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Resumen

Los videojuegos representan casi el 50% de los ingresos de la industria del entretenimiento, y la

industria del videojuego no deja de crecer año tras año. Esto ha hecho aumentar el número de video-

juegos disponibles para el público general, lo que dificulta que los jugadores encuentren los juegos que

les interesan. Los sistemas de recomendación pretenden resolver este problema ofreciendo recomen-

daciones personalizadas a los jugadores. Sin embargo, la mayoría de las tiendas, ya sean digitales o

físicas, carecen de este tipo de sistemas, y las que lo tienen no son muy precisas.

En este trabajo construiremos un dataset con datos obtenidos de Steam, una de las tiendas digi-

tales más grandes del mundo, con más de 30.000 juegos y más de 130 millones de usuarios activos.

A partir de una muestra de más de 80.000 usuarios de este dataset, implementamos diferentes en-

foques para representar el interés (o puntuación) de los usuarios sobre los videojuegos y diferentes

sistemas de recomendación, y compararemos diferentes combinaciones para estos. Nuestros mejores

resultados muestran una precisión y recall en los resultados de hasta un 20% de media, un resultado

prometedor para un sistema de recomendación implementado desde cero.

Palabras clave

Sistemas de recomendación, videojuegos, crawling, modelado de usuarios
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Abstract

Videogames account for almost 50% of the entertainment industry revenue, and the industry keeps

growing year on year. This has skyrocketed the number of games available to the public, making it

difficult for players to find games they are interested in. Recommendation systems aim to solve this

problem by providing personalized recommendations to players. However, most online and physical

storefronts are lacking in this regard, and the ones that do have a recommendation system are not very

accurate.

In this thesis we will build a dataset with data obtained from Steam, one of the largest online store-

fronts in the world, with over 30,000 games and over 130 million active users. From a sample of over

80,000 users from this dataset, we implement different approaches to represent the interest (or score)

of users on games and different recommendation systems, and compare different combinations for

these. Our best results show a precision and recall values of up to 20% on average, a promising result

for a recommendation system implemented from scratch.
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1
Introduction

The videogame industry accounts for almost 50% of the entertainment industry revenue in the UK,

according to the Entertainment Retailers Association (ERA) of the UK [1], and it is likely the same can

be said around the globe. The number of games available to the public have skyrocketed and it is

difficult for players to find games they are interested in: thus, in this thesis, we will explore different

approaches to build a recommendation system for videogames, and discuss the results obtained. In

this chapter we will go over the motivation, objectives and structure of this Bachelor thesis. As well, we

will briefly go over important terms and concepts that will be used throughout the document.

1.1 Motivation

(a) Main page example, after playing Tower Unite, a social

game unrelated to an action RPG Vampire-themed game.

(b) Main page example, after playing Resident Evil 4, recom-

mending a Survival Horror, the game’s genre.

Figure 1.1: Steam’s recommendation examples

A videogame is multimedia product that can be interacted with in a personal computer (a PC

videogame) or in a console (a console videogame) and provides visual and auditory feedback depend-
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Introduction

ing on the player’s state, which can go from a simple point-and-click adventure to a first-person-shooter

that involves aiming, movement. In this thesis we will narrow down the definition to only take Steam

videogames into account.

Steam, created by Valve Corporation in 2023, is a digital game distribution platform, which sells

games from any videogame developer, and as of writing over 67,000 games have been published in

Steam according to SteamSpy [2].

Steam provides a recommendation system to recommend games to purchase next, called "The

Discovery Queue" [3]. However, around the web you can find people complaining about the discovery

queue for many reasons: for one, as Figure 1.1 shows, the discovery queue is usually not very person-

alized, mostly showing popular and new releases, and not taking into account the user’s preferences.

In fact, the discovery queue might choose to show you popular games without taking into account your

personal preferences, and if it does take into account your personal preferences, it will take into account

your recently played games. For example, in my personal experience, as I was playing Tower Unite,

a purely social game with a bunch of minigames, tagged with "Sandbox", "Massively Multiplayer" and

"Early Access", the discovery queue showed me a seemingly ’random’ topdown action RPG in the likes

of ’Diablo’, as shown in figure 1.1(a). However, after playing Resident Evil 4, a survival horror game,

the discovery queue would have shown me a lot of survival horror games, as shown in figure 1.1(b).

1.2 Scope

The scope of this Bachelor thesis is to cover basic videogame recommendation systems and different

implementations from scratch, exploring which one is more precise and accurate, and which one is more

efficient and faster. We will only cover static recommendation systems, with no Artificial Intelligence (AI)

or Machine Learning (ML) involved.

We will also only use Steam’s data, since every other storefront either requires scrapping, does not

have public profiles or does not have a public API 1 2; and since Steam is the most popular storefront
3, the data from other storefronts might not be as valuable as the data from Steam.

Ideally, we would like to replicate Steam recommendations. However, we do not know how Steam

does its recommendations, as we do not have access to the data they use, and we do not know how

they specifically do it. Moreover, we cannot fetch their recommendations for any user unless we have

1API stands for Application Programming Interface, which, in the case of storefronts, allows an external app to interact through a set of endpoints.
2GOG.com has an unofficial API available in https://gogapidocs.readthedocs.io/en/latest/, and the Epic Games Store has

another unofficial API available in https://github.com/SD4RK/epicstore_api.
3Steam had 132M monthly active users as of 2021 [4], and they continued to grow in 2022 [5]. The second biggest PC storefront which reports

their user count, the Epic Games Store, claimed they had 68M monthly active users as of December 2022 [6].PlayStation, a console which features

the PlayStation Store [7], which is another digital storefront, claimed they had 112M monthly active users users as of 2022 [8]. Xbox, Microsoft’s

videogame department, claimed they had 120M monthly active users across Xbox consoles, PC, mobile games and cloud [9]. Nintendo, creators of

the Switch console, claimed they had 114M ’Million annual users’ [10]

2 Building a videogame recommendation system from scratch based on user and game data
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1.3. Objectives

access to their account, and we cannot get the data they use to compute their recommendations. Thus,

we will not try to replicate their results or systems, but we will nonetheless evaluate our results and see

which one is more precise and/or faster.

1.3 Objectives

The goal is to create a recommendation system that is able to recommend games to users based on

past preferences, not only taking into account recently played games, through the use of Collaborative-

Filtering and Content-Based-Filtering algorithms. We will also explore and compare algorithms between

themselves, as well as approaches to see which one is the fastest and if the trade-offs to make it faster

or more precise are worth it.

We will compare the tradeoffs between precision and performance, and see if optimizing matters in

this case, or if the algorithms are fast enough to not generally need optimization.

1.4 Thesis structure

This document is structured as follows:

Chapter 1. Introduction.This chapter introduces the problem and the motivation behind it, as well

as the scope of the thesis and the objectives, and the methodology used to achieve them.

Chapter 2 State of the art.This chapter presents the state of the art of the problem, as well as the

different approaches that have been used to solve it.

Chapter 3. Design.This chapter presents the design and implementation of this thesis, including

the data model, the data sources, the recommender systems and the evaluation.

Chapter 4. Results.This chapter presents the results of the evaluation, as well as the discussion of

the results.

Chapter 5. Conclusion.This chapter presents the conclusions of the project, as well as the future

work that could be done to improve upon the work of this thesis.

Annex A. Code.This annex presents parts of the code used in the project. The rest is in the GitHub

repository [11].

Annex B. Results.This annex presents the full results obtained.

Jorge González Gómez 3





2
State of the art

In this chapter we will introduce the state of the art in recommender systems, and more specifically, in

videogame recommender systems. We will also introduce the metrics that will be used to evaluate the

different algorithms, and the data that will be used to test them. Finally, we will introduce the algorithms

that will be used in this thesis, and the different approaches that will be used to evaluate them.

Important notes:

• In this thesis, we will use the terms videogame and game interchangeably. It refers to the items

we are trying to predict, and they have some attributes like game tags, genres and categories.

• ‘Playtime’ refers to the time a user has spent playing a game. We will use this as the input for our

algorithms, sometimes normalized based on the user’s top playtime.

• We will also use ‘user’ and ‘player’ interchangeably. It refers to the person or client that is using

the recommender system, and we will use their ‘playtimes’ for owned games.

• A ranking is a list of games sorted by their score, and a score is a number that arbitrarily represents

how likely a user is to play a game, in our case, without scale and will be hidden to a user (for example:

a recommender system might return a score of 10 for app X and it might be top 1, while another might

return a score of 1000 for app Y and it might be top 4, in this case app X might be more relevant to the

user).

2.1 Recommender systems

Recommender systems are a type of information filtering systems that seek to predict the rating or

preference that a user would give to an item, based on previous ratings, usage, etc. [12]. Recommender

systems do not have to use explicit rankings, they can even use read time for articles, as GroupLens

would do [13].

These systems are used in many different fields, such as movies, music, videogames, news, books,

research articles, search queries, social tags, and many more [12].
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We also need to introduce the concept of ‘similarity functions’. These define the similarity between

two items or users, and its up to the developer to define them. This concept is useful as more similar

items or users to the one we are trying to predict for have a higher impact than less similar ones.

2.1.1 Collaborative filtering

According to the article “Recommender systems” from P. Resnick et al [13], Collaborative Filtering was

a term first used by the experimental mail system called Tapestry [14], which was a system that used a

collaborative approach to filter out unwanted messages.

In the modern day, Collaborative Filtering (CF) is a technique used by recommender systems to

predict a user’s rating or preference for an item, based on the ratings or preferences of other users.

This is done by finding users with similar tastes to the target user, and then recommending items that

those similar users have liked in the past.

Quoting “Introduction to Recommender Systems Handbook” from F. Ricci et al [12]:

“[. . . ] the first RSs applied algorithms to leverage recommendations produced by a community of

users to deliver recommendations to an active user, i.e., a user looking for suggestions. The recommen-

dations were for items that similar users (those with similar tastes) had liked. This approach is termed

collaborative-filtering and its rationale is that if the active user agreed in the past with some users, then

the other recommendations coming from these similar users should be relevant as well and of interest

to the active user.”

kNN or k-Nearest Neighbors is an algorithm that is used in a wide variety of fields, including machine

learning, pattern recognition, data mining, and intrusion detection [15].Regarding Collaborative Filtering

recommender systems it is a popular method used for classification, used to find the k most similar

users to the target user, and then recommend items that those similar users have liked in the past.

2.1.2 Content-based filtering

Content-Based filtering (CBF) is a technique that uses the features of the items to recommend similar

items. It is based on the idea that if a user likes an item, then they will also like a similar item. The

similarity between items is calculated using a (content-based) similarity function. It can be based on

the features of the items, be it its description, its tags, in the context of multimedia like movies or

videogames its genre, in the context of articles it may be the author’s set keywords, etc. and measures

the similarity between two items based on those features.

Usually, but not necesarily, a similarity function can be a function that returns a value between 0 and

1, where 0 means that the items are completely different and 1 means that they are exactly the same,

sometimes as simple as a boolean function that returns 1 if the items are equal and 0 otherwise. It can
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be defined in many different ways, and it is up to the developer to choose the one that best fits their

needs.

IDF (Inverse Document Frequency) is a technique used by search engines to weight the importance

of a word in a document, by measuring how many documents contain that word, under the assumption

that the more documents contain a word, the less information this word would give (e.g. the word ‘the’

appears in every document, but the word ‘goose’ only appears in documents related to geese, so if we

were to find 3 documents by searching ‘the anatomy of a goose’ we would ignore the word ‘the’ but

return those with ‘anatomy’ and ‘goose’). We will measure if this assumption holds true in the case of

CBF recommender systems.

2.1.3 Hybrid recommender systems

Hybrid recommender systems are recommender systems that combine two or more different recom-

mender systems to get a better result.

The most common ways to combine different recommendation systems are [16]:

Method Description

Weighted Each recommender system is assigned a weight, and the final score is the weighted sum of

the scores from each recommender system.

Switching Each recommender system is assigned a threshold, and the final score is the score from the

recommender system that passes the threshold.

Mixed The final score is a combination of the scores from each recommender system.

Feature Combination The features from each recommender system are combined to create a new recommender

system.

Cascade The first recommender system is used to create a list of recommendations, and then a

second recommender system is used to re-rank the list of recommendations.

Feature Augmentation The output of a recommender system is used as an input for another recommender system.

Meta-level The model learned by a recommender system is used as an input for another recommender

system.

Table 2.1: Popular approaches to hybrid recommender systems, as described in Table III from [16]

In the results, we will discuss different non-hybrid approaches and try to find which combination of

recommender systems would give us the best results, but given the time it takes to process the results

(discussed in Section 4.1) it would take too much time to test all possible combinations for every single

user.

2.1.4 Minhashing

MinHashes, first introduced by Andrei Z. Broder in the year 2000 [17], estimate the Jaccard index, or

Jaccard similarity coefficient (also known as resemblance) [18] between two sets. If we have two sets
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A and B, then the Jaccard index J(A,B) is equal to the size of the intersection of A and B divided by

the size of the union of A and B:

Jaccard(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(2.1)

We can use MinHashes and Locality Sensitive Hashing (or LSH) [19] to quickly filter out items that

are not similar to the target item in various ways, saving us time. For this purpose, the library datasketch

[20] implements various MinHash algorithms and provides various ways to query: Locality Sensitive

Hashing (LSH [19,21]), LSH Ensemble [22] (a modified version of LSH which uses containment instead

of Jaccard’s similarity, explained below, in equation 2.2) and LSH Forest [23] (also explained later).

Their purpose is to avoid the need to compare every single item to the target item, which would be

O(n).

Let us take an hypothetical example to explain how Locality Sensitive Hashing works in a general

recommender system: we have a set of items G (represented as green in figure 2.1) and various set of

items B (blue), R (red) and O (orange), and we want to find out how similar these are to our target G.

(a) All figures overlapped. We can see the orange

O set’s intersection is the biggest with G, our

target set.

(b) G overlapped with B.

(c) G overlapped with R. (d) G overlapped with O.

Figure 2.1: Visual examples of intersecting sets to explain our approach

As we can see in the figure 2.1(b), following Jaccard’s similarity, the set B would be the most similar

to G, since the intersection is the largest one and |B| is the smallest. However, if we look at the figure

2.1(d), we can see that the orange set has the largest intersection with G, but it also has the largest

size. If we only took the intersection into account, the orange set would have the highest similarity. For

this purpose, we can use the ‘containment’ function, which is defined as follows:
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Containment(A,B) =
|A ∩B|
|A|

(2.2)

We want to search similar ones in sub-linear time without resorting to comparing every minhash

against each other one, Locality Sensitive Hashing indexes (we will abbreviate them as LSH’s) are

helpful: LSH and LSH Ensemble both work with a threshold t, and they will return all the items that

have an estimated Jaccard similarity or containment (equation 2.2) respectively of t or more with the

target item in sub-linear times. LSH Forest [23] , however returns a ‘ranking’ of items, but it is only useful

if we only need to use Jaccard’s similarity, even if just to filter out items. LSH Forest is also usually used

with ‘post-processing’, for example: if we wanted K items, we could use LSH Forest to get 2K items

and then use an accurate Jaccard’s similarity to get the K most similar ones.

The regular LSH uses the Jaccard similarity function, which punishes big sets, which often contain

more information and would yield better results in our recommender systems. LSH Ensemble uses

the aforementioned ‘containment’ function instead of Jaccard to filter out likely irrelevant items or users

without punishing those with bigger MinHashes. This way, it only takes into account the size of the

intersection and the size of the target set only, ignoring the size and items of the other set. Containment

or Jaccard itself is not also always the best option, but it filters out irrelevant items or users and applying

custom similarity functions to these filtered items should be faster than not filtering out items at all: after

all, when computing similarity, most of the times the ones with more items in common are the most

similar to each other.

2.1.5 Other optimization techniques

When doing recommender systems, it is usually good practice to have some kind of optimization to filter

out potentially irrelevant items. This is done to reduce the amount of items that need to be processed,

and thus reduce the time it takes to process the recommendations. We will not go over every opti-

mization technique, however, we will briefly go over the ones we used in our implementation besides

MinHashing, and some that complement MinHashing.

Related to MinHashing

The caveat with MinHashing and LSH Ensemble is that we would either be forced to use the classic

LSH which penalizes big sets (as explained in the previous chapter) and be able to use Weighted

MinHashes, implemented in datasketch too [24], or use LSH Ensemble and be forced to use sets of

items without any weight.

Weights 1 would provide a very useful feature: we could use them to give more importance to some

items than others, as an example: let us have, in Collaborative-Filtering, an hypothetical user u1 rated

1In computer science, weights can be simply explained as multipliers: if we have a list of tuples val, weight one can see between x, 5, y, 3, and

z, 2 x would have the biggest weight in the final result.
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item i1 with 5 out of 5, i2 with a 4/5 and did not rate i3, i4 and i5, but has shown some interest in them.

Using LSH Ensemble, we ca not give i1 more “weight” in any straightforward way, as it does not support

Weighted MinHashes.

However, we want to find similar sets of items given a threshold t; we can ignore “not really important

items” and only add user’s u1 top items. This also comes with a caveat: In this case, their “top K items”

are i1 and i2, K = 2; but we can easily find some user ui with “top K items” being, for example, i3 = 5,

i4 = 4.5 and i5 = 4, K = 3. If we were to use MinHashes of size K = 2, we would be ignoring i3 for

this hypothetical user ui.

Therefore, various observations come to mind:

1. Take a fixed number (as we have explained, we will leave out some important items)

2. Take a fixed percentage of the user’s item (for example, the top 70% of the user’s items, which

would be K = 3 for the previous example and would randomly pick a item from i3, i4 and i5 for

the hypothetical user u1)

3. Take items that have been a rating above a certain number (for example: items with a rating above

4.0)

4. Take items that have been rated in relation to their top item (for example, items that have been

rated for at least 50% of the rating of their top item)

It is not intuitive why the 4th approach would matter unless we introduce the concept of ‘implicit

ratings’. Let us define interest (or implicit ratings) I as an arbitrary function that returns a number

between 0 and 1, where 0 means no interest and 1 means maximum interest. We can then define

the interest of a user u for an item i as I(u, i). As an example with items that can be used over

indefinite periods of time: if u1 used item i1 for 100 hours and item i2 for 80 hours, and u2 used item

i1 for 50 hours and item i2 for 40 hours, they would relatively have the same interest in both items:

I(u1, i1) = I(u2, i1) = 1 and I(u1, i2) = I(u2, i2) = 0.8. If we were to use the 3rd approach

and take the top 75%, we will be ignoring i2 for both users. Instead, by using the 4th approach, and

using also a 75% threshold we would be taking both items for both users. This way, in this case,

when querying the LSH Ensemble we would only take into account the most relevant items for each

user, which have the biggest impact on the final ‘similarity’ result of most recommender systems; thus

skipping having to process items that will very likely have a very small impact on the final result.

Other optimizations

When using weighted attributes we can simply index items that have a weight below a certain threshold

wt using a simple dictionary attribute → item a → i and then simply compute the similarities

between our item io and every other item returned by this dictionary. We do this since we are searching

for relevant items with attribute a, and we can assume that items with a weight below wt will not be
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as relevant for this tag as items with a weight above wt. This skips having to process every item with

attribute a.

2.1.6 Metrics for recommender systems

To measure the accuracy of the results, we will first split a random portion of the items into a training set

Itrain and a test set Itest, where the training set is bigger and will be used to train the recommender

systems, and the test set will be used to evaluate the performance of the recommender systems.

Let Rel be the set of relevant items in the test set Itest, and Ret be the set of retrieved items from

a recommender system ri, which uses the training set Itrain, for an user to be tested ui, the following

metrics are used to evaluate the performance of the system:

Precision is defined as the number of relevant items retrieved (items retrieved which also appear in

Itest) divided by the total number of items retrieved:

Precision(ri, ui) =
|{Rel} ∩ {Ret}|

|{Ret}|
(2.3)

Recall is defined as the number of relevant items retrieved divided by the total number of relevant

items in the test data Itest.

Recall(ri, ui) =
|{Rel} ∩ {Ret}|

|{Rel}|
(2.4)

We will use these two methods to see how accurate our results are. Specifically, we use Precision@k

and Recall@k, where k is the number at which we are calculating the Precision and Recall (e.g. Preci-

sion@10 and Recall@10 are the precision and recall of the first 10 items retrieved by the recommender

system, respectively).

2.2 Recommender systems in videogames

Recommendation systems in videogames

Let us first introduce the domain of videogames: ‘items’ refer to videogames, and ‘users’ refer to players.

We will use the terms ‘item’,‘game’ and ‘videogame’, and ‘user’ and ‘player’ interchangeably, respec-

tively, throughout the rest of this thesis.

It is worth mentioning that in 2016, a paper called “Condensing Steam: Distilling the Diversity of

Gamer Behavior” [25] was published, which claimed crawling all 108.7M users at the time of the crawl-

ing. They also provide a dataset available in https://steam.internet.byu.edu/. However,
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this dataset, although massive, is outdated and does not mention how they fetched every user.

More recently, in 2022, a paper called “Large-scale Personalized Video Game Recommendation

via Social-aware Contextualized Graph Neural Network” [26] examined different approaches to recom-

mendation systems based on Graph Neural Networks 2, and concluded that SCGRec (their proposed

recommendation algorithm) performed better in every metric than every other previous approaches,

making it the state of the art in videogame recommender systems. They also do not provide a meaning-

ful explanation on how they fetched the data, but they do provide a dataset of 500.000 users. However,

the goal of this thesis is to collect the data for ourselves, and then implement and compare different

recommendation algorithms, all from scratch, and, as such, we will not use this paper as a baseline,

but it should be considered in the future for completeness.

Recommendation systems in the videogame industry

When it comes to PC or computer videogames, there are various storefronts, which have different

approaches to how they sell their games. As mentioned in Section 1.1, Steam has the Discovery

Queue [3], a recommendation system that recommends games to purchase next. It is usually not

very personalized, mostly showing popular and new releases, and never takes into account user’s old

preferences. It also has other systems, mentioned in Figure 2.2, “Games like this” and “More from this

developer” sections, also one called “Players like you love” which uses Collaborative-Filtering. [27]

Valve explained how “Players like you” works on Steam [27]: “The Interactive Recommender uses a

machine learning model that is trained based on the playtime histories of millions of Steam users. It is

not directly affected by tags or reviews—it instead learns about the games on Steam by looking at what

users actually play. The basic idea is that if there are other players with similar play habits to you, who

also play a game that you have not tried yet, then that game is likely to be one you’ll enjoy too.” They

also provide a frontend for this interactive recommendation system, which is shown in figure 2.3.

GOG.com [28], another storefront, uses a DRM-free approach and did not use to track user’s play-

time before GOG Galaxy 2.0 (a client that is optional to use), so it mostly only tracks ownership and

reviews. They have a "Recommended for you" section, which in principle is based on the user’s library,

but we have not been able to find any information about how it works.

Xbox PC, as well, has "Picks for you", but it is not clear how it works, and they do not explain how it

works anywhere, and there is no information about it.

PlayStation, a non-PC platform but the second biggest videogame platform (111M monthly active

users in 2021, 108M in 2022 Q4 [8]), had a webpage called “Just for you” that was not very helpful [29],

and as far as we could find, someone made a Medium article explaining they only have a “More like

this” section (which, as shown, is not very accurate) and “Expand your games”, which is a section that

2Graph Neural Networks represent the data as a graph, but its details are out of the scope for this thesis.
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(a) Example for FIFA 23 of ‘More from this developer’ and ‘More like

this’

(b) Two examples of ‘More like this’ for one single tag

(c) Example of ‘More like this’ for a single game in your wishlist (d) Example of ‘players like you like’ and ‘more like Combat Master’

(a Call of Duty, first person military shooter, clone)

Figure 2.2: Other Steam recommendations

Figure 2.3: Steam interactive recommendations
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only sells DLC even if you own them [30].

As for the other main storefront on the PC market [6], the Epic Games Store, it does not have any

kind of personalized recommendations. There are also more storefronts, ommited, since they are either

not too popular (like itch.io) or specific to one publisher, like EA app, Battle.net or Ubisoft Connect, and

would not be very helpful.

To the best of our knowledge there also is no API in any of the aforementioned storefronts except

for Steam, which offers a public API to get information about games, users, etc. (except for tags, which

need to be scrapped from the web). As a consequence, Steam provides the easiest way to get data

about users and games and happens to be the storefront with the most users and games.

Steam’s API

As we have mentioned earlier, Steam is the only storefront that officially provides an API. Valve provides

a Python wrapper for the API, called ValvePython/steam, available in GitHub [31]. It is mantained by

Valve, but python-steam-api [32], an unofficial wrapper, is more intuitive and easier to use.

Publicly available previous work on the field does not detail how they gathered new users, and the

API does not provide any way to fetch existing users in batch. By reading the official Steamworks Web

API documentation [33], this leaves us with some options:

• Generate random valid SteamIDs and check if they exist through the ISteamUser/GetPlayerSum-

maries. This is not an useful option as it would take a lot of time to find existing users, even if the

API allows getting users in batches of 100 users per API call.

• Programming a spider to crawl friends of friends through the ISteamUser/GetFriendList endpoint.

• Getting all reviews for a game through the appreviews endpoint and storing the users that wrote

them.

Both the second and third options are viable, but the third one is more reliable, as we can not

guarantee every user is connected to each other in the second option, and we might only get a small

portion that centers around, for example, a single genre or a saga of games.

By fetching reviews, we can pick popular games that we know are aimed at a general public, thus

increasing our chances of getting a more diverse set of users, as it is also more likely that a user who

has written a review is intuitively to be more likely to interact with Steam’s store page more and purchase

more games than someone who only befriends other users or plays with friends, as people who only

ever play with friends might not be interested in purchasing new games.

We have mentioned we will use python-steam-api, however, to fetch reviews we will use steam-

reviews [34], a Python library that uses the Steamworks Web API to fetch reviews which features
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rate-limiting and handles pagination for us.
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3
Design and implementation

3.1 Overall design

The basic structure of the project developed during this Bachelor thesis is shown in Figure 3.1

Figure 3.1: Basic structure of developed project.

Let us now describe each of the modules and submodules included in this structure.

Data Collection module

This module is subdivided in 3 parts, and all read from and write to a SQL database:

‘App details’ (basic game data) and review data

This submodule gets every review for hand picked videogames, as the Steam API does not offer
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any way to get any list of their users. It uses the steamreviews [34] library and stores the ‘appdetails’

(basic game data) and user basic info from these reviews.

User owned games

This second submodule goes over the users from the previous submodule and gets all the games

they own, only if the player’s profile is public and their owned game list is public. We will mark users as

“private” and not use them for our recommendations if their profile or game list is private.

Game tags

This third submodule gets the tags for each game, which better represent the game’s genres,

themes and how Steam users perceive the game, as they are sorted by popularity. This helps us

better classify the games, since the tags are more specific than the genres and as they are sorted by

popularity, they are more accurate describing the game’s features.

Recommendations module

Player playtime normalization and data structures

This submodule normalizes the data, previously exported as CSV from the SQL database through

any SQL client, and produces normalized data in various ways in RAM, using Pandas [35]. As well, we

have a data structure for each of the separate game attributes: tags, genres, categories, developers,

publishers and game details; and one for the users’ playtime for each game. This data is used in the

next submodule.

Recommender systems

This submodule takes normalized data and produces recommendations for each user and imple-

ments various techniques (explained in Section 3.6) to produce recommendations, and outputs it as a

Pandas [35] DataFrame.

Experiments and evaluation module

The last module takes the ‘Recommender systems’ module’s output and evaluates the recommen-

dations using a 80/20 split to predict the 20% of the test data, calculates various metrics (explained

in Section 4.1) and produces graphs, tables and average results to better visualize the data. It also

exports results as CSVs.

3.2 Requirements

Functional requirements
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Data collection module

FR 1 A script must crawl all reviews exposed by Steamworks API [33] for each game from a list of Steam

game IDs (list of appid), and extract the user info (user_id, num_reviews, num_games_owned)

and app details (name, number of reviews, etc.) from the Steamworks API [33] for each review,

and insert it into a database.

FR 2 A script must fetch unprocessed players (players with no information about private/public profile,

and private/public games owned) from the SQL database and query user data from the Steam-

works API [33] for each player, as well as owned games if the player’s profile is public, and insert

it into the database.

FR 3 A script must take a list of unprocessed games (games with no information about tags) from a list

stored in a CSV file, must crawl and scrape the tags for each game from Steam’s webpage for

each game, and output the extracted tags into a JSON Lines file 1.

FR 4 A script, as part of this system, must convert the extracted tags from FR 3 as JSON Lines into the

SQL database.

Recommender system module

FR 5 A script must take the player playtime data from a CSV file, previously exported from the SQL

database through any SQL client (detailed in NFR 8), allow the user to pick different approaches

for normalization (linear, logarithmic or using nth-roots), normalize the playtime data, and output

it as a Pandas [35] DataFrame 2. It must allow the user to implement their own normalization

function easily, by wrapping everything except the normalization function.

FR 6 The system must take all player playtime data and game data from a CSV files, previously exported

from the SQL database through any SQL client, and allow the user to pick different approaches for

normalization from FR 5 to normalize the players’ playtime data to be used in the recommender

systems.

FR 7 The system must allow the user to pick different approaches for recommender systems (content-

based, collaborative filtering, hybrid) and output the recommendations for each user into a Pandas

DataFrame or a CSV file, only taking the user’s Steam ID into account.

FR 8 The recommender system algorithms must be implemented from scratch.

Experiments and evaluation module

FR 9 The system must split the same exported data as FR 5 (detailed in NFR 8) into training and testing

sets.
1JSON Lines objects represented as JSONs separated into one line per object
2A DataFrame represents data in two dimensions, with rows and columns, where each column defines the type of data it stores and each row

stores a ‘record’, just like an Excel spreadsheet or SQL.
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FR 10 The system must take the recommender systems from FR 7 with Pandas [35] DataFrames as

input, and output the data as a CSV file, per user.

FR 11 The system must process and calculate the result averages into CSV files using precision (equa-

tion 2.3) and recall (equation 2.4) as metrics.

Non-functional requirements

General

NFR 1 The system must be written in Python 3.11 [36], in English.

NFR 2 All algorithms, except explicitly said otherwise, must be implemented from scratch.

NFR 3 The system must use Anaconda [37]’s package manager.

Data collection module

NFR 4 The system must use MySQL [38] as the database management system (DBMS), and install it

locally.

NFR 5 The system must use Scrapy [39] for web crawling and scraping.

NFR 6 The data crawling system system must use steamreviews [34] and python-steam-api [32] to crawl

data from Steam.

NFR 7 The system will implement every other web crawling algorithms from scratch (except for the tag

crawler and fetching steam reviews)

NFR 8 A SQL query will be used to export data from the database as CSV files for the recommender

system and experiments and evaluation modules.

Recommender system module

NFR 9 The system must use Pandas [35] for data manipulation.

NFR 10 The Collaborative-Filtering recommender system must use the library ‘concurrent’ [40] to speed

up the process of calculating the similarity between users.

NFR 11 The recommender systems system must use datasketch [20] to index users and fetch them faster.

NFR 12 The system will be able to store results through Pickle [41].

NFR 13 The system will be able to cache data both in RAM and in Pickle files.

Experiments and evaluation module

NFR 14 All of the experiments and evaluation module will be implemented from scratch, except for plotting,

which will use Matplotlib [42].
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3.3 Data crawling and scrapping

3.3.1 Data model

As our data model, as mentioned previously, we will use MySQL to store all the data, while the recom-

mender systems will however use subsets of the data, stored in CSV files, to have a ‘frozen’ subset of

the data to work with, and to be able to work with the data without having to query the database every

time. Our data model is shown in figure 3.2.

Figure 3.2: Our data model. Will be exported to CSV files for the recommender systems to use.

3.3.2 Data sources

The data sources we will use are the Steamworks API [33] endpoints, and we will use the python-

steam-api [32] as our wrapper. We have mentioned Valve (the creators of Steam) provide their own

library [31], however, it does not provide any real advantage over python-steam-api in our case, and

python-steam-api provides their own classes, which are more helpful. The only real advantage would

be their “throttler” 3, but we will implement our own rate limiter either way since a simple throttler would

mean we would not use the 100,000 API requests per day, the maximum allowed by Valve [43].

We will use the steamreviews [34] library to get the reviews, as it is a wrapper for the Steam API and

handles rate limiting for us. To get tags, we will use Scrapy [39], a web scraping framework, to scrape

3Throttling refers to the practice of purposefully delaying calls to a service to save on bandwidth or to handle rate limiting.
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the Steam store page for each game, as the Steam API does not provide any way to get the tags for

each game.

3.4 Data crawling implementation

3.4.1 Getting users through reviews

As mentioned previously, the easiest way to get heterogeneous users is to crawl them using steam-

reviews [34]. We implemented a script that gets the reviews for a list of games, and then gets the

users from those reviews. We also store the details for the game we are scrapping (table game_details

in figure 3.2) by using python-steam-api [32], calling the ‘appdetails’ endpoint. The script is shown in

listing A.4. The important extract is shown in listing 3.1.

Code 3.1: Simplified code with no error control to get users from reviews. Full script in Code A.4

1 def get_app_data(app_id):
2 response = request("GET", "https://store.steampowered.com/api/appdetails", params={"appids":

app_id, "cc": "us", "l": "english"})
3

4 appdata = json.loads(response.text)
5 if appdata[app_id]["success"]:
6 name = appdata[app_id]["data"]["name"]
7

8 # We have to wait for steamreviews to finish crawling all the reviews
9 review_dict, query_count = steamreviews.download_reviews_for_app_id(app_id)

3.4.2 User games and game details

Once we have the users, we can get their games and the details for those games. We call the Steam-

works API [33] to get details for users in batches of 100, using the GetPlayerSummaries endpoint 4.

We use python-steam-api [32] to get the games for each public user, and if we get a list, we find out if

the playtime is public. To store new games we can re-use the previous script from Section 3.4.1, but

only getting the ‘appdetails’. An extract of this script is shown in Code 3.2.

3.4.3 Scraping game tags

To scrap game tags, we chose to use Scrapy [39], which provides tools to throttle connections, rate limit

and avoid getting banned or flagged by Steam.

4This endpoint can take up to 100 SteamIDs and return the summaries for users, and most importantly if their profile is public.
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Code 3.2: Simplified code with no error control to get users from reviews. Full script in Code A.1

16 def crawl_player_data(query_count=0, reviews=False, only_games=True):
17 players = get_100_unprocessed_players()
18 response = steam.users.get_user_details(",".join([str(player[0]) for player in players]), single=False)
19 for player in response["players"]:
20 steamid = player["steamid"]; name = player["personaname"]
21 # check for private profile
22 if player["communityvisibilitystate"] < 3: process_steam_user(steamid, name, 0, 0); continue
23 ... # part to get user details, unimportant here
24 owned_games = steam.users.get_owned_games(steamid)
25 # check for private game list
26 if "games" not in owned_games: process_steam_user(steamid, name, 1, 0, ...); continue
27 for game in owned_games["games"]:
28 appid = game["appid"] ; success = game_exists(appid)
29 if not success: success, query_count = get_app_data(str(appid), ...)
30 if success == SKIPPED: continue
31 elif success == ERROR or success == FAULTY:
32 add_dead_hidden_game(appid) if success == ERROR else add_faulty_game(appid)
33 visible_playtime |= game["playtime_forever"] > 0
34 # Here we insert the player-game data
35 insert_player_game_data(steamid, appid, game["playtime_forever"], ...)
36 process_steam_user(steamid, name, 2 if not visible_playtime else 3, ...)

Code 3.3: Script to crawl tags, that yields a dictionary with the appid, its name and the crawled tags

6 class TagSpider(scrapy.Spider):
7 name = 'tags'
8 allowed_domains = ["steampowered.com"]
9 bypass_age_cookies = { 'mature_content':'1', 'birthtime': '945730801', 'lastagecheckage': '21-0-2000' }

10 def start_requests(self):
11 appids = []
12 url = "https://store.steampowered.com/app/"
13 try:
14 appids = pd.read_csv('appids.csv', encoding='utf-8-sig')
15 appids = appids['appid'].astype(str).tolist()
16 except FileNotFoundError:
17 print("appids.csv␣not␣found.␣Make␣sure␣it's␣in␣this␣directory:␣" + os.getcwd())
18 return
19 for appid in appids:
20 yield scrapy.Request(url=url + appid, cookies=bypass_age_cookies, callback=self.parse_tags)
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Code 3.4: Function to parse tags, that uses Scrapy

22 def parse_tags(self, response):
23 if '/agecheck/app' in response.url:
24 g_sessionid = response.xpath('//script[contains(text(),␣

"g_sessionID")]/text()').extract_first().split('"')[1]
25 yield scrapy.FormRequest(
26 url='https://store.steampowered.com/agecheckset/' + "app" + "/" +

response.url.split('/')[4],
27 method='POST', callback=self.parse_tags,
28 formdata={ 'sessionid': g_sessionid, 'ageDay': '21', 'ageMonth': '2', 'ageYear': '2000' }
29 )
30 else:
31 yield {
32 'appid': response.url.split('/')[4],
33 'name': response.css('div.apphub_AppName::text').extract_first(), # useful for debugging
34 'tags': [tag.strip() for tag in response.css('a.app_tag::text').extract() if tag != '+']
35 }

As we can see in Code 3.3, we define the scrapy.Spider class and gets all appids from a CSV

file, previously exported from SQL. We just extract the ‘appids’ from the database, and we do a HTTP

request using scrapy’s library.

The second part of the spider, shown in Code 3.4, parses the tags from the HTML response, which

handles the age check and makes a second request if necessary.

3.5 Data preprocessing and classes

3.5.1 Data pre-processing

If we were to use the entirety of the database, we would be looking at almost 300.000 public users with

their videogame list set as public, with varying amounts of games, as shown in Table 3.1.

Privacy setting Number of users

Private profile and private game list 121,993

Private profile and public game list 664,831

Public profile and private game list 26,135

Public profile and public game list 285,260

Table 3.1: Number of users with private profiles, public profiles with private game lists and public

profiles with public game lists, also split by people with private playtimes and people with public

playtimes.

We need to export a portion of the database to CSVs, as we cannot load the entirety of the database
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into RAM (which, as-is, is over 7GBs), so we will filter the data as mentioned in Code 3.5. We will be

using SQL to export the data to CSVs, as defined in Code 3.6.

Code 3.5: Filtering SQL data according to our preset parameters to get a subset of players.

1 CREATE OR REPLACE VIEW player_with_X_games AS (
2 SELECT steamid, COUNT(*) AS games
3 FROM player_games --NATURAL JOIN appid_owner_count
4 WHERE player_games.steamid IN (SELECT steamid FROM player_data WHERE

player_data.visibility = 3)
5 GROUP BY steamid
6 HAVING games > 30 --people with X games
7 );
8

9 CREATE OR REPLACE VIEW appid_owner_count AS (
10 SELECT appid, COUNT(*) AS visible_owners
11 FROM player_games
12 WHERE player_games.steamid IN (SELECT steamid FROM player_data WHERE

player_data.visibility = 3 AND steamid IN (SELECT steamid FROM player_with_X_games))
13 GROUP BY appid
14 HAVING COUNT(*) > 10 --games with more than X ownerships

Code 3.6: Exporting filtered users from SQL to CSV. A similar query, using our temporary table, is

used to export tags, genres, categories and game details.

17 DROP TABLE IF EXISTS temp_result;
18 CREATE TEMPORARY TABLE temp_result
19 SELECT pd.steamid, pg.appid, playtime_forever
20 FROM player_data pd JOIN player_games pg ON pd.steamid = pg.steamid
21 WHERE pd.visibility = 3
22 AND pd.steamid IN (SELECT steamid FROM player_with_X_games)
23 AND pg.appid IN (SELECT appid FROM appid_owner_count);
24

25 SELECT *FROM temp_result
26 INTO OUTFILE 'player_games.csv'
27 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
28 LINES TERMINATED BY '\n';

3.5.2 Data classes

recommender.py, the script which encapsulates every data class and every recommender system,

is a very complex file of over 3,000 lines long (including comments and abstract classes), so we will

not include it in this document nor the Annex, but it is available in the project’s recommender systems

GitHub repository [11]. We will, however, explain the most important parts of the code.

We will store all of our data as Pandas [35] DataFrames. Before anything else, we have to normalize

the playtime data, since the playtime for each game for each user is vastly different. We assume the
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playtime is the ‘interest’ the user has in the game, so we will normalize it to a 0-1 scale, where 0 is no

interest and 1 is maximum interest. We will use the formulas in equation 3.1 to normalize the playtime:

Linear norm.:
x

max(user)
, Log norm.:

log(x)

log(max(user))
, Root norm.:

√
x√

max(user)
(3.1)

The code allows for different approaches to the denominator, in our case in equation 3.1 we use

the maximum playtime for each user, but we can also use the maximum playtime for each user or the

sum of all playtimes for each user. As well, we will set all owned games with no playtime to 60 minutes,

otherwise, games with 0 playtime would be considered the same as games that the user does not own,

shown in Code A.9. The full script for normalization is split into different codeblocks, available in the

annex (A.9, A.10, A.11, A.12, A.13, A.14).

Storing game attributes and player playtimes

All of our data is stored in various classes, one for each kind of data we want to use to recommend:

1. PlayerGamesPlaytime, which stores all data related to users, their games and their playtimes.

2. GameTags, which stores all data that relates games to their tags.

3. GameGenres, which stores all data that relates games to their genres.

4. GameCategories, which stores all data that relates games to their categories.

5. GameDevelopers, which stores which games were developed by which developers.

6. GamePublishers, which stores which games were published by which publishers.

7. GameDetails, which stores all details for each game.

All of these classes inherit 5 from AbstractRecommenderData, which defines the methods that all

of these classes must implement, as well as some helper methods.

We implemented a Locality Sensitive Hashing index, as explained in section 2.1.4, to speed up the

computation of the similarity between games and users, using the LSH Ensemble [22] from the library

datasketch [20]. We implemented the LSH Ensemble for every type of data except for developers and

publishers, as developer and publisher data is smaller than the rest of the data and for a recommender

we only need to check if a game was developed or published by the game we are computing the

similarity for.

In the case of PlayerGamesPlaytime, to enhance performance, and as mentioned in Section 2.1.5,

we will only take into account the games the user has played beyond a certain percentage relative to

5A class that inherits from another one has all of their attributes/variables, methods/functions and must implement all abstract methods.
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their most played game, that is, only those with a playtime above max(playtimes) ∗ trel for that

user will be taken into consideration when MinHashing. In our case, due to time constraints, for the

experiments we will only take into account the games the user has played more than 80% of their

most played game, but the class allows for any percentage to be used. In the case of LSH Ensemble

thresholds (as explained in section 2.1.5), we will use different values for each type of data in our

experiments.

Another last notable optimization to mention is that most of our data for our experiments would be

shared between different classes, thus, we implemented a Global Cache dictionary that stores the data

that is shared between classes, so that we do not have to load the same data multiple times. Before

doing this, if we wanted to load the data for different combinations of LSH Ensemble thresholds for all

of the classes, as well as different thresholds for PlayerGamesPlaytime as mentioned previously, the

program would run out of RAM and start filling up the storage through paging files in Windows. Using

this technique we managed to use less than 24GBs of RAM for every experiment, whereas previously

Windows would not show the exact memory usage but it would run out of storage after filling up 32GBs

of RAM.

For GameTags, as mentioned in section 2.1.5, we have a different kind of optimization: we can just

take tags above a “weight threshold” wt and, for these tags, have a simple dictionary tag → item,

and then simply compute the similarities between our item io and every other item returned by this

dictionary.

3.6 Recommendation algorithms

We implemented various similarity classes which inherit from AbstractGameSimilarity and RawUser-

Similarity, which both inherit from AbstractSimilarity. To this avail, we implemented 3 user similarity

classes (‘Raw’ (equation 3.2), ‘Cosine’ (equation 3.3) and ‘Pearson’ (equation 3.4)), 3 game tag simi-

larity classes (‘Raw’, ‘Cosine’ and ‘Pearson’), one similarity class for Game Details, which uses various

comparison methods, and one game similarity class for each of the other types of game attributes using

Jaccard’s similarity (genres, categories, developers and publishers).

Let Ii be an item, and Ru,i be the rating of user u for item i. Then, the similarity between two users

u and v is defined as follows:

Raw:
∑

i∈Iu∩Iv

Ru,i · Rv,i (3.2)

Cosine:

∑
i∈Iu∩Iv

Ru,i · Rv,i√∑
i∈Iu∩Iv

R2
u,i ·

√∑
i∈Iu∩Iv

R2
v,i

(3.3)
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Pearson:

∑
i∈Iu∩Iv

(Ru,i − Ru) · (Rv,i − Rv)√∑
i∈Iu∩Iv

(Ru,i − Ru)2 ·
√∑

i∈Iu∩Iv
(Rv,i − Rv)2

(3.4)

The same can be applied to games, but instead of a user rating an item, we have an item being

tagged with a tag, which has a weight, which can be interpreted as a rating.

Code 3.7: Code that parallelizes the calculation of user similarities.

1515 def get_similar_users(self, steamid: int, n: int = 10) -> DataFrame:
1516 """Gets n top similar users to a user. Specially useful for collaborative filtering.
1517 [...] (comments removed to save space) """
1518 rough_similar_users = self.pgdata.get_lsh_similar_users(steamid)
1519 self._own_games_played = self.pgdata.get_user_games(steamid)
1520 logging.info(f"Finding␣{n}␣similar␣users␣to␣{steamid}.␣Please␣wait...")
1521 priority_queue = PriorityQueue(n + 1)
1522 if self.parallelize:
1523 futures = []
1524 max_workers = GLOBAL_THREAD_EXECUTOR._max_workers
1525 rough_similar_users = list(rough_similar_users)
1526 count_per_worker = len(rough_similar_users) / max_workers / 4
1527 for batch in self.chunks(rough_similar_users, math.ceil(count_per_worker)):
1528 futures.append(GLOBAL_THREAD_EXECUTOR.submit(self.similarity_batch, steamid,

batch))
1529 for future in cf.as_completed(futures):
1530 similar_users = future.result()
1531 for similarity in similar_users:
1532 priority_queue.put(similarity)
1533 if priority_queue.qsize() > n:
1534 _ = priority_queue.get()
1535 else:
1536 for similar_user in rough_similar_users:
1537 if similar_user == steamid:
1538 continue
1539 similarity = self.similarity(steamid, similar_user)
1540 priority_queue.put((similarity, similar_user))
1541 if priority_queue.qsize() > n:
1542 _ = priority_queue.get()
1543 logging.info(f"Finished␣finding␣relevant␣similar␣users.")
1544 self._own_games_played = None
1545 return self.player_similarities_from_priority_queue(priority_queue)

The methods which calculate similarities for users (but not for games) are parallelized to speed up

the computation. This is done by splitting the set of users into n subsets, and then calculating the

similarity between each user in a subset and all the users in the other subsets. This is done in parallel

for each subset, and the results are then merged. Our RawUserSimilarity class handles everything, as

shown in Code 3.7.

RawUserSimilarity implements every method required to calculate the similarity between users in

such a way CosineUserSimilarity and PearsonUserSimilarity can inherit from it, and only require the

implementation of the similarity(user, other) method, which returns the similarity between the user
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and another one. As well, AbstractGameSimilarity implements every method required to calculate the

similarity between games in such a way all of our game similarity classes can inherit from it. This is done

to avoid code duplication, and every similarity class encapsulates their respective data classes (e.g.

GameTagSimilarity encapsulates GameTags), which will allow us to only require the similarity class

to generate recommendations. We also implemented a technique similar to IDF (Inverse Document

Frequency) to weight the tags based on how many games have that tag, under the assumption that we

would avoid giving tags that are too common (e.g. ‘Indie’) too much importance.

In the case of the Game Details similarity class, we implemented various methods to compare the

game details, as shown in Code A.15. We compare various attributes of the game using different

methods, and then return the weighted sum of all the comparisons.

We also implemented four recommender systems, which inherit from AbstractRecommenderSys-

tem: RandomRecommenderSystem, our baseline, which randomly picks games, PlaytimeBasedRec-

ommenderSystem, which recommends games based on the playtime of the user relative to other peo-

ple’s playtimes (our Collaborative Filtering recommender), RatingBasedRecommenderSystem, which

merely scores games based on their ratings (useful for our HybridRecommenderSystem), Content-

BasedRecommenderSystem, which recommends games based on the similarity of the game to the

games the user has played (our Content-Based recommender), and HybridRecommenderSystem,

which combines the previous recommender systems (our Hybrid recommender).

PlaytimeBasedRecommenderSystem and ContentBasedRecommenderSystem use the LSH En-

semble through the similarity classes to speed up the computation of the similarity between games and

users, as explained previously. These both are implemented in such a way that they can be used with

any similarity class without having to implement any specific code for that similarity class. The Play-

timeBasedRecommenderSystem only requires a PlayerGamesPlaytime instance and a UserSimilarity

instance, and the ContentBasedRecommenderSystem only requires a PlayerGamesPlaytime instance

and a AbstractGameSimilarity class.

The PlaytimeBasedRecommenderSystem uses an implementation of kNN to find the k most similar

users to the user we want to recommend games to, and then recommends the games that the k most

similar users have played, but the user we want to recommend games to has not played, sorted by

score.

ContentBasedRecommenderSystem, however, generates a ‘weight map’ taking into account the

game attributes (tags, genres, developer, etc.) of the games the user has played, adding them to the

weight map with a weight equal to the normalized playtime multiplied by the attribute’s weight (in the

case of genres, categories, developers and publishers, the weight is 1) for every attribute of the game

(e.g, if a user has played three games for 1h with tags [Action, RPG], [Action, Adventure] and [Action,

Adventure] respectively, assuming the tags all have weight 1.0 and 0.5 respectively, the user map would

then be Action → 3, RPG → 1, Adventure → 2.5). Then, the recommender system finds the most

Jorge González Gómez 29



Design and implementation

similar games to the user map through the LSH Ensemble and recommends the games the user has

not played, sorted by score. The code for the item weight map calculations can be seen in Code 3.8.

Code 3.8: Code that calculates the item weight map for an user.

1387 def get_item_weights(self, steamid: int, user_games: DataFrame) -> Dict[int, float]:
1388 """Gets or generates the item weights for a user. [...]"""
1389 if steamid in self.user_item_weights: return self.user_item_weights[steamid]
1390 item_weight = {}
1391 for _, row in user_games.iterrows():
1392 appid = row["appid"]
1393 pseudorating = row["playtime_forever"]
1394 for itemid, weight in self.get_game_items(appid):
1395 if not itemid in item_weight:
1396 item_weight[itemid] = 0
1397 item_weight[itemid] += self.weight_function(weight, pseudorating)
1398

1399 item_weight = sorted(item_weight.items(), key=lambda x: x[1], reverse=True)
1400 if self.item_weight_max_length > 1:
1401 item_weight = item_weight[:self.item_weight_max_length]
1402

1403 item_weight = dict(item_weight)
1404 self.user_item_weights[steamid] = item_weight
1405 return item_weight
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Results

4.1 Approach and caveats

To measure our performance, precision and recall, we first split part of the dataset into a training set and

a test set, by picking 1,000 users at random and splitting their game owned list randomly into 80% of

the playtime for the training set and 20% for the test set. The training set is used by the recommender

to generate the recommendations, and the test set is not used by the recommenders, but is instead

used to evaluate all the methods, to compare against the list of ‘relevant items’ we are trying to predict,

as mentioned in Section 4.2.

Initially, our experiment script instantiated every similarity and recommender class in parallel, with

different parameters, to test out the different combinations. However, we quickly saw RAM go above

32GB quick and had to create a “global cache” to share all the data between classes, as mentioned in

Section 3.5.2. With this fix, it was enough to run the experiments sequentially, as the bottleneck was

the CPU, not the RAM.

Another caveat was time constraints and, as such, we could not run every experiment we wanted

to run with different configurations for our recommender systems for these 1,000 users. Instead, we

created a smaller subset of 100 users and ran an exhaustive experiment on it, and then picked the best

combinations for our 1,000 users experiments. Otherwise, our estimations showed that we would have

had to wait 2-3 months to run all the combinations, which was not feasible. Still, the total runtime for all

recommenders was at first over 11 days, 14 hours and 30 minutes, without taking into account some

results that we had to delete which took over 15 days to run in total. Thus, we believe our results are a

good approximation of what we would have gotten if we have had the time to run all the combinations, as

we focused on the most important ones after running an exhaustive experiment over 100 hand-picked

users. The experiments were run on a computer with a Ryzen 5 5600X CPU and 32GB of RAM, and

the Collaborative-Filtering recommenders had to be run in parallel, which means the CPU cache usage

was not optimized, and the runtimes may vary.
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4.2 Precision, recall and runtime results

Let us start our experiments with two simple strategies or baselines, which are presented in Table 4.1.

The ‘Random’ one simply returns random games, and the ‘Top rated’ one returns the games with the

highest average rating. These results are a good starting point to compare our results against, and to

see if our recommender systems are actually doing better than a random result or a simple method

based on top rated items.

Combination P@5 P@10 P@20 R@5 R@10 R@20 Time (s)

Random 0.0046 0.0041 0.0042 0.0014 0.0025 0.0048 4.71

Top rated 0.0016 0.0010 0.0073 0.0005 0.0006 0.0087 705.54

Table 4.1: Baseline results. P@N stands for Precision at N, and R@N stands for Recall at N. Time

(s) denotes the time in seconds.

As we can see from the results in this table, our ‘Random’ recommender system is better than the

‘Top rated’ one, which is suprising, since we would expect Steam’s user base to pick games that are

good, and thus the ‘Top rated’ recommender system to be better than a random one. However, this is

not the case, and we can see that the ‘Top rated’ recommender system is actually worse than a random

one. Therefore, our baseline are the results of the ‘Random’ recommender system.

4.2.1 Content-Based Filtering

Our subset of games, obtained through the query in Code 3.5, is composed of of 4,822 games and

81,415 users: thus, we expected the experiments for CBF to take less than the ones for CF, since CBF

only compares against other games and not users, so we started with those first, and thus made more

experiments with them. The full results for CBF are separated in various tables in Tables B.3 to B.6.

We show an extract of the best results in Table 4.2. The best results are highlighted in bold, the best

of each recommender system is underlined. t is the threshold for the LSH Ensemble index, widf is

the IDF weight for tags and wt denotes our tag → game dictionary approach with weights (no LSH

Ensemble, only for Game Tags).

Categories refer to our different categories-based recommender systems, which compare cate-

gories to the user’s preferred categories (just like Code 3.8, detailed in Section 3.6, we will refer to

“preferred attributes” as their weight map, which scores the user’s interest in each attribute based on

his playtime from games with those attributes). Genres refer to the game genres, which are compared

to the user’s preferred genres. Tags refer to the game tags, which are compared to the user’s preferred

tags, and take a second parameter: the weight of the IDF. This weight is used to multiply the IDF of

each tag and add it to the final score of the game, which, as a reminder from Section 2.1.2, penal-

izes tags that are common among all games. We have three aproaches for tags: ‘Raw’, ‘Cosine’ and
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‘Pearson’, which, as mentioned in Section 3.6, score their similarities by just multiplying weights, by

multiplying weights and dividing them by their norms, and by using the Pearson correlation coefficient,

respectively. We also have ‘Developers’, which compares the developers of the games the user owns to

the developers of all games, and sorts them by how many games the user has for each developer, and

‘Publishers’, which is the same as ‘Developers’, but for publishers instead. Finally, we have a recom-

mendation system that uses the game details (price, release date, name, etc.) to compare the games

to the user’s preferred attributes, and sorts them by their score.

Categories P@5 P@10 P@20 R@5 R@10 R@20 Time (s)

t=0.42 0.0370 0.0304 0.0251 0.0114 0.0185 0.0302 1869.48

t=0.55 0.0242 0.0150 0.0082 0.0076 0.0094 0.0103 63.37

Genres

t=0.30 0.0030 0.0035 0.0044 0.0007 0.0018 0.0049 4119.41

t=0.80 0.0016 0.0022 0.0022 0.0003 0.0013 0.0027 235.48

Raw Game Tags

t=0.30, widf=0.60 0.0472 0.0382 0.0318 0.0137 0.0217 0.0364 9379.58

t=0.42, widf=0.60 0.0476 0.0382 0.0317 0.0138 0.0217 0.0361 9571.94

Cosine Game Tags

t=0.42, widf=0.60 0.0376 0.0316 0.0284 0.0105 0.0178 0.0320 1626.74

Pearson Game Tags

t=0.55, widf=0.60 0.0274 0.0240 0.0210 0.0076 0.0134 0.0235 561.59

Others

Details 0.0440 0.0334 0.0257 0.0134 0.0199 0.0310 21246.19

Developers 0.0606 0.0554 0.0467 0.0187 0.0343 0.0571 1397.43

Publishers 0.0570 0.0502 0.0402 0.0168 0.0301 0.0477 3021.03

Table 4.2: CBF top results, separated by approach. P@N stands for Precision at N, and R@N stands

for Recall at N. Time (s) denotes the time in seconds.

Unsurprisingly, we can see that the genres recommender system performs the worst (and has

worser results than our baseline), as genres on Steam are very few and broad, and thus not very useful

for recommendations compared to tags, which are more specific. In terms of categories, however,

we see a big improvement over the genres recommender system, and even outperforms our Pearson

and cosine game tag recommender systems. We can observe our Pearson and Cosine game tag

implementations are vastly outperformed by every other recommender system except for the genres

recommender system: this is because a ‘Cosine’ approach (mentioned in Equation 3.3) to similarity

regarding tags penalizes games with 20 tags (the maximum amount of tags for Steam), and using

Pearson’s similarity (Equation 3.4) simply penalizes the bottom half of tags. The runtimes for these

Cosine and Pearson are superior because, after running the ‘Raw Game Tags’ approaches first, we

optimized the code further to speed up running our experiments, but we have no doubts the ‘Raw Game
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Tags’, as of today, run faster than the ‘Cosine Game Tags’ and ‘Pearson Game Tags’ approaches. We

can also see that the ‘Details’ recommender system, which compares the game details to the user’s

preferred attributes, is really close to the ‘Raw Game Tags’ recommender system but still worse, but

it took twice as long to process. We have not shown different IDF configurations in Table 4.2, but as

seen in any table from tables B.3 to B.5, the best configuration is widf = 0.6, and we might have been

able to get better results with higher IDF weights, but we leave that analysis as future work. We can

see our best performing recommender system is ‘Developers’, with a Precision@5 of 0.0606 and a

Precision@10 of 0.0554, Recall@5 of 0.0187 and Recall@10 of 0.0343. This approach retrieves the

games developed by the same developers of the games the user owns, sorted by how many games

the user has for that developer. We can also observe minor differences below 0.5 threshold for the LSH

Ensemble index, which includes more games to compare our preferred tags to in tables B.3 to B.5

We show graphs that compare the Precision@5 and Recall@10 for genres, categories and game

tags approaches in Figures 4.1 to 4.3 when modifying LSH Ensemble indices thresholds, with their

respective time graphs. We also show all IDF weight combinations for the game tags approaches. As

we can observe, there is a linear correlation between thresholds and Precision and Recall, and the time

graphs, when represented logarithmically, are shown to also be linear and closely resembles the pattern

seen in the Precision and Recall graphs. We can also see that the variations in Precision and Recall

for game tag approaches are not as big as the ones for genres and categories, but we can see the

time taken when increasing the threshold for the LSH Ensemble index is also linear when representing

it logarithmically. We can see the precision and recall for the ‘Raw’ and ‘Cosine’ approaches for game

tags is lowered with higher thresholds, but the ‘Pearson’ approach sees its precision and recall improved

when increasing the threshold.

4.2.2 Collaborative Filtering

When it comes to CF, as mentioned earlier, we had to run experiments over less users than origi-

nally planned. We found that threshold t = 0.8 for the LSH Ensemble and relevant threshold trel =

0.6 (mentioned in Section 2.1.5 and Section 3.5), where only games with normalized playtime above

max(playtimes) ∗ trel are taken into consideration when indexing, are both our best and fastest

results for a list of 100 players (instead of 1000) to predict for, as shown in Table B.2. We see the results

for each user similarity method followed by the normalization approach in parentheses in Table 4.3.

We can see our Pearson User Similarity (defined in Equation 3.4) implementation outperforms the

second best approach for every normalization method by approximately 3 times at precision and Re-

call@5, and over 3 times and even 4 times at Recall@20. We can see the best normalization method for

Precision@5 and Recall@5 is the logarithm method, which uplifts games with lower playtime: counter-

intuitively, however, we found the square root method, which punishes low playtimes, provides the best

results at 10 and 20 in both metrics, but only for our Pearson approach. We can also see that the Pear-
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4.2. Precision, recall and runtime results
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Figure 4.1: Comparison of our full results in Table B.6, comparing Precision@5 and Recall@10,

and a second graph comparing times against the threshold for the LSH Ensemble index, for genres,

categories and game tags approaches.
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Figure 4.2: Comparison of the raw game tags and cosine game tags results in Tables B.3 and B.4,

comparing Precision@5 and Recall@10 against LSH Ensemble thresholds.
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4.2. Precision, recall and runtime results
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Figure 4.3: Comparison of the Pearson game tags results in Table B.5, comparing Precision@5 and

Recall@10 against LSH Ensemble thresholds, and a second graph comparing times in Tables B.3

to B.5 against the threshold for the LSH Ensemble index, for all game tags approaches.
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Combination P@5 P@10 P@20 R@5 R@10 R@20 Time (s)

Raw (Linear) 0.0530 0.0401 0.0314 0.0146 0.0220 0.0348 65261.46

Raw (Log) 0.0692 0.0528 0.0401 0.0191 0.0289 0.0438 65443.07

Raw (Square Root) 0.0594 0.0479 0.0364 0.0164 0.0261 0.0399 65674.90

Cosine (Linear) 0.0540 0.0400 0.0312 0.0149 0.0218 0.0346 61063.86

Cosine (Log) 0.0770 0.0575 0.0435 0.0214 0.0312 0.0480 61105.11

Cosine (Square Root) 0.0596 0.0483 0.0369 0.0165 0.0264 0.0407 61033.86

Pearson (Linear) 0.1954 0.1672 0.1281 0.0581 0.0983 0.1512 94042.03

Pearson (Log) 0.2136 0.1753 0.1356 0.0632 0.1030 0.1587 95043.25

Pearson (Square Root) 0.2056 0.1787 0.1389 0.0605 0.1048 0.1625 95983.37

Table 4.3: Precision and recall results for CF. Parameters used: trel = 0.6, t = 0.8. User similarity

followed by the normalization approach in parentheses.

son User Similarity is the slowest approach, taking aproximately 1.44 times longer than the second

slowest approach, which is the raw similarity approach.

4.2.3 Analysis of the results

Our results show a Collaborative-Filtering approach is more precise and yields better recommendations

than a Content-Based approach, but it is also slower, with the overall best approach taking 95,983.37

seconds (approximately 1 day, 2 hours and 40 minutes to process 1000 users) versus the best ap-

proach, recommending games from the users’ top developers, taking 1,397.43 seconds (approximately

23 minutes) to complete. Nonetheless, our best Collaborative-Filtering approach sees up to 3 times

improvements in both precision and recall. Put into perspective, however, the PC market has many

bundles 1 and sales from the same developers, and therefore we may have split users who had many

bundles in their accounts, thus skewing the results to favour recommendations for people who usually

buy games in bundles. This is a limitation of our dataset and using a mean average of the metrics to

represent the overall performance of the algorithm may not be the best approach, since we checked

and the top precision and recall results for the ‘Developer’ recommender system were above 70% while

half of the results were below 1%. As well, all of our game tag comparison methods use the linear

playtime normalizer due to time constraints, but we do not expect these parameters to make much of a

difference as shown by the playtime based recommender systems.

1In the PC market it is common to see bundles of developers who put their entire franchises for a low price. For example: Valve Complete

Pack [44] offers all of their 22 games, as such if we split 10 of their games into the test set, we might have had the other 12 games setting Valve’s

score too high and recommending the other 10 games, thus having a really high recall.
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5
Conclusion and future work

5.1 Conclusion

In this thesis, we have studied how to implement a data crawler from scratch to gather a large dataset

from Steam, the most popular videogame store on the market, process this data with different ap-

proaches for normalization, and implemented 3 variations of Collaborative-Filtering recommender sys-

tems as well as 8 different Content-Based recommender systems.

We also show in our results that our IDF technique, mentioned in 3.6, helps boost uncommon tags

to personalize recommendations further by improving the results for the game tags approach up to

27.96% for precision and up to 27.77% for recall in Table B.5. As well, in our full results (Tables B.3

to B.5), we show how using different thresholds for the LSH Ensemble filters out undesired games to

compare against, and that the best results are obtained when using a threshold of 0.42.

As for our CF results, we would have loved to test different LSH Ensemble thresholds and relevant

game thresholds, but due to time constraints we were unable to do so. Nonetheless, we show various

CF approaches and have found that using Pearson’s similarity is the best approach to collaborative

filtering by a noticeable enough margin to warrant a 44% increase on runtime compared to every other

single approach. Thus, a re-implementation of our CF approach using Pearson’s similarity in a language

faster than Python could be desirable.

5.2 Future work

We would like to propose the following as future work regarding this thesis and recommender systems

in general:

• A more performant language: Python shows its limitations when it comes to performance, and

while we have tried to use libraries that are performant, such as datasketch and pandas, we have

found that the performance is still lacking, and we would suggest trying to use a more performant

language, such as C, C++ or Go, to see if the theoretical performance uplifts are worth a re-
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implementation.

• More data and comparisons: We have only used a small subset of the data available due to time

constraints, and we only found out about the dataset from the current state of the art recommender

system mentioned in Section 2.2 after we had already started working on the project. Plus, an

objective of this thesis was to crawl our own information from publicly available APIs. As such, we

would like to see how our results compare to the current state of the art, including runtime, power

consumption and code readability, and if we can improve upon them. As well, we would have liked

using more combinations to our parameters, but due to time constraints we were unable to do so,

as it would have taken months.

• Same optimizations into different domains: We have used a few optimizations that are not

specific to recommender systems, mainly the LSH Ensemble library from datasketch [22], and we

would like to see how it performs in other domains.

• Real-world deployment and viability: We would like to see how our recommender system (af-

ter some tweaks) performs compared to current state-of-the-art recommender systems, and see

which approach could be viable for a userbase of over a 100M users, and hope the methods and

code presented in our GitHub repo [11] can be used as a starting point for future work.

• Using our recommender systems for performant comparisons between ways to represent

the interest of the users: In this work, we used playtimes as a way to represent interest of users,

but we would like future work to use our recommender systems when using other ways to gather

interest of users, such as wishlists, ratings, reviews, cross-storefront playtimes, etc. and using

achievements, average playtimes for each game, etc. to get different information (e.g., the user

beat the game because they have a certain achievement, or the game is endless and the user

has played it for a long time relative to other users, instead of plainly using playtimes).
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Appendices





A
Annex I: Code

Code A.1: Full script that crawls users. It uses certain methods from database.py and config.py. This

portion goes from the start up to the end of the loop where we retry in case Steam is currently down,

or we are being rate limited and our rate limiter is not properly accounting for rate limiting. Continued

in Code A.2

16 num_processed_players = 0
17

18 def crawl_player_data(query_count=0, reviews=False, only_games=True, verbose=False):
19 global num_processed_players
20 unprocessed_players = get_100_unprocessed_players()
21 while len(unprocessed_players) > 0:
22 start_time = time.time()
23 steam_ids = [str(player[0]) for player in unprocessed_players]
24 while True:
25 try:
26 query_count = check_rate_limit(query_count)
27 response = steam.users.get_user_details(",".join(steam_ids), single=False)
28 if "players" in response:
29 break
30 else:
31 print("Error␣while␣requesting␣user␣details,␣no␣players.␣Waiting␣10␣seconds:␣")
32 print(response)
33 time.sleep(10)
34 except Exception as e:
35 print("Exception␣while␣requesting␣user␣details.␣Waiting␣10␣seconds:␣")
36 print(e)
37 time.sleep(10)
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Code A.2: Part two of the script that crawls users. It uses certain methods from database.py. The

second part of the function, where we attempt to gather basic user info, and handles all of the code

to fetch users’ game lists. Continued in Code A.3

38 players = response["players"]
39 for player in players:
40 steamid = player["steamid"]
41 cvs = player["communityvisibilitystate"]
42 num_processed_players += 1
43 if cvs < 3:
44 if verbose:
45 print("Private/Friends␣only␣profile,␣setting␣basic␣player␣profile...")
46 process_steam_user(steamid, player["personaname"], 0, 0)
47 continue
48

49 commentpermission = player["commentpermission"] if "commentpermission" in player else
None

50 primaryclanid = player["primaryclanid"] if "primaryclanid" in player else None
51 timecreated = player["timecreated"] if "timecreated" in player else None
52 loccountrycode = player["loccountrycode"] if "loccountrycode" in player else None
53 locstatecode = player["locstatecode"] if "locstatecode" in player else None
54 loccityid = player["loccityid"] if "loccityid" in player else None
55 while True:
56 try:
57 query_count = check_rate_limit(query_count)
58 resp = requests.request(
59 "get",
60 "https://api.steampowered.com/IPlayerService/GetOwnedGames/v1/",
61 params={"steamid": steamid,
62 "include_appinfo": False,
63 "include_played_free_games": True,
64 "key": KEY},
65 )
66 if resp.status_code == 200: # I didn't trust the API to return stuff properly when

rate limited
67 owned_games = json.loads(resp.text)["response"]
68 break
69 else:
70 print("Error␣while␣requesting␣owned␣games.␣Waiting␣3␣seconds:␣")
71 print(resp.text)
72 time.sleep(3)
73 except Exception as e:
74 print("Exception␣while␣requesting␣user␣details.␣Waiting␣10␣seconds:␣")
75 print(e)
76 time.sleep(10)
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Code A.3: Part three of the script that crawls users. It uses certain methods from database.py. The

last part of the function, which handles the calls to the database.

78 if "games" not in owned_games:
79 if verbose:
80 print("Game␣list␣is␣private,␣skipping...")
81 process_steam_user(steamid, player["personaname"], 1, 0,
82 commentpermission=commentpermission, primaryclanid=primaryclanid,
83 timecreated=timecreated, loccountrycode=loccountrycode,
84 locstatecode=locstatecode, loccityid=loccityid)
85 continue
86

87 visible_playtime = False
88 for game in owned_games["games"]:
89 appid = game["appid"]
90 success = game_exists(appid)
91

92 if not success:
93 if verbose:
94 print(f"{appid}␣doesn't␣exist␣in␣database,␣crawling...")
95 success, query_count = get_app_data(str(appid), reviews=reviews,

query_count=query_count, only_games=only_games, verbose=verbose)
96 visible_playtime |= game["playtime_forever"] > 0
97 if success == ERROR:
98 if verbose:
99 print("Error␣while␣crawling␣game,␣adding␣as␣'DEAD_HIDDEN_GAME'␣with␣

no␣info...")
100 # NOTE: this is specially useful to see 'if you used to play appid X and you now play

appid Y, others might like appid Y'
101 # for example: Project Cars 1 and 2 are dead, but you might like Project Cars 3

without genre context
102 # also PUBG Test Server, Realm Royale Public Test, etc. are hidden
103 add_dead_hidden_game(appid)
104 elif success == SKIPPED:
105 if verbose:
106 print("Non-game/mod␣skipped,␣skipping...")
107 continue
108 elif success == FAULTY:
109 if verbose:
110 print("Faulty␣game,␣inserting␣as␣faulty␣with␣'FAULTY_GAME'␣with␣no␣info...")
111 add_faulty_game(appid)
112 # insert_player_game_data(steamid, appid, playtime_forever, playtime_windows,

playtime_mac, playtime_linux, rtime_last_played)
113 insert_player_game_data(steamid, appid, game["playtime_forever"],

game["playtime_windows_forever"], game["playtime_mac_forever"],
game["playtime_linux_forever"], game["rtime_last_played"])

114

115 process_steam_user(steamid, player["personaname"], 2 if not visible_playtime else 3,
owned_games["game_count"],

116 commentpermission=commentpermission, primaryclanid=primaryclanid,
117 timecreated=timecreated, loccountrycode=loccountrycode,
118 locstatecode=locstatecode, loccityid=loccityid)
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Code A.4: Full script that crawls reviews (part one). It uses certain methods from database.py and

config.py. This portion goes from the start up to the end of the loop where we retry in case Steam

is currently down, or we are being rate limited and our rate limiter is not properly accounting for rate

limiting

42 def get_app_data(app_id: str, reviews=False, query_count=0, only_games=True, verbose=True) ->
Tuple[int, int]:

43 retry = True
44 consecutive_retries = 0
45 game_data = get_game_data(app_id)
46 exists = game_data is not None
47 if (is_processed(app_id)):
48 print(f"App␣{app_id}␣already␣processed.")
49 return FULLY_PROCESSED, query_count
50 elif (reviews == False and exists):
51 print(f"App␣without␣reviews␣{app_id}␣already␣exists␣in␣database.")
52 return ALREADY_EXISTS, query_count
53

54 if not exists:
55 while retry and not exists:
56 try:
57 query_count = check_rate_limit(query_count)
58 response = request("GET", "https://store.steampowered.com/api/appdetails",

params={"appids": app_id, "cc": "us", "l": "english"})
59 except Exception as e:
60 print("Exception␣while␣requesting␣appdetails:␣" + str(e) + "\n")
61 consecutive_retries += 1
62 if consecutive_retries > 3 *5: # maximum waiting time for the connection to be back: 5

minutes
63 # this high number also ensures the user may fix the problem without having to

restart the script
64 consecutive_retries = 3 *5
65

66 print(f"Waiting␣{(consecutive_retries␣*␣20.0␣/␣60.0)}␣minute(s)␣before␣retrying...")
67 time.sleep(consecutive_retries *20.0)
68 continue
69

70 retry = response.status_code != 200
71 if retry:
72 print(f"REST␣API␣error␣({response.status_code}):␣" + str(response.text))
73 print("Headers:␣" + str(response.headers) + "\n")
74 consecutive_retries += 1
75 if consecutive_retries > 3: # maximum waiting time for the API to respond again: 2

minutes
76 # this high number also ensures the user may fix the problem without having to

restart the script
77 consecutive_retries = 3
78

79 print(f"Waiting␣{((30.0␣+␣consecutive_retries␣*␣30.0)␣/␣60.0)}␣minute(s)␣before␣
retrying...")

80 time.sleep(30.0 + consecutive_retries *30.0)
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Code A.5: Part two of the script that crawls reviews. This part accounts for getting the basic data

from the app and filtering out DLCs. Please note: demos and mods also have playtimes, and are

relevant to us.

82 if len(response.text) == 0:
83 # example: https://store.steampowered.com/api/appdetails?appids=2124470
84 # it exists in SteamDB and the store, but the API returns an empty response
85 print(f"Empty␣response␣for␣faulty␣app␣ID␣{app_id}")
86 return FAULTY, query_count
87 appdata = json.loads(response.text)
88

89 if appdata[app_id]["success"]:
90 # First, check if this is a game
91 if only_games and "type" in appdata[app_id]["data"] and\
92 not (appdata[app_id]["data"]["type"] == "game"
93 or appdata[app_id]["data"]["type"] == "mod"
94 or appdata[app_id]["data"]["type"] == "demo"):
95 if verbose:
96 print("Skipping␣non-game:␣" + appdata[app_id]["data"]["name"])
97 return SKIPPED, query_count
98 else: name = appdata[app_id]["data"]["name"]
99 else:

100 print(f"Error␣for␣app␣ID␣{app_id}:␣" + response.text)
101 return ERROR, query_count
102 else:
103 name = game_data[1]
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Code A.6: Part three of the script that crawls reviews. It uses certain methods from database.py. The

last part of the function, which gets reviews only if asked to. We are also using this method to get

basic user info through download_the_full_query_summary if reviews is set to False, specially useful

when crawling user games. It also handles the calls to the database.

104 # Then, check if this game has reviews
105 if reviews:
106 if verbose:
107 print("Getting␣reviews␣for␣" + name)
108 request_params['cursor'] = '*'
109 review_dict, query_count = steamreviews.download_reviews_for_app_id(int(app_id),
110 chosen_request_params=request_params,
111 query_count=query_count,
112 verbose=True)
113 query_summary = review_dict["query_summary"]
114 else:
115 success_flag = False
116 while success_flag == False:
117 if verbose:
118 print("Getting␣review␣summary␣for␣" + name)
119 try:
120 success_flag, query_summary, query_count =

steamreviews.download_reviews.download_the_full_query_summary(app_id,
query_count, request_params)

121 if not success_flag:
122 print("Sleeping␣10␣seconds")
123 time.sleep(10)
124 except exceptions.ConnectionError as e:
125 print("Error␣" + e)
126 print("Sleeping␣10␣seconds")
127 time.sleep(10)
128

129 if not exists:
130 process_game_data(app_id, appdata[app_id]["data"], query_summary)
131

132 if reviews: # we need to execute this after process_game_data, because of the FK constraint
133 process_game_reviews(app_id, review_dict["reviews"])
134 mark_as_processed(app_id) # it's only fully processed when the reviews are processed
135 if verbose:
136 print("App␣ID:␣" + app_id + "␣done.")
137 # NOTE: we should probably check the rate limits here, but we're ~10 requests under Steam official

limits
138 return SUCCESS, query_count
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Code A.7: Script that inserts all popular tags from Steam, to get an ID -> tag name mapping

5 lang = "english" # future work: language is shared through config.py
6 popular_tags_url = "https://store.steampowered.com/tagdata/populartags/" + lang
7 def get_popular_tags():
8 response = get(popular_tags_url)
9 if response.status_code == 200:

10 return json.loads(response.text)
11 else:
12 print("Error:␣status␣code␣{}".format(response.status_code))
13 return None
14

15 def insert_popular_tags():
16 popular_tags = get_popular_tags()
17 if popular_tags:
18 for tag in popular_tags:
19 insert_tag(tag)
20

21 if __name__ == "__main__":
22 print("Downloading␣and␣inserting␣popular␣tags...")
23 insert_popular_tags()
24 print("Done.")
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Code A.8: Script that inserts all tags from output.jl from 3.4

25 def insert_tags_from_scrapper(filename):
26 try:
27 tags = pd.read_json(filename, lines=True)
28 tags = tags.drop_duplicates(subset='appid', keep='first').set_index('appid')
29 except FileNotFoundError:
30 print(filename + "␣not␣found.")
31 return
32 except ValueError:
33 print("Error:␣" + filename + "␣is␣not␣a␣valid␣JSON␣Lines␣file.")
34 return
35

36 requires_manual_intervention = []
37 for appid, row in tags.iterrows():
38 if appid == 'app' or row is None: # error
39 continue
40

41 if not game_exists(appid):
42 # first try to get the appid, since it might come from a redirect, like Total War: Shogun 2
43 try:
44 print("Game␣with␣appid␣not␣inside␣the␣database␣(redirects,␣betas,␣etc.):␣" +

row['name'] + "␣(" + str(appid) + ")")
45 gdata = get_game_data_from_name(row['name'])
46 if gdata is None:
47 raise RequiresManualIntervention([], row['name'], "No␣appid␣found␣for␣game␣" +

row['name'])
48 appid = int(gdata[0])
49 except RequiresManualIntervention as e:
50 print("Unambiguous␣appid␣returned␣for␣game␣with␣appid␣not␣inside␣the␣database␣

(redirects,␣betas,␣etc.):␣" + e.name + "␣(" + str(e.appids) + ")")
51 requires_manual_intervention += (e.name, e.appids)
52 continue
53

54 insert_game_tags(appid, row['tags'], max_len)
55

56 if len(requires_manual_intervention) > 0:
57 print("Manual␣intervention␣required␣for␣the␣following␣games:")
58 for game in requires_manual_intervention:
59 print(game.name + ":␣" + str(game.appids))
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Code A.9: Script that handles all playtime normalization techniques (part 1)

7 class AbstractPlaytimeNormalizer(ABC):
8 def __init__(self, denominator_function: str = "max", playtime_approach: str =

"minutes_always_more_than_60", output_multiplier: float = config.RATING_MULTIPLIER,
inplace: bool = False):

9 self.inplace = inplace
10 self.denominator_function = denominator_function
11 self.playtime_approach = playtime_approach
12 self.output_multiplier = output_multiplier
13

14 def normalize(self, data: DataFrame) -> DataFrame:
15 """The data to normalize, with a structure of:
16 "steamid","appid","playtime_forever"
17

18 Arguments:
19 ---
20 data (DataFrame): Expects a DataFrame with the above structure
21 Returns:
22 ---
23 DataFrame: A DataFrame with the same structure as the input, but with the playtime_forever

column normalized
24 """
25 self.validate_data(data)
26 if not self.inplace:
27 data = data.copy()
28

29 # we need this to prevent division by zero, wrong sum, max, etc.
30 if self.playtime_approach == "ignore":
31 pass
32 elif self.playtime_approach == "minutes_always_more_than_60":
33 data["playtime_forever"] = data["playtime_forever"].apply(lambda x: 60 if x < 60 else x)
34 elif self.playtime_approach == "hours_but_add_1":
35 data["playtime_forever"] = data["playtime_forever"].apply(lambda x: math.floor(x / 60) + 1)
36 else:
37 raise ValueError("playtime_approach␣must␣be␣'minutes_always_more_than_60',␣

'hours_but_add_1'␣or␣'ignore'")
38

39 if self.denominator_function == "max":
40 denominators = data.groupby("steamid")["playtime_forever"].max()
41 elif self.denominator_function == "sum":
42 denominators = data.groupby("steamid")["playtime_forever"].sum()
43 else:
44 raise ValueError("divide_by␣must␣be␣either␣'max',␣'sum'")
45

46 data["playtime_forever"] = data.apply(lambda x: self.output_multiplier *
self.normalize_value(x["playtime_forever"], denominators[x["steamid"]]), axis=1)

47 return data
48

49 ...
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Code A.10: Script that handles all playtime normalization techniques (part 2)

47 class AbstractPlaytimeNormalizer(ABC):
48 ...
49

50 @abstractmethod
51 def normalize_value(self, playtime, denominator):
52 pass
53

54 def validate_data(self, data: DataFrame):
55 # check if it's a DataFrame
56 if not isinstance(data, DataFrame):
57 raise TypeError("Argument␣'data'␣must␣be␣a␣DataFrame")
58

59 # check if the data has the correct columns
60 if not all([col in data.columns for col in ["steamid", "appid", "playtime_forever"]]):
61 raise ValueError("The␣DataFrame␣must␣have␣the␣columns␣'steamid',␣'appid'␣and␣

'playtime_forever'")
62

63 # check if the data has the correct types
64 if not all([data[col].dtype == "int64" for col in ["steamid", "appid"]]):
65 raise ValueError("The␣DataFrame␣must␣have␣the␣columns␣'steamid'␣and␣'appid'␣as␣integer␣

values.")
66

67 def __repr__(self) -> str:
68 name = self.__class__.__name__
69 name = name[0:name.index("PlaytimeNormalizer")] + "PN"
70 return name + f"_{self.denominator_function}" + "".join([tok[0] for tok in

re.findall(r"[a-zA-Z]+|[0-9]", self.playtime_approach)]) + f"_{self.output_multiplier}x"
71

72 def __str__(self) -> str:
73 return self.__repr__()

Code A.11: Class that does not normalize data

75 class NoNormalization(AbstractPlaytimeNormalizer):
76 """Doesn't normalize the player_games data
77 """
78 def normalize(self, data: DataFrame) -> DataFrame:
79 self.validate_data(data)
80 return data
81 def normalize_value(self, playtime, denominator):
82 return playtime
83 def __repr__(self) -> str:
84 return "NoNormalization"
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Code A.12: Class that linearly normalizes our data

86 class LinearPlaytimeNormalizer(AbstractPlaytimeNormalizer):
87 """Normalizes the player_games data using the playtime_forever
88 """
89 def normalize_value(self, playtime, denominator):
90 return playtime / denominator

Code A.13: Class that logarithmically normalizes our data

92 class LogPlaytimeNormalizer(AbstractPlaytimeNormalizer):
93 """Normalizes the player_games data using the log of the playtime_forever
94 """
95 def normalize_value(self, playtime, denominator):
96 return np.log(playtime) / np.log(denominator)

Code A.14: Class that takes the square root of our data

98 class RootPlaytimeNormalizer(AbstractPlaytimeNormalizer):
99 """Normalizes the player_games data using the N root of the playtime_forever

100 """
101 def __init__(self, denominator_function: str = "sum_max", playtime_approach: str =

"minutes_always_more_than_60", nroot: int = 2, output_multiplier: int = 5, inplace: bool =
False):

102 super().__init__(denominator_function, playtime_approach, output_multiplier, inplace)
103 self.nroot = nroot
104

105 def normalize_value(self, playtime, denominator):
106 return np.power(playtime, 1/self.nroot) / np.power(denominator, 1/self.nroot)
107

108 def __repr__(self) -> str:
109 return super().__repr__() + f"_{self.nroot}root"
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Code A.15: Function that calculates the similarity between two games based on their details

2334 similarity = 0.0
2335 similarity += difflib.SequenceMatcher(None, details.name, other_details.name).ratio() *

self.weights["name"] if self.weights["name"] > 0 else 0.0
2336 similarity += (1.0 -(abs(details.required_age -other_details.required_age) / 18.0)) *

self.weights["required_age"] if self.weights["required_age"] > 0 else 0.0
2337 similarity += self.weights["is_free"] *details.is_free *other_details.is_free
2338 similarity += (1.0 -abs(details.controller_support -other_details.controller_support) / 2.0) *

self.weights["controller_support"] if self.weights["controller_support"] > 0 else 0.0
2339 similarity += self.weights["has_demo"] *details.has_demo *other_details.has_demo
2340 similarity += max(1 -abs(details.price_usd -other_details.price_usd) / 70.0, 0) *

self.weights["price_usd"] if self.weights["price_usd"] > 0 else 0.0
2341 similarity += self.weights["mac_os"] *details.mac_os *other_details.mac_os
2342 similarity += max(1 -abs(details.rating -other_details.rating) / self.rating_multiplier, 0) *

self.weights["rating"] if self.weights["rating"] > 0 else 0.0
2343 similarity += max(1 -abs(details.total_reviews -other_details.total_reviews) /

max(details.total_reviews, other_details.total_reviews), 0) *self.weights["rating_count"] if
self.weights["rating_count"] > 0 else 0.0

2344 similarity += self.weights["has_achievements"] *details.has_achievements *
other_details.has_achievements

2345 if self.weights["release_date"] > 0:
2346 try:
2347 own_release_date = datetime.strptime(details.release_date, "%b␣%d,␣%Y")
2348 other_release_date = datetime.strptime(other_details.release_date, "%b␣%d,␣%Y")
2349 similarity += max(1.0 -abs((own_release_date -other_release_date).days) / 365.0, 0) *

self.weights["release_date"]
2350 except: # Some games don't have a release date (\\N), some others have "Coming Soon" or

even emojis
2351 pass
2352 similarity += self.weights["coming_soon"] *details.coming_soon *other_details.coming_soon
2353

2354 return similarity / sum(self.weights.values())
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B
Annex II: Results

When refering to relevant thresholds, as mentioned in Section 3.5, we will use the following notation:

wt=0.30 means that we will only take into account games that the user has played more than 30% of

their most played game. As well, we will use t=0.30 to mean that the LSH Ensemble is configured to

return games with a similarity of 30% or higher, and widf=0.30 to mean that the IDF weight for tags is

0.30. We will use the same notation for all other thresholds.

All of our CBFs used a linearly normalized PlayerGamesPlaytime instance.

Combination P@5 P@10 P@20 R@5 R@10 R@20 Time (s)

Cosine (Linear) 0.0540 0.0400 0.0312 0.0149 0.0218 0.0346 61,063.86

Cosine (Log) 0.0770 0.0575 0.0435 0.0214 0.0312 0.0480 61,105.11

Cosine (Square Root) 0.0596 0.0483 0.0369 0.0165 0.0264 0.0407 61,033.86

Pearson (Linear) 0.1954 0.1672 0.1281 0.0581 0.0983 0.1512 94,042.03

Pearson (Log) 0.2136 0.1753 0.1356 0.0632 0.1030 0.1587 95,043.25

Pearson (Square Root) 0.2056 0.1787 0.1389 0.0605 0.1048 0.1625 95,983.37

Raw (Linear) 0.0530 0.0401 0.0314 0.0146 0.0220 0.0348 65,261.46

Raw (Log) 0.0692 0.0528 0.0401 0.0191 0.0289 0.0438 65,443.07

Raw (Square Root) 0.0594 0.0479 0.0364 0.0164 0.0261 0.0399 65,674.90

Table B.1: Precision and recall results for CF, same as Table 4.3, without format. Parameters used:

wt = 0.6, t = 0.8. User similarity followed by the normalization approach in parentheses.
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Combination P@5 P@10 P@20 R@5 R@10 R@20 Time (s)

trel=0.60, tlsh0.60 0.3100 0.272 0.208 0.0710 0.1225 0.1879 6,420

trel=0.60, tlsh0.80 0.3260 0.286 0.2125 0.0755 0.1289 0.1953 5,160

trel=0.80, tlsh0.60 0.342 0.274 0.2110 0.0798 0.124 0.1896 7,020

trel=0.80, tlsh0.80 0.348 0.277 0.2065 0.0813 0.1256 0.1861 5,760

Table B.2: Precision and recall for pearson game tag based CBF, for various ensembles, only for

a smaller list of 100 users. trel denotes the minimum threshold for games to be included in the

MinHash (to be considered relevant), tlsh is the threshold for the LSH Ensemble index. We picked

0.60 and 0.80 because it was the fastest one and the one with the best results at 10 and 20. Time is

approximated based on file creation times, as we lost our time results.
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Combination P@5 P@10 P@20 R@5 R@10 R@20 Time (s)

t=0.30, widf=0.00 0.0376 0.0306 0.0262 0.0109 0.0175 0.0302 13594.60

t=0.30, widf=0.15 0.0376 0.0320 0.0269 0.0108 0.0183 0.0304 14949.60

t=0.30, widf=0.30 0.0414 0.0340 0.0290 0.0117 0.0191 0.0328 11879.06

t=0.30, widf=0.60 0.0472 0.0382 0.0318 0.0137 0.0217 0.0364 9379.58

t=0.42, widf=0.00 0.0372 0.0307 0.0264 0.0108 0.0175 0.0303 10241.59

t=0.42, widf=0.15 0.0372 0.0319 0.0271 0.0107 0.0183 0.0307 9034.59

t=0.42, widf=0.30 0.0414 0.0340 0.0289 0.0117 0.0192 0.0328 8600.51

t=0.42, widf=0.60 0.0476 0.0382 0.0317 0.0138 0.0217 0.0361 9571.94

t=0.55, widf=0.00 0.0378 0.0307 0.0262 0.0110 0.0175 0.0302 3052.29

t=0.55, widf=0.15 0.0376 0.0322 0.0265 0.0108 0.0184 0.0302 2954.21

t=0.55, widf=0.30 0.0416 0.0344 0.0278 0.0117 0.0194 0.0313 2873.44

t=0.55, widf=0.60 0.0452 0.0372 0.0306 0.0129 0.0209 0.0348 2313.82

t=0.68, widf=0.00 0.0336 0.0298 0.0245 0.0095 0.0173 0.0281 963.79

t=0.68, widf=0.15 0.0340 0.0297 0.0255 0.0094 0.0169 0.0288 918.73

t=0.68, widf=0.30 0.0366 0.0306 0.0260 0.0100 0.0175 0.0295 865.00

t=0.68, widf=0.60 0.0394 0.0323 0.0248 0.0112 0.0183 0.0286 824.77

t=0.80, widf=0.00 0.0328 0.0288 0.0244 0.0091 0.0165 0.0276 850.73

t=0.80, widf=0.15 0.0334 0.0291 0.0248 0.0093 0.0164 0.0280 806.09

t=0.80, widf=0.30 0.0354 0.0298 0.0247 0.0096 0.0169 0.0278 752.47

t=0.80, widf=0.60 0.0392 0.0309 0.0235 0.0111 0.0175 0.0271 720.42

t=1.00, widf=0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 69.07

t=1.00, widf=0.30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 86.11

t=1.00, widf=0.60 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 68.21

wt=0.75, widf=0.00 0.0376 0.0306 0.0262 0.0109 0.0175 0.0302 23142.23

wt=0.75, widf=0.30 0.0432 0.0364 0.0304 0.0122 0.0205 0.0344 19974.60

wt=0.75, widf=0.60 0.0472 0.0381 0.0317 0.0137 0.0216 0.0363 20120.96

wt=1.00, widf=0.00 0.0360 0.0296 0.0243 0.0104 0.0170 0.0280 8675.47

wt=1.00, widf=0.30 0.0410 0.0334 0.0280 0.0117 0.0191 0.0322 8134.27

wt=1.00, widf=0.60 0.0460 0.0360 0.0286 0.0135 0.0207 0.0329 6528.09

Table B.3: Precision and recall for raw game tag based CBF. t is the threshold for the LSH Ensemble

index, widf is the IDF weight for tags and wt denotes our tag → game dictionary approach with

weights (no LSH Ensemble).
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Combination P@5 P@10 P@20 R@5 R@10 R@20 Time (s)

t=0.30, widf=0.00 0.0354 0.0286 0.0248 0.0104 0.0163 0.0284 2532.25

t=0.30, widf=0.30 0.0344 0.0298 0.0256 0.0098 0.0170 0.0291 2417.31

t=0.30, widf=0.60 0.0372 0.0315 0.0282 0.0103 0.0177 0.0319 2098.92

t=0.42, widf=0.00 0.0352 0.0287 0.0249 0.0104 0.0163 0.0285 2018.68

t=0.42, widf=0.30 0.0348 0.0299 0.0261 0.0099 0.0171 0.0297 1897.33

t=0.42, widf=0.60 0.0376 0.0316 0.0284 0.0105 0.0178 0.0320 1626.74

t=0.55, widf=0.00 0.0356 0.0298 0.0250 0.0105 0.0169 0.0287 748.52

t=0.55, widf=0.30 0.0348 0.0301 0.0262 0.0097 0.0171 0.0296 688.41

t=0.55, widf=0.60 0.0368 0.0326 0.0274 0.0101 0.0179 0.0306 549.00

t=0.68, widf=0.00 0.0318 0.0281 0.0232 0.0090 0.0163 0.0266 278.09

t=0.68, widf=0.30 0.0312 0.0288 0.0247 0.0085 0.0165 0.0279 259.20

t=0.68, widf=0.60 0.0342 0.0294 0.0247 0.0092 0.0163 0.0280 219.70

wt=0.75, widf=0.00 0.0350 0.0283 0.0245 0.0103 0.0161 0.0279 7707.61

wt=0.75, widf=0.30 0.0340 0.0294 0.0254 0.0097 0.0168 0.0289 7342.89

wt=0.75, widf=0.60 0.0362 0.0309 0.0273 0.0100 0.0174 0.0309 6437.81

wt=1.00, widf=0.00 0.0344 0.0279 0.0233 0.0101 0.0158 0.0267 2050.46

wt=1.00, widf=0.30 0.0336 0.0287 0.0238 0.0096 0.0164 0.0271 1814.81

wt=1.00, widf=0.60 0.0362 0.0289 0.0251 0.0101 0.0163 0.0284 1393.10

Table B.4: Precision and recall for cosine game tag based CBF. t is the threshold for the LSH En-

semble index, widf is the IDF weight for tags and wt denotes our tag → game dictionary approach

with weights (no LSH Ensemble)
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Combination P@5 P@10 P@20 R@5 R@10 R@20 Time (s)

t=0.30, widf=0.00 0.0174 0.0156 0.0139 0.0050 0.0090 0.0158 2561.44

t=0.30, widf=0.30 0.0174 0.0156 0.0152 0.0052 0.0092 0.0175 2418.28

t=0.30, widf=0.60 0.0250 0.0227 0.0205 0.0072 0.0129 0.0235 2159.92

t=0.42, widf=0.00 0.0188 0.0157 0.0141 0.0054 0.0090 0.0161 2033.70

t=0.42, widf=0.30 0.0186 0.0157 0.0152 0.0055 0.0092 0.0174 1907.80

t=0.42, widf=0.60 0.0256 0.0230 0.0200 0.0074 0.0130 0.0229 1667.64

t=0.55, widf=0.00 0.0202 0.0181 0.0175 0.0056 0.0103 0.0205 748.65

t=0.55, widf=0.30 0.0202 0.0195 0.0179 0.0057 0.0113 0.0202 690.66

t=0.55, widf=0.60 0.0274 0.0240 0.0210 0.0076 0.0134 0.0235 561.59

t=0.68, widf=0.00 0.0218 0.0209 0.0181 0.0061 0.0123 0.0211 278.86

t=0.68, widf=0.30 0.0224 0.0200 0.0187 0.0064 0.0116 0.0216 259.92

t=0.68, widf=0.60 0.0240 0.0220 0.0191 0.0069 0.0131 0.0225 223.87

wt=0.75, widf=0.00 0.0170 0.0154 0.0139 0.0049 0.0089 0.0159 7810.68

wt=0.75, widf=0.30 0.0168 0.0146 0.0143 0.0050 0.0086 0.0167 7346.05

wt=0.75, widf=0.60 0.0234 0.0217 0.0196 0.0067 0.0123 0.0225 6624.96

wt=1.00, widf=0.00 0.0180 0.0155 0.0146 0.0049 0.0088 0.0169 2125.41

wt=1.00, widf=0.30 0.0170 0.0156 0.0144 0.0050 0.0092 0.0166 1823.94

wt=1.00, widf=0.60 0.0216 0.0220 0.0184 0.0064 0.0124 0.0210 1438.34

Table B.5: Precision and recall for pearson game tag based CBF. t is the threshold for the LSH En-

semble index, widf is the IDF weight for tags and wt denotes our tag → game dictionary approach

with weights (no LSH Ensemble)
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Combination P@5 P@10 P@20 R@5 R@10 R@20 Time (s)

Details 0.0440 0.0334 0.0257 0.0134 0.0199 0.0310 21246.19

Developers 0.0606 0.0554 0.0467 0.0187 0.0343 0.0571 1397.43

Publishers 0.0570 0.0502 0.0402 0.0168 0.0301 0.0477 3021.03

Categories(t=0.30) 0.0362 0.0304 0.0251 0.0113 0.0184 0.0302 5114.46

Categories(t=0.42) 0.0370 0.0304 0.0251 0.0114 0.0185 0.0302 1869.48

Categories(t=0.55) 0.0242 0.0150 0.0082 0.0076 0.0094 0.0103 63.37

Categories(t=0.68) 0.0224 0.0141 0.0077 0.0071 0.0089 0.0099 61.14

Categories(t=0.80) 0.0222 0.0138 0.0075 0.0071 0.0087 0.0095 59.93

Categories(t=1.00) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 18.98

Genres(t=0.30) 0.0030 0.0035 0.0044 0.0007 0.0018 0.0049 4119.41

Genres(t=0.42) 0.0026 0.0031 0.0041 0.0005 0.0015 0.0045 2246.40

Genres(t=0.55) 0.0016 0.0022 0.0022 0.0003 0.0013 0.0027 255.79

Genres(t=0.68) 0.0016 0.0022 0.0022 0.0003 0.0013 0.0027 240.21

Genres(t=0.80) 0.0016 0.0022 0.0022 0.0003 0.0013 0.0027 235.48

Genres(t=1.00) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 19.08

Table B.6: Precision and recall for all other CBFs. Developers and publishers do not have a LSH

index. Details uses a custom similarity function, defined in A.15. t is the threshold for the LSH

Ensemble index.
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