to the tools interacting actively with

each one, as outlined in Figure 3.1, which are explained in more detail in Section 3.3.1. Even though

dataset acquirement is a one-time procedure, some intermediate steps, specifically user data scraping

and sentiment analysis, are showcased as well.

15

Design and Implementation

Figure 3.1: Web application architecture

3.2. Requirements analysis

In this section, the requirements for each module and sub-module of the project will be identified and

documented, classifying them as functional (what the component should do) and non-functional (quality

attributes and constraints) in order to outline their purpose and guide the development process.

3.2.1. Web application

Functional requirements

FR-WA-1.– The web application will provide a Last.fm track previewer that allows users to listen to music samples

from YouTube and Spotify.

FR-WA-2.– The web application will include a text sentiment analyzer that receives text inputs and presents analysis

results in a table format, including the extracted sentiment attributes.

FR-WA-3.– A Last.fm user scraper will be part of the showcase tools, allowing users to choose the type and quantity

of data to be scraped (tracks, artists, albums, tags), specify the username, and select the data source (API or

database). The scraped results will be displayed using tables or piecharts to allow easy analysis.

FR-WA-4.– The web application will be able to generate music recommendations using the best models trained on

the scraped dataset. Users should be able to select the desired model, set the username, results cutoff, and

define the number of results per page.

FR-WA-4.1.– If no username is selected and the model is personalized, a random user will be sampled

from the database.

16 Application of sentiment analysis on music recommendation

3.2. Requirements analysis

FR-WA-4.2.– Each recommended track will include details such as artist, album, tags, rank and VAD

values, including a link to its preview page using the Last.fm track previewer.

FR-WA-4.3.– The recommendation results will include a link to the Last.fm user scraper endpoint for

the chosen (or random) user, allowing to compare their data with the recommended tracks.

Recommendation library and models

FR-WA-5.– The recommendation models must be deployable on the web application, ensuring adequate prediction

times when users request recommendations.

FR-WA-6.– The recommendation models must be serializable, as no training should be done for deployed models.

FR-WA-7.– The recommendation models must be capable of providing personalized recommendations for any user

in the dataset, by means of the chosen user’s data.

FR-WA-8.– The context-aware recommendation models must allow incorporation of additional features into the trai-

ning process, automatically or through configuration settings.

FR-WA-9.– The recommendation library must provide a way to implement custom models, through abstract recom-

mender modules, for instance.

Non-functional requirements

NFR-WA-1.– The web application should provide a responsive and intuitive user interface for seamless interaction

with the platform’s features.

NFR-WA-2.– The system should be scalable to handle a growing number of users and accommodate future updates

and enhancements.

NFR-WA-3.– The application should have low latency, ensuring quick response times to user requests; otherwise,

an indication should be shown.

NFR-WA-4.– The recommendations generated by the web application should have a user-friendly interface to brow-

se the recommended tracks.

Recommendation library and models

NFR-WA-5.– The recommendation models should be implemented as independent code modules, to enable easy

maintainability and expansion, allowing for any additional functionality or customization of training processes.

NFR-WA-6.– The recommendation library should offer flexible and configurable options to select data features and

settings for training and evaluation.

NFR-WA-7.– The recommendation models should be optimized for efficient training and prediction, using high-

performance computing techniques such as CPU vectorization or GPU parallel computing.

3.2.2. Dataset

Functional requirements

FR-DS-1.– The dataset will be static, meaning that no new data will be added at any point, as it should be stable to

provide consistent results for evaluation purposes.

FR-DS-2.– The dataset must include data from a minimum of 50,000 users to ensure a substantial user base,

necessary for a reasonable evaluation of the recommendation models.

FR-DS-2.1.– Each user will have associated recent, top and loved tracks, as well as top artists and

Javier Wang Zhou 17

Design and Implementation

top albums, to capture diverse preferences and generate more extensive user profiles.

FR-DS-3.– The dataset will include tags associated with each track to perform sentiment analysis on.

FR-DS-4.– The dataset will include additional information about tracks, namely artists and albums, to enable a fair

comparison between the embedding of sentiment attributes and other track features.

FR-DS-4.1.– Artists and albums will include their own associated tags to expand on tag data, contri-

buting to track tagging and reduction of data sparsity.

Sentiment analyzer

FR-DS-5.– The sentiment analyzer will generate sentiment attributes, specifically valence, arousal, dominance, and

sentiment ratio or proportion of positive to negative words, for any given English text.

FR-DS-6.– The sentiment analyzer must load all necessary information into memory during initialization, which

should occur only once upon module importation, to optimize subsequent analysis.

FR-DS-7.– The sentiment analyzer must support two modes of text processing: whole text and sentence-segmented;

allowing analysis at both document and sentence levels.

FR-DS-8.– The sentiment analyzer must allow the final sentiment attributes to be obtained from the mean or the

median of the individual scores.

Non-functional requirements

NFR-DS-1.– The dataset acquirement should be reasonable in both time and size, taking into account API rate

limits, computer constraints and time dedication.

Sentiment analyzer

NFR-DS-2.– The sentiment analyzer should use optimized, state-of-the-art libraries for text processing, so its usage

is viable for real world applications.

3.2.3. Database

Functional requirements

FR-DB-1.– The database will store a table for each main entity of the dataset: users, tracks, artists, albums and

tags; with their respective identifiers and names.

FR-DB-2.– The database will store multiple tracks, top artists and top albums associated with one or more users,

establishing many-to-many relationships stored in independent tables.

FR-DB-2.1.– Each track must have an associated artist, corresponding to a one-to-many relationship

between artists and tracks.

FR-DB-2.2.– Each track could belong to an album, establishing a one-to-many relationship between

albums and tracks.

FR-DB-2.3.– Each album must have an artist, establishing a one-to-many relationship between artists

and albums.

FR-DB-3.– The database will store tags associated with tracks, artists and albums, requiring separate tables and

appropriate references to store these many-to-many relationships.

18 Application of sentiment analysis on music recommendation

3.3. Design

3.3. Design

In this section, the design of the web application, dataset acquirement and database will be defi-

ned, providing details on their architecture, components, intercommunication between each other, and

processes involved, by use of explanatory diagrams.

3.3.1. Web application

The web application, named LastMood, was built to showcase the tools used during data collection

and the final recommendation models trained on said data, by providing a user-friendly interface. For

this purpose, it plays the role of the central link that unifies every component, as a representative of the

work done throughout the project.

As it can be seen in Figure 3.1, the application consists of four tools: the Track Previewer, the

Sentiment (VAD) Analyzer, the User Scraper and the Track Recommender. These will be explained with

sequence diagrams, to visually depict the interactions between each component and the flow of actions

taken by the system.

Track Previewer

The Track Previewer is designed to allow users to request a track by specifying the artist and title,

and retrieve relevant information and previews from Last.fm. As noted on the sequence diagram in

Figure 3.2, the previewer makes use of both Last.fm’s API and webpage to gather the necessary data.

1. First off, users provide the artist and title of the track they want to preview, which must exist in Last.fm.

The Track Previewer then makes calls to Last.fm’s API to obtain the context of the track, including

the artist and track URL.

2. Afterwards, the component accesses the track’s webpage by sending a request to the URL, and

scrapes the HTML content to search for the containers that hold the Youtube and Spotify previews

from Last.fm. Upon finding them, the scraper aims at the preview identifiers, such as the Youtube

video ID or Spotify track ID.

3. Finally, the template for the previewer inserts the extracted previews into the webpage, as media

embeds. Upon any error, such as non-existent tracks or previews missing from the webpage, the

template dynamically reflects the error as feedback to the user.

The main use of this tool is for the track recommender to include usable previews in the recommen-

dations, enabling easier interaction and comparison of tracks listened by the users in the database.

Javier Wang Zhou 19

Design and Implementation

Figure 3.2: Sequence diagram: Track Previewer

VAD Analyzer

As observed in Figure 3.3, the VAD Analyzer requests an input text and two options: the compu-

tation mode for the VAD scores by mean or median of the text, and the analysis method for the text, as

a whole or divided by sentences. The analysis results are presented in a table format, where each row

represents either the entire text or individual sentences. The columns in the table include the text itself,

along with valence, arousal, and dominance scores. Additionally, each row includes a sentiment label

(positive, negative, or neutral), the sentiment ratio, the number of words analyzed, and a list of the words

as lemmas. The analyzer was used during the dataset collection to generate sentiment attributes, and

its functionality details are explained in Subsection 3.4.2.

Figure 3.3: Sequence diagram: VAD Analyzer

20 Application of sentiment analysis on music recommendation

3.3. Design

User Scraper

The User Scraper tool in the web application allows users to input a username and select options,

such as whether to retrieve data from the database or Last.fm’s API, or enabling scraping and setting

result limits for tracks, artists, albums, and tags, as represented in Figure 3.4.

For tracks, the scraper can obtain three types: top, loved and recent tracks; each including its title,

artist and album. Recent tracks also have a “listened at” column, which captures the timestamp of when

the user listened to the track, while loved tracks have a “loved at” column indicating the moment when

the track was liked. Artists are stored with their names, and albums are associated with their titles and

corresponding artists. At the end of the scraping process, and if the tag option is enabled, tags are

extracted using the previous items and appended to their information.

All scraped items are organized into tables for easy visualization, in addition to a pie chart repre-

senting the frequency of each tag across all items, allowing to identify the most common tags listened

by the user. This tool showcases part of the functionality developed for the dataset scraper, responsible

for the acquirement of the dataset used to obtain sentiment attributes and train the recommendation

models, and the implementation of which is explained in Subsection 3.4.2.

Figure 3.4: Sequence diagram: User Scraper

On another front, the track recommender generates links towards this tool, gathering data from

selected users and providing an interface to compare recommendation results with a user’s preferences

and listen history.

Javier Wang Zhou 21

Design and Implementation

Track Recommender

The Track Recommender offers users the ability to generate recommendations from one of the

best recommender models, which were trained and evaluated with different metrics and features (see

Chapter 4). As outlined in Figure 3.5, users can input a username from a list of available usernames in

the database, or leave it blank to select one at random. They can also specify a cutoff for the top results

to display, and set a limit for the number of results per page, providing pagination functionality. Some

recommenders may have additional parameters which would be shown when the model is selected.

After requesting the recommendations, the system loads the trained model, which then returns the

predicted tracks and scores for the chosen user. Then, the relevant context for each track is obtained

from the database and finally returned as a catalogue, where each track is displayed in a card format.

The cards contain information such as the track title, artist, album, rank, and associated tags. Users can

have access to the track’s preview page, or to a modal that shows additional details, including the tags

of the track, artist, and album, as well as their VAD and sentiment score. The result page also includes

a link leading to the user scraper page for the chosen user, as a way of viewing their listen profile.

Figure 3.5: Sequence diagram: Recommendations

Recommendation models

The web application utilizes RecBole [19], a comprehensive and efficient recommendation library

that provides several modern recommendation models, as well as a framework to work with these

models. The decision to use RecBole over other libraries is detailed in Section 4.3.2.

22 Application of sentiment analysis on music recommendation

3.3. Design

RecBole offers various utilities for training and evaluation, including implemented metrics, options

for data loading, processing and sampling, and automatic parameter tuning tools. The library allows for

easy customization through provided interfaces and supports configuration through files and parame-

ters (see Appendix B for an overview of the framework).

In terms of model design, RecBole includes an AbstractRecommender class, which serves as the

base for four types of recommenders, namely GeneralRecommender (general algorithms), Sequential-

Recommender (next-item prediction), KnowledgeRecommender (knowledge-based), and ContextRe-

commender (context-aware), each being abstract classes themselves, as depicted in the class diagram

of Figure 3.6. RecBole offers several models for each recommender type, which need to define methods

for calculating training loss and predicting user-item interactions.

Three more models were designed as a means to generate additional feedback for this project (see

Appendix D for implementations):

• RandomRecommender, a general recommender which generates random scores for each track,

and may be used as a baseline model.

• CosineSimilarityRecommender, another general recommender which leverages the tags associa-

ted with tracks to compute similarities using TF-IDF vectorization. Recommendations are therefore

based on tag similarity, and additional parameters can be adjusted to assign weight to tag ranking.

• HybridVADRecommender, a ContextRecommender that inherits from other context-aware models.

It calculates scores by averaging the scores generated by the inherited model, and the Euclidean

distance between the VAD values of tracks. The closer the tracks align with a user’s average VAD,

the higher the score.

Figure 3.6: Class diagram: Recommendation models

Javier Wang Zhou 23

Design and Implementation

3.3.2. Dataset

With the intention of evaluating sentiment applied to music recommendation, a suitable dataset is

required, which must contain relevant data needed for recommendation models, such as user-item

interactions and user or item features. Nevertheless, it must also include sentiment attributes to be able

to evaluate the performance of sentiment-aware recommenders, for which a sentiment analyzer needs

to be used.

Therefore, it is paramount to define a proper design for the dataset collection, which consists of two

modules: the data scraper responsible for obtaining said dataset, and the sentiment analyzer used to

extract sentiment scores from textual content — the detailed implementation of both being provided in

later sections, taking into consideration the requirements from Section 3.2.2:

The data scraper is designed to acquire relevant information from Last.fm’s API and webpage, with

the objective of obtaining a considerable dataset to test recommendation models on. This collection

process was necessary since no other publicly available dataset included users, tracks, artists, albums

and tags; all of which are required for data processing, sentiment analysis and recommendation.

The scraper needs to access the API and obtain the data in a manner similar to web crawlers, in

that the scraped items should give access to new items, valuable for the tasks at hand. The general

procedure, as outlined in Figure 3.7, will consist of obtaining all the tracks, artists and albums along

with their interactions, then getting their associated tags, and finally extracting sentiment attributes from

textual content related to those tags. All of this data will be saved into files at first, and when the scraping

is done, it will be inserted into an appropriate database.

Figure 3.7: Dataset collection

The sentiment analyzer will provide an efficient way to extract VAD scores from any given English

text. It was required to implement a new analyzer due to the lack of public libraries that focused on

VAD scores, as the existing ones either were too simple or did not use the NRC-VAD lexicon, which is

currently the most complete and reliable lexicon for these specific scores.

The analyzer will be imported into the data scraper, providing functions that allow it to perform

sentiment analysis in a transparent way. To demonstrate its capabilities, the web application will also

include the analyzer as part of the tools used in the project.

24 Application of sentiment analysis on music recommendation

3.3. Design

3.3.3. Database

The Entity-Relationship diagram portrayed in Figure 3.8 represents the database into which Last.fm’s

scraped data was inserted, designed to access the data in a standard and efficient manner. It is com-

prised of the five main entities (User, Artist, Track, Album, Tag) and all the interactions amongst them.

Figure 3.8: Entity-Relationship diagram of the Last.fm scraped database, where PK, FK and UQ

mean primary key, foreign key & unique, respectively.

Following the diagram, all entities have tags (and thereby VAD scores) except users, since the API

could not scrape personal tags from users other than oneself. These tags are user-based, meaning they

are assigned by Last.fm users, with the assignment frequency determining their rank of representation.

Furthermore, all users have top items with which they interacted the most: artists, albums and tracks;

along with loved and recent tracks. Loved tracks are those personally tagged by the user as one of their

favorites, marked by the love_at timestamp, whereas recent tracks are the latest tracks the user has

listened to up until the date of scraping, marked by the listen_at timestamp.

Javier Wang Zhou 25

Design and Implementation

3.4. Implementation

This section provides an overview of the implementation details of the modules described in Sec-

tion 3.1. It covers the external libraries used, followed procedures, and programming considerations.

3.4.1. Web application

For the development of the web application, the package of choice was the Python-based web

framework Django, owing to its extensive feature set and robust MVT architecture, which facilitated

the development process. Python, being the main programming language used throughout the entirety

of the project, was an ideal choice for the backend functionality due to its readability and extensive

support for machine learning and data analysis libraries, such as PyTorch [20], TensorFlow [21] and

Pandas [22].

Additional technologies were used for the frontend as well, such as Bootstrap 5, jQuery and AJAX,

which make the application feel responsive and dynamic. For instance, the user scraper makes asyn-

chronous, independent AJAX calls to the server for each of the scraped items, such that the user may

freely scroll and view the data obtained at any moment, without having to wait for the entire process.

Figure 3.9: Example music recommendations (see Appendix A for additional screenshots).

Figure 3.9 presents example recommendations generated for a random user, arranged as a catalo-

gue of tracks. This was possible thanks to Bootstrap’s grid layouts, styles and modals.

26 Application of sentiment analysis on music recommendation

3.4. Implementation

3.4.2. Dataset

Data scraping from Last.fm

The implementation of the data scraper involves the use of several libraries such as pylast, a Python

wrapper for Last.fm’s API [23], BeautifulSoup for parsing HTML content from the webpage, and JSON

for serializing the raw data. All API accesses by any module of the project were done through pylast, as

it provides useful classes and methods to acquire mostly all the needed data.

One crucial aspect of the implementation is the management of network and data exceptions. To

handle potential failures, the scraper incorporates a retry mechanism where, in case of an exception,

the program retries the operation a certain number of times before moving on. Considering the subs-

tantial duration of the entire scraping process, this approach ensures that the scraper can recover from

transient network issues or other exceptions and continue without being entirely hindered by individual

failures.

Figure 3.10: Steps of data scraping

The scraping is performed in various steps, which can be executed separately but depend on the

data from previous ones, as represented in Figure 3.10:

1. First of all, the data scraper retrieves the top 50 chart tags using the API, representing the most

listened tags at the time. For each tag, the scraper obtains the top unique artists associated with

them, navigates to the artists’ webpages on Last.fm and collects the top unique listeners, considering

a maximum of 30 for each artist. These listeners need to be stored as they will represent users in

the database, forming the basis for the recommendation models.

Javier Wang Zhou 27

Design and Implementation

2. Next, the scraper utilizes the API to gather data from the top listeners, acquiring their top 20 tracks,

recent tracks, and loved tracks, each with the corresponding timestamp, artist and album informa-

tion. Additionally, it collects the top 10 artists and albums (with their respective artists) for each

listener. All of this information is then stored as potential user-item interactions and features for the

recommendation models.

3. The scraper continues by fetching the top 10 tags assigned by users to each unique track, artist, and

album; before storing both the unique tags and all the item-tag assignments, which will be used in

the following step.

4. Lastly, to complement the items with sentiment attributes, the scraper retrieves definition summaries

for each unique tag using a Python implementation for Wikipedia’s API [24], and then employs the

developed sentiment analyzer over the texts to extract VAD and sentiment scores. For each unique

track, artist, and album, weighted averages of the sentiment attributes are calculated based on the

associated tags. The importance of each tag is determined by its rank, with the higher-ranking tags

carrying much more weight as they are the most representative.

The data in raw files bears little use, so it must be inserted into a suitable database, as designed

in Section 3.3.3. Also, a clear flaw in the process is the text used for sentiment analysis, as definitions

are typically objective, and may not be sufficiently representative of the tags. However, it was the only

source of reliable, standardized text that could still produce substantial and useful attributes.

Sentiment analyzer

The sentiment analyzer makes use of a custom spaCy NLP pipeline (see Appendix B) that takes

care of all the text processing via pipes, which are essentially trained models that focus on specific

steps and techniques. In this case, the pipeline was optimized to disable unnecessary pipes and use

only the minimal and fastest versions for each step. The analyzer also leverages NLTK’s WordNet, a

corpus reader that includes synsets or synonym sets, which allow to search for words of similar meaning

derived from their lemma and POS tag.

Considering the diagram in Figure 3.11, we can divide the analysis in the following steps:

1. Upon execution, the analyzer initializes the necessary resources, including loading the NRC-VAD

lexicon and configuring the spaCy NLP model and pipeline. When a piece of text needs to be analy-

zed, the NLP pipeline parses and divides it into tokens, from which the POS tags and lemmas are

obtained.

2. Afterwards, sentiment analysis is performed by iterating through the tokens, filtering out non-alphabetic

and stop words, searching for the lemmas in the NRC-VAD lexicon and extracting sentiment values.

To increase analysis coverage, the analyzer incorporates synonym search functionality. When a word

is not found in the lexicon, the analyzer makes use of synsets to retrieve words related to the ori-

28 Application of sentiment analysis on music recommendation

3.4. Implementation

ginal lemma, effectively expanding the search scope and providing a broader analysis of sentiment

nuances.

3. When a token is found, the analyzer includes procedures to handle sentiment modifiers, such as ne-

gation and degree adverbs. It detects and considers the positioning of such modifiers in the analyzed

text, enabling adjustments to sentiment scores depending on the POS tags and whether they are

negating, increasing or decreasing. After applying the score modifications, the final valence is used

to assign a sentiment label: positive, negative or neutral.

4. Finally, after processing all tokens in the text, the analyzer then generates the final VAD scores

by computing either the mean or median, as well as an additional sentiment ratio by dividing the

difference between positively and negatively labeled words, by the total number of tokens found in

the sentence or overall text.

Figure 3.11: Sentiment analyzer structure

This sentiment analyzer was inspired from a simpler version implemented with NLTK and Stan-

fordNLP, a different Natural Language Processing package; which made use of a lexicon smaller than

NRC-VAD [25]. The inclusion of sentiment modifiers was also influenced by VADER, a sentiment analy-

sis tool that offers accurate computation of valence in the context of social media [26].

Javier Wang Zhou 29

Design and Implementation

3.4.3. Database

As explained in Section 2.3.2, despite the added complexity when compared with Django’s ORM,

SQLAlchemy was the library of choice to perform the necessary data retrieval operations from Python,

as its ORM offers more advanced and versatile querying functionality, in addition to higher performance

when combining tables for filtered results. The database was laid out with bigER Modeling Tool [27],

which provided a visual interface to draw precise Entity-Relationship diagrams, and offered automatic

code generation to create the designed tables.

The population of the database with the scraped data was implemented with SQLAlchemy as well,

reading from raw files and generating insertion queries through the ORM, first for all the individual

entities, and subsequently for every user-item and item-tag interaction. Since most of these interactions

present similar relationships in the database, the code was written to avoid redundancy as much as

possible. In order to ensure item uniqueness and standard encoding, each of the tracks, artists, albums

and tags were filtered out to avoid repetitions or invalid characters.

After data insertion, the resulting dataset can be summarized by the following record counts displa-

yed in Table 3.1:

Record Count

Tracks 815,631

Tracks With Albums 604,204

Tracks With Tags 363,140

Tracks With Sentiment 361,091

Artists 162,702

Artists With Tags 122,846

Artists With Sentiment 122,646

Albums 384,995

Albums With Tags 127,396

Albums With Sentiment 126,572

Tags 199,608

Tags With Sentiment 177,106

Tag-Track Relationships 2,512,453

Tag-Artist Relationships 980,305

Tag-Album Relationships 733,505

Users 52,829

User-Track Interactions 2,452,162

User-Artist Interactions 527,051

User-Album Interactions 526,855

Table 3.1: Record count of database entities and relationships.

30 Application of sentiment analysis on music recommendation

4
Experiments and Results

This chapter exhibits the experiments carried out on the various recommendation models over the

collected dataset and analyzes the subsequent testing results. First, the environment used for these

tests will be presented, followed by an analysis of the data used for the recommendations and its

preparation. Then, the selection process for the recommendation library and models will be explained

and, lastly, the results obtained from the models will be laid out and summarized.

4.1. Testing environment

All experiments were conducted on a personal computer, the specifications of which are defined in

Table 4.1. It provided an adequate environment for the project’s needs by ensuring sufficient memory

and processing power to run most of the algorithms efficiently, despite the size of the dataset. This

advantage enabled the project to be executed without the additional complexities and costs associated

with cloud-based solutions.

Component Specifications

CPU AMD Ryzen 5 5600X

GPU NVIDIA RTX 3060 Ti 8 GB VRAM

RAM 32 GB

O.S. Windows 11

Python Environment Python 3.9.16 (conda)

Table 4.1: Specifications of the environment used for experimentation.

The dataset was designed to remain within the hardware constraints of the testing environment,

although calculations were not thoroughly performed for all the models. Some of them demanded ex-

cessive resources (in the order of 400GB of RAM or more), and had to be excluded from testing. It is

worth mentioning that the coding phase of the project was carried out in a different environment, with

lower computational capacity and more limited memory. The testing phase was therefore parallelized

with the development of the web application.

31

Experiments and Results

4.2. Data analysis

The music tags collected for the project amounted to nearly 200,000, and their assignment fre-

quency follows a power-law pattern. In particular, this corresponds to Zipf’s law 1, a frequent occurrence

in text corpus and natural language scenarios, which states that in a given dataset, the frequency of any

word or item is inversely proportional to its rank. This means that a few popular tags, like rock or pop,

are assigned to a large number of items, while the majority of tags are much rarer, being associated

with only one item, as represented in Figure 4.1. This distribution introduces sparsity in tag frequency,

which might adversely impact the recommendation process.

Figure 4.1: Zipf’s law in Last.fm’s tags

From these tags, VAD scores, along with an additional sentiment ratio, were extracted for approxi-

mately 89 % of the tags. Delving into these scores, the correlation heatmap in Figure 4.2 indicates the

degree of interdependence between each of them. Valence and arousal, being uncorrelated, emerge as

promising candidates for embedding into the recommendation models. However, valence and dominan-

ce exhibit a higher correlation, suggesting that positive tags (e.g., happy, excited) are more dominant,

and negative tags (e.g., sad, anxious) tend to be less, with the opposites being rather uncommon.

Similarly, arousal and dominance also display a moderate correlation, though still fairly independent.

The sentiment ratio, being reliant on sentiment labels derived from valence, shows a high corres-

pondence with valence and dominance. By contrast, it is essentially uncorrelated with arousal, despite

slight negative dependence — making it worth considering for inclusion in the models. Therefore, in

one combination or another, all of these scores could represent diverse sentiments, which might prove

useful for the models as a separate space for searching similarities.

1Zipf’s law, accessed 2023-07-16. https://en.wikipedia.org/wiki/Zipf’s_law

32 Application of sentiment analysis on music recommendation

https://en.wikipedia.org/wiki/Zipf's_law

4.2. Data analysis

Figure 4.2: Correlation heatmap of VAD & sentiment ratio

On another note, it might be interesting to analyze the distribution of values for these sentiment

attributes. The univariate histograms in Subfigure 4.3(a) reveal that most scores fall within the range of

(0,4−0,8) although they should vary between 0 and 1 (or −1 and 1 for sentiment ratio). This narrow clus-

tering of values could potentially hinder recommendation systems, and therefore normalization should

be performed to achieve a consistent scale and range, making the features comparable for models to

identify patterns in. After normalization between 0 and 1 (Figure 4.3(b)), the values were standardized

and expanded, now centered between 0,2 and 0,8; except sentiment ratio, which tended towards the

right, indicating that most tags had a higher frequency of positive words associated with them.

(a) Original values (b) Normalized values

Figure 4.3: Univariate histograms of VAD and sentiment ratio extracted from tags, representing ori-

ginal and normalized values.

Javier Wang Zhou 33

Experiments and Results

Bivariate histograms of the values, as presented in Figure 4.4, further corroborate the correlations

previously discussed. The valence-arousal plane exhibits a roughly uniform distribution with a V-shaped

pattern, whereas the valence-dominance plane demonstrates a similar distribution but revealing a linear

tendency, once again affirming their high correlation. Similarly, the arousal-dominance plane displays

a uniform, somewhat more vertical distribution than valence-dominance. The colored spots correspond

to the densest areas of values, aligning with the trends observed in the univariate distributions.

Figure 4.4: Bivariate VAD histograms, each illustrating a sentiment plane.

4.3. Experiments

The experiments were designed to explore various sets of features for recommendation models,

thoroughly testing each model with different combinations of features in order to identify the most ef-

fective configuration. The training process involved cross-validation with sets for training, validation,

and testing. After each training epoch, validation was conducted, and if the validation scores did not

improve within a specified number of epochs (mostly 10), the training would conclude; after which the

models were evaluated on the testing set. Additionally, negative sampling was employed to help models

distinguish relevant items from irrelevant ones.

Two evaluation methods were performed: labeled evaluation for explicit feedback, considering only

positive or negative items by a rating threshold, which did not provide enough information to judge the

recommendations from; and unlabeled evaluation for implicit feedback, which included ratings and trea-

ted seen items as positive. Specifically for the latter, the “uni100” evaluation mode sampled 100 negative

items uniformly for each positive item in the testing set and then assessed the model’s performance.

Another implicit feedback mode, “full”, was considered, which used the entire dataset for evaluation, but

its time-consuming nature made it less practical. Finally, a seed was preset to ensure identical data for

all models, and the applied evaluation metrics include NDCG, Recall, Precision, mAP, and MRR, cut

off at the 20 first items, with NDCG@20 being the valid metric for early training stopping.

34 Application of sentiment analysis on music recommendation

4.3. Experiments

4.3.1. Data used in experiments

Data preprocessing and feature selection

The data utilized for the experiments consisted of all the users, items and interactions between

them, along with various item features, imperatively including VAD and sentiment ratio. Prior to incor-

porating any features, preprocessing steps were carried out, such as assigning ratings to interactions,

grouping tags by item, reducing sparsity for tracks’ tags and sentiment attributes by using those from

artists or albums, and normalization (see Appendix C for a detailed depiction). Several libraries were

leveraged during this preparation process, including efficient data processing modules like NumPy [28]

and Pandas, as well as visualization toolkits like Matplotlib [29] and seaborn [30]; all integrated into

Jupyter Notebooks [31] for interactive data analysis and handling.

For conducting the experiments, different combinations of features were embedded into RecBole

models with configuration files, including tokens (artists, albums and tags), and numerical values (sen-

timent attributes). Moreover, users’ top artists and top albums were not included as user features, since

they were tested and did not enhance recommendations, presumably being inferred from tracks’ artists

and albums. Features unrelated to VAD were necessary to provide a fair and rigorous performance

comparison, as the results from using only sentiment would not be as insightful.

Feature integration

The process of feature integration was largely automated, since the context-aware recommender

models processed them with PyTorch on initialization, as embeddings for neural networks. In the case of

CosineSimilarityRecommender model, the tags were accessed in the constructor by Scikit-learn [32], to

build the vectorizer and create the matrix of vectorized tags, and likewise for HybridVADRecommender

with sentiment features, to store the necessary variables.

4.3.2. Recommendation libraries and model selection

During the selection process, three main recommendation libraries were considered: Surprise [33],

RecBole, and Cornac [34], each presenting distinct advantages:

• Surprise stood out for its ease of use and dataset adaptability; however, its limited number of algo-

rithms and lack of documentation for implementing models rendered it inappropriate for this project.

• RecBole offered a wide array of algorithms, resourceful documentation and model customization,

efficient GPU-accelerated execution with PyTorch and TensorFlow, and data formatting standards. Its

use of separate files for data loading, model training and evaluation, allowed for easy configuration.

• Cornac, on the other hand, provided many algorithms, but fewer compared to RecBole, with straight-

Javier Wang Zhou 35

Experiments and Results

forward dataset adaptation and model customization as well. Nonetheless, some models faced com-

patibility issues due to outdated TensorFlow versions.

Ultimately, RecBole emerged as the decisive recommendation library. For model selection within

RecBole, preliminary tests were executed by including a simpler set of features, the results of which will

be detailed in the next section.

Context-Aware Recommenders exhibited strong performance overall, and were the most fitting for

the recommendation task at hand. From these, the three best models, xDeepFM, PNN and DCN V2,

would be chosen for evaluation with sentiment features. Some General Recommenders experienced

delays in data structures initialization and demanded excessive memory, but most proved effective as

well. Pop (popularity-based recommendation) and ItemKNN (item-based collaborative filtering) were

used as baseline models, while CosineSimilarityRecommender and RandomRecommender were

implemented for additional testing.

Sequential Recommenders were not used due to VRAM limitations and the fact that top tracks,

the most frequent type, lacked timestamp information needed by them; and Knowledge-Based Re-

commenders were left out as well because of missing data required to generate the mandatory files.

Unfortunately, HybridVADRecommmender was not able to improve the scores of the inherited recom-

menders, as the Euclidean distances between sentiment attributes were probably of little use for such

advanced algorithms; and had to be excluded.

4.4. Results

This section studies the results obtained from testing several recommendation models with different

combinations of features, starting with an intuitive approach towards sentiment-aware recommenda-

tions, then explaining the preliminary results without sentiment features, and concluding with the best

combination of this last section, together with VAD and/or sentiment ratio.

Intuition

Sentiment attributes can be easily incorporated into context-aware recommenders, as additional

numerical embeddings. As they are relatively independent from each other, there is potential for algo-

rithms, such as Factorization Machines, to infer latent factors from them and uncover additional simila-

rities between tracks, thus enhancing the recommendations. Be that as it may, the true value of these

sentiment attributes can only be assessed if they improve the model, even when tags are already inclu-

ded as features. This criterion will demonstrate their independence from tags and their ability to convey

additional latent factors or relevant information for the recommendation process.

36 Application of sentiment analysis on music recommendation

4.4. Results

4.4.1. Performance analysis

Preliminary results

Prior to sentiment-aware evaluation, preliminary testing was performed as a way to discern the ideal

configuration of non-emotional features, the scores of which shall be shown in Table 4.2. First, the mo-

dels were tested with no features. In this scenario, the general models provided the best outcomes,

as they are specialized in working only with user-item interactions; whilst context-aware recommen-

ders, which depend on context to extract similarities from, yielded worse results. From this point on,

only context-aware recommenders will be considered, as general recomenders make no use of feature

embeddings.

Afterwards, with the inclusion of artists, the accuracy from context-aware recommenders matched

those from general recommendation. When albums were then embedded, most models did not improve,

and some even worsened, probably due to sparsity as 25 % of tracks lacked an album. After the insertion

of tags, all recommenders improved by 3 % to 9 % in NDCG, thanks to the role they play as categorizers

of tracks, proven efficient for recommendation; also, it was tested that using artists and tags without

albums bore better results overall. Therefore, the best setting without sentiment attributes would be

using artists and tags as embeddings.

Optimal sentiment features

A similar approach was conducted with sentiment features, by testing several combinations for the

purpose of finding the best possible embedding set from valence, arousal, dominance, and sentiment

ratio. These tests revealed that using only one attribute as embedding did not lead to significant im-

provements; however, using two showed better results, the best choice being valence and arousal,

which improved some models by nearly 10 % in NDCG, again due probably to both being the most

uncorrelated in the VAD spectrum, and therefore showing potential for additional significance.

Interestingly, sentiment ratio and arousal did not contribute much improvement to the models, indi-

cating that they might not represent emotions effectively, or at least without enough practical relevance.

On the other hand, using valence, arousal, and sentiment ratio together did lead to some enhance-

ments, suggesting that this combination might allow for a better balance between the subjective and

objective aspects of the extracted sentiment.

Following the evaluation of all possible options, the optimal one included all four attributes: VAD

and sentiment ratio, although using only VAD was close behind. Notably, the independence of these

attributes in some combination or another seemed to be inferable by the models, further substantiating

the findings from Section 4.2. From these outcomes, the final feature combination would consist of

artists, tags, valence, arousal, dominance and sentiment ratio.

Javier Wang Zhou 37

Experiments and Results

Final results

After preliminary testing, only the best context-aware models were evaluated, even though others

improved substantially as well, for the sake of simplicity. Upon testing with the best possible feature

settings, both preliminary and final results are summarized in Table 4.2.

Testing Results @ 20

Model Preliminary (Artists + Tags) Final (Artists + Tags + VAD + St.Ratio)

NDCG Recall Precision mAP MRR NDCG Recall Precision mAP MRR

G
en

er
al

Random 0.03 0.06 0.01 0.01 0.04 = = = = =

CosineSimilarity 0.14 0.28 0.05 0.06 0.12 = = = = =

Pop 0.31 0.42 0.07 0.20 0.39 = = = = =

ItemKNN [35] 0.44 0.46 0.08 0.33 0.64 = = = = =

C
on

te
xt PNN [36] 0.56 0.68 0.12 0.42 0.67 0.58 0.73 0.13 0.44 0.67

xDeepFM [37] 0.57 0.67 0.12 0.43 0.68 0.60 0.76 0.13 0.44 0.67

DCN V2 [38] 0.58 0.71 0.13 0.43 0.66 0.56 0.69 0.12 0.42 0.65

Table 4.2: Preliminary and final testing results.

The general recommenders, as expected, performed worse than the context-aware models. The

Random model, unsurprisingly ineffective, achieved a Precision of 1 %, which makes sense given that

the testing set contains 100 irrelevant items per relevant track, as explained for “uni100”. Pop de-

monstrated good performance, benefiting from a reduced evaluation set that increased the likelihood of

common items being included. CosineSimilarity also delivered decent scores, validating the fact that

listeners tend to gravitate towards similar tags. The collaborative filtering model, ItemKNN, proved ef-

fective in capturing item similarities from user-item interactions, which will always be better than relying

only on content, unless the two collaborate in a hybrid model.

In view of the context-aware models, it is worth noting that they are all Deep Learning models

(neural networks), allowing to infer functions that effectively adapt to all kinds of problems and data.

Moreover, all three algorithms emphasize the importance of feature integration: PNN (Product-based

Neural Network) focuses on learning a distributed representation of categorical features, xDeepFM

(Deep Factorization Machines) addresses the combination of explicit and implicit feature interactions,

and DCN V2 (improved Deep & Cross Network) gives priority to learning efficient feature crosses, which

are synthetic features from combining two or more individual features. On top of the above, they were

designed to excel in sparse feature spaces, which aligns with the scraped dataset.

Concerning the scores obtained for the context-aware recommenders, both PNN and xDeepFM ma-

naged to enhance the recommendations, particularly for Recall, by 5 % and 9 %, respectively; whereas

DCN V2’s lowered. This could derive from overfitting, as these models tend to prioritize categorical data

when learning at first. Overall and judging by these results, it can be confidently concluded that sen-

timent attributes do play a role in the representation of people’s taste in music, successfully capturing

emotional implications and preference diversity.

38 Application of sentiment analysis on music recommendation

5
Conclusions and Future work

5.1. Conclusions

This project has helped shed light on the competence of advanced recommendation algorithms

in discerning latent factors and similarities from different track features. Remarkably, the manual as-

signment of tags by users proved to be the most influential in identifying representative similarities.

Therefore, it should come as no surprise that VAD scores are likely contributors to recommendation

models, as both tags and sentiment attributes were derived from manual annotations by human beings,

with the latter stemming from precise and reliable methodologies. In spite of all the information lost by

averaging and using objective text for a task that required subjectivity, relevance was still found in the

extracted sentiment. This discovery emphasizes the dual significance of tags, providing a logical search

space, and their sentiment attributes, offering an emotional dimension which, as evidenced in this work,

was indeed significant in shaping musical preferences.

Delving into sentiment analysis and NLP, despite the initial challenges, turned out to be highly

captivating, as addressing the intricacies of sentiment attributes in music demanded innovative problem-

solving; from the point of view of an undergraduate student, that is. The vast potential of these areas

of research evoked an interest to further explore and contribute to their ongoing development and

application in diverse fields.

In summary, this project served as a testament to the acquired knowledge and skills in web deve-

lopment, software engineering, and machine learning over the years; as well as a platform for exploring

uncharted territories, namely NLP, sentiment analysis, web scraping, and music recommendation, thus

broadening the horizons of expertise. Ultimately, this Bachelor Thesis has not only contributed to the

understanding of new and novel topics, but has also enriched the journey of intellectual growth and

personal development.

The repository containing all the code and data used throughout the project, along with steps to set

up the web application, can be found at https://github.com/Acervans/lastfm_RS.

39

https://github.com/Acervans/lastfm_RS

Conclusions and Future work

5.2. Future work

With reference to the topics discussed in this project, several aspects may be addressed hereafter.

To begin with, all the tested recommendation models could be enhanced with exhaustive hyperparame-

ter tuning, indispensable to achieve optimal results; and newer models or libraries could be explored to

diversify the scope and types of recommendation algorithms.

To obtain real feedback, testing with external, real-world users could also be conducted, both on

the performance and accuracy of the models, as well as the user experience of the developed web

application.

Regarding the scraped dataset, a suggestion would be making it dynamic by allowing the addition

of new users, which entails retraining the models. For this, the project might delve into the use of

distributed or parallel computing with technologies like Spark, Hadoop, containerized environments or

cloud services for efficient model deployment.

To evaluate the sentiment analyzer, formal accuracy testing would be an option to assess its real

efficacy, and alternative sources for extracting sentiment attributes, such as lyrics from tracks, could be

considered to achieve more representative and subjective text for sentiment analysis.

Last but not least, future research shall focus on broadening the understanding of VAD or different

sentiment models, aiming to refine sentiment analysis in music recommendation or other domains, and

potentially uncovering novel insights for the coming years.

40 Application of sentiment analysis on music recommendation

Bibliography

[1] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Recommender Systems Handbook. Springer,

2022.

[2] Y. Koren, S. Rendle, and R. Bell, Advances in Collaborative Filtering, pp. 91–142. In [1], 2022.

[3] G. Adomavicius, K. Bauman, A. Tuzhilin, and M. Unger, Context-Aware Recommender Systems:

From Foundations to Recent Developments, pp. 211–250. In [1], 2022.

[4] M. Schedl, P. Knees, B. McFee, and D. Bogdanov, Music Recommendation Systems: Techniques,

Use Cases, and Challenges, pp. 927–971. In [1], 2022.

[5] C. Musto, M. de Gemmis, P. Lops, F. Narducci, and G. Semeraro, Semantics and Content-Based

Recommendations, pp. 251–298. In [1], 2022.

[6] M. Honnibal, I. Montani, S. Van Landeghem, and A. Boyd, “spaCy: Industrial-strength Natural

Language Processing in Python,” 2020.

[7] S. Bird, E. Klein, and E. Loper, Natural language processing with Python: analyzing text with the

natural language toolkit. O’Reilly Media, Inc., 2009.

[8] A. Mehrabian, Basic Dimensions for a General Psychological Theory: Implications for Personality,

Social, Environmental, and Developmental Studies. Cambridge: Oelgeschlager, Gunn & Hain,

1980.

[9] Wikimedia Commons, “Circumplex model of emotion,” 2023.

[10] Wikimedia Commons, “PAD emotional state model,” 2023.

[11] D. T. Rubin and J. M. Talarico, “A comparison of dimensional models of emotion: Evidence from

emotions, prototypical events, autobiographical memories, and words,” Memory, vol. 17, pp. 802–

808, 11 2009.

[12] S. Wu, “Design your own Sentiment Score,” Towards Data Science, 5 2021.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector

space,” 2013.

[14] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors for word representation,” in Pro-

ceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),

(Doha, Qatar), pp. 1532–1543, Association for Computational Linguistics, Oct. 2014.

[15] S. M. Mohammad, “Obtaining reliable human ratings of valence, arousal, and dominance for

20,000 english words,” in Proceedings of The Annual Conference of the Association for Compu-

tational Linguistics (ACL), (Melbourne, Australia), 2018.

[16] A. Ihtsham, “The Top Web Development Frameworks of 2023,” www.linkedin.com, 3 2023.

[17] Django Software Foundation, “Django.”

[18] M. Bayer, “SQLAlchemy,” in The Architecture of Open Source Applications Volume II: Structure,

Scale, and a Few More Fearless Hacks (A. Brown and G. Wilson, eds.), aosabook.org, 2012.

https://commons.wikimedia.org/wiki/File:Circumplex_model_of_emotion.svg
https://commons.wikimedia.org/wiki/File:PAD_emotional_state_model_Page_1.png
https://towardsdatascience.com/design-your-own-sentiment-score-e524308cf787

Bibliography

[19] W. X. Zhao, S. Mu, Y. Hou, Z. Lin, Y. Chen, X. Pan, K. Li, Y. Lu, H. Wang, C. Tian, Y. Min, Z. Feng,

X. Fan, X. Chen, P. Wang, W. Ji, Y. Li, X. Wang, and J.-R. Wen, “RecBole: Towards a unified,

comprehensive and efficient framework for recommendation algorithms,” 2021.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Stei-

ner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep lear-

ning library,” in Advances in Neural Information Processing Systems 32, pp. 8024–8035, Curran

Associates, Inc., 2019.

[21] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,

M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,

M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,

B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,

P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine

learning on heterogeneous systems,” 2015. Software available from tensorflow.org.

[22] W. McKinney et al., “Data structures for statistical computing in Python,” in Proceedings of the 9th

Python in Science Conference, vol. 445, pp. 51–56, Austin, TX, 2010.

[23] A. Hassan and Contributors, “pylast.” https://github.com/pylast/pylast, 2009.

[24] J. Goldsmith and Wikimedia Foundation, “Wikipedia.” https://github.com/goldsmith/

Wikipedia, 2013.

[25] D. Zhou, “SentimentAnalysis.” https://github.com/dwzhou/SentimentAnalysis,

2017.

[26] C. Hutto and E. Gilbert, “VADER: A parsimonious rule-based model for sentiment analysis of social

media text,” 01 2015.

[27] P.-L. Glaser, G. Hammerschmied, H. Vladyslav, C. Lauscher, and D. Bork, “bigER.” https://

github.com/borkdominik/bigER, 2021.

[28] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,

J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane,

J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser,

H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature, vol. 585,

pp. 357–362, Sept. 2020.

[29] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in Science & Engineering, vol. 9,

no. 3, pp. 90–95, 2007.

[30] M. L. Waskom, “seaborn: statistical data visualization,” Journal of Open Source Software, vol. 6,

no. 60, p. 3021, 2021.

[31] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, K. Kelley, J. Hamrick,

J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, and C. Willing, “Jupyter Notebooks – a publishing

format for reproducible computational workflows,” in Positioning and Power in Academic Publishing:

Players, Agents and Agendas (F. Loizides and B. Schmidt, eds.), pp. 87 – 90, IOS Press, 2016.

42 Application of sentiment analysis on music recommendation

https://github.com/pylast/pylast
https://github.com/goldsmith/Wikipedia
https://github.com/goldsmith/Wikipedia
https://github.com/dwzhou/SentimentAnalysis
https://github.com/borkdominik/bigER
https://github.com/borkdominik/bigER

Bibliography

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenho-

fer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and

E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research,

vol. 12, pp. 2825–2830, 2011.

[33] N. Hug, “Surprise: A Python library for recommender systems,” Journal of Open Source Software,

vol. 5, no. 52, p. 2174, 2020.

[34] A. Salah, Q.-T. Truong, and H. W. Lauw, “Cornac: A comparative framework for multimodal recom-

mender systems,” Journal of Machine Learning Research, vol. 21, no. 95, pp. 1–5, 2020.

[35] M. Deshpande and G. Karypis, “Item-based top-n recommendation algorithms,” ACM Trans. Inf.

Syst., vol. 22, p. 143–177, jan 2004.

[36] Y. Qu, H. Cai, K. Ren, W. Zhang, Y. Yu, Y. Wen, and J. Wang, “Product-based Neural Networks

for user response prediction,” in 2016 IEEE 16th International Conference on Data Mining (ICDM),

pp. 1149–1154, Dec 2016.

[37] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun, “xDeepFM: Combining explicit and im-

plicit feature interactions for recommender systems,” in Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, KDD ’18, (New York, NY, USA),

p. 1754–1763, Association for Computing Machinery, 2018.

[38] R. Wang, R. Shivanna, D. Cheng, S. Jain, D. Lin, L. Hong, and E. Chi, “DCN V2: Improved deep &

cross network and practical lessons for web-scale learning to rank systems,” in Proceedings of the

Web Conference 2021, WWW ’21, (New York, NY, USA), p. 1785–1797, Association for Computing

Machinery, 2021.

Javier Wang Zhou 43

Acronyms

AJAX Asynchronous JavaScript And XML.

AP Average Precision.

API Application Programming Interface.

CPU Central Processing Unit.

CSS Cascading Style Sheets.

DCG Discounted Cumulative Gain.

DL Deep Learning.

FM Factorization Machines.

GPU Graphics Processing Unit.

HTML HyperText Markup Language.

IDCG Ideal Discounted Cumulative Gain.

IDF Inverse Document Frequency.

IR Information Retrieval.

JS JavaScript.

mAP Mean Average Precision.

MRR Mean Reciprocal Rank.

MVC Model-View-Controller.

MVT Model-View-Template.

NDCG Normalized Discounted Cumulative Gain.

NLP Natural Language Processing.

NLTK Natural Language Toolkit.

NRC National Research Council.

ORM Object-Relational Mapping.

POS Part-of-speech.

RR Reciprocal Rank.

SQL Structured Query Language.

TF Term Frequency.

URL Uniform Resource Locator.

VAD Valence-Arousal-Dominance.

45

Appendices

A
Web Application

(a) Tools introduction

(b) Interactive NRC-VAD lexicon embed

Figure A.1: Web application: Home Page

49

Web Application

(a) Track previewer form (b) Example preview with artist Downtown Binary and title Ex-

plorer

Figure A.2: Web application: Track Previewer

(a) VAD analyzer form

(b) Example analysis by sentences

Figure A.3: Web application: VAD Analyzer

50 Application of sentiment analysis on music recommendation

(a) User scraper form

(b) Example with limited results

(c) Tag frequency pie chart

Figure A.4: Web application: User Scraper

Javier Wang Zhou 51

Web Application

(a) Track recommender form

(b) Track details modal

Figure A.5: Web application: Recommendations

52 Application of sentiment analysis on music recommendation

B
External Libraries

Figure B.1: RecBole Framework [19]

Figure B.2: spaCy NLP Pipeline

53

C
Data Preprocessing

Figure C.1: Data Preprocessing

55

D
Model Implementations

Code D.1: RandomRecommender class for random recommendations as baseline.

10 class RandomRecommender(GeneralRecommender):
11 """ Random recommendations as baseline for performance comparison """
12 rand_scores: torch.Tensor
13 input_type = InputType.POINTWISE
14 type = ModelType.TRADITIONAL
15

16 def __init__(self, config, dataset: Dataset):
17 super(RandomRecommender, self).__init__(config, dataset)
18 # Initial random scores
19 self.generate_random_scores()
20 # Fake loss parameter
21 self.fake_loss = torch.nn.Parameter(torch.zeros(1))
22

23 def calculate_loss(self, interaction):
24 # Re-randomize scores
25 self.generate_random_scores()
26 return torch.nn.Parameter(torch.zeros(1))
27

28 def predict(self, interaction, generate_new=False):
29 if generate_new:
30 self.generate_random_scores()
31 item = interaction[self.ITEM_ID]
32 return self.rand_scores[item, :].squeeze(-1)
33

34 def full_sort_predict(self, interaction, generate_new=False):
35 if generate_new:
36 self.generate_random_scores()
37 batch_user_num = interaction[self.USER_ID].shape[0]
38 result = torch.repeat_interleave(self.rand_scores.unsqueeze(0), batch_user_num, dim=0)
39 return result.view(-1)
40

41 def generate_random_scores(self):
42 # Generate random tensor of scores
43 self.rand_scores = torch.rand(self.n_items, 1, device=self.device)

57

Model Implementations

Code D.2: CosineSimilarityRecommender class for tag similarity recommendations.

11 class CosineSimilarityRecommender(GeneralRecommender):
12 """ Recommendations based on features' (tags) cosine similarities """
13 input_type = InputType.PAIRWISE
14 type = ModelType.TRADITIONAL
15

16 def __init__(self, config, dataset: Dataset):
17 super(CosineSimilarityRecommender, self).__init__(config, dataset)
18 # Model config, tag features, item indexing, similarity weights, topk cutoff, fake loss...
19 ...
20 # Set up vectorizer
21 self.vectorizer = TfidfVectorizer(**config['Vectorizer_Config'], token_pattern=r"(?u)\b\w+\b",

lowercase=False)
22 # Vectorized item-tags matrix, vec_feat contains all the tag sequences
23 self.vec_matrix = normalize(self.vectorizer.fit_transform(self.vec_feat))
24

25 def cosine_similarity_scores(self, user_id):
26 # User interactions indices
27 users = self.inters[self.USER_ID]
28 user_inters_idx = users == user_id.item()
29 # Interacted items
30 user_items = self.inters[self.ITEM_ID][user_inters_idx]
31 # Item weights by rating
32 weights = None
33 if self.sim_weights is not None:
34 weights = self.sim_weights[user_inters_idx]
35 # Sort by weights for cutoff
36 idx_by_weights = np.argsort(-weights)[:self.knn_topk]
37 weights = weights[idx_by_weights]
38 user_items = user_items[idx_by_weights]
39 # Features to vectorize for user items
40 items_idx = self.item_to_idx.loc[user_items.flatten()]
41 rec_items_feat = self.vec_feat[items_idx]
42 return self.feature_cosine_scores(rec_items_feat, items_idx, weights)
43

44 def feature_cosine_scores(self, rec_items_feature, items_idx=None, item_weights=None):
45 # Vectorize selected features
46 rec_matrix = self.vectorizer.transform(rec_items_feature)
47 # Compute cosine similarities with all items
48 rec_matrix_norm = normalize(rec_matrix, copy=True)
49 sims = safe_sparse_dot(self.vec_matrix, rec_matrix_norm.T, dense_output=True)
50 # Cancel items used for recommendation
51 if items_idx is not None:
52 sims[items_idx] = 0
53 # Average feature similarities
54 return np.average(sims, weights=item_weights, axis=1)
55

56 def calculate_loss(self, interaction): ...
57 def predict(self, interaction): ...
58 def full_sort_predict(self, interaction): ...

58 Application of sentiment analysis on music recommendation

Code D.3: HybridVADRecommender class for hybrid recommendations, computing the Euclidean

distance of VAD scores and averaging with other models.

11 class HybridVADRecommender(ContextAwareModel):
12 """ Recommendations from averaging VAD distances with scores from other models """
13

14 def __init__(self, config, dataset: Dataset):
15 super().__init__(config, dataset)
16 # Model config, VAD features, item indexing, similarity weights, topk cutoff, fake loss...
17 ...
18 # VAD centroids for all users
19 self.sentiment_centroids = self.compute_sentiment_centroids()
20

21 def compute_sentiment_centroids(self):
22 # vadst contains VAD scores of every item
23 sentiment_centroids = [np.array([0] *self.vadst.shape[1])]
24 for user in tqdm.trange(1, self.n_users, desc='Computing␣user␣centroids'):
25 user_inters_idx = self.inters[self.USER_ID] == int(user)
26 # Interacted items
27 user_items = self.inters[self.ITEM_ID][user_inters_idx]
28 # Item weights by rating
29 weights = None
30 if self.sim_weights is not None:
31 weights = self.sim_weights[user_inters_idx]
32 # Sort by weights for cutoff
33 idx_by_weights = np.argsort(-weights)[:self.knn_topk]
34 weights = weights[idx_by_weights]
35 user_items = user_items[idx_by_weights]
36 # Average items VAD
37 items_idx = self.item_to_idx.loc[user_items.flatten()]
38 user_vads_centroid = np.average(self.vadst[items_idx], weights=weights, axis=0)
39 sentiment_centroids.append(user_vads_centroid)
40 return np.array(sentiment_centroids)
41

42 def sentiment_knn_scores(self, user_id, item_id=None):
43 user_centroid = self.sentiment_centroids[user_id.item()]
44 # VADSt euclidean distances
45 item_vadst = self.vadst if item_id is None else self.vadst[item_id.cpu().numpy()]
46 distances = cdist(item_vadst, user_centroid.reshape(1, -1), 'seuclidean')
47 # Inverted average euclidean distances as scores
48 return 1 / (1 + distances)
49

50 def hybrid_scores(self, model_scores, scores):
51 model_scores = normalize(model_scores.cpu().detach().numpy().reshape(1, -1))
52 scores = normalize(scores.reshape(1, -1))
53 # Score similarities between both models
54 sims = 1 / (1 + np.abs(scores -model_scores))
55 # Add scores buffing similar ones
56 return model_scores + (sims *scores)
57

58 def predict(self, interaction): ...
59 def full_sort_predict(self, interaction): ...

Javier Wang Zhou 59

	Introduction
	Motivation
	Goals
	Work structure

	State of the Art
	Recommender systems
	Model classification
	Context-aware recommendation
	Music recommendation
	Evaluation

	Natural Language Processing
	Text Processing
	Sentiment Analysis
	Word Embeddings

	Web applications
	Django Framework
	Database Management

	Design and Implementation
	Project structure
	Requirements analysis
	Web application
	Dataset
	Database

	Design
	Web application
	Dataset
	Database

	Implementation
	Web application
	Dataset
	Database

	Experiments and Results
	Testing environment
	Data analysis
	Experiments
	Data used in experiments
	Recommendation libraries and model selection

	Results
	Performance analysis

	Conclusions and Future work
	Conclusions
	Future work

	Bibliography
	Acronyms
	Appendices
	Web Application
	External Libraries
	Data Preprocessing
	Model Implementations

