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ABSTRACT
Collaborative filtering models based on matrix factorization and
learned similarities using Artificial Neural Networks (ANNs) have
gained significant attention in recent years. This is, in part, because
ANNs have demonstrated very good results in a wide variety of rec-
ommendation tasks. However, the introduction of ANNs within the
recommendation ecosystem has been recently questioned, raising
several comparisons in terms of efficiency and effectiveness. One
aspect most of these comparisons have in common is their focus
on accuracy, neglecting other evaluation dimensions important for
the recommendation, such as novelty, diversity, or accounting for
biases. In this work, we replicate experiments from three different
papers that compare Neural Collaborative Filtering (NCF) and Ma-
trix Factorization (MF), to extend the analysis to other evaluation
dimensions. First, our contribution shows that the experiments
under analysis are entirely reproducible, and we extend the study
including other accuracy metrics and two statistical hypothesis
tests. Second, we investigated the Diversity and Novelty of the
recommendations, showing that MF provides a better accuracy also
on the long tail, although NCF provides a better item coverage
and more diversified recommendation lists. Lastly, we discuss the
bias effect generated by the tested methods. They show a relatively
small bias, but other recommendation baselines, with competitive
accuracy performance, consistently show to be less affected by this
issue. This is the first work, to the best of our knowledge, where sev-
eral complementary evaluation dimensions have been explored for
an array of state-of-the-art algorithms covering recent adaptations
of ANNs and MF. Hence, we aim to show the potential these tech-
niques may have on beyond-accuracy evaluation while analyzing
the effect on reproducibility these complementary dimensions may
spark. The code to reproduce the experiments is publicly available
on GitHub at https:// tny.sh/Reenvisioning.
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1 INTRODUCTION
Artificial Neural Networks (ANNs) are ubiquitous in many research
areas in recent years. Recommender Systems (RS) is a paradigmatic
example where these techniques have been applied, in part because
they open up possibilities in domains where classical techniques
have difficulties in understanding the item content — i.e., video or
image recommendation —, but also because they allow to extract
complex patterns that, in principle, are not captured by more simple
methods [38]. However, recent research challenges how useful these
techniques are in the context of RS, and where their advantages
really lie [9, 10, 16, 27].

More specifically, these studies have compared ANNs techniques
against classical personalized algorithms — mostly matrix factor-
ization or nearest neighbors —, emphasizing the lack of well-tuned
baselines or incorrect, incomplete, or even unfair experimental
conditions evidenced in the literature. Nonetheless, while these
conclusions are useful to move forward on understanding when
ANNs should be applied in recommendation, they neglect evalu-
ation dimensions that are important in the RS community, such
as diversity, novelty, coverage, and so on [12], since most of the
authors have focused, so far, on the precision/accuracy of the rec-
ommended items produced by those methods.

In this context, we aim to bridge this gap and compare ANNs
against classical RS under several evaluation dimensions. With
this goal in mind, we focus on a recent paper [27] where the au-
thors showed how proper hyperparameter selection could make
simple operations like a dot product outperform similarity learn-
ing through ANNs. We have the following two main goals: first,
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replicating the aforementioned paper, since it has a salient char-
acteristic where the authors used in their tables results from other
papers (claiming they used comparable evaluation settings and
tuning, something that too often is not true as it is difficult to do
properly [28]); once we are able to replicate these results, we re-
produce them under different situations. In particular, we report
beyond-accuracy evaluation metrics, to explore the extent these
methods behave on complementary dimensions they have not been
optimised for, or whose results have not been reported about.

Our main contributions are two-fold: on the one side, we corrob-
orate the results reported recently in [27] where ANNs are outper-
formed by simple modifications on classical algorithms; moreover,
we complement these observations with additional experimental di-
mensions, showing more accuracy metrics and their corresponding
statistical analysis, together with novelty, diversity, and bias mea-
surements, which allow us to provide a more complete overview
of the performance of these algorithms when compared against
ANNs and, hence, a better understanding of when and how these
approaches might be useful.

2 BACKGROUND AND FORMULATION
In this section we formalize, first, the recommendation problem
and later review Matrix Factorization and Neural Collaborative
Filtering approaches. The notation used herein is summarised as
follows. Matrices are denoted by uppercase letters 𝐴, vectors by
lowercase bold letters b, scalars by lowercase letters 𝑎. We denote
the concatenation of the vectors b and c by [b, c]. Let there be a
pool of users (𝑈 ) to recommend to and a catalog of items (𝐼 ) to
recommend from. A recommendation algorithm returns a score for
a given user-item pair that corresponds to the estimated degree of
satisfaction for the user enjoying that item. In this work we focus
on a specific kind of recommendation algorithms, where two 𝑑-
dimensional embedding vectors, 𝑝 and 𝑞, are combined into a single
score. Conventionally, 𝑝 represents the embedding of a user, 𝑞 the
embedding of an item, and 𝜙 (𝑝, 𝑞) (𝜙 : R𝑑 ×R𝑑 → R) the similarity
of the user to the item.

Matrix Factorization (MF) is a famous and classical example of
model-based Collaborative Filtering methods [20]. The algorithm
learns a latent representation of items and users, whose linear
interactions aim to explain the observed feedback. There are several
variations of MF proposed in the literature, and a comprehensive
review would deserve a specific study that is out of the scope of
this work. However, to provide the reader an intuition of how much
the factorization strategy has been disruptive in recent years, we
briefly review the works that are, in our humble opinion, the most
representative or the ones that can show the myriad of possible
applications of factorization models.

The first examples of factorization models were soon recognized
as state-of-the-art models. Among these pioneering works, there
could be found SVD [20], PureSVD [7], SVD++ [19], PMF [29, 30],
NNMF [22], and SLIM [23]. Among the several methods on matrix
factorization, Rendle’s work has heavily influenced the evolution of
the factorization models. In detail, BPR-MF [26] deserves particular
attention because it boosted the MF research, and it is still con-
sidered as a state-of-the-art model. For completeness, Rendle also

proposed Factorization Machines [25] that generalize the factoriza-
tion approach. The biggest criticism of MF approaches, however,
lies in their linearity. To address this concern, a recently popular-
ized trend in the community of recommender systems is using deep
neural architectures with deep neural networks that can model the
non-linearity in data through nonlinear activation functions. In
this respect, Neural Collaborative Filtering [14] and Neural Factor-
ization Machines [13] have been recently proposed to overcome
the inability of MF to capture non-linearities. Furthermore, Atten-
tional FactorizationMachines [36] use an attention network to learn
the importance of feature interactions. Factorization models have
been specialized for a variety of tasks such as Active-Learning [40],
Context-aware [17], Cross-domain [11], Knowledge-aware [4, 5],
and even explainable [39] recommendation.

In particular, Neural Collaborative Filtering [14] is one of the
most representative recommendation approaches, which aims to
estimate unknown user-item preference scores by exploiting deep
neural networks [38]. Since Artificial Neural Networks (ANNs) can
approximate any continuous function on a compact set as long as
the ANN has enough hidden states [8], He et al. [14] propose to
exploit ANNs to learn the affinity between 𝑝 and 𝑞. Let Φ(·) be
the transformation function of the deep neural network defined as
Φ : Rdim(𝑝)+dim(𝑞) → R𝑑 , He et al. propose to concatenate the two
embeddings and predict the score as follows:

𝜓MLP (p, q) := Φ( [p, q]). (1)

Additionally, He et al. defines a generalized matrix factorization
model, in which 𝑝 and 𝑞 are combined using element-wise multi-
plication (⊙):

𝜓GMF (p, q) := p ⊙ q, (2)

Finally, He et al. propose a comprehensive model, named NeuMF,
that combines the two previous approaches together:

𝜓NeuMF (p, q) := 𝜓MLP (p, q) +𝜓GMF (p′, q′), (3)

where the prime symbol (′) suggests that those embeddings might
have a different size and are, in fact, different from the former
ones. Finally, a careful reader may have noticed that 𝜓 has an
output dimension of 𝑑 . This is correct, since He et al. applies a final
prediction layer on top of them:

𝜙NCF := 𝜎 (W ·𝜓 (p, q)) (4)

where 𝜎 is an activation function, and𝑊 is an additional weight
matrix that is learned along with the other model parameters.

More recently, Rendle et al. [27] define the embeddings as model
parameters, and the affinity between 𝑝 and 𝑞 is modeled by means
of a dot product:

𝜙dot (p, q) := 𝑏𝑔 + 𝑏𝑝 + 𝑏𝑞 +
𝑑∑
𝑓 =1

𝑝 𝑓 𝑞𝑓 , (5)

where 𝑔𝑏 , 𝑏𝑝 , and 𝑏𝑞 denote the global, user, and item bias, re-
spectively. In this way, [27] presents a direct comparison between
ANNs and MF by changing the underlying operation between the
embeddings, while keeping everything else comparable.



Reenvisioning Collaborative Filtering vs Matrix Factorization RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

3 REPLICATION OF PRIOR EXPERIMENTS:
SETTINGS AND RESULTS

This section focuses on describing how the replication of the exper-
iments from papers Dacrema et al. [9], He et al. [14], Rendle et al.
[27] has been set up. It starts by defining the evaluation protocol
applied to compare Neural Collaborative Filtering (NCF) and Matrix
Factorization (MF) against the baselines in their respective works.

3.1 Settings
Although this study involves the replication of the results from
three different studies, this paper mainly aims to replicate the re-
sults from Rendle et al. [27]. In Rendle et al., the authors retrieve
the already split datasets from the original NCF repository1. Specif-
ically, He et al. [14] provide a split version of MovieLens-1M and
Pinterest. To split these well-known datasets, the authors adopt a
temporal leave-one-out policy, moving the last user interaction into
the test set. Furthermore, they binarize MovieLens-1M to make the
two datasets coherent with implicit feedback. Finally, they evaluate
the methods on a shortlist of 101 candidate items for each user.
This list comprises one relevant item (i.e., the transaction in the test
set) and 100 negative items randomly sampled from not consumed
items. In He et al. [14] and Rendle et al. [27], the authors evaluate
the performance on top-10 recommendation lists computing Hit-
Rate (HR) and Normalized Discounted Cumulative Gain (nDCG).
The first estimates how many users have the withheld item in the
top-10. The second measures the capability of the methods to rank
the relevant item. In the following, the formulation of nDCG as
presented in Krichene and Rendle [21] is adopted since it is the
same one adopted in Rendle et al. [27]. Moreover, He et al. [14]
and Rendle et al. [27] select the best models, for each recommenda-
tion system, according to HR@10. In this paper, the model selection
follows the same strategy.

The present study involved the implementation of seven recom-
mendation methods. MF implementation was designed accordingly
to Rendle et al. [27] (also provided as a public repository2). Regard-
ing NeuMF, the implementation refers to He et al. [14]. Finally, for
the five remaining baselines, the implementation refers to Dacrema
et al. [9] since it is the source for some of the results reported in Ren-
dle et al. [27]. More specifically, the five implemented baselines are
Slim [23], iALS [15], PureSVD [7], EASER [32], and RP3β [24].
According to the investigation provided by the authors [9], we
replicate the baseline training exploiting the best hyperparameters
found in the additional material3.

To summarize, this paper replicates seven different recommenda-
tion algorithms from three different works: [27], [14], and [9]. The
Elliot recommendation framework [3] is adopted as the benchmark-
ing framework. Elliot provides an out-of-the-box recommendation
pipeline. The testedmodels have been implemented as externalmod-
els to grant complete adherence to the original implementations.
All the implemented models and configuration files are publicly

1https://github.com/hexiangnan/neural_collaborative_filtering
2https://github.com/google-research/google-research/tree/master/dot_vs_learned_s
imilarity
3https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation/blob/maste
r/DL_Evaluation_TOIS_Additional_material.pdf

available4 to provide a complete reproducibility environment with
an ad-hoc version of Elliot.

3.2 Results
The first set of experiments aims to replicate Table 1 from Rendle
et al. [27]. In that table, the authors compare Neural Matrix Factor-
ization (NeuMF) and MF with a shortlist of baselines: Popularity,
SLIM, and iALS. In detail, the authors report from Dacrema et al.
[9] the results for Popularity, SLIM, NeuMF, and iALS. Instead, MF
is trained using the publicly available implementation they provide.
Overall, this table questions the prominence of NeuMF and shows
the high performance achieved by MF.

Hence, Table 1 replicates and extends the results provided in
Table 1 from Rendle et al. [27]. In this study, all the recommendation
algorithms have been retrained according to the best hyperparame-
ters provided in Dacrema et al. [9]. Specifically, Table 1 reports HR
and nDCG values for MovieLens-1M and Pinterest datasets, respec-
tively. The careful reader may have noticed that, for each dataset,
both replicated and original results are reported. Original results
columns are marked with references to the source papers. Dacrema
et al. [9] also consider other recommendation algorithms. Interested
in a more comprehensive comparison, we have selected EASER,
RP3β, and PureSVD for further replication. Finally, since Dacrema
et al. [9] do not consider Matrix Factorization, no confusion arises
regarding the origin of the results. Interestingly, Table 1 further
confirms the findings of the original experiments showing that MF
consistently overcomes the other baselines. It is worth mentioning
how well the new experiments approximate the original ones.

Nonetheless, Rendle et al. [27] clearly state, in Table 1, that MF
results are reported from (their) Figure 2. That figure compares
MF, Learned Similarity (MLP), NeuMF, and pretrained NeuMF, con-
sidering different embedding sizes. However, the results reported
from Rendle et al. (except for MF) are from He et al. [14]. Therefore,
to conduct a thorough replication, we herein replicate some piv-
otal experiments reported in that figure. In detail, we have decided
to replicate six MF experiments (three embedding sizes for each
dataset) and eight NeuMF experiments (four embedding sizes for
each dataset). For MF, we considered 32, 128, and 192 as embedding
sizes. For NeuMF, we considered 24, 48, 96, and 192 as embedding
sizes (according to Appendix 3 from Rendle et al. [27]).

Thus, Figure 1 reports the original values from He et al. [14]
regarding Learned Similarity (MLP) and pretrained NeuMF and
reports our replicated experiments’ results for MF and NeuMF. It is
noteworthy mentioning that our MF experiments overlap with Ren-
dle et al. showing that the MF curves dominate the others. However,
the NeuMF curve shows different behavior from He et al. It is even
more interesting to notice that the NeuMF experiment with 48 as
the embedding size is also reported by Dacrema et al. [9], and the
results are very close to ours.

Reviewing Pinterest results, MF confirms to be the best model
in terms of HR and nDCG. Even in this context, NeuMF never
overcomes the MF models. Actually, NeuMF reaches the best per-
formance in terms of HR and nDCG for the NeuMF model with

4https://github.com/sisinflab/Reenvisioning-the-comparison-between-Neural-
Collaborative-Filtering-and-Matrix-Factorization
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Table 1: Comparison of NeuMF and MF with various baselines with cutoff @10. The table replicates (and compare with) the
results from Dacrema et al. [9], Rendle et al. [27]. The best results are highlighted in bold, the second best results is under-
lined. The columns with the Δ symbol indicate the absolute variation (for each metric) between the values of the experiments
reproduced and those reported in the articles by Dacrema et al. [9] and Rendle et al. [27].

Method MovieLens-1M MovieLens-1M [9, 27] Δ MovieLens-1M Pinterest Pinterest [9, 27] Δ Pinterest

nDCG HR nDCG HR nDCG HR nDCG HR nDCG HR nDCG HR

MostPop 0.2542 0.4535 0.2543 0.4535 −1 · 10−04 0 0.1410 0.2743 0.1409 0.2740 1 · 10−04 3 · 10−04
SLIM 0.4480 0.7164 0.4468 0.7162 1.2 · 10−03 2 · 10−04 0.5615 0.8696 0.5601 0.8679 1.4 · 10−03 1.7 · 10−03
iALS 0.4385 0.7123 0.4383 0.7111 2 · 10−04 1.2 · 10−03 0.5587 0.8766 0.5590 0.8762 3 · 10−04 4 · 10−04
NeuMF 0.4211 0.6952 0.4349 0.7093 −1.38 · 10−02 −1.41 · 10−02 0.5480 0.8704 0.5576 0.8777 −9.6 · 10−03 −7.3 · 10−03
MF 0.4545 0.7310 0.4523 0.7294 2.2 · 10−03 1.6 · 10−03 0.5776 0.8898 0.5794 0.8895 1.8 · 10−04 3 · 10−04

EASER 0.4494 0.7192 0.4494 0.7192 0 0 0.5605 0.8684 0.5604 0.8684 0 0
RP3β 0.4011 0.6758 0.4011 0.6758 0 0 0.5685 0.8796 0.5685 0.8796 0 0
PureSVD 0.4299 0.6926 0.4303 0.6937 −4 · 10−04 −1.1 · 10−03 0.5233 0.8261 0.5241 0.8268 −8 · 10−04 −7 · 10−04

a number of factors equal to 16, according to the findings pro-
vided by Dacrema et al. [9]. Nonetheless, increasing that number
of factors, we witness a performance decrease: both HR and nDCG
decrease as the number of factors increases. Furthermore, Table 1
reports the overall results for the methods involved in the inves-
tigation. These outcomes confirm the evidence shown by Rendle
et al. [27]: also other MF-based methods, like SLIM and iALS, out-
perform NeuMF. Beyond MF, also EASER provides a very notable
performance. PureSVD behaves similarly to NeuMF. Finally, RP3β
does not appear competitive as the other models in the investi-
gation: its performance is consistently worse than the others. All
these findings further confirm the results provided in Dacrema et al.
[9]. Another finding (from Dacrema et al. [9]) the careful reader
can rediscover in our experiments is the RP3β performance on the
Pinterest dataset: although MF again demonstrates its higher accu-
racy, RP3β demonstrates competitive performance overcoming all
the remaining baselines. Overall, the general take-home message
of Dacrema et al. [9] experiments is confirmed: NeuMF is often not
better than relatively simple and well-known techniques.

Finally, Table 2 compares, for the sake of completeness, our
experiments on NeuMF without pretraining with the same config-
uration from He et al. [14]. The results in columns marked with
the reference are from Table 2 in He et al. [14] and correspond to
the results for the NeuMF model without pretraining. As shown
before qualitatively, the replicated results obtained through the
benchmark framework overlap the original ones. However, con-
sidering 64 factors on Pinterest, an appreciable difference can be
observed that regards the nDCG value. This is probably due to the
non-deterministic initialization of the model that leads to slightly
different results. The effect seems to be more evident in the models
with a greater embedding size, suggesting that the model accu-
mulates the initial uncertainties. Remarkably, the deviation in the
results exhibits a different trend (from the original model). Even
though this could be a signal of lack of robustness of the model,
further investigation is needed to shed light on this behavior.

Table 2: Performance ofNeuMFwithout pre-training. The ta-
ble compares replicated experiments (on the left) with prior
experiments He et al. [14]. Differently from He et al. [14],
the results on Pinterest show a performance decrease with
64 factors. All metrics are with cutoff @10.

Factors
MovieLens-1M MovieLens-1M [14] Pinterest Pinterest [14]

nDCG HR nDCG HR nDCG HR nDCG HR

8 [14] - 24 [27] 0.409 0.688 0.410 0.688 0.547 0.868 0.546 0.869

16 [14] - 48 [27] 0.416 0.691 0.420 0.696 0.548 0.870 0.547 0.871

32 [14] - 96 [27] 0.418 0.699 0.425 0.701 0.541 0.869 0.549 0.870

64 [14] - 192 [27] 0.421 0.695 0.426 0.705 0.536 0.861 0.551 0.872

4 COMPARING ANNS AND MF ON NEW
CONTEXTS

From now on, our investigation extends the previously described
replicated experiments. These new experiments share the same
setup of the previous section and exploit the same benchmark
framework. The purpose is to provide a broader view of the experi-
ments considering other evaluation dimensions. First, we extend
the list of metrics used to measure the accuracy of generated recom-
mendation lists. Second, we investigate beyond-accuracy evaluation
dimensions, covering the novelty and diversity of the recommen-
dations and the bias induced by the recommendation algorithms.
All the considered metrics have been implemented in Elliot5 [3]
and are publicly available6. The specific nDCG formulation used in
this paper is named nDCGRendle2020 to avoid confusion with the
alternative implementation.

4.1 An extended Accuracy evaluation
The existence of a high correlation between the accuracy met-
rics has been recently shown [33]. Nevertheless, an evaluation

5https://github.com/sisinflab/elliot
6https://github.com/sisinflab/Reenvisioning-the-comparison-between-Neural-
Collaborative-Filtering-and-Matrix-Factorization

https://github.com/sisinflab/elliot
https://github.com/sisinflab/Reenvisioning-the-comparison-between-Neural-Collaborative-Filtering-and-Matrix-Factorization
https://github.com/sisinflab/Reenvisioning-the-comparison-between-Neural-Collaborative-Filtering-and-Matrix-Factorization


Reenvisioning Collaborative Filtering vs Matrix Factorization RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

16 32 64 128 2560.550
0.575
0.600
0.625
0.650
0.675
0.700
0.725
0.750

Embedding dimension

H
R@

10

Movielens

Matrix Factorization (MF)
Learned Similarity (MLP)

MLP+GMF (NeuMF)
MLP+GMF pretrained (NeuMF)

Replicated experiment

16 32 64 128 256

0.320
0.340
0.360
0.380
0.400
0.420
0.440
0.460

Embedding dimension

N
D
CG

@
10

Movielens

Matrix Factorization (MF)
Learned Similarity (MLP)

MLP+GMF (NeuMF)
MLP+GMF pretrained (NeuMF)

Replicated experiment

16 32 64 128 2560.780

0.800

0.820

0.840

0.860

0.880

0.900

Embedding dimension

H
R@

10

Pinterest

Matrix Factorization (MF)
Learned Similarity (MLP)

MLP+GMF (NeuMF)
MLP+GMF pretrained (NeuMF)

Replicated experiment

16 32 64 128 2560.480

0.500

0.520

0.540

0.560

0.580

Embedding dimension

N
D
CG

@
10

Pinterest

Matrix Factorization (MF)
Learned Similarity (MLP)

MLP+GMF (NeuMF)
MLP+GMF pretrained (NeuMF)

Replicated experiment

Figure 1: Comparison of learned similarities (MLP, NeuMF) with a dot product: The results for MLP and pretrained NeuMF
are from He et al. [14], Rendle et al. [27]. MF substantially outperforms MF, NeuMF, and pretrained NeuMF. Nonetheless, on
MovieLens-1M, when considering large embeddings, pretrained NeuMF is competitive.

that examines only HR and nDCG could be quite limited. There-
fore, we further extend the previous analysis considering other
five metrics: F1-measure (F1) [12], Limited Area Under the Curve
(LAUC) [31], Mean Average Precision (MAP) [12], Mean Average
Recall (MAR) [12], and Mean Reciprocal Rank (MRR) [35].

Table 3 reports the results for the extended accuracy evaluation.
Observing the big picture, MF is still one of the most competitive
models, consistently being the best model regarding all the consid-
ered metrics on Pinterest. However, the situation is quite different
on MovieLens-1M , since EASER shows the best performance in
terms of MAP, MAR, and MRR. Another interesting confirmation is
the RP3β performance on Pinterest. For all the considered metrics,
it shows to be the second-best model. However, if we observe the
outcomes on MovieLens-1M , the situation is much more confus-
ing. Previous experiments showed that MF was the most accurate
method, followed by EASER. Table 3 shows a quite different sce-
nario, with EASER being the best model regarding MAP, MAR, and
MRR, and the second best concerning the remaining metrics. Con-
versely, MF still shows competitive results, but regarding MAP and
MRR, it is not in the first two places. Overall, MF, Slim, and iALS
outperform NeuMF on these two datasets, hence confirming the
most important finding of the previous experiment.

4.1.1 Statistical hypothesis tests. To complete the study regarding
the accuracy evaluation, we investigated whether the differences
between the accuracy results of the various methods are statistically
significant. Figure 2 shows eight heatmaps of statistical significance

calculated with the Student’s paired t-test. Statistically significant
differences (with a p-value lower than 0.05) are drawn in green. In
contrast, p-values greater than or equal to the 0.05 threshold value
are colored by shades of red.

Figure 2 confirms that MF significantly overcomes the other
methods regarding nDCG and HR on both MovieLens-1M and Pin-
terest. Besides MF, and considering the samemetrics, the differences
between EASER, iALS, and Slim are not always statistically signifi-
cant. Moreover, when analyzing MAP and MRR, it is noteworthy
that the difference between EASER, Slim, and MF are not significant.
For what concerns NeuMF, the situation is different. Indeed, the dif-
ferences with EASER, PureSVD, and Slim are not always significant.
Finally, RP3β deserves a concluding remark since all the differences
with the other models are statistically significant, thus confirming
its positive performance on Pinterest and the below-the-average
one on MovieLens-1M .

4.2 Novelty and Diversity
Once it is established how accurate the various methods are, our
study expands beyond the accuracy evaluation. This section fo-
cuses on the ability of the recommendation algorithms to propose
unknown items (Novelty), on overall item coverage, and on the
ability to suggest highly diversified recommendation lists. For what
concerns Novelty, we measure Expected Free Discovery (EFD) [34]
and Expected Popularity Complement (EPC) [34], which measure
the ability of a recommendation system to recommend items from
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nDCG HR MAP MRR
MovieLens-1M

nDCG HR F1 LAUC
Pinterest

Figure 2: Statistical hypothesis tests using Student’s paired t-test with a threshold value (light red) of p=0.05. Algorithm pairs
which results are statistically significant are in green, the results that are not statistically significant are in red.

Table 3: Comparison of NeuMF and MF with various base-
lines on an extended set of accuracymetricswith cutoff@10.
The best results are highlighted in bold, the second-best re-
sult is underlined.

Method
MovieLens-1M Pinterest

F1 LAUC MAP MAR MRR F1 LAUC MAP MAR MRR

MostPop 0.0825 0.4531 0.0647 0.3072 0.1937 0.0499 0.2742 0.0341 0.1717 0.1009

SLIM 0.1303 0.7159 0.1204 0.5372 0.3648 0.1581 0.8694 0.1535 0.6757 0.4649

iALS 0.1295 0.7117 0.1172 0.5288 0.3537 0.1594 0.8764 0.1525 0.6786 0.4587

NeuMF 0.1264 0.6947 0.1120 0.5106 0.3363 0.1583 0.8702 0.1487 0.6653 0.4472

MF 0.1316 0.7232 0.1188 0.5383 0.3573 0.1618 0.8896 0.1584 0.6958 0.4796

EASER 0.1308 0.7187 0.1210 0.54202 0.3655 0.1579 0.8682 0.1532 0.6752 0.4639

RP3β 0.1229 0.6753 0.1053 0.4853 0.3166 0.1599 0.8794 0.1554 0.6836 0.4710

PureSVD 0.1259 0.6921 0.1153 0.5178 0.3486 0.1502 0.8259 0.1422 0.6339 0.4286

the long tail. Concerning aggregate diversity metrics, we adopt
Item Coverage [12] that measures the overall number of items the
recommender suggests to the population. Finally, to measure how
diversified the recommendation lists are, we exploit two popular
distributional inequality metrics, the Gini Index (Gini) [12] and
Shannon Entropy (SE) [12]. The Gini Index is defined as 1 - Gini
Index from Gunawardana and Shani [12], so that a higher value
corresponds to a greater degree of diversification.

Figure 3 shows twelve bar charts that compare MF and NeuMF
with the other baselines regarding the six observed metrics on the
two datasets. Let the analysis focus on Novelty. It is worth noticing
that, even here, MF outperforms NeuMF and the other baselines
since it generates recommendation lists with a larger number of
items belonging to the long tail. Conversely, NeuMF shows poor

performance, and only RP3β and Most Popular behave worse. In
general, also other matrix factorization models such as iALS and
SLIM are shown to be competitive against the other baselines under
analysis. However, under the perspective of recommendation Di-
versity, the scenario dramatically changes. In fact, regarding Item
Coverage, NeuMF is the best performing model on MovieLens-1M ,
and a very competitive one on Pinterest (the best one is RP3β),
suggesting a higher overall number of items present in the cata-
log. Conversely, MF (and the other MF-based models) are not able
to win the comparison. For what regards recommendation list di-
versification, the Gini bar chart reveal a more clear ranking of the
methods. Again, MF fails to be effective in terms of diversity, and, on
MovieLens-1M , only EASER and RP3β show lower results. NeuMF
shines neither on MovieLens-1M dataset nor on Pinterest dataset.
However, in both cases, it shows a greater propensity to generate
personalized lists than MF. Interestingly, on both datasets, the iALS
model is particularly competitive regarding the two distributional
inequality metrics. Finally, even here, the reader may appreciate
how different the RP3β performance is on the two datasets.

4.3 Analysis of Recommendation Biases
In the final part of the study, we focus on how the recommenda-
tion algorithms induce or amplify bias into the recommendation
lists. Indeed, user-item interactions are often distributed unevenly
over different groups of users and categories of items. This could
be due to various reasons ranging from the naturally varying user
preferences to the existence of a recommendation system in the pref-
erence collection system. Recommendation algorithms can inherit
or even amplify this imbalanced distribution, leading to various
kinds of bias. To examine the bias effect we consider five different
metrics: Average Coverage of Long Tail items (ACLT) [2], Average
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Figure 3: Novelty and Diversity comparison of NeuMF and MF with various baselines (higher is better).

Percentage of Long Tail Items (APLT) [1, 2], Average Recommen-
dation Popularity (ARP) [2, 37], Ranking-based Statistical Parity
(RSP) [41], and Ranking-based Equal-Opportunity (REO) [41].

Figure 4 shows ten bar charts that compare MF and NeuMF
against the other baselines regarding these five bias measures on
the two datasets. Themost straightforward metric to analyze is ARP.
This metric measures the average popularity of the recommended
items in each list. Interestingly, MF and NeuMF behave similarly on
MovieLens-1M , while EASER and RP3β are more prone to suggest
popular items. In contrast, the other MF-based methods, iALS, Slim,
and PureSVD, show the best performance. However, on Pinterest,
the ranking is less clear since all the methods behave in a similar
way. Let the analysis focus on ACLT and APLT. APLT measures
the average percentage of long-tail items in the recommended lists,
while ACLT measures how much exposure long-tail items get in
the recommendations. These two metrics exhibit three interesting
behaviors: (i) both iALS and NeuMF seem to be less prone to these
kinds of biases, (ii) MF, EASER, and PureSVD show to be heavily
affected by them, (iii) the difference of RP3β performance on the
datasets influences the bias of the generated recommendations.

Finally, we focus our investigation on RSP and REO. RSP mea-
sures whether items in different groups have the same probabilities
of being recommended. Poor RSP means one or more groups have
lower recommendation probabilities than others. REOmeasures the
bias that items in one or more groups have lower recommendation
probabilities given the items enjoyed by users. Differently from
RSP, REO-based bias does not depend on sensitive attributes.

In this study, even though additional information could be re-
trieved to form item groups, the purpose is to conduct the inves-
tigation based on the same information available to the original
authors. Therefore we formed two distinct groups of items based on
the popularity signal. One group comprises the 20% most popular
items, while the other includes the remaining items. For this reason,
in the following, we refer to them as PopRSP and PopREO.

On MovieLens-1M dataset, iALS and SLIM exhibit the best per-
formance regarding both metrics. Even here, NeuMF demonstrates
to be less prone than MF to this type of bias. MF does not show
unsatisfactory results regarding both statistical parity and equal
opportunity, but it never overcomes NeuMF. Finally, EASER, RP3β,
and PureSVD are affected by the bias and under-recommended
items from minority groups, even though these items are present in
the user history. In contrast, on Pinterest, RP3β shows leading per-
formance, along with iALS and NeuMF. As detailed in Section 3.1,
following He et al. [14] and Rendle et al. [27], all the recommenders
were optimized for accuracy. It is left as future work an extended
analysis where the effect of different optimization goals could have
on the recommendation accuracy and beyond-accuracy dimensions,
as in Kaminskas and Bridge [18].

5 CONCLUSION
Understanding how the different recommendation algorithms work
under unique evaluation dimensions is critical to advance the field.
In this work, we aimed to shed some light on this aspect, by con-
trasting recent models that are competitive against Neural Network
approaches under complementary dimensions — not only accuracy,
but novelty, diversity, coverage, and bias. In particular, we focus
on the methods presented in He et al. [14], Rendle et al. [27], and
complemented our experimental exploration with the extensive
analysis done in Dacrema et al. [9]. We have been able to repli-
cate most of the results reported in those papers, where NeuMF is
outperformed by the MF variation presented in Rendle et al. [27].
Moreover, when reproducing these approaches in new contexts,
such as other evaluation dimensions or more accuracy metrics,
baselines like EASER and RP3β are confirmed as solid candidates to
be included in any comparison in the future, as their performance
in terms of accuracy, diversity, and novelty is sometimes better
than those of neural network approaches. However, it is important
to highlight that the trend obtained for NeuMF is slightly different
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Figure 4: Analysis of Bias for NeuMF, MF and various baselines considering a cutoff@10. For ACLT, and APLT, higher is better,
while for ARP, PopREO, and PopRSP, smaller is better.

than from the original paper and, in particular, our extended analy-
sis on accuracy evidences that the difference between this method
and other baselines are not always statistically significant.

Our experiments have summarized and re-evaluated results from
3 recent papers, but they can be complemented in several ways. For
example, one direction that has been unexplored so far is the effect
that the splitting methodology or the item selection strategy could
have in all these methods. Recent research has evidenced that how
items are selected may affect the evaluation results [6]; however,
because we wanted to replicate the exact conditions of these papers,
we did not change these experimental settings. It will be interesting
to analyze this aspect and how it (may) change the ranking of the
methods. Another potential venue to improve this comparison is
on the selection of datasets. Again, as we wanted to replicate the
original papers, we were limited to useMovieLens-1M and Pinterest,
however, it is crucial to understand how these methods work in
other domains and under a wide array of evaluation dimensions,
such as those explored here.
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