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Abstract

Suggesting new venues to be visited by a user in a specific city remains an inter-
esting but challenging problem, partly because of the inherent high sparsity of
the data available in location-based social networks (LSBNs). At the same time,
in traditional recommender systems, in order to improve their performance in
these sparse situations, different techniques have been proposed mainly by aug-
menting and aggregating the data available in different domains. In this paper,
we address the problem of venue recommendation from a novel perspective: we
propose two strategies to select a set of candidate cities in order to use their in-
formation when performing recommendations for the users in a specific (target)
city. In this context, we categorize users into two different groups (tourists and
locals) according to their movement patterns and analyze the potential biases
in the recommendations received by each of these groups. We provide an exper-
imental comparison of several recommendation algorithms in a temporal split,
where we analyze two strategies to select cities and augment the available data:
based on the number of interactions and based on the distance with respect to
the target city. Our results show that, in general, extending the available data
by proximity increases the performance of the majority of the tested recom-
menders in terms of relevance and coverage, with almost no change in novelty
and diversity. We have found that those users belonging to the tourist group
tend to obtain better results in terms of relevance. Furthermore, in general,
tourists consistently exhibit different performance by some families of recom-
menders for other evaluation dimensions, evidencing a popularity bias in user
behavior and raising potential fairness issues regarding the quality of the re-
ceived recommendations. We investigate these aspects and provide methods to
better understand the problem. We expect these results could provide readers
with an overall picture of what can be achieved in a real-world environment.

1. Introduction

The great development of location-based social networks (LBSNs) in recent
years has encouraged the research on the problem of Point-of-Interest (POI)
or venue recommendation, i.e., suggesting new places to visit by analyzing the
users’ tastes, needs, and movement patterns [1]. Foursquare and Gowalla are5
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examples of this kind of social networks, where users record the check-ins they
make to certain venues (restaurants, cinemas, hotels, etc.) and share their
experiences with other users in the system [2, 3]. This information, if processed
and exploited correctly, can then be used to suggest to the users new venues to
visit when using a recommendation engine.10

Since research on Recommender Systems (RS) has increased in many di-
rections in the last years, it is important to consider some specific details of
POI recommendation that differ from the traditional recommendation problem
[4, 5, 6]. These include, but are not limited, to:

• Implicit and repeated interactions: check-in data is one type of im-15

plicit feedback, where only positive values indicating that a user has vis-
ited a venue are recorded. Nonetheless, since users may check-in at the
same place several times, researchers often build frequency matrices to
model these repetitions. In fact, the presence of repeated interactions
has a strong effect on performance when exploited properly [7]. Other20

sequence-aware recommendation areas such as music or e-commerce also
exploit these repetitions for their recommendations [8, 9]; in contrast, in
traditional domains such as books or movies it is normally assumed that
users rate each item once [10].

• External influences: venue recommendation is highly affected by so-25

cial (user friends), temporal, and geographical influences. The latter is
possibly the most important effect to consider in POI recommendation to
improve the recommendation performance, as it is usually assumed that
users prefer to visit venues that are close to each other (as the first law of
geography states “Everything is related to everything else, but near things30

are more related than distant things” [11]). That is the main reason why
researchers have proposed algorithms modeling explicitly the locations of
venues [12, 3, 13].

• Sparsity: in the RS domain, the user-item matrix is usually very sparse.
However, in venue recommendation this effect is even more severe. For ex-35

ample, the densities of the Movielens20M and Netflix datasets are 0.539%
and 1.177% respectively, while the density of the Foursquare dataset that
we are using in our work is 0.0034%. It should be emphasized, however,
that these density values might be, in some cases, misleading. By consid-
ering the law of geography previously stated, people living in a city would40

check-in along a somewhat limited subset of the venues, i.e., those of their
city. Nonetheless, the sparsity problem is still key in these systems, since
the number of active users in a city is also very small. Hence, the number
of interactions that these venues receive is very low, leading to very high
sparsity scenarios.45

At the same time, recommenders can be improved by extending the avail-
able information with additional data. This is especially important in datasets
with a high level of sparsity, where it is difficult to learn patterns of users and
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items due to the low number of interactions between them. Transfer (or cross-
domain) learning is one of these valuable techniques that allow us to use external50

or additional information, mainly to improve the performance in the target do-
main [14, 15]. In the context of RS, cross-domain recommendation is a recent
and active research topic, where POI recommendation has been acknowledged
as a potential application domain [16]. However, not many experimental com-
parisons have been performed using cross-domain or augmentation techniques55

in this field with a temporal evaluation methodology. In this regard, it is impor-
tant to mention that it is common to find POI recommendation proposals that
perform other type of splits for evaluation, such as random partitions, cross-
validation, or temporal splits per user [12, 3, 17]. However, we argue that these
types of splits are less realistic, since in those partitions we may be predicting60

user interactions that occurred in the past mixed with other events that occur
in the future. In addition, user tastes change over time and also there may be
global trends that we would not be taking into account if a temporal partition
is not used.

Moreover, besides the inherent personalized results that are expected to be65

received by users, these users are traditionally treated equally when measuring
the performance of the recommenders. However, this is slowly changing since
recently the field is paying more attention to whether users with different at-
tributes (such as age, gender, nationality, etc.) receive the same treatment, or, in
other terms, if the recommender system provides fair recommendations [18, 19].70

Nonetheless, these efforts are not easy to generalize to other domains, in particu-
lar because users do not share the same characteristics in different recommender
systems and also because in some domains, user groups might not be easily cat-
egorized with a single attribute, even though such groups exist and evidence
distinct behavior. In particular, in the tourism domain (which is typically stud-75

ied with data from LBSNs), check-in data has been used to characterize four
types of travelers [20]: vacationers, explorers, voyagers, and globetrotters, thus
going beyond the classical tourist roles that are usually considered (either leisure
or business). Nonetheless, it is also acknowledged that most of these users are
not actual tourists but local users, or, at least, that they tend to travel a lim-80

ited distance from their home locations (an effect called travel locality) [21]. For
this reason, in this paper we will focus on two main groups of users, locals and
tourists. The first group, as said before, tends to be numerous, and sometimes
these type of users are considered as “local experts”, and some approaches
exploit their interactions to improve the performance of the recommendation85

models [22, 23]. Tourists, on the other hand, tend to spend less time in the tar-
get city and although they may have a different behavior than locals they may
also be interested in the local culture [24, 25]. In any case, and independent of
these uncertainties in the types of users that can be identified in these systems,
we think it is important to study if the susceptible algorithms to be used in90

such systems are to some extent biased towards any particular user group, or if
these groups are transparent to the algorithms.

Considering these issues, in this paper we analyze the effect of producing rec-
ommendations when using augmented information extracted from other cities,
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by exploiting different Multi-City Aggregation (MCA) strategies, either based95

on the number of interactions (popular cities) or by proximity with respect to
the target city. In fact, LBSNs users can travel anywhere in the world and
the check-ins they perform in one city can be useful to learn their profiles and
used to make recommendations in other cities. For that reason we will use two
simple strategies to obtain more data to make recommendations: with the first100

strategy (based on popular cities) we will be able to further expand the informa-
tion available to the algorithms, whereas with the second (based on geographic
proximity, either by distance or by the country of the target city) we expect to
exploit related interactions as it is easier to travel to nearby cities. Furthermore,
we incorporate into our work an exploratory analysis with the aim to uncover105

any bias or effect that may inadvertently be present when making venue rec-
ommendations from LBSN data, on both state-of-the-art algorithms and when
using our proposed MCA strategies. Therefore, in this work we address the
following research questions:

RQ1: Are state-of-the-art recommendation algorithms able to exploit110

augmented information through MCA strategies for venue rec-
ommendation? We empirically compare a set of recommenders under
two MCA strategies, where information from many other cities is incorpo-
rated into the recommendation algorithm: according to their popularity
and according to the distance to the target city (with a special case con-115

sidering the cities of the same country with respect to the target city).
More specifically, we are interested in analyzing which is the best MCA
strategy to augment the available data in terms of relevance. For this, we
focus on nDCG as ranking metric and see which aggregation strategy has
a larger impact in performance under a realistic temporal evaluation.120

RQ2: What is the impact that venue recommenders have on different
groups of users? We identify two major user groups, tourists and locals
according to their check-in distribution, that is, only based on information
that is available in any LBSN; in particular, our goal is to classify and
analyze the differences and biases towards users that act as tourist in125

contrast to those that are locals in a particular city. We analyze both state-
of-the-art algorithms and the proposed MCA strategies, in the context of
venue recommendation. Thus, we explore systematic biases revealed by
ranking accuracy from these approaches and hypothesize their primary
reasons.130

RQ3: How do MCA strategies affect other evaluation dimensions?
What is the impact of these dimensions on different groups of
users? We analyze the novelty, diversity, and coverage of the recom-
menders after MCA strategies are used to augment the data. We then
compare these metrics against their values when no aggregation strategy135

is used to see how these dimensions are affected when using additional
data on the recommenders. At the same time, we explore the extent
to which the biases revealed in the previous research question, that are
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related to accuracy, are also present when measuring performance with
beyond-accuracy evaluation metrics.140

Our work provides a thorough comparison of two Multi-City Aggregation
strategies for venue recommendation under a realistic time-aware evaluation
methodology. We report the results obtained by the MCA strategies in terms
of ranking accuracy, novelty, diversity, and coverage using a dataset with more
than 30M interactions. Moreover, we complement these results with an extensive145

analysis of the effect of these strategies (together with the base performance of
state-of-the-art approaches) in different types of users.

Our results indicate that proper data augmentation strategies improve the
performance of some recommendation approaches, although for other recom-
mendation algorithms, such as those based entirely on geographical informa-150

tion, it is more appropriate to not augment the input data since those tech-
niques might get affected negatively by the geographical biases introduced by
the MCA strategies. Furthermore, data augmentation strategies obtain such
improvements at the expense of almost no change in novelty and diversity, and
even improving their coverage in some cases. At the same time, our results155

show that tourist users systematically obtain better recommendations (at least,
in terms of accuracy), which evidences a strong bias towards this type of users.
We further conclude that this behavior is due to the preferences of these users
being more prominent towards popular POIs in the cities, which are easier to
satisfy. This result is, to the best of our knowledge, novel in the area and opens160

up several possibilities, as we shall show later in this work.

2. Background

The aim of Recommender Systems is to assist users through large databases
and catalogues, by filtering and suggesting relevant items taking into account
the users’ preferences (i.e., tastes, interests, or priorities). In the RS community,165

a large number of algorithms have been proposed in order to learn and model
the user interests. The most well-known approaches are collaborative filtering
(CF) and content-based (CB) algorithms (which are usually combined creating
hybrid RS) and, recently, context-aware recommenders have also emerged due
to their ability to model additional information such as time, sequentiality, user170

location, or even the weather in order to make recommendations. However,
given their pervasiveness in the literature, we will skip their definitions here
and refer the reader to [26] to learn about CB systems, to [10, 27] to know
more about CF techniques (such as nearest neighbors and matrix factorization
approaches) and, finally, to [28] for a more in-depth survey of context-aware175

recommenders.
The recommendation of Point-Of-Interest (POI) or venues is similar to the

traditional recommendation problem, since its main objective is to recommend
venues (which may belong to any category such as restaurants, museums, parks,
etc.) that the user has not seen beforehand, but it exhibits some distinctive180

features. For example, in traditional recommendation we normally assume that
the users consume an item only once, while in POI recommendation multiple
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visits to the same venue can be exploited when building the recommendation
model [12, 7]. Besides, this type of recommendation is highly influenced by
spatial, social, and temporal factors [6, 29], so most of the algorithms try to185

model them in order to perform recommendations.
Matrix Factorization (MF) techniques are one of the most extended ap-

proaches in the RS area because they tend to outperform other techniques such
as neighbor-based algorithms [30], moreover, they can also be easily extended
with baseline predictors and temporal information [27]. In venue recommen-190

dation these techniques are also very popular and they form the core of many
approaches, such as LRT [31], IRenMF [12], GeoMF [13] and Rank-GeoFM [4].

Other methods besides those based on MF have also been applied in venue
recommendation. For example, the USG model from [3] combines three different
components: a probabilistic model based on the history of visited POIs by195

the user to consider geographical information, CF similarities based on other
users in the system (classic CF), and CF similarities based on the friends of
the target user (social influence). Another interesting approach is the LORE
algorithm from [32], where Markov Chains are used to model the sequential
patterns between POIs, together with social and geographical influence.200

As we observe, there is a great number of venue recommendation algorithms
but the basis for most of them are proposals already explored in traditional
recommendation, complementing them with specific features of LBSNs (geo-
graphical, social, and temporal influence, among others). Because of this, in
this paper, we analyze the impact of Multi-City Aggregation strategies in the205

context of venue recommendation and analyze the effect these strategies have
on tourist and local users in different cities using data from a well-known LBSN,
Foursquare. In the next section we define these strategies more in detail and we
develop some motivation for them to work.

3. POI Recommendation by MCA210

To avoid the inherent problems and limitations prevalent in POI recom-
mendation, we introduce now the concept of Multi-City Aggregation (MCA)
strategies, that allow us to augment the available data used by the recommen-
dation algorithms to suggest interesting POIs to users. The basic idea behind
our proposed strategies is that, to improve recommendations over a target city,215

the data from multiple cities will be aggregated and exploited when training
the recommendation algorithms. Since an infinite number of potential strate-
gies may exist, we shall focus on those that maximize the overlap information
between users.

More specifically, the main goal we aim to achieve, hence, if we focus on220

CF algorithms, would be to find highly active users in the aggregated cities so
the recommendations are produced based on more information. Therefore, we
consider the following possibilities:

• Geographical Nearest MCA (N): we use the n closest cities to the target
city as the aggregated information. We aim to capture cultural diver-225
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Table 1: Jaccard coefficient between users in the training splits of each city and the corre-
sponding MCA strategy.

Multi-City Aggregation Cities
Average

strategy (MCA) Istanbul Jakarta Kuala Lumpur Mexico City Moscow Santiago São Paulo Tokyo

N-MCA 89.54% 67.14% 83.44% 89.36% 94.48% 85.28% 64.87% 79.13% 81.66%
C-MCA 67.64% 57.54% 66.14% 67.80% 61.35% 83.68% 34.43% 74.52% 64.14%
P-MCA 29.09% 13.63% 13.53% 9.30% 8.71% 7.73% 8.99% 10.79% 12.72%

sity through their patterns1, while, at the same time, we keep control of
the number of cities we consider. Additionally, as a special case of Ge-
ographical Nearest MCA, we consider a country-based MCA (C), where
the aggregated information is built by all the cities of the same country
as the target city. In this strategy, we assume that users tend to visit230

more often those cities of the same country, or, at least, that there are
some kind of patterns shared among them, mostly due to a similar culture
and language [33], even though some situations (large countries) may add
too much noise into the model. The idea for this strategy comes from
previous works in POI recommendation that use datasets with interac-235

tions belonging to a specific country or a state/province of a country, as
in [4, 34]. Note that for the N-MCA there could be cities from a different
country with respect to the target city while in C-MCA all selected cities
will belong to the same country, even though some of them may not be so
close to the target city.240

• Most-popular MCA (P): we use the n cities with more check-ins as the
aggregated data. This strategy allows us to test whether considering those
cities that the system has more information about can be useful for the
model. We hypothesize that having more information should be help-
ful for the recommendation algorithms, however, this strategy might also245

be more sensitive to noise and may not improve the user overlap (even
though a high user overlap may not be sufficient to obtain a performance
improvement). This strategy is also influenced by other works in POI
recommendation that use datasets with check-ins from all over the world,
including [31, 35, 36].250

As a first validation that these strategies might be actually helpful for POI
recommendation, we show in Table 1 the percentage of common users (measured
using the Jaccard coefficient) between the training set of each target city and
the corresponding training set of the multiple cities being aggregated according
to the different strategies described before. Using the same dataset that will255

be used and explained later in the experiments, we compute these percentages

1In particular, according to [33], the most important pattern corresponds to crowd mo-
bility (characterized as daily activity patterns and intercity mobility), combined with the
distribution of venue categories.
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Table 2: Description of the temporal partition evaluated (the complete dataset, the training
set, Tr, and the test set, Te), where U , I, and C denote the number of users, items, and
check-ins (either with repetitions, CR, or without, Cr). The column δ(C) denotes the density
of dataset as computed by C/(U · I).

Check-in period U I CR Cr δ(CR) δ(Cr) Cr/U Cr/I

Apr’12-Sep’13 267k 3.7M 33.3M 15.1M 0.0034% 0.0015% 123.60 9.16
Tr: May-Oct ’12 202k 1.1M 9.9M 4.8M 0.0044% 0.0021% 23.67 4.31
Te: Nov ’12 150k 352k 831k 831k 0.0017% 0.0017% 5.52 2.36

using the Jaccard coefficient as follows (in agreement with [33]):

Common Users(C1, C2) =
|U(C1) ∩ U(C2)|
|U(C1) ∪ U(C2)|

(1)

where U(C) denotes the set of users in city C.
We observe that the N-MCA and C-MCA strategies are really useful to find

more users in common, however, it is not clear the actual effect this result may260

have on the performance of venue recommendation algorithms, especially on
those not based on nearest neighbors. At the same time, even though the P-
MCA strategy does not discover many users in common, since it includes much
more data to train the recommenders, it may benefit some recommendation
approaches. Hence, in the experiments we shall test which approach is actually265

more helpful to obtain better recommendations.
In summary, and drawing related concepts available in the literature, our

proposal would be similar to some techniques from cross-domain (or transfer
learning) recommendation, if we consider each city as a different domain. In
that way, when we augment the available information from the different cities270

(according to the proposed MCA strategies), we would combine data from differ-
ent domains, hence performing a cross-domain recommendation. More specifi-
cally, according to the taxonomy presented in [37], it would fit in the category of
merging user preferences by aggregating knowledge, since we combine multiple
sources of personal preferences (basically, the check-ins from various cities and275

the target city). Additionally, our scenario is special and more difficult accord-
ing to the literature since no item overlap exists between the domains, this is
because an item (venue) will never appear in a different domain since they are
unique (even two places of the same food or clothing chain will be considered
different).280

The main advantage of applying some kind of cross-domain in venue recom-
mendation is that we can expand the knowledge of the recommenders with a
larger number of users and items, in order to establish more relationships be-
tween them and find better patterns. However, it is not obvious how we should
select such knowledge: on the one hand, we might add noise to the model and,285

on the other hand, such information may not to be useful at all. This is exactly
what we propose to study and analyze in this paper: MCA strategies that select
data according to different hypotheses and criteria.
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Table 3: Parameters used with the evaluated recommenders. SetC and SetJ stand for SetCo-
sine and SetJaccard. Parameters optimized using Precision@5.

Recommender Parameters

Rnd None
Pop None
AvgDis None
KDE None

BPR
Factors={10, 50, 100}, Iter=50, LearnRate=0.5, RegJ=RegU/10,
BiasReg={0, 0.5, 1}, RegU=RegI={0.0025, 0.001, 0.005, 0.01, 0.1}

ALS Factors={10, 50, 100}, α={0.1, 1, 10}, λ={0.1, 1, 10}

UB Sim={SetC, SetJ }, k={5, 10, · · · , 100}

IB Sim={SetC, SetJ }, k={5, 10, · · · , 100}

GeoBPR
MaxDist={1, 4}, Factors={10, 50, 100}, BiasReg={0, 0.5, 1}, Iter=50,
RegU=RegI={0.0025, 0.001, 0.005, 0.01, 0.1}, LearnRate=0.05

IRenMF
k=10, Clusters=50, λ1=λ2=0.015,
Factors={50, 100}, α={0.4, 0.6}, λ3={0.1, 1}

Rank-GeoFM
Factors={10, 50, 100}, k={10, 50, 100, 200}, α={0.1, 0.2}, c=1, dec=1,
ε=0.3, boldDriv=true, Iter=120, LearnRate=0.001, mRate=0.001

FMFMGM
MGM: α = {0.2, 0.4}, θ = {0.02, 0.1}, dmax=15. PMF: Iter=30,
Factors={50, 100}, α2={20, 40}, β=0.2, LearnRate=0.0001, sig-
moid=false

GeoCFCa Sim=SetJ, k=100

PGN k=100, Similarity=SetJ

4. Experimental settings

4.1. Dataset290

The experiments have been performed using the global-scale check-in dataset
of Foursquare2 made public by the authors of [33], by capturing those check-ins
posted by Twitter users. Considering the worldwide nature of this dataset, it
seems impractical for us to select a training/test partition that would remain
comparable for any city in the world. Therefore, we aimed to maximize the295

amount of data included for training the models and to test their performance,
while, at the same time, the temporal patterns in each split should not belong
to seasons that are too different to each other. Based on this, and starting from
the original 33M check-ins over 415 different cities, we created a temporal split
containing 6 months of data in its training step (from May to Oct ’12) and one300

month for test (Nov ’12). It should be noted that this dataset includes POIs
of any type, from restaurants, shops, or museums to landmarks. Table 2 shows
more statistics of both the original dataset and the training/test split used in
this paper. Additionally, as a pre-processing step, we performed a 2-core before
splitting the data into training and test, which means that every user and POI305

has at least two interactions.

2https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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Table 4: Optimal parameters of models for each city. The order of the presented parameters
is: for UB and IB, similarity and neighborhood size; for BPR, factors, RegU, BiasReg; for
ALS, factors, α, λ; for IRenMF, factors, α, λ3; for Rank-GeoFM, factors, neighborhood size,
α; for GeoBPR, maxDist, factors, RegU, BiasReg; for FMFMGM, α, θ, Factors, α2.

City UB IB BPR ALS IRenMF Rank-GeoFM GeoBPR FMFMGM

IST SetJ, 90 SetC, 100 50, 0.001, 0 10, 10, 10 100, 0.4, 1 100, 50, 0.1 4, 100, 0.001, 0 0.4, 0.02, 100, 20
JAK SetJ, 100 SetC, 80 100, 0.0025, 0 10, 10, 10 100, 0.4, 1 100, 200, 0.2 1, 100, 0.001, 0 0.2, 0.02, 100, 20
KUA SetJ, 100 SetJ, 100 50, 0.01, 0 10, 10, 10 100, 0.4, 1 100, 50, 0.2 1, 50, 0.001, 0 0.4, 0.02, 100, 20
MEX SetJ, 100 SetJ, 100 100, 0.01, 0 10, 10, 10 100, 0.4, 1 100, 100, 0.2 1, 100, 0.001, 0 0.4, 0.1, 100, 20

MOS SetC, 100 SetJ, 100 100, 0.01, 0 50, 10, 1 100, 0.4, 1 100, 200, 0.1 1, 50, 0.0025, 1 0.4, 0.1, 100, 20
SAN SetJ, 90 SetJ, 80 50, 0.005, 0 10, 10, 10 100, 0.4, 1 100, 100, 0.1 1, 50, 0.001, 0 0.4, 0.02, 100, 20
SAO SetJ, 100 SetJ, 100 100, 0.1, 0 50, 10, 0.1 100, 0.6, 0.1 100, 50, 0.2 1, 100, 0.001, 1 0.4, 0.02, 100, 20
TOK SetJ, 80 SetC, 80 50, 0.1, 0 10, 10, 10 100, 0.4, 1 100, 10, 0.1 4, 10, 0.001, 0 0.4, 0.02, 100, 20

4.2. Compared baselines

We report results obtained by the following state-of-the-art recommenders
grouped in different families according to the common mechanisms used to make
the recommendations.310

• Classic non-personalized (NP). Traditional recommendation algorithms
that do not learn a profile for each user:

– Popularity (Pop): recommender that suggests the most popular items,
i.e., venues visited by more unique users.

– Random (Rnd): random recommender.315

• Only geographical (Geo). Basic algorithms used to model only the geo-
graphical component:

– Average Distance (AvgDis): baseline recommender that suggests the
closest POIs to the user’s average location. The average is computed
by calculating the midpoint of the coordinates of the POIs visited by320

each user.

– Kernel Density Estimation (KDE): the geographical influence com-
ponent from [32]. It models a probability distribution over a two-
dimensional space using Kernel Density Estimation for every user.

• Classic collaborative filtering (CF-NN). Traditional recommendation al-325

gorithms based on nearest neighbors:

– Item neighborhood (IB): a k-NN recommender with an item-based
approach [10]. We use a not-normalized version since it shows better
ranking performance [38].

– User neighborhood (UB): a k-NN recommender with a user-based330

approach (again, without normalization) [10, 38].

• Classic matrix factorization (CF-MF). Traditional recommendation algo-
rithms based on matrix factorization approaches:
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– Bayesian Personalized Ranking (BPR): the Bayesian Personalized
Ranking from [39] using a matrix factorization technique as provided335

in the MyMediaLite library3.

– Alternate Least Squares (ALS): a matrix factorization (MF) ap-
proach as described in [40] that uses Alternate Least Squares in the
minimization formula.

• POI models (POI): State-of-the-art POI recommendation algorithms:340

– Geographical Bayesian Personalized Ranking (GeoBPR): a POI rec-
ommendation approach that uses BPR to optimize the model [17]. It
incorporates the geographical influence by assuming that users prefer
to visit close rather than remote POIs with respect to the ones that
the user has already visited.345

– Instance-Region Neighborhood Matrix Factorization (IRenMF): weighted
MF method proposed in [12]. We selected this approach because, ac-
cording to the comparison presented in [6], IRenMF was very compet-
itive with a lower execution time with respect to other models, such
as GeoMF [13], or LFBCA [5], which agrees with some preliminary350

experiments we performed in our dataset.

– Ranking-based Geographical Factorization Method (Rank-GeoFM):
a ranking-based matrix factorization approach model proposed in [4]
that uses an additional latent matrix for the users to model the geo-
graphical influence by exploiting the neighboring POIs (by geograph-355

ical distance) with respect to the target POI.

• Hybrid POI recommendation models (H-POI). POI recommendation al-
gorithms whose final score is the combination of two or more independent
algorithms:

– Probabilistic Matrix Factorization with Multi-center Gaussian Model360

(FMFMGM): is a fusion proposed in [41] that combines the Multi-
center Gaussian Model technique (MGM) with Probabilistic Matrix
Factorization (PMF).

– Geographical, Social, and Categorical correlations (GeoCFCa): a hy-
brid POI recommendation model based on the technique proposed365

in [36] that combines the geographical influence using a two-dimensional
KDE and the social and categorical influences modeled by two differ-
ent power-law distributions. As in the Foursquare dataset the social
information is not available for all the users, we decided to use a
k-NN algorithm as a substitute for the social component; because of370

this, we changed its name from the original GeoSoCa to GeoCFCa.

3http://www.mymedialite.net

11

http://www.mymedialite.net


– Popularity, Geographical, and user-based Neighborhood (PGN): a
hybrid approach similar to the USG model proposed in [3] that com-
bines the Pop, UB, and AvgDis recommenders described before. It
basically aggregates the scores of every item provided by each of the375

recommenders, after normalizing its values by the maximum score of
each method.

In order to make a fair comparison among all the evaluated baselines, we
removed repetitions in a user basis for some classic algorithms. When repetitions
are allowed, we either aggregated them as frequencies or keep all the repeated380

interactions. This means that we kept three versions of the training set: with
and without check-in frequencies but where each user-item pair only appeared
once, and another scenario where the user-item pairs might be repeated. More
specifically, the following POI recommendation algorithms could exploit the
frequency of users when visiting a specific venue: AvgDis, IRenMF, FMFMGM,385

RankGeoFM and GeoCFCa; whereas KDE is the only recommender that uses
the training set with repetitions.

For every recommender except the IRenMF and BPR algorithms, we used
the RankSys library [42]; for IRenMF we used the implementation provided by
[12], available here4; for BPR, as stated before, we used the implementation390

from the MyMediaLite library; for the Geo family, we used our own versions
of the algorithms; for Rank-GeoFM and GeoBPR, we implemented our own
versions on top of RankSys, based on the implementation provided by Librec5

for the former, and on the code provided by [43] for the latter. Finally, we also
implemented our own versions of GeoCFCa and FMFMGM based on the code395

provided by [6] for both of them and [43] for GeoCFCa.
The similarities used in the k-NN recommenders are based on set operations

as the data does not include ratings: SetJ is the well-known Jaccard Index
and SetC is based on the similarity proposed in [38], always considering that
the similarities between users/items are symmetrical. We want to note that400

the algorithms based on matrix factorization, since they start from a random
initialization and the number of iterations is also a parameter, they may obtain
different results each time they are executed. This would affect the following
algorithms: FMFMGM, IRenMF, RankGeoFM, ALS, BPR and GeoBPR.

Source code to replicate these experiments can be found in the following405

Bitbucket repository: PabloSanchezP/TempCDSeqEval.

4.3. Experimental setup

Based on the temporal split presented in Table 2, we decided to focus on
the eight largest cities in terms of number of check-ins: Istanbul (IST), Jakarta
(JAK), Kuala Lumpur (KUA), Mexico City (MEX), Moscow (MOS), Santiago410

(SAN), São Paulo (SAO) and Tokyo (TOK). Hence, we will compare the rec-
ommendations produced using the information of the training set of each of

4http://spatialkeyword.sce.ntu.edu.sg/eval-vldb17/
5https://www.librec.net/
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these eight cities independently (Single City) with the recommendations ob-
tained by augmenting the data from any other cities in the dataset according
to the proposed strategies.415

To evaluate the recommenders, we applied a common methodology in the
area called TrainItems [44], where only the venues that appear in the training set
of each target city are considered as candidates, except the ones already rated by
the user. Besides, we filter out in the test set all interactions that appear in the
training set, so the test set is only composed by new preferences. Moreover, since420

the performance metrics we use are not well-defined when repetitions exist in
the data, we eliminate all repeated interactions from the test set, simulating that
each user will visit each POI only once. Then, we compare the recommendations
generated by the different algorithms when using different training information
according to the presented MCA strategies: multiple cities selected based on the425

geographically nearest cities (N-MCA and C-MCA) and based on most popular
cities (P-MCA), that is, the eight aforementioned cities. We want to emphasize
that regardless of the data used to augment and train the algorithms, the test
set and hence the candidate POIs will always belong to the target city. The N
closest cities and the rest of the cities of the same country to each target city430

are reported in Appendix A.
As it is standard in recent RS literature, we use an array of metrics to

test the performance of the recommenders in terms of ranking accuracy, nov-
elty, diversity, and coverage. For accuracy, we will make special emphasis on
normalized Discounted Cumulative Gain (nDCG), although results in terms of435

Precision and Recall will also be shown [45]. The optimal parameters (shown
in Table 4) were selected according to the Precision@5 values obtained for the
tested parameters presented in Table 3 in the scenario when no MCA strategy
(SC, from Single City) is applied. This means that we use the optimal parame-
ters found in that case and apply the same values for the scenarios when either440

MCA strategy is used. For novelty, diversity, and coverage we present results
for the following metrics:

• EPC (expected popularity complement) gives a higher value to those items
that are less popular to account for the recommendation novelty [46]. This
metric can be formulated as follows:

EPC =
1

|Ru|
∑
i∈Ru

(1− |Ui|
U

) (2)

where Ru denotes the recommendation list of a user.

• Gini (or sales diversity) takes into account how distributed the recom-
mended items are to measure the recommendation diversity [42]. We use
the following formulation:

Gini = 1− 1

|I| − 1

|I|∑
k=1

(2k − |I| − 1)p(ik | s) (3)

p(i | s) =
|{u ∈ U|i ∈ Ru}|∑
j∈I |{u ∈ U|j ∈ Ru}|

(4)
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Table 5: Performance results (nDCG@5) when no MCA strategy is used. In bold, we show
the highest value for each city in each family and we show with a dagger the highest value in
each city.

Family Rec IST JAK KUA MEX MOS SAN SAO TOK

NP
Pop 0.054 0.066 0.066 0.041 0.027 0.051 0.053 0.069
Rnd 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Geo
AvgDis 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001
KDE 0.003 0.004 0.004 0.006 0.006 0.005 0.008 0.005

CF-NN
IB 0.059 0.035 0.042 0.013 0.017 0.026 0.015 0.048
UB 0.073 0.070 0.073 0.044 0.037 0.053 0.049 0.069

CF-MF
BPR 0.053 0.057 0.064 0.037 0.029 0.047 0.035 0.066
ALS 0.070 0.066 0.066 †0.047 0.039 0.050 0.048 0.059

POI
GeoBPR 0.064 0.067 †0.073 0.046 †0.044 0.052 0.052 0.068
IRenMF †0.074 †0.071 0.072 0.042 0.035 0.049 0.044 0.065

RankGeoFM 0.059 0.044 0.051 0.027 0.019 0.031 0.025 0.036

H-POI
FMFMGM 0.060 0.050 0.060 0.029 0.028 0.033 0.034 0.061
GeoCFCa 0.033 0.026 0.029 0.017 0.016 0.013 0.017 0.026

PGN 0.067 0.067 0.070 0.043 0.032 †0.054 †0.057 †0.070

• ISC (item space coverage) measures the percentage of unique items that
a recommender returns [45]. This metric can be formulated as:

ISC =

∣∣∣∣⋃u∈U Ru∣∣∣∣
|Itr|

(5)

where Itr denotes the set of items in the training set.

• USC (user space coverage): measures the percentage of unique users that
a recommender can provide recommendations (Urec) with respect to the
number of users in the test set. It can be computed as follows:

USC =
|Urec|
|Utest|

(6)

For all metrics, the higher the value, the higher the relevance / novelty /445

diversity of the evaluated algorithm. Additionally, unless stated otherwise, all
metrics are reported at a cutoff of 5. Finally, in order to clarify some aspects
about the evaluation performed, we describe now in more detail how we com-
pute the evaluation metrics. In particular, we used a standard procedure in
the Information Retrieval area in which the value of each metric for every rec-450

ommender is normalized according to the number of users it is able to provide
recommendations for. This means that if, for instance, there is a recommender
A that has a user coverage of 100 users and a recommender B with a value of
120 users, each metric for recommender A and B will be normalized by 100 and
120, respectively.455

5. Analysis of the results

In this section, we describe the results obtained when applying the evaluation
methodology presented in the previous section. First, in Section 5.1, we analyze
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the performance of venue recommenders under the proposed MCA strategies.
Later, in Section 5.2, we show the impact of the recommenders on two groups of460

users (tourist and locals). Finally, we present in Section 5.3 performance results
in other evaluation dimensions such as novelty and diversity.

5.1. Effect of MCA strategies in accuracy evaluation metrics

In this section, we aim to answer the first research question described at the
beginning of the paper, that is: Are state-of-the-art recommendation algorithms465

able to exploit augmented information through MCA strategies for venue recom-
mendation? With this goal in mind, we analyze which POI recommendation
algorithms tend to improve or deteriorate their performance under the different
MCA strategies proposed.

First, we present in Table 5 the results of each recommender (for all families)470

in each of the eight cities. In this case, no MCA strategies are applied, so both
the training and test sets correspond to the target city. The most noticeable
result that we observe in this table is the low values obtained by all the recom-
menders. These low values are mostly due to the high sparsity of the data (see
Table 2 and Table 7 for additional statistics about the cities and aggregation475

strategies used), together with the fact that we are using a temporal split, which
makes the recommendation task even more difficult, since, for instance, a small
subset of the few items a user may have in her test set may not appear in the
training set at all. Moreover, another aspect that makes it less likely to achieve
high accuracy values is that, because of the temporal split, there could be some480

new users that did not appear in the training set, so in those cases it would be
impossible to produce recommendations using any personalized model.

Regarding the recommenders, the AvgDis recommender is the second worst
algorithm (after Rnd) and followed by KDE, which evidences that simply mod-
eling the user by the geographical coordinates of her (most frequent) visited485

venues is not enough to predict her future interactions. Additionally, we ob-
serve that the IRenMF approach, even though it remains very competitive, it
is not always the optimal recommender across all the cities, somewhat in con-
tradiction with reported experiments in previous works [12, 6]. We attribute
this behavior to the following reasons: first, its claimed superior performance490

was only tested using a random split in [12] instead of a temporal evaluation
as we do here; and second, classical recommendation algorithms such as Pop or
standard CF approaches were neglected in [6] which, together with our previous
discussion, definitely disturbs such comparisons.

Similarly, Rank-GeoFM performs poorly, only slightly superior to IB. This495

could again be explained by the different conditions of the experiments in the
original paper [4] with respect to ours. For example, in the original paper the
authors tested their algorithm only in one city on Foursquare (Singapore) and in
two states in Gowalla (Nevada and California), while we have selected 8 different
cities on Foursquare. On the other hand, GeoBPR shows very good results for500

some cities (such as KUA and MOS), although not as good in others (see IST).
In this context, we must take into account that for all the recommenders that
use matrix factorization techniques, there is a large number of configurable

15



and tunable parameters, making it very difficult (and costly) to find the best
configuration in all the situations.505

For the rest of the recommenders, we observe that UB is one of the best
approaches for most of the selected cities, usually very close to the optimal one.
However, it should be taken into account that all personalized recommenders
(except PGN) have less user coverage than the NP family and we may find
users in the test set that have not rated any item in the training set. Later, in510

Section 5.3 we shall discuss this aspect again. Additionally, it is interesting to
note the relatively high performance of PGN, since it is able to beat the rest
of the baselines in many cities, despite its simplicity and the fact that we did
not perform any parameter tuning. A possible explanation for this effect is the
popularity bias, which is an important component of the PGN algorithm. As515

we observe in these results, the pure popularity recommender (Pop) obtains a
very good performance, being able to surpass other more complex algorithms
such as IB or BPR.

We now present in Table 6 the results for all cities and the best recommender
(according to nDCG@5) of each family when the two proposed MCA strategies520

are used: most-popular MCA (P), geographically nearest MCA (N), and an
MCA (C) based on the cities of the same country. In the first case, for every
city, the training set is built by aggregating the training data from the eight
most-popular cities; in the second one, the training set is built by taking the
geographically nearest 7 cities with respect to the target city, so the number of525

cities under consideration is comparable to that of P-MCA, and finally for the
country-based strategy, the training set is built using the check-ins of all the
cities belonging to the same country of the target city.

In all scenarios the test set corresponds to the one of the target city. It
should be noted that we do not show results for the non-personalized family as530

the MCA strategies do not affect this type of recommenders. The reason for
this is that, even though some models may be trained with data from different
cities, we only allow to recommend items from the target city; hence, the most
popular items of a given city will remain the same regardless of the set of cities
used as source domain. Similarly, the random recommender will always give a535

random score for each item of the target city notwithstanding the aggregation
strategy used.

Thus, Table 6 shows the relative improvement with respect to the base per-
formance of each algorithm when no MCA strategy is used to augment the
training information – that is, the performance of that algorithm when only540

information from the target city is used, which corresponds to the results shown
in Table 5. We observe that classical CF algorithms (CF-NN and CF-MF) are
able to exploit quite successfully the augmented information using the P-MCA
strategy, although the CF-MF often has a lower performance with respect to
the base scenario (column SC, from Single City). Moreover, CF-NN always ev-545

idences a positive improvement under the N-MCA and C-MCA strategies. We
argue this trend for the CF techniques is related to whether the new users – it
should be noted that the new items found in the augmented training set will
never have overlap with the target items, since when using information from
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other cities the POIs will always be different – have some level of interaction550

with the target city. In this sense, when combining information from nearby
cities it is more likely to find similar users with useful suggestions or learning
relevant latent representations more related to the target items. Additionally,
having more data available does not guarantee better recommendations, since
the MF approaches from CF-MF and POI families tend to deteriorate their555

performance under the P-MCA strategy.
On the other hand, the performance of the Geo family is always worse when

using any of the MCA strategies. The reason for this might be quite obvious,
since considering other cities to compute a new user’s centroid will certainly
move such centroid far away from the target city, which is not useful when we560

are only interested in recommending venues inside of that specific city. Nev-
ertheless, it is interesting to observe that the POI family, which includes a
geographical component, also benefits from the MCA strategies in some sce-
narios. For example, in IST, JAK, KUA, SAN, and TOK using both N-MCA
and C-MCA strategies, these algorithms obtain a better performance than in565

the Single City scenario. However, when using the P-MCA strategy, the perfor-
mance of this family is always worse. This result is particularly interesting since
in some works researchers perform experiments using datasets with information
from several cities grouped together [2, 47, 48], and as we can observe, this can
affect negatively the performance of some models.570

From the perspective of the MCA strategies, we observe that the perfor-
mance improvements obtained when using the P-MCA strategy is usually neg-
ligible. In general, most of the improvements when using this strategy are very
close to zero and, for many of the city-recommender family combinations, ex-
tremely negative. At the same time, N-MCA and C-MCA usually produce larger575

improvements with less training data involved, since those cities that belong to
the same country or are geographically nearest to the target city always include
less check-ins than the originally selected cities, which were the most popular
ones in our dataset (see Table 7 for more details). Even if these results seem to
confirm that better data is more useful than more data, we now analyze these580

effects in more detail.
To properly understand which of the MCA strategies are more suitable to

augment the data available for recommendation, we include in Table 7 the spar-
sity of each resulting augmented training set, together with the amount of in-
formation already included in the target city with respect to each aggregation585

(last two columns). Based on these statistics, we infer that the user overlap
of each MCA strategy (reported in Table 1) is not the only factor to consider
in the success of the proposed data augmentation approaches. For instance,
the three cities with more user overlap (IST, MEX, and MOS, with more than
82%) also show high ratios of Cr(C)/Cr when N-MCA is used, which means590

that such aggregation strategy incorporates very little additional information
with respect to the original training data, resulting in a more sparse dataset
(to be expected from any MCA strategy, due to the large amount of new items
and users added) but where most of the interactions come from the same city.
Going back to the results in Table 6, we observe that the N-MCA strategy is595
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Table 6: Performance in terms of nDCG@5 when augmented information is used for training.
The improvement in performance with respect to Single City (SC) is represented as ∆(%).

MCA ∆ MCA (%)
City Family SC N C P ∆ N (%) ∆ C (%) ∆ P (%)

IST

Geo 0.003 0.003 0.002 0.003 −14.16 −27.72 −0.90
CF-NN 0.073 0.073 0.075 0.073 0.32 3.83 0.35
CF-MF 0.070 0.071 0.073 0.068 1.98 4.79 −3.41

POI 0.074 0.076 0.077 0.072 2.88 3.46 −3.25
H-POI 0.067 0.068 0.071 0.068 1.61 6.17 0.91

JAK

Geo 0.004 0.003 0.003 0.004 −19.73 −24.52 1.83
CF-NN 0.070 0.075 0.078 0.071 6.68 10.46 0.37
CF-MF 0.066 0.070 0.072 0.060 6.31 9.34 −8.50

POI 0.071 0.076 0.077 0.064 8.16 9.39 −8.63
H-POI 0.067 0.070 0.072 0.068 4.75 6.86 0.63

KUA

Geo 0.004 0.003 0.003 0.004 −37.28 −41.48 −0.73
CF-NN 0.073 0.076 0.078 0.073 4.13 6.20 0.29
CF-MF 0.066 0.075 0.077 0.065 13.79 17.14 −1.55

POI 0.073 0.075 0.075 0.062 2.20 2.58 −15.48
H-POI 0.070 0.072 0.073 0.070 2.12 3.65 0.02

MEX

Geo 0.006 0.005 0.004 0.005 −13.79 −26.19 −1.37
CF-NN 0.044 0.045 0.047 0.045 1.62 7.17 1.24
CF-MF 0.047 0.045 0.045 0.037 −5.03 −3.95 −22.07

POI 0.046 0.044 0.043 0.031 −3.14 −4.64 −31.44
H-POI 0.043 0.044 0.046 0.044 2.21 7.13 1.33

MOS

Geo 0.006 0.005 0.005 0.006 −13.91 −22.09 −0.56
CF-NN 0.037 0.038 0.041 0.037 2.53 10.83 0.33
CF-MF 0.039 0.039 0.041 0.036 1.84 6.11 −7.70

POI 0.044 0.041 0.038 0.022 −7.60 −13.54 −49.03
H-POI 0.032 0.033 0.036 0.032 0.78 10.87 0.06

SAN

Geo 0.005 0.003 0.004 0.005 −36.08 −34.94 −1.40
CF-NN 0.053 0.060 0.064 0.054 12.98 19.34 0.86
CF-MF 0.050 0.060 0.062 0.046 20.21 24.22 −7.87

POI 0.052 0.057 0.055 0.038 9.46 6.74 −27.19
H-POI 0.054 0.059 0.060 0.055 8.68 10.16 1.14

SAO

Geo 0.008 0.007 0.006 0.008 −12.00 −19.03 −0.49
CF-NN 0.049 0.056 0.060 0.049 15.42 23.91 −0.22
CF-MF 0.048 0.056 0.058 0.047 15.23 19.78 −2.09

POI 0.052 0.047 0.040 0.031 −10.26 −22.55 −40.43
H-POI 0.057 0.057 0.058 0.057 0.41 2.06 0.53

TOK

Geo 0.005 0.003 0.003 0.004 −42.38 −45.74 −3.43
CF-NN 0.069 0.073 0.074 0.069 5.38 7.41 −0.20
CF-MF 0.066 0.066 0.065 0.062 0.93 −0.63 −6.13

POI 0.068 0.071 0.070 0.064 3.90 2.89 −6.30
H-POI 0.070 0.073 0.074 0.070 4.89 6.15 −0.16
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Table 7: Statistics for training splits of the reported cities and MCA strategies used. Notation
as in Table 2. The last two columns show the amount of information in the MCA strategies
that was already included in the target city C.

City U I CR Cr
CR

|U||I|
Cr

|U||I|
CR(C)

CR

Cr(C)
Cr

IST SC 23k 40k 668k 392k 0.072% 0.042% 100.0% 100.0%
N-MCA 26k 51k 784k 458k 0.060% 0.035% 85.21% 85.70%
C-MCA 34k 88k 1.2M 691k 0.039% 0.023% 56.62% 56.79%

JAK SC 11k 39k 347k 182k 0.082% 0.043% 100.0% 100.0%
N-MCA 16k 80k 678k 354k 0.052% 0.027% 51.13% 51.52%
C-MCA 19k 104k 861k 441k 0.044% 0.023% 40.31% 41.40%

KUA SC 11k 28k 312k 170k 0.102% 0.056% 100.0% 100.0%
N-MCA 13k 63k 642k 341k 0.078% 0.042% 48.62% 49.93%
C-MCA 16k 87k 856k 438k 0.061% 0.031% 36.43% 38.79%

MEX SC 7k 27k 285k 143k 0.144% 0.073% 100.0% 100.0%
N-MCA 8k 35k 344k 172k 0.119% 0.059% 82.80% 83.43%
C-MCA 11k 55k 506k 248k 0.084% 0.041% 56.34% 57.91%

MOS SC 7k 29k 304k 153k 0.150% 0.075% 100.0% 100.0%
N-MCA 7k 33k 328k 164k 0.137% 0.068% 92.58% 93.38%
C-MCA 11k 64k 584k 279k 0.081% 0.039% 52.08% 54.64%

SAN SC 6k 25k 324k 130k 0.211% 0.085% 100.0% 100.0%
N-MCA 7k 36k 433k 173k 0.168% 0.067% 74.92% 75.39%
C-MCA 7k 38k 455k 182k 0.162% 0.065% 71.23% 71.72%

SAO SC 7k 28k 294k 120k 0.145% 0.059% 100.0% 100.0%
N-MCA 11k 50k 491k 195k 0.089% 0.035% 59.76% 61.66%
C-MCA 21k 117k 1.1M 446k 0.047% 0.018% 25.65% 26.90%

TOK SC 9k 29k 328k 164k 0.133% 0.067% 100.0% 100.0%
N-MCA 11k 60k 631k 301k 0.097% 0.046% 51.97% 54.40%
C-MCA 11k 70k 705k 337k 0.088% 0.042% 46.48% 48.47%

All P-MCA 80k 245k 2.9M 1.5M 0.015% 0.007% - -

less useful (for the CF-MF approaches in particular, but also for the classi-
cal CF-NN methods) essentially when such ratio is too large, since this means
that the original and augmented training splits are very similar and, hence, the
performance improvement would be minimal.

Thus, we are able to answer our first research question: we have seen that600

some classic recommenders (i.e., nearest neighbors and matrix factorization) are
able to benefit from the augmented information if the cities used to define the
Multi-City Aggregation strategy are selected properly. In particular, we con-
clude that selecting cities by proximity (and, as a special case, by country) has a
greater benefit than selecting them by the amount of information they contain605

(popularity). However, other approaches more tailored for venue recommen-
dation may decrease their performance when exploiting knowledge from other
domains. This is especially noticeable in strategies that give great importance
to geographical influence whenever the number of common users is negligible,
as in the P-MCA proposed method. This opens up the possibility of using al-610

ternative cross-domain techniques that may benefit other algorithms that are
not so dependent on user overlap, such as item similarity models like SLIM,
FISM, or those based on embeddings [49, 50]. However, we leave as future work
the analysis of these similarity models for POI recommendation together with
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alternative data augmentation techniques.615

5.2. Analyzing venue recommender systems on different groups of users

As we have already mentioned previously, in the tourism domain it is possi-
ble to characterize different types of users. In particular, we define two groups
following the work [24]: tourists and locals. More specifically, we have estab-
lished that those users whose check-ins exist in the same city for more than620

21 days are considered locals, and the rest are considered tourists. However,
to avoid noisy or non-human behavior, we filtered out in the test set for both
groups those users who have performed three or more consecutive check-ins with
a temporal difference smaller than 60 seconds, since they can be considered bots
as in previous works [51]. These so-called bots do not count either as tourists625

or locals (hence, in this section they are completely ignored), even though their
performance is considered whenever the global performance is measured (that
is, in those tables or figures that appear in the rest of the paper). However,
these unusual consecutive check-ins are not always caused by bots. It may also
be due to bugs in the application when recording interactions. Therefore, we630

will classify these users as outliers. Besides, as the data of these users may be
useful for the rest of the recommenders, we keep the interactions of these users
in the training set.

Based on this, in Figures 1 and 2 we contrast the results of each type of
users in terms of nDCG@5 for all cities when no MCA strategy is used (SC)635

and when the MCA strategies presented in the previous experiment are used
(N, for N-MCA, C, for C-MCA and P, for P-MCA). We observe that for all
cases (except in the Geo family in Mexico City and Tokyo), tourists obtain
significantly better results than locals. We hypothesize this may be attributed
to tourists having a more similar behavior in common among the users in the640

same group: for example, when someone visits Paris, regardless of where they
come from, they are more likely to visit touristic venues such as the Eiffel Tower
or the Louvre museum rather than some suburban neighborhoods in the city.
On the other hand, locals are probably more heterogeneous, and hence, more
different behaviours are aggregated in the same group, making it much more645

difficult to the recommendation algorithms to guess their preferences correctly.
Besides, the number of tourist users, because of its definition, tends to be smaller
than local users, which helps to obtain more coherent user groups.

Consistent with the results discussed in the previous section, the MCA
strategies by proximity (N-MCA and C-MCA) obtains better performance and,650

in general, improves the base results more than the strategy based on popu-
larity for both types of users in most cities. There are some exceptions, as in
the case of São Paulo for tourists, where the performance improvement of the
P-MCA strategy is striking. However, the general trend is that this strategy
is outperformed by both N-MCA and C-MCA; we note even some cases where655

they produce worse performance than the base scenario, for example in Moscow
for most recommendation families or in Kuala Lumpur for the CF-NN and POI
families.

Since we observe no different behavior with respect to the user groups be-
tween using MCA strategies or not, we come to the conclusion that venue recom-660
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Figure 1: Results of tourists and local users in Istanbul, Jakarta, Kuala Lumpur, and Mexico
City in terms of nDCG@5. Dashed line indicates the performance of the best recommender in
every city, as shown in Table 5. Labels SC, N, C, and P in the x-axis represent the single-city
(baseline) configuration, N-MCA, C-MCA, and P-MCA strategies respectively.
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Figure 2: Results of tourists and local users in Moscow, Santiago, São Paulo, and Tokyo in
terms of nDCG@5. Rest of notation as in Figure 1.
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Figure 3: Results of tourists (10.42% of the users) and local (71.60% of the users) users in
Mexico City in terms of accuracy metrics (Precision, Recall), novelty (EPC) and diversity

(Gini, ISC). Labels in the x-axis as in Figure 1, together with C representing the C-MCA
strategy.

menders evidence a strong bias towards tourist users, in particular, this group
of users seem to be much easier to recommend. As an answer to RQ2 (What
is the impact that venue recommenders have on different groups of users? ),
we summarize that every recommendation family except the basic geographi-
cal algorithms improve their results when analyzing the subset of tourists in665

isolation. In agreement with the previous research question, the N-MCA and
C-MCA strategies are also beneficial in this case, obtaining much better results,
in general, than P-MCA.

5.3. Effect of MCA strategies on beyond-accuracy evaluation metrics

An important aspect that is sometimes ignored when evaluating recommen-670

dation algorithms is finding a good balance between novelty, diversity and ac-
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Figure 4: Results of tourists (7.62% of the users) and local (72.43% of the users) users in
Santiago; notation as in Figure 3.

curacy [45]; this is what we analyze in this section. For this, we present in
Figures 3, 4 and 5 the results for the recommendation families used before using
all the metrics presented in Section 4.3 for the cities of Mexico City, Santiago
and Tokyo, that is, Precision, Recall, EPC for novelty, and Gini and ISC for675

diversity. We complement these results with user coverage of all cities in Table 8.
Our decision to select these three cities was because they evidence a different

behavior with respect to the ratio Cr(C)/Cr when comparing the N-MCA and
C-MCA strategies: whereas TOK and SAN obtains a very similar ratio for both
strategies with a percentage around 50% and 73% respectively, MEX presents680

substantially different values (see Table 7).
Based on these results, and considering all users, one observation that may

draw our attention is that the algorithms of the Geo family have higher novelty
and diversity than the other families. This is because these recommenders are
based solely on recommending POIs that are close to the target user, ignoring685
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Figure 5: Results of tourists (9.32% of the users) and local (62.44% of the users) users in
Tokyo; notation as in Figure 3.

other factors like the popularity of the POIs (something that, after observing
the results obtained by the rest of the recommenders, seems to confirm the
popularity bias of the data). Besides, this type of recommender is the worst in
terms of accuracy, as shown by the nDCG metric in the previous figures and
with Precision and Recall in the ones shown here, and it is well-known that690

there is typically a tradeoff between accuracy and novelty/diversity.
Regarding the other recommenders, we observe that the H-POI family tends

to obtain better diversity results than the other families, although the novelty of
its recommendations is usually lower. This can perhaps be explained by the fact
that the best algorithm of this family is always the PGN recommender, which695

combines popularity and collaborative filtering with the distance between the
POIs. The first two contributions reduce the novelty and diversity, but the
latter, as we have seen in the Geo family, increases both dimensions so it makes
sense that this approach may improve to some extent either dimensions. It is
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Table 8: User coverage obtained by the recommenders when augmented information is used
for training. The improvement in user coverage with respect to SC is represented as ∆(%).

City Family SC N C P ∆ N (%) ∆ C (%) ∆ P (%)

IST

Geo 81.65 83.82 87.65 81.74 2.66 7.36 0.12
CF-NN 84.58 86.38 89.92 84.61 2.12 6.32 0.03
CF-MF 85.10 86.93 90.25 85.19 2.14 6.05 0.10

POI 85.10 86.93 90.25 85.19 2.14 6.05 0.10
H-POI 100.00 100.00 100.00 100.00 0.00 0.00 0.00

JAK

Geo 86.81 91.63 92.81 87.73 5.56 6.92 1.06
CF-NN 88.05 92.97 93.95 88.54 5.59 6.69 0.55
CF-MF 89.51 93.49 94.51 90.43 4.45 5.59 1.03

POI 89.51 93.49 94.51 90.43 4.45 5.59 1.03
H-POI 100.00 100.00 100.00 100.00 0.00 0.00 0.00

KUA

Geo 80.77 88.91 91.03 81.36 10.08 12.71 0.74
CF-NN 85.01 90.79 92.31 85.37 6.80 8.58 0.42
CF-MF 85.30 91.06 92.56 85.95 6.76 8.51 0.77

POI 85.30 91.06 92.56 85.95 6.76 8.51 0.77
H-POI 100.00 100.00 100.00 100.00 0.00 0.00 0.00

MEX

Geo 88.58 90.90 93.76 88.75 2.62 5.85 0.20
CF-NN 91.05 92.81 95.07 91.11 1.93 4.41 0.06
CF-MF 91.27 93.04 95.34 91.46 1.94 4.46 0.21

POI 91.27 93.04 95.34 91.46 1.94 4.46 0.21
H-POI 100.00 100.00 100.00 100.00 0.00 0.00 0.00

MOS

Geo 85.27 85.83 89.55 85.74 0.67 5.02 0.56
CF-NN 87.57 88.00 91.55 87.41 0.49 4.55 −0.18
CF-MF 88.07 88.50 92.03 88.59 0.49 4.50 0.59

POI 88.07 88.50 92.03 88.59 0.49 4.50 0.59
H-POI 100.00 100.00 100.00 100.00 0.00 0.00 0.00

SAN

Geo 90.54 94.19 94.88 91.23 4.03 4.79 0.76
CF-NN 92.06 95.00 95.64 92.26 3.19 3.89 0.21
CF-MF 92.28 95.27 95.91 92.94 3.24 3.93 0.72

POI 92.28 95.27 95.91 92.94 3.24 3.93 0.72
H-POI 100.00 100.00 100.00 100.00 0.00 0.00 0.00

SAO

Geo 82.21 85.81 90.44 82.62 4.37 10.01 0.50
CF-NN 83.33 87.84 92.02 83.46 5.41 10.43 0.15
CF-MF 85.04 88.51 92.69 85.37 4.08 8.99 0.39

POI 85.04 88.51 92.69 85.37 4.08 8.99 0.39
H-POI 100.00 100.00 100.00 100.00 0.00 0.00 0.00

TOK

Geo 87.75 92.68 93.64 88.01 5.61 6.71 0.30
CF-NN 90.32 94.15 94.78 90.32 4.24 4.94 0.00
CF-MF 90.52 94.29 94.96 90.78 4.17 4.91 0.29

POI 90.52 94.29 94.96 90.78 4.17 4.91 0.29
H-POI 100.00 100.00 100.00 100.00 0.00 0.00 0.00

also worth considering that, in general, POI and CF-MF families achieve lower700

levels of novelty and diversity than the rest of the algorithms. It must be taken
into account that both families use some kind of matrix factorization techniques,
as the GeoBPR and IRenMF. Low diversity values are indicative that very few
different items are actually recommended, whereas low novelty values suggest in
this case that most of the recommended POIs are those that have been visited705

by more users in the training set (popular items). This means that there is a
significant popularity bias in the recommendations provided by these families,
which is actually corroborated because their performance in terms of relevance
is also high [52]. On the other hand, the behavior of CF-MF in terms of EPC
(novelty) might be reinforced by another aspect. In Mexico City and Santiago710

we observe that the novelty for the P-MCA strategy decreases steadily. We
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believe this might be caused because in this type of strategy, we are considerably
increasing the number of items and users in the system, but at the same time
we only recommend POIs from the destination city; hence, the latent factors
of those POIs that are more popular are updated more frequently. If we look715

at the Tokyo results, the novelty of this stratregy does not decrease so much
because it is already very low for all strategies. This can be attributed to the
fact that in Tokyo the optimal CF-MF algorithm is the BPR, which is not so
sensitive to the previous behavior, while in the other two cities, is the ALS (see
Table 5).720

When we analyze the results by types of users (tourists or locals), it is
important to consider the third type of users that is being ignored in the figure,
the outlier users, together with the new users (in the test set) that do not appear
in the training set and, thus, do not fit in any category. Because of this, we
include in the caption of each figure the percentage of tourists and locals in the725

test set of the corresponding city, so the rest of the users would be labeled as
outliers or no belonging to any group. This piece of information is important
in this case because we show together information from all users and separated
by user group. Based on these results, we corroborate that in terms of accuracy
metrics (Precision and Recall) tourists achieve better performance than locals,730

except in the Geo family.
To better understand the rationale behind these results, we have analyzed in

more detail the biases in the data and in the recommendations produced by the
algorithms, and discovered that tourists are more likely to visit popular POIs
(according to the training set) than locals, as evidenced by their check-ins in735

the test set. This is also observed in the figures, due to the higher novelty and
diversity values achieved by most recommendation families for the local users
(except for the CF-NN). As discussed before, this could be attributed to several
reasons. Firstly, there are more local users than tourists, so it is more likely that
there are more different recommended items for this type of user. Secondly, it740

is more likely that tourists tend to visit the most touristic venues in a city, but
this should be considered in combination with the fact that locals are probably
visiting a larger variety of POIs, since they spread more evenly across the city
and throughout longer periods of time. This could be an explanation as to why
the novelty in locals tend to be higher than in tourists.745

One dimension that deserves further attention is user coverage. This mea-
surement, as reported in Table 8, accounts for the number of users that have
received at least one recommendation. In these results, the first observation we
make is that the H-POI is the only recommender family with full user cover-
age, something that does not change when using any aggregation strategy; the750

reason for this is that the best recommender in this family is the PGN and one
of the algorithms exploited by this hybrid recommender is based on popularity,
which is a non-personalized algorithm and, hence, also has full user coverage
by design. A more interesting result that emerges from this analysis is that the
C-MCA strategy always improves the coverage of the recommenders, in fact,755

according to the column depicting the relative improvements with respect to
results from the Single City, this strategy produces the largest improvements
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for every family in all the cities. This is a very important outcome, since to-
gether with the results shown in Figures 3, 4 and 5, where this strategy obtains
better or equal accuracy results than N-MCA for most of the families in every760

city, it means that it is able to improve the results for more users in the system,
simply by integrating carefully selected additional information. This process, in
any case, would be achieved at a lower cost than the P-MCA strategy, hence,
allowing more efficient computations. In particular, this allows us to create
a single training set containing the check-ins of the cities we need and make765

recommendations from this training, instead of making an independent set by
each city and hence allowing more efficient computations. Nevertheless, we can
observe an interesting result in the city of Moscow. If we analyze the user cov-
erage of this city more in detail, we can see how the user coverage decreases
in the P-MCA strategy for CF-NN recommenders. This behavior, although it770

may seem counter intuitive, is due to the fact that those algorithms that work
with similarities between users or items (users, in this case) might obtain a large
number of neighbors with the same degree of similarity, some of them coming
from the aggregated cities and with potentially no check-ins in the target city.
In this sense, and according to these results, by using the P-MCA strategy it is775

more likely that we may find new neighbors with near-zero overlap with items
in the target city that are, hence, not able to recommend any POI there, thus,
reducing the coverage of such algorithms.

Finally, we can provide an answer for RQ3 (How do MCA strategies affect
other evaluation dimensions? What is the impact of these dimensions on differ-780

ent groups of users? ). In general, we have observed that the N-MCA strategy
is the safest one both in terms of accuracy and beyond-accuracy metrics, al-
though C-MCA obtains very similar results while improving the user coverage,
hence, impacting positively to more users. These strategies also show good re-
sults for tourists, although all users get some kind of improvement with these785

approaches. Regarding the effect in the groups of users, tourists are positively
affected in terms of accuracy but negatively for other dimensions such as novelty
and diversity.

5.4. Discussion

According to the presented results, applying Multi-City Aggregation strate-790

gies to augment the data available in venue recommendation can improve the
results obtained in some situations, although their effect is not as great as one
might expect (mainly due to the temporal split we used and the dataset being
too sparse). Nevertheless, since we explored some basic recommendation tech-
niques across a wide range of algorithmic families, these results are promising795

and may open the door to debate about the importance of the geographical
distribution of the check-ins in evaluation. First of all, because we have seen
that some algorithms are able to make better recommendations (in some cases,
up to a 20% improvement), and in some situations – mostly under the C-MCA
strategy – the user coverage is enhanced; however, further analysis should be800

done to properly understand the impact of such improvements in other evalua-
tion dimensions, such as novelty or diversity, and how it generalizes to different
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cities. Similarly, the N-MCA strategy has generally returned cities belonging
to the same country with respect to the target city (except in the case of San-
tiago, where one of its 7 closest cities was Cordoba, a city of Argentina). This805

opens up the possibility that cities different from those used in this paper may
have nearby cities in other countries. Therefore, it would also be interesting to
further analyze the differences between C-MCA and N-MCA in other cities.

Secondly, due to the well-known popularity bias [52], such a simple technique
could outperform other methods like IB, KDE, or AvgDis (see Table 5), and810

it has resulted in a very positive component to be integrated in a hybrid algo-
rithm (i.e., PGN), even though this type of baseline is usually ignored in POI
recommendation literature. Thirdly, we have observed that it is not the same
to train the recommenders with interactions of a certain city as training them
with the check-ins of a whole country. Hence, POI recommendation proposals815

that are trained using information of specific regions may not be comparable to
others trained with data from around the world. We want to emphasize that in
our work we have only used cross-domain techniques oriented at exploiting user
information (i.e., by maximizing user overlap). As indicated in Section 5.1, we
leave as future work other cross-domain techniques that could be more appro-820

priate for item similarity models.
At the same time, we have observed that if we distinguish between two types

of users (tourists and locals), almost every recommendation algorithm produces
very different results to each user group. To further understand this, we now
analyze in more detail the effect of popularity bias in our experimental settings.825

First, in Table 9 we show the results of the Popularity recommender in the Sin-
gle City (SC) configuration. In that table we show the results obtained taking
into account all users in the test set as well as the results for the tourists and
locals. The last two columns represent the change in performance (as a percent-
age, negative or positive depending on whether the performance improved or830

decreased) obtained by each group of users with respect to the value obtained
by considering that all users belong to the same group. As we can observe,
tourists tend to obtain a result between a 14% and a 50% higher than the rest
of the users. This seems to confirm that tourist users tend to visit more popular
POIs than locals. To further view this effect in detail, in Figure 6 we show the835

top 1% of the most popular POIs of every city that appear in the test set with
the percentage of users (of each group) that checked-in in that POI. In this
figure we can see how the most popular POIs in general receive more visits from
tourist users (relatively) than from local users. This makes sense since, as we
have indicated before, for a user to be considered a tourist she has to perform840

check-ins in the city for at most 21 days, so it is more likely that many of those
tourists did not have enough time to visit the most popular POIs in the training
set and hence they visit them in the test set.

Nevertheless, it is well-known that, besides popularity bias, there might be
other biases in the data [53]. In particular, in LBSN it is common to associate845

each POI with one or more categories (restaurant, museum, park, bar, etc.).
While we can establish different category hierarchies in Foursquare, we will fo-
cus on level 1 categories, since the number of categories (9) is more manageable
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Table 9: Performance in terms of nDCG@5 of the Popularity recommender in all cities in
both Tourists and Locals.

City All Users Tourists Locals ∆ Tourists (%) ∆ Locals (%)

Istanbul 0.054 0.064 0.048 19.04 −9.77
Jakarta 0.066 0.091 0.053 38.33 −19.92

Kuala Lumpur 0.066 0.077 0.060 17.34 −8.46
Mexico City 0.041 0.059 0.034 45.69 −15.70

Moscow 0.027 0.037 0.026 34.02 −4.48
Santiago 0.051 0.067 0.044 30.47 −13.21

São Paulo 0.053 0.061 0.031 14.85 −40.33
Tokyo 0.069 0.106 0.056 53.48 −18.73

0

5

10
Istanbul

All

L

T

Jakarta

All

L

T

0

5

10
Kuala Lumpur

All

L

T

Mexico City

All

L

T

0

5

10
Moscow

All

L

T

Santiago

All

L

T

0

5

10
São Paulo

All

L

T

Tokyo

All

L

T

POIs ordered by popularity

P
er
ce
nt
ag
e
of

us
er
s
th
at

ch
ec
ke
d-
in

ea
ch

P
O
I

Figure 6: Popularity bias in the eight selected cities. Each plot shows the percentage of users
belonging to each group who have a check-in in the test set for each corresponding item. Items
are sorted according to their popularity in the training set.

than other, more specific levels. Using these categories, in Figure 7 we show the
percentage of check-ins of every user group in each category of the items. From850

this figure, even though it is noticeable a slightly different behavior of tourists
with respect to the rest of the users, we do not observe major differences, except
perhaps in the cities of Santiago, São Paulo, and Tokyo. This indicates that,
despite an overall category bias exists (since POIs related to food and trans-
portation receive more check-ins than the rest of POIs), there is no difference855

in behavior between the different groups of users in terms of the categories they
visit. Hence, together with our previous observation, this shows that tourist
and local users tend to go to the same type of POIs, but tourist users tend to
choose to visit more popular venues (of the same categories) than local users.

These results evidence a general trend or systematic bias, since it is much860

easier to make relevant recommendations to tourists due to the type of POIs
they usually visit (those already popular in a city). In particular, this observa-
tion – which is, to the best of our knowledge, novel in the area – would open
up several possibilities in terms of deciding how many resources should be de-
voted to each user group. Additionally, a negative result we observed is that865
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Figure 7: Popularity bias at category-level in the eight selected cities. Each plot shows the
percentage of interactions a user group performed in test to items belonging to each category.
Categories are ordered by decreasing popularity in each city. The numbers correspond to their
Foursquare ids: 1) Arts & Entertainment, 2) Outdoors & Recreation, 3) Food, 4) Nightlife
Spots, 5) Shops & Services, 6) Professional & Other Places, 7) Travel & Transport, 8) Colleges
& Universities, and 9) Residences.

when the distance between the venues is considered in the recommendation al-
gorithm, augmenting the available information through MCA strategies can be
counterproductive in terms of accuracy, although other dimensions might ben-
efit from such augmentation. This effect is not conclusive for the two types of
users considered, although we have observed a negative trend for tourists, whose870

diversity and novelty values tend to be much lower than those for local users,
in particular when MCA strategies are exploited.

It should be noted that our results are consistent with those discussed in
[54]. The authors found that there are specific experiments where cross-domain
recommendation works worse than classic recommendation, even though in gen-875

eral it behaves better or as good as strategies where cross-domain is not used
(single-domain). However, only comparisons between single- and cross-domain
approaches on three different algorithms and without considering any temporal
split were presented in that study; hence, our work helps on generalizing the
conclusions obtained in such paper.880

We want to emphasize that considering information from different cities (un-
derstood as different domains), despite being computationally more expensive,
has a clear advantage: such system would only need to train once whenever
recommendations are required for any of the cities included in the MCA strat-
egy, whereas considering each city as an isolated training domain (when no885

MCA strategy is used) only allows to generate recommendations for a single
city; hence, the recommendation model built in such a way can be re-used more
often in the former case, at the expense of being more expensive (although this
would depend on the actual strategy considered) in terms of memory and time
consumption. This conclusion may help other researchers in the area in order to890
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apply a more favorable data preprocessing for the POI recommendation models
that they are developing. Nonetheless, as we have shown here, if the MCA strat-
egy is generated based on the right cities, significant performance improvements
can be achieved, not always by selecting the cities with more information but
those that are closer and more likely to have overlap in their users, probably895

because they are culturally related and share similar mobility patterns [33].

6. Related work

6.1. Data augmentation and cross-domain recommendation

As already discussed before, extending the available information with addi-
tional data can help recommendation systems in a number of situations. Specif-900

ically, travel recommendation was addressed as a potential target of these tech-
niques [16]. There have been some papers in which researchers explored dif-
ferent ways to combine sources of information to be applied in tourism. For
example, in [55] the authors describe TourMIS, a dataset of European statistics
of tourism data, where they show the usefulness of combining different data905

sources (economy, tourism, and sustainability) to make relations between them.
Although they indicate that sometimes it is difficult to integrate sources from
very different domains, most of those problems can be solved using Linked Data
approaches. Nevertheless, the dataset described was not used to produce venue
recommendations, only for statistical analysis.910

A particular instance of those techniques that augment the available in-
formation are the so-called cross-domain recommendation algorithms [37]: the
basic idea behind this type of recommendation is that, to improve recommenda-
tions over a target domain, some kind of knowledge from a source domain needs
to be exploited. However, we have not found many examples of cross-domain915

experiments combining more than two or three domains – usually, movies, mu-
sic, and books –, except for the works presented in [56] and [54]. In the first
one, the authors exploited the information of 10 domains (categories of different
products from Epinions, hence, not related with tourism) in order to analyze the
performance of the recommendations using ranking metrics (nDCG and Recall),920

however, these datasets are much smaller in terms of ratings than the ones we
use in this paper (the largest one contains around 200K ratings) and they are
all more dense. Similarly, in [15], the authors propose a cross-domain algorithm
that combines two source domains and test its performance for only 586 users
out of 1.5M users from the original Amazon dataset. Finally, in [54], the au-925

thors used 21 domains (defined as the categories from different Yelp businesses)
and measured the effects of cross-domain recommendation in terms of RMSE
by comparing the performance on several domain pairs; however, the interest
on error-based metrics such as RMSE from the RS community has decreased
since they do not correlate with user satisfaction at the same level as ranking-930

based metrics [57, 58]. Therefore, our work is – to best of our knowledge – the
first study where up to 8 domains are combined and used as the source domain
(since each city can be interpreted as a separate domain), and in the context of
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a tourism dataset with a realistic, temporal evaluation focused on ranking-based
metrics.935

To complement these works, one approach of cross-domain in tourism can
be seen in [59], where the authors did not recommend POIs but music artists
depending on the monument the user is visiting; they do this by building a se-
mantic network of venues and artists and the relations between them. Moreover,
in [60], the authors exploited information from different sources like location-940

activity, location-feature, and activity-activity correlations to enhance the per-
formance, showing a 20% improvement over a basic algorithm that does not
use any additional data. Additionally, in [61] the authors analyze the impact of
CrossFire, a cross-domain framework in venue recommendation, against CF-MF
models and a deep recurrent collaborative filtering model. According to their945

results, the cross-domain framework does not clearly contribute to an improve-
ment in these recommendations algorithms.

Nonetheless, the most similar approach to this paper that we found is [62].
In that article, the authors perform a so-called cross-region recommendation,
and considered each region as a different domain. One important difference with950

our work is that, whereas a division by cities is natural, that work uses regions
computed by performing clustering on the venues. Additionally, the datasets
used (Foursquare and Yelp) are smaller than the one reported here and no tem-
poral evaluation was performed, only a standard cross validation methodology.
Hence, our paper offers a complementary view on a related problem, from a955

more realistic perspective (since we explicitly address a time-aware evaluation)
with a larger dataset and taking into account the check-ins in different cities to
perform the recommendations.

6.2. Biases and types of users

At the same time, thanks to the heterogeneous and ever-growing data avail-960

able in the Recommender Systems, it is possible – as we have already discussed
– to establish different user groups depending on available user features (such as
gender, nationality, age, etc.), the distribution of ratings or other data [63, 64].
The analysis of these groups is useful in order to detect possible biases that
the recommenders may inherently have, reproduce, or reinforce because of the965

data. For example, in [65] the authors analyze the recommendations produced
in the book domain (in the Amazon and BookCrossing datasets) by collabo-
rative filtering algorithms according to the gender of the authors, concluding
that matrix factorization algorithms tend to have biased recommendations to-
wards male authors, which corresponds to the most frequent group in their data,970

hence neglecting the less representative part of the population when learning
preferences from the global population. On the other hand, in [66], the authors
analyze the effect of the well-known popularity bias in the Movielens dataset by
characterizing the users in three different groups according to the percentage of
popular items they have rated. According to their results, all algorithms rec-975

ommended many more popular items than the ones the users have rated, even
for the group of users in which half of the items they consumed belonged to the
long-tail.
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In the area of tourism and POI recommendation, the analysis of biases and
different types of users is even more critical due to the sparsity of the data and980

the nature of the items considered. Moreover, this information could be very
useful to understand the actual behavior of users, either as a whole or as mem-
bers of smaller groups. In this regard, in [20] the authors apply a clustering
algorithm to obtain 4 major user groups (vacationers, explorers, voyagers, and
globetrotters) based on the types of trips they make in a Foursquare dataset.985

In [23] a POI recommendation approach is proposed that takes into considera-
tion the local experts in the cities in order to improve the recommendations, but
these were focused to only foreign travelers. Additionally, in [67] the authors
define a Seven Factor Model of touristic patterns in which they capture the user
preferences by letting them choose the most interesting photos for them from990

a collection of images. Later on, both users and items are transformed into a
7-dimensional space (one for each factor) so that the recommendation for the
user is computed applying the Euclidean distance between the user and the item
transformations. In this way, hence, an alternative method for user profiling in
the tourism domain, in this case considering the emotional information encoded995

in the pictures, is proposed.
While the aforementioned works have explored different techniques to group

or classify users in LBSNs, we have not found many works where the effect
of the recommendation algorithms has been explicitly analyzed towards each
user group. A related, but different problem, nonetheless, is addressed in [68],1000

where the authors show that cognitive biases such as confirmation, positive (or
negative), stereotype, temporal perspective, and so on affect the decisions of
the tourists. Another approach can be found in [69], where the authors analyze
different fairness criteria in location recommendations in the city of Vienna
considering groups of users based on their nationalities. We, thus, believe this1005

work would allow to better understand how to design these types of systems
and to consider such biases when modeling the users.

7. Conclusions

We have explored the venue recommendation problem and compared the
performance of several algorithms under a realistic scenario using a tempo-1010

ral evaluation methodology. Our main contribution consists in different ways
of augmenting the information available to train recommendation algorithms.
More specifically, we have shown an empirical evaluation comparing the per-
formance of state-of-the-art recommenders under different data augmentation
settings (two aggregation strategies based on the closest cities, with the special1015

case of the cities belonging to the same country, and the most popular ones).
Even though the behavior varies depending on the city, the data augmentation
strategy based on the closest cities (and, in particular, the one based on the
cities of the same country) tends to produce better results and, what is more
important, in more than one evaluation dimension; in the future, we would like1020

to exploit this effect to create a generic recommender for venue suggestion that
takes this information into account.
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Encouraged by these positive results, we believe there is still room for im-
provement. First of all, this study could be extended by considering more com-
plex recommendation algorithms such as LTR [31] or others based on neural1025

networks [70, 71]; although we should consider that POI recommendation mod-
els that exploit geographic information may be negatively affected by the MCA
strategies as user movement patterns may be modified if we use information
from other cities’ check-ins. Furthermore, the temporal evaluation methodol-
ogy should also be analyzed more carefully, especially regarding the effect of1030

seasonal trends and how it may affect the data augmentation and knowledge
transfer techniques (since not enough interactions or users might be available
or active at the same time). Nevertheless, we still argue that this type of offline
evaluation is more realistic as it resembles a real production system where only
past interactions are available to predict future behavior, unlike random splits1035

where past and future interactions are mixed [36].
Another contribution that we have analyzed in this work consists on identi-

fying the systematic biases that groups of users from LBSNs experience when
receiving recommendations. We have focused on two clearly different types
of users: tourists and locals. Our results indicate that state-of-the-art venue1040

recommenders consistently find better suggestions for tourists, which seems to
demonstrate that these users are easier to satisfy. This behavior is also ob-
served for the data augmentation techniques proposed, although it is strongly
connected to measuring performance based on accuracy, since other dimensions
such as diversity or novelty show an inverse relation with accuracy and, hence,1045

better results for local users.
These results open up interesting research lines for the future. On the one

hand, it suggests that the types of users analyzed in this work (tourists and
locals) could be optimized according to different criteria or even using differ-
ent pools of algorithms. By doing this, more resources could be devoted to1050

those users more difficult to optimize (in this case, local users), an idea that
was explored in the area and proved to decrease the total error in the system
[72]. Another possibility would be to create hybrid recommendation algorithms
that, depending on the user type, would exploit different information to provide
suggestions. We believe these possibilities would allow to decrease the biases1055

observed herein, since they would allow to provide better recommendations for
the population whose preferences are being misrepresented.

Furthermore, we aim to further extend how the cities are selected by com-
puting a similarity between them using content and cultural information [33],
and in particular, item-based similarities that could reduce the sparsity when1060

aggregating the cities by merging POIs that belong to the same food or clothing
chain, as done in [73]. We would also like to exploit the venue categories, social
connections, or other content data, and see how that information is affected
when using aggregation strategies, especially in the context of smart city ap-
plications where multiple data sources are available [74]. Besides, due to the1065

inherent high sparsity levels of this recommendation task, we believe that a
study to analyze the cold-start problem is needed in order to assess if data aug-
mentation strategies perform well under these circumstances. In fact, since in
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this paper we have found that the proposed strategies are useful to improve the
user coverage even under very sparse constraints, we expect they could obtain1070

positive results also for such a problem, in particular because our experimen-
tal setting is still realistic enough under several situations (we applied a 2-core
pre-processing step, which is less strict than other settings used in the area);
nonetheless, a more thorough analysis such as the one reported in [75] should
be performed to understand the sensitivity of this problem to the different al-1075

gorithms and aggregation strategies.
Finally, we plan to expand the analysis on biases to the types of users pro-

posed in [20], which considered different types of travelers (and, hence, they
would all classify as tourists under our classification). Moreover, we believe
there is room for improvement in terms of grouping the users according to1080

different dimensions, and we would like to explore other classifications, for in-
stance, based on the number of interactions or on the number of popular POIs
they visit, as done in recent works [66, 63].
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Appendix A. Information about N-MCA and C-MCA cities

Here we include the 7 closest cities (N-MCA strategy) with respect to each
target city:

• Istanbul: Kutahya, Bursa, Eskisehir, Tekirdag, Kocaeli, Balikesir, Sakarya.

• Jakarta: Palembang, Tanjungkarang-Telukbetung, Pontianak, Bandung,1095

Surabaja, Semarang, Yogyakarta.

• Kuala Lumpur: Ipoh, Seremban, Pinang, Kuantan New Port, Shah Alam,
Kuala Terengganu, Melaka.

• Mexico City: Queretaro, Jalapa, Morelia, Puebla, Pachuca, Toluca, Cuer-
navaca.1100

• Moscow: Tver, Yaroslavl, Ivanovo, Gor’kiy, Voronezh, Ceboksary, Smolensk.

• Santiago: Valparaiso, Coquimbo, Talca, Cordoba, Concepcion, Temuco,
La Serena.

• São Paulo: Florianopolis, Curitiba, Santos, Vitoria, Belo Horizonte, Niteroi,
Rio de Janeiro.1105
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• Tokyo: Sendai, Kawasaki, Osaka, Gifu, Yokohama, Kyoto, Nagoya.

To properly compare the results from N-MCA and C-MCA, we also state all
cities belonging to the same country (C-MCA) with respect to each target city:

• Turkey: Istanbul, Sakarya, Balikesir, Canakkale, Zonguldak, Kutahya,
Kayseri, Ordu, Trabzon, Mersin, Isparta, Mugla, Denizli, Sanhurfa, Ay-1110

din, Ankara, Eskisehir, Malatya, Kocaeli, Seyhan, Tekirdag, Afyon, Sam-
sun, Rize, Izmir, Bursa, Antalya, Giresun, Antioch, Manisa, Kahraman-
maras, Bolu, Edirne, Konya, Aintab.

• Indonesia: Jakarta, Palembang, Tanjungkarang-Telukbetung, Semarang,
Samarinda, Balikpapan, Surabaja, Bandung, Denpasar, Bandjermasin,1115

Mataram, Yogyakarta, Padang, Pontianak, Medan, Manado, BandaAceh,
Pekanbaru.

• Myanmar: Kuala Lumpur Ipoh, Alor Setar, Melaka, Kangar, Kuantan
NewPort, Pinang, Kota Baharu, Kuala Terengganu, Kota Kinabalu, Kuch-
ing, Johor Baharu, Seremban, ShahAlam.1120

• Mexico: Mexico City, Villahermosa, Queretaro, Tampico, Jalapa, More-
lia, Puebla, Pachuca, Toluca, Cuernavaca, Guadalajara, Aguascalientes,
La Paz, Oaxaca, Tuxtla Gutierrez, San Luis Potosi, Campeche, Colima,
Veracruz, Merida, Monterrey, Hermosillo.

• Russia: Moscow, Irkutsk, Kuybyskev, Kaliningrad, Ivanovo, Voronezh,1125

Vladivostok, Gor’kiy, Chelyabinsk, Rostov-on-Don, Omsk, Krasnodar,
Perm, Novosibirsk, Vyatka, Saint Petersburg, Tver, Ufa, Tomsk, Smolensk,
Sverdlovsk, Krasnoyarsk, Volgograd, Kazan, Izevsk, Ceboksary, Ulyanovsk,
Yakutsk, Khabarovsk, Yaroslavl, Saratov.

• Chile: Santiago, Puerto Montt, Valparaiso, Coquimbo, Talca, Antofa-1130

gasta, Concepcion, Temuco, La Serena, Iquique.

• Brazil: São Paulo, Joao Pessoa, Porto Velho, Natal, Palmas, Belem, Man-
aus, Maceio, Aracaju, Boa Vista, Vitoria, Niteroi, Brasilia, Belo Hori-
zonte, Cuiaba, Sao Luis, Macapa, Curitiba, Rio de Janeiro, Rio Branco,
Goiania, Florianopolis, Teresina, Fortaleza, Santos, Campo Grande, Re-1135

cife, Porto Alegre, Santarem, Salvador.

• Japan: Tokyo, Hiroshima, Naha, Fukuoka, Kobe, Kawasaki, Sendai, Kawasaki,
Osaka, Gifu, Yokohama, Kyoto, Nagoya, Shimonoseki, Sapporo.
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