
Explaining Recommender Systems Fairness and
Accuracy through the Lens of Data Characteristics

Yashar Deldjoo

Polytechnic University of Bari, Italy

Alejandro Bellogin

Universidad Autónoma de Madrid, Spain

Tommaso Di Noia
Polytechnic University of Bari, Italy

Abstract

The impact of data characteristics on the performance of classical recommender
systems has been recently investigated and produced fruitful results about the
relationship they have with recommendation accuracy. This work provides a
systematic study on the impact of broadly chosen data characteristics (DCs) of
recommender systems. This is applied to the accuracy and fairness of several
variations of CF recommendation models. We focus on a suite of DCs that
capture properties about the structure of the user-item interaction matrix, the
rating frequency, item properties, or the distribution of rating values. Experimental
validation of the proposed system involved large-scale experiments by performing
23,400 recommendation simulations on three real-world datasets in the movie
(ML-100K and ML-1M) and book domains (BookCrossing). The validation results
show that the investigated DCs in some cases can have up to 90% of explanatory
power – on several variations of classical CF algorithms –, while they can explain
— in the best case — about 40% of fairness results (measured according to user
gender and age sensitive attributes). Therefore, this work evidences that it is
more difficult to explain variations in performance when dealing with fairness
dimension than accuracy.

Keywords: Explanatory power, Fairness, Accuracy, Collaborative filtering,
Data Characteristics

1. Introduction

Recommender Systems (RSs) are widely used nowadays, after a dramatic
expansion over the last decade. Companies either from the entertainment
domain (such as Netflix or YouTube), human resources (LinkedIn), tourism
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(Yelp, Trivago [1]), or finances (BBVA1 or MPS [2] banks) exploit these techniques5

to increase their revenues by engaging with users in a more dynamic and personalized
way. The key assumption of these approaches is that users who shared similar
preferences in the past will likely agree in the future as well. Then, from an
algorithmic point of view, these models keep track of users’ historical behavior
data (users’ interactions and stated preferences) and find similar behavioral10

patterns to offer personalized new suggestions. However, even though these
techniques tend to work well in most domains (as long as enough data is
collected from users, to avoid the so-called cold-start problem), it is still not
well-understood why some methods seem to be more suitable in some situations
than others.15

On top of that, there is a recent trend in the community towards shifting from
the classical view where performance is equated to accuracy, to acknowledge
(and aiming at improving) other dimensions. One key dimension, especially for
some of the aforementioned domains, is fairness (understood as the capability of
providing comparable recommendations to multiple groups of users, in particular,20

defined based on sensitive attributes such as gender or race) – for example, in [3]
there is an example in the finance domain, for a broad survey on this concept we
refer the reader to [4]. Defining when a recommendation is fair is not a trivial
task, it depends on the context, the goal of the system, and the types of users.
In the literature, it is possible to find different notions for this (ranging from25

the equal utility for users in the different groups, as in [5] to other approaches
where it is based on merits and needs defined by the system developer [6]).

In this context, we propose herein a framework that helps to understand how
recommendation algorithms behave as the underlying data characteristics on
which they are trained change. For this, we focus on two competing evaluation30

dimensions: accuracy and fairness. As we shall show, we use a statistical model
to identify the dataset characteristics that impact the most in the performance
of different families of recommendation models; such impact will be referred
to as explanatory power as it reflects the capability of such characteristic to
influence a given definition of performance.35

Our work was inspired by the work in [7], which studies the influence of rating
data characteristics on the recommendation performance of popular collaborative
RS, and by [8] where the authors use an explanatory framework to mainly focus
on the robustness of CF models. Their work differs from ours because we utilize
the explanatory model to explain more than one evaluation dimension with40

respect to many more data characteristics. Moreover, in [7] the authors only
focus on error-based metrics, which have a very limited correlation with user
satisfaction, as acknowledged by the community in recent years [9].

In particular, in this work we aim to address the following research questions:

RQ1 Which data characteristics impact the most in the performance of different45

families of recommendation algorithms when optimizing for accuracy? In
particular, is it possible to capture (or predict) such performance with a

1https://www.bbvadata.com/recsys/, retrieved in December 2020.
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minimal subset of these characteristics? How general are these characteristics
for different datasets?

RQ2 How do these characteristics change when the goal of the system is shifted50

towards fairness? In comparison with the previous scenario, is it easier to
predict the impact of these characteristics for fairness or for accuracy?

RQ3 Is it possible to augment the set of characteristics so that the inherent
biases in the data are also considered?

The main contributions of this work are the following:55

• We present a systematic, in-depth exploratory analysis of the impact
of data characteristics on the performance of popular recommendation
models, targeted at accuracy and fairness evaluation dimensions. To
investigate the relationship between data characteristics and the performance
of these models, we use regression-based explanatory modeling.60

• We extend prior works on the definition and exploration of data characteristics,
either based on the standard user-rating matrix, or from additional information
regarding sensitive attributes related to the expected definition of the
fairness dimension.

• We conduct extensive empirical analysis against a wide range of recommendation65

models across real-world datasets (where sensitive attributes are available).
We rely on a statistical significance test with informed p-values to validate
the hypotheses regarding the impact on the final model output according
to the explanatory regression framework of the considered data characteristics;
moreover, we exploit further statistical techniques to perform a selection of70

these characteristics and derive a minimum set with maximum explanatory
power.

2. Background and related works

This section introduces the basic concepts of recommender systems (Section
2.1) and their evaluation (Section 2.2). At the end of this section, we present75

research works that we consider related to the research presented herein since
their main goal is also understanding (or explaining) why and on which scenarios
a recommender system reaches some performance level (Section 2.3).

2.1. Recommender systems
The recommendation problem is typically defined as finding a utility function

to automatically predict how much a user will like an item that is unknown to
her. More specifically, let U and I denote a set of users and items in a system,
respectively. Given a utility function g : U × I → R, this problem is reduced to
optimize the following function:

∀u ∈ U , i∗u = arg max
i∈I

g(u, i) (1)
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as long as (as it is typically assumed) the item i∗u was not enjoyed by user u80

before. Moreover, the classical scenario also requires a user-item rating matrix
(URM) R ∈ R|U|×|I|, where each entry rui ∈ R represents a rating assigned by
user u ∈ U to item i ∈ I.

Most of the efforts on the RS community are devoted to finding and learning
better utility functions g. Depending on the knowledge used to derive these85

functions, several categories have been proposed: based on preference patterns
between users and items (collaborative filtering, or CF), based on similar items
liked in the past by the users where the similarities could be based on textual
data [10] or multimedia content [11, 12, 13] (content-based filtering, or CBF),
based on the preferences of friends or social connections (social filtering), based90

on user demographics, and so on [14]. Among these alternatives, CF techniques
are the most popular and effective ones, since they work well when enough
user preferences are known [15], and do not need additional metadata or item
information like other techniques.

2.2. Evaluating accuracy and fairness95

RS evaluation has been traditionally linked to the analysis of the relevance of
the recommendations using Information Retrieval (IR) metrics such as Precision,
MAP, or nDCG [16] normally in a cross-validation (random) evaluation methodology [17].
Nonetheless, some researchers alerted about the use of more realistic evaluation
methodologies by taking the interaction time into account when creating the100

splits [18]. The use of such methodologies is not straightforward, and there are
several options worth of exploration, impacting the results of the algorithms
and how realistic (or transferable to the real world) these results could be [18].

Moreover, despite the importance of relevance in recommendations, there
has been a growing awareness on measuring other evaluation dimensions like105

novelty and diversity, as sometimes producing only accurate recommendations
may not surprise or discover new items to the target user [19]. The document
recently released by the European Union on guidelines on ethics in AI2, shed
light on the ethical rules that are now recommended when designing, developing,
deploying, implementing, or using AI products. The key EU requirements110

for achieving trustworthy RS include robustness of RS [20, 21], privacy and
data governance [22, 23], transparency [24], nondiscrimination and fairness [25,
26], societal and environmental well-being, and accountability [27, 28]. We
focus our attention mainly on the fairness dimension. From an algorithmic
point-of-view, blindly optimizing for accuracy-oriented metrics (or consumer115

relevance) may have adverse or unfavorable impacts on the fairness aspect of
recommendations [29] or even other algorithmic biases may appear [30], e.g.,
in the employment recommendation context, certain genders or users from
certain areas might be more likely to be recommended a job due to their
behavioral differences and past information collected from users with the same120

characteristics [6].

2https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai,
last accessed June 2021.
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Regarding the fairness aspect, from a recommender systems perspective,
where users are first-class citizens, there are reciprocal [31] and multiple stakeholders [32]
which raise even more fairness issues. That means RS models should be designed
to take into account the utility of recommendations relative to (i) target users125

or customers’ preference, and (ii) the vendors and businesses – e.g., in terms of
profitability [33]. Burke et al. [34] suggest that in multi-stakeholder recommender
systems (MRS), the fairness of RS should be studied relative to (i) consumers
(C-fairness), (ii) providers (P-fairness), and (iii) both (CP-fairness). From
an algorithmic point-of-view, one can classify the prior literature on fairness-130

aware recommendation according to user-fairness or item-fairness (often directly
related to businesses behind them), according to which sensitive attributes
fairness is computed. For instance, for users, age, gender [35], and nationality
are good examples of user-sensitive attributes, while for items, their category is
commonly studied (e.g., gender of artists in music recommendation [36]).135

Even though research on fairness has been a very active topic recently in
several ML/IR/RS, there are few evaluation metrics designed that are capable of
measuring fairness in RS. Tsintzou et al. [37] propose the metric “bias disparity”
to quantify the relative deviation between the biases produced by RS and
those inherently found in the data. Zhu et al. [38] propose the metric MAD140

(mean absolute deviation) to capture fairness in the average ratings between
two groups. Yao et al. [39] define several unfairness quantities (non-parity,
value, absolute, underestimation, overestimation, and balance unfairness) that
can be applied to two groups of users and based on prediction errors. The
main shortcoming of these evaluation metrics is that they are only valid for 2145

groups and are focused on ratings or towards a rating prediction task, which has
been displaced by the community because it does not correlate with the user
satisfaction [17, 9].

To address these shortcomings, recently Deldjoo et al. [25] proposed a framework
based on generalized cross-entropy (GCE) to evaluate the fairness of recommender150

systems for both users and items. Compared with those fairness evaluation
metrics described above, GCE improves them in several dimensions: first, it
can be used to define and measure fairness for both users and items; second, as
it uses the probability distribution of recommendation outcomes over different
(protected) groups, it inherently does not assume any predefined number of155

groups to define fairness upon and compared them in probabilistic sense; finally,
it can incorporate different accuracy-related metrics to measure fairness upon,
according to error metrics (e.g., RMSE, MAE), decision-support metrics (e.g.,
precision, recall), or ranking metrics (e.g., NDCG, MAP).

2.3. Understanding behavior of recommender systems160

The definition of recommendation algorithms is, as presented before, at
the core of the RS research. However, most of those proposals are based on
intuitions or toy examples on how such methods should work for the general
user. Moreover, these approaches are, usually, not completely deterministic and,
in any case, with high levels of subjective behavior (in contrast to other domains165

like Machine Learning or Information Retrieval), due to the lack – by definition
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– of a general notion of relevance. Hence, a general assessment of whether an
algorithm is working as expected is usually achieved by an (objective) evaluation
measurement, assuming that a well-performing algorithm (according to some
definition of performance) is correlated with the lack of undesired behavior.170

However, it is clear that these assumptions are not sufficient to actually
know and understand how recommendation algorithms behave. With this goal
in mind, researchers have analyzed specific components of the algorithms, such
as similarity metrics and their effect on neighbor-based algorithms [40], or how
the different hyper-parameters of the models affect the final performance [41].175

In a research line closer to what we investigate in this work, the authors of [7]
explicitly analyze the impact of data characteristics on the performance of
classical recommendation algorithms. As discussed before, that paper was the
original inspiration for this work, and in fact we follow the same experimental
procedure (different random samples are extracted from the original datasets,180

see Section 4.2), although we extend the pool of data characteristics and use
a more up-to-date definition of performance (i.e., a ranking-aware metric like
nDCG instead of error-based metrics like Root Mean Squared Error). An
extension of that work, but focused on the robustness of CF methods, is presented
in [8]. That paper also uses a limited number of data characteristics and the185

discussion is restricted to accuracy as target performance, whereas in the current
work we also analyze the impact on a fairness-aware metric.

In summary, the RS community is actively addressing and paying attention
to the biases existing in items (novelty vs popularity), users (fairness), and other
general recommendation aspects (such as temporal vs random evaluation, cold190

vs warm profiles, etc.), however, a clear understanding of the effect of these
characteristics inherently present in the data is not available – this work aims
to shed some light on this important issue.

3. Explanatory framework

In this section, we describe the foundations of the explanatory framework195

that aims to investigate the impact of data characteristics (DCs) on the performance
of different families of collaborative filtering (CF) recommendation models,
either measured as (i) accuracy or (ii) fairness.

The central question in the explanatory modeling research is the choice of
explanatory variables (EVs) or data characteristics that can enable the researchers200

to apply an ever-widening range of models to data for explanatory analysis.
Two main approaches exist for choosing the DCs, based on (i) confirmatory, or
(ii) exploratory research [42, 7]. These two methods can be regarded as two
complementary components of the same goal, that is to find relevant variables
in the most efficient, reliable, and replicable manner. Their difference is that in205

confirmatory research, the potential impact of different variables are hypothesized
a-priori, based on existing theories. This would in turn allow to focus on a small
set of explanatory variables, from a larger set of alternatives. The confirmatory
research approach is useful when researchers have a pretty good idea of the
problem, or more precisely they have a theory (or theories) supported by facts.210
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The second approach is exploration-driven, which is used when there exists
a lack of sufficient theory foundations. Exploratory research could likewise
produce new hypotheses that could formally be evaluated later.

Similar to [7] our study belongs to the second category, where we design a
general framework based on the explanatory modeling paradigm to study the215

impact of data characteristics on RS performance, measured in term of accuracy
and fairness metrics. By treating the hypothesized impactful parameters, which
vary in terms of the information they capture, as DCs, we can allow the explanatory
framework to explain various DC factors in RS.

3.1. Theoretical modeling of the explanation framework220

Given a dataset d, a recommendation model g (e.g., neighborhood-based or
latent-factor CF model), the goal is to test the hypothesis whether some EVs
— capturing DC information — can explain the variations on the dependent
variable (DV) — related to RS performance. A regression model is used to
model the relationship according to

yg = ε+ θ0 +
C∑

c=1
θcxc (2)

in which C is the number of DCs, θc is the regression coefficient of the c-th
explanatory EV (cf. Section 3.2), xc ∈ R represents the value of the c-th EV
for the i-th training example, and yg ∈ R is the measurement corresponding to
a training sample according to recommendation model g, the measured DV (cf.
Section 3.3).225

3.2. Explanatory variables
The explanatory variables (EVs) considered in this work describe the DCs

from a wide range of perspectives. The definition of these variables have been
obtained by reviewing the most impactful studied parameters in the literature
of RS over the last two decades – e.g., consider [43, 44, 45, 46, 47, 48, 49].230

The EVs describe different aspects of data and can be categorized according
to the following groups:

• Based on the structure of the URM

• Based on the rating frequency of the URM

• Based on item properties (popularity, long-tailness) of user profiles235

• Based on the distribution of rating values

We formally describe the main features measured in each category in the
next sections. In what follows, we assume we are dealing with a given URM,
with a number of real users |U|, real items |I|, and ratings |R|.
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3.2.1. EVs based on the structure of the URM:240

The EVs in this section measure properties that are directly impacted by the
structure of the URM, specified by its dimension as well as number of known
entries (ratings).

Definition 1 (SpaceSize). Given a URM, SpaceSize is defined as:

x1 = SpaceSize(URM) = |U| · |I| (3)

This EV directly measures the capacity of the URM without considering245

its entries. It is a simple, but useful, metric that allows to compare different
datasets in terms of the maximum number of preferences that can be collected
from users.

Definition 2 (Shape). Given a URM, we define Shape as follows:

x2 = Shape(URM) = |U|
|I|

. (4)

Note that when Shape(URM) � 1 then |U| � |I|, i.e., there are more250

candidate neighbor users than candidate neighbor items. On other hand, when
Shape(URM)� 1 then |U| � |I|, i.e., there are more candidate neighbor items
than candidate neighbor users. For instance, it is natural to foresee that this
situation might work in the advantage of user-based CF compared with item-
based CF or vice-versa, depending on whether the URM has more number of255

candidate users or items [50].

Definition 3 (Density). Given a URM, we define Density as follows:

x3 = Density(URM) = |R|
|U| × |I|

(5)

Data density is inversely related to data sparsity via Density = 1−Sparsity.
Sparse information is a well-known phenomena in RS [45], it refers to settings
where the fraction of known interactions is significantly lower than the potential260

number of possible ones, making it too difficult for CF recommendation models
to make correct predictions. It is very common in the area to find experimental
settings where this DC has been explicitly analyzed, such as [43] and [44].

Definition 4 (Rpu, Rpi). Given a URM, rating per user (Rpu) and per item
(Rpi) are defined as follows:

x4 = Rpu(URM) = |R|
|U|

(6)

x5 = Rpi(URM) = |R|
|I|

(7)
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Note that Rpu and Rpi are two of the most widely used DCs in the literature,265

since they are often reported as statistics of tested URMs, side-by-side density.
We provide intuition behind the reasons why these DCs are of interest for RS.
For instance, Rpu can directly impact the performance of any CF method since,
at the end, CF models provide a personalized recommendation to each user
based on their interaction (rating) profile. Also, quite often, research works270

prefer to apply a different threshold on the minimum number of ratings in the
user profile to consider that user for evaluation [46, 47]. For these reasons, we
deem these newly introduced DCs of high interest for this study.

Moreover, it should be noted another area worth of investigation for the last
three features (Density, Rpu, and Rpi): simulating cold-start situations such as275

sparse preferences, cold users, and cold items [45], or even the transition from a
cold-start to warm-start setting [51]; dealing with these issues is a quite common
task in the community of RS and an active area of research in the field.

3.2.2. EVs based on the rating frequency of the URM:
Another important characteristic of a URM is the rating frequency distribution.280

The idea is that in many real applications, a small number of items receive a large
number of ratings (short head or popular items), while a large number receive
low or few feedbacks (long tail), causing the rating distribution to be skewed.3
It turns out that the commercial profit from recommending long-tail items is
more significant than short-head items [52]. However, these long-tail items have285

less chance to be recommended since they have less historical feedback [50]. We
examine this characteristic because it could help on understanding how biased
towards popular items the algorithms could be.

Definition 5 (Ginii, Giniu). Given a URM, let |Ri| and |Ru| be the number
of ratings associated with item i and user u; then Ginii and Giniu are defined
respectively in the following manner:

x6 = Ginii(URM) = 1− 2
|I|∑
i=1

|I|+ 1− i
|I|+ 1 × |Ri|

|R|
(8)

x7 = Giniu(URM) = 1− 2
|U|∑

u=1

|U|+ 1− u
|U|+ 1 × |Ru|

|R|
(9)

More specifically, the Gini coefficient measures the concentration of items, or290

users, ratings to capture the rating frequency distribution. A uniform popularity
distribution (e.g., all users or items give the same number of ratings) is represented
with the value of the Gini coefficients to 0, while the total inequality (e.g., only
one user or item has given all ratings) is represented with a value of 1. Note

3It should be noted that, although this discussion is centered around ratings, a similar
argument can be made based on other types of interactions, such as clicks or listenings.
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that Equations 8 and 9 assume items and users are sorted according to Ri and295

Ru respectively.

3.2.3. EVs based on item properties of user profiles:
The EVs defined in this section have never been investigated – to the best of

our knowledge – in a similar explanatory framework before. They are however,
widely used in the evaluation of recent RS, as they are related to the inherent300

biases that can be found in the data exploited by a recommender system [53,
54, 49, 48].

Definition 6 (Popularity Bias). The popularity profile of the user is measured
as the average popularity of items consumed by a user. Once averaged over
users, the computed score provides an evaluation of the popularity bias [48] of a
given dataset. A general formulation over popularity bias assessment is defined
as:

x8:11 = f

({∑
i∈Ru

φ(i)
|Ru|

}
u

)
(10)

where φ(i) is the popularity score of item i defined as the number of users who
consumed item i over the entire number of users, and |Ru| is the size of the
rating profile of user u, as in the previous definition. f is an aggregation operator305

over users, to capture inter-user differences in popularity profiles of users. They
include average popularity bias (x8, APB), standard deviation of popularity bias
scores (x9, StPB), skewness popularity bias (x10, SkPB), and kurtosis popularity
bias (x11, KuPB).

310

Definition 7 (Long tail items). The goal of this EV is to understand how many
less-known (unpopular) items are consumed by and exist in the profile of each
user. It is defined as follows:

x12:15 = h

({
|i, i ∈ (Ru ∩ Γ)|

|Ru|

}
u

)
(11)

where Ru is the rating profile of user u and Γ represents long-tail items, and
it is determined after the dataset is splitted into two categories (short head v.s.
long-tail) in such a way that long-tail items correspond to 20% of ratings, while
short-head items provide the remaining 80%. h is an statistical aggregating
operator applied over this user distribution. For instance, once averaged over315

users, the computed EV would correspond to average percentage of long-tail items
(x12, LTailavg) [53], and would tell us the fraction of items in the entire users’
profiles that belong to the long-tail set. We further accommodate other statistical
aggregation operators applied over users, namely standard deviation of long-tail
items (x13, LTailstd), skewness of long-tail items (x14, LTailskew), and kurtosis320

of long-tail items (x15, LTailku).
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3.2.4. EVs based on the distribution of rating values:
Rating values, when available, provide a different, alternative viewpoint of

the user behavior with the system, in comparison against the rating frequency325

or item properties. On the one hand, some systems – either because of their
interface or the nature of the items – might be biased towards more spread or
extreme rating values;4 on the other hand, recommendation algorithms might
not perform equally on the entire rating scale [43]. Because of these reasons, we
consider this dimension might be valuable to better understand how the data330

impacts the performance of RSs.

Definition 8 (Distribution of rating values). The goal of this EV is to measure
the statistical distribution of rating values, which is a different measurement
to the ones introduced in previous sections, based on the rating entries. The
distribution of rating values can be described based on

x16:19 = m
(
{ru,i}r

)
(12)

where ru,i is the rating given by user u to item i and m is an statistical aggregation
operator over known rating entries, as in previous definitions. For instance, we
explore the possible influence of its standard deviation (x17, Stdrating), since its
negative impact on the rating prediction task measured by RMSE was previously335

reported in [7]. Similar to previous EVs, we compute the average of this distribution
(x16, Meanrating), its skewness (x18, Skrating), and kurtosis (x19, Kurating)
aggregation operators on the rating values.

3.3. Dependent variables340

The dependent variables (DV) represent the performance of the recommender
system; in this work we propose to measure performance in two different,
complementary ways: accuracy and fairness.

Definition 9 (Recommendation accuracy). Normalized discounted cumulative
gain is a highly popular rank-aware metric in RS, that measures the utility of an
item based on its position in the result list. However, as recommendation results
may vary in length depending on the user, to allow comparisons between users,
the ideal cumulative gain computed over the entire test set of a user is used
to normalize this metric. Normalized discounted cumulative gain, or nDCG, is
defined as

y1 = nDCG@N =
∑
u∈U

1
IDCGu@N

N∑
k=1

2ruk − 1
log2(1 + k) (13)

4A famous example was the redesign of the YouTube interface, explained in https://www.
cnet.com/news/youtubes-big-redesign-goes-live-to-everyone/ (retrieved in December
2020).
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where k is the position of an item in the recommendation list and IDCG@N
measures the score obtained by an ideal ranking of the recommendation list RecN

u345

that contains solely relevant items, up to a cutoff N .

Definition 10 (Recommendation fairness). For the purpose of fairness evaluation,
we use MAD-ranking [6], which measures differences between the groups, interpreted
as unfairness. MAD is then defined formally by

y2 = MAD(i, j) =
∣∣∣rank(i) − rank(j)

∣∣∣ (14)

where rank(i) denotes the average ranking performance restricted to those users
in group i, and rank(j) captures the same metric score for group j. Larger values
for MAD imply differentiation between groups interpreted as unfairness. To350

make the results comparable with recommendation accuracy, we used nDCG@N
as ranking metric when calculating MAD.

4. Experimental setting

In this section, we present in detail the experimental settings adopted to355

validate the research questions introduced in the beginning of the paper, whose
final goal is a better understanding of how recommendation algorithms behave
as the underlying data characteristics (on which they are trained) change.

We first show the datasets used (Section 4.1) and the sampling procedure
that generates several instances for training (Section 4.2), then, the recommendation360

algorithms we compared (Section 4.3) and the parameters and other settings
considered in the experiments (Section 4.4) that will be presented and discussed
in the following section.

4.1. Datasets
The fairness dimension of RS is typically evaluated based on the definition365

of a number of sensitive attributes associated with users and/or items. In this
work, we have focused on user fairness, defined according to user gender and user
age. Nonetheless, the evaluation setup can be easily extended to incorporate
various other user and item (sensitive) attributes. To choose the right dataset,
we needed to use the ones that (i) both contain the intended attributes, (ii)370

they contain continuous preference scores (ratings). For these reasons, we used
two different versions of the MovieLens5 (ML) dataset [55], namely ML-100K and
ML-1M where both datasets contain user gender information, and the BookCrossing

5Available at https://grouplens.org/datasets/movielens/
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Table 1: Characteristics of the user-rating matrix associated with ML-100K and ML-1M: |U|
— number of users, |I| — number of items, |R| — number of ratings. |R| represents the
density of that dataset. The last column (USA ratio) represent dataset composition in terms
of user-sensitive attributes, utilized for the fairness study. These attributes include gender
(for ML-100K and ML-1M), and age (for BookCrossing), where for the latter we considered two
age groups: Children & Young (0-24 years old), Adult & Senior (25-99 years old).

Dataset |U| |I| |R| |R|
|U|

|R|
|I|

|R|
|I|×|U| USA ratio

ML-100K 943 1682 100,000 106.04 59.45 0.0630 (71.05%, 28.95%)
ML-1M 6,040 3,667 1,000,209 165.59 272.75 0.0451 (71.61%, 28.29%)
BookCrossing 105,283 340,556 1,149,780 10.92 3.37 32e-5 (26.18%, 73.81%)
BookCrossing 53,423 157,914 344,934 6.46 2.18 408e-5 (13.81%, 86.19%)
(sampled)

dataset which includes ratings to book items and, as user metadata, age categories
and locations.6375

The ML-100K dataset contains 100K movie ratings given by 1K unique users
to 1.7K unique items (movies). The ML-1M dataset includes 1M movie ratings
given by 6K users to 4K items. Each item is rated on a 1-5 Likert scale in
both datasets. The BookCrossing dataset, on the other hand, contains 278K
users (anonymized but with demographic information) providing 1.1M ratings380

about 340K books. Note that one interesting aspect about these datasets
is their contrasting number of users and items, where |U| < |I| in ML-100K
and BookCrossing, while |U| > |I| in ML-1M. These differences in original
URM characteristics for MovieLens datasets would encourage samples generated
having significant diverse DCs, effectively improving the results/insights obtained385

from the explanatory research in this study, even though these datasets come
from the same domain, movies.

As for the BookCrossing dataset, we noticed it has a number of items which
is dramatically larger than ML-1M – namely about 110 times higher. This created
huge computational issues for typical recommendation models, as there were390

simply too many possibilities to form the candidate items. To address this
shortcoming, we randomly took 30% of the interactions in BookCrossing to
serve as the original matrix. Then, as we shall explain in the next section, we
created sub-samples out of it similarly as with ML-100K and ML-1M.

Table 1 summarizes the global characteristics of these datasets.395

4.2. Sampling procedure
Based on the regression-based explanatory model formalized by Eq. 2, the

goal is to compute the regression model coefficients, based on DCs generated

6We want to emphasize the difficulty on finding datasets with enough personal information
of good quality to perform the described experiments. Among the well-known datasets used
in the community [56], Yelp, Epinions, and Amazon datasets do not include user attributes,
while Last.fm does not contain explicit ratings. In fact, the datasets included do not share
the same sensitive attributes regarding users: whereas MovieLens includes the user gender,
BookCrossing provides age and location.
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Algorithm 1 Sample generation procedure
1: Input: URM
2: nu ← number of users of the URM
3: ni ← number of users of the URM
4: nr ← number of ratings of the URM
5: τu ← constraint on average number of ratings for users
6: τi ← constraint on maximum number of items
7: Results: N sub-datasets (urmn)
8: n← 1
9: while n ≤ N do

10: Random shuffle the row of the URM
11: nu ← rnd([100, nu])
12: ni ← rnd([100, ni])
13: urmn ← Selection of nu, ni from URM
14: if nr

nu
< τu or ni > τi then

15: n← n+ 1

from a given dataset (URM). In order to obtain reliable and replicable regression
solutions, many training samples of type (x, y) should be generated. It is desired400

that the training samples are generated from a wide range of perspectives, e.g.,
via different scales and sizes.

The sampling procedure is specified in Algorithm 1. To this end, we adopt
the sampling generation strategy presented in [7, 8], where for a given URM, we
generated n = 600 different samples. These samples (sub-datasets) are denoted405

with urmn in Algorithm 1 and represent smaller URMs with a wide diverse
range of DCs, as we outlined in Section 3.2.2, for instance with different sizes,
levels of sparsities, and so forth. When creating these samples, we impose a
number of constraints to ensure that the generated samples are useful to build
a model based upon, they include: (i) each sample should have minimum 100410

users and items, (ii) the average number of ratings in the user profiles should
be over a threshold (e.g., we set τu = 10 in the case of ML-100K and ML-1M),
and (iii) the number of items should not go beyond a maximum value as it may
cause computational issues (τi = 70, 000 for BookCrossing).

We want to highlight that cold-start scenarios are not considered in this work415

(and left as a potential research avenue that might be addressed in the future)
for the sake of clarity and conciseness. As we have described, to obtain reliable
recommendations we impose constraints on the number of interactions each user
has when creating these samples. This is because cold-start situations should
be evaluated carefully, as done in the area [57, 45], and we believe they deserve420

a proper analysis on different profile sizes to explore whether the same data
characteristics are as explainable in standard scenarios as in cold-start ones.

4.3. Compared CF recommendation models
In this work we study the impact of data characteristics for various collaborative

filtering (CF) recommendation models. They can be classified into two main425

classes of (i) neighborhood-based model (a.k.a. memory-based), and (ii) latent-
factor models.
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4.3.1. Neighborhood-based models
For the choice of neighborhood-based CF models, we relied on two popular

models: UserKNN and ItemKNN, together with several variations of these models430

that by and large differ from each other based on the core similarity metric, or
the weighting/amplification of ratings when calculating similarities.

– UserKNN-Cosine [58]: A user-based neighborhood-based method that computes
user-user similarities based on the cosine similarity of their interaction
(here, rating) profiles. The closest neighbor users to a given target user435

are chosen according to the computed similarities.

– UserKNN-Pearson [59]: It uses Pearson correlation coefficients as similarity
function to find user-user similarities.

– UserKNN-Amplified: This method introduces a weight factor whose role
is to amplify the importance of more similar users relative to less similar440

ones. The effectiveness of amplification on improving the accuracy of
recommendation has been shown on other CF tasks, such as playlist
recommendation [60].

– UserKNN-IDF [61]: A variant of UserKNN that weights ratings with the
inverse document (item) frequency (IDF). In this way, it allows to account445

for the popularity (in fact, for the novelty) of the items.

– UserKNN-BM25 [61]: Another variant of UserKNN that weights ratings via
BM25 algorithm. This algorithm is widely used in text retrieval [16] and
has demonstrated good modeling capabilities in several tasks, from tag to
item recommendation [62].450

• ItemKNN-Cosine [63, 64]: An item-based implementation of the K-nearest
neighbor algorithm, that finds nearest item neighbors based on the cosine
function computed on item ratings.

• ItemKNN-Pearson [63, 64]: It uses Pearson correlation coefficient similarity
function to compute item-item similarities.455

• ItemKNN-Adjusted [64]: It uses a variation of the Cosine similarity, where
the user’s average rating is considered to adjust the similarity computation
and personalize it to each particular user.

All these methods are instantiations of the following formulations, for instance,
by considering specific similarity functions:

r̂ui = bui +

∑
v∈Uk

i
(u) sim(u, v) · (rvi − bvi)∑

v∈Uk
i

(u) sim(u, v)
(15)

r̂ui = bui +

∑
j∈Ik

u(i) sim(i, j) · (ruj − buj)∑
j∈Ik

u(i) sim(i, j)
(16)

where sim(·, ·) is a similarity function between two elements, and Uk
i (u) and

Ik
u(i) are the neighborhoods of a given user or item, that is, those k users or460

items closest to that user according to the similarity function.
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4.3.2. Latent-factor based models
We also considered a wide range of latent factors models, used in the past

and current research works of RS achieving very good performance in rating
and ranking tasks [65, 66].465

• MF [65]: A classical Matrix Factorization approach, in this case, the user
and item factor are learned through Stochastic Gradient Descent, even
though other techniques are available in the area [67]. The predicted
rating in MF is computed as r̂ui = qT

i pu, where qi ∈ RH and pu ∈ RH

are the item and user latent vectors learned by the model.470

• SVD [65]: An extension of the previous MF approach described where user
and item biases are considered when learning the user and item factors.
The predictor in SVD has the form r̂ui = bui + qT

i pu, where bui = µ +
bu + bi, and µ, bu, bi represent the overall average rating and the observed
biases of user u and item i.475

• BPR-MF [68, 65]: BPR is the state-of-the-art method for personalized
ranking, particularly on implicit feedback datasets. BPR-MF uses MF
as the predictor and a pairwise ranking loss whose goal is to optimize
personalized ranking obtained by the MF model. BPR is widely known
for achieving competitive performance in item recommendation tasks.480

• PMF [69]: A Probabilistic Matrix Factorization algorithm, where the matrix
is factorized based on a probabilistic lineal model with Gaussian noise and
a Maximum A Posteriori method.

• NMF [70]: A Non-negative Matrix Factorization method based on adding
a constraint on classical MF techniques, taking into account that ratings485

in recommendation are always positive integers; in particular, it enforces
user and item factors are kept positive.

It should be emphasized that in this paper our goal is not to obtain the
best performance with any of these methods, but to understand under which
situations any of them may improve their performance, or more precisely their490

performance changes. That is why we selected a wide range of methods but left
other representative (and more recent) approaches out of the study. Thus, we
aim to include other families as future work.

4.4. Evaluation metrics and settings
For each considered recommendation model, we ran them at their default495

hyper-parameter values according to their implementation in the Cornac recommender
framework [71]. The results of the recommendation were generated based on a
hold-out setting (80%-20% training-test split).

As for the choice of evaluation metric, we chose MAP to compare the results
on the datasets chosen in this work (ML-100K, ML-1M, BookCrossing). At the500

same time, we reported the result on NDCG@100, though in the appendix
(and only for ML-100K and ML-1M), given that MAP produced more reliable
recommendations to use the explanatory study upon. We discuss this aspect
better in Section 5.1.
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5. Results and Discussion505

In this section, we present the results of the large-scale performed experiments,
which involve 1,800 generated samples (600 for each of three datasets) and
running 13 CF recommendation models. Hence, a total of 23,400 recommendation
simulations were performed to report the results shown in the current section.

5.1. Quality control and sanity check510

In the present work at hand, we deal with two large pools, (i) a pool of CF
models, and (ii) a pool of DCs. These two sets need to undergo a quality or
sanity check before applying the regression model on them. The main motivation
is to ensure the reliability and precision of regression modeling, which would
serve as the main tool for the explanatory study. We made the following515

observations in this regard.
First, we noticed that some of the neighborhood methods produce (in a user-

basis evaluation) several zero values for a considerable fraction of users contained
in the training sample (the smaller urm). The reason for this phenomena can
be directly linked with their lower total number of ratings. The data scarcity520

can in fact harm the quality of some specific recommendation models more than
the others, the reason we could not allow these methods to enter the final pool
of methods considered for the explanatory study. The motivation is as follows:
even though we wish to evaluate recommendation performance based on DCs,
this would be meaningless if the recommendations do not achieve a minimum525

quality level. In other terms, explaining recommendation performance that
achieves very poor performance is of no value.

We show in Figure 1, the average number of user-based evaluations not equal
to zero across all training samples (small urms). In essence, what each bar in
these plots represents is, for each recommendation model and over N = 600530

samples, on average what is the percentage of users, which do NOT have a
zero user-based evaluation. Obviously, the higher this value, the more reliable
the recommendation result is from an explanatory study point of view. One
observation is that the results dramatically change based on evaluation metrics:
while MAP produces perfect user-based evaluation with almost all recommenders535

producing non zero user-based evaluation, NDCG produces worse performance.
Thus, for NDCG@100, we made sure each recommendation model receives
on average at least 60% non-zero user-based evaluations. Because of this,
in the final pool, ItemKNN-Cosine, ItemKNN-Pearson, UserKNN-Pearson were
excluded.7 To have a consistent set of models for both metrics and given540

the space limitation, the final pool of CF models thus consists of 10 models:
UserKNN-Amplified, UserKNN-BM25, UserKNN-Cosine, UserKNN-IDF, ItemKNN-Adjusted,
BPR, MF, SVD, PMF, and NMF.

7For ML-100K, all methods except UserKNN-Pearson achieved the desired performance. For
ML-1M, 6 methods fall below the threshold, in which ItemKNN-Adjusted, UserKNN-Amplified,
UserKNN-Cosine had a narrow gap with the desired threshold. Thus, we kept them in the final
pool of CF models, to have comparable methods in both considered datasets.
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dataset: ML1M metric: NDCG@100

(a) ML-1M on NDCG@100.
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dataset: ML1M metric: MAP

(b) ML-1M on MAP.
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dataset: BookCrossing metric: NDCG@100

(c) BookCrossing on NDCG@100.
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dataset: BookCrossing metric: MAP

(d) BookCrossing on MAP.

Figure 1: Analysis of accuracy performance (by measuring the percentage of users with non-
zero performance) of the recommendation algorithms tested in ML-1M vs BookCrossing.

As an additional quality check, we also control for the co-linearity of DCs
using variance inflation factor (VIF). This measures the impact of multi-colinearity545

among the DCs in a regression model on the precision of the estimation. VIF
produces a score for each EV that indicates the degree to which multi-colinearity
amongst the DCs degrades the precision of an estimate. Unfortunately, there
is no well-defined critical value on what can be considered as a large/bad VIF,
although some research works suggest V IF = 10 can indicate a problem [72, 73].550

To remain far from this threshold, in this work, we chose the threshold of
V IF = 5 and removed a handful of variables. We have provided the detailed
results of the filtering process in Table 2 and Figure 2.

One of the first points we observe in top part of Figure 2 is the high
correlation degree between some sets of variables, either positive (popularity555

kurtosis vs popularity skewness) or negative (rating skewness vs rating kurtosis).
This is a strong indication that those DCs are not independent to each other,
an aspect that violates the assumption of the statistical regression model. To
remove undesired variables we performed two steps:

• Feature normalization: for which we use min-max normalization;560

• Feature removal: which involved discarding highly correlated features
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Table 2: Sanity check for choosing the most suitable set of features that are not co-linear.
V IF > 10 indicates high degree of colinearity between explanatory variables that can degrade
the precision of the estimation in the regression model. We ensured after sanity check all
V IF < 5. See section 5.1 for further information.

dataset ML-100K BookCrossing

feat. DC/Sanity VIF
before

VIF
after

VIF
before

VIF
after

f1 SpaceSize 38.6 3.0 30.1 1.3
f2 Shape 16.7 2.4 9799.0 dropped
f3 Density 1621.7 4.3 3329.2 dropped
f4 Rpu 85.6 3.9 6122.2 1.7
f5 Rpi 77.8 dropped 24847.6 dropped
f6 Giniu 1.2 1.1 12198.4 dropped
f7 Ginii 1895.6 4.5 925.6 dropped
f8 Popavg 5313.3 2.5 5336.8 1.4
f9 Popstd 1220.1 dropped 533.6 dropped
f10 Popskew 173.8 2.6 3076.6 1.1
f11 Popku 25.0 dropped 1076.8 dropped
f12 LTailavg 2390.8 1.2 78738.7 1.3
f13 LTailstd 1507.1 dropped 291407.0 dropped
f14 LTailskew 1415.0 2.6 789034.6 1.6
f15 LTailku 145.7 dropped 70667.8 dropped
f16 Meanrating 29387.1 dropped 355711.4 dropped
f17 Stdrating 50698.7 1.2 400634.8 dropped
f18 Skrating 4373.8 dropped 125043.0 dropped
f19 Kurating 1246.7 dropped 22471.4 dropped

according to their pairwise correlation score.

We show in Table 2 the result of VIF before and after the data sanity
step outlined above, whereas Figure 2 shows pairwise DCs correlation values.
We notice that using different feature aggregators to statistically aggregate565

user-based DCs over users, tend to produce more correlated features. For
instance, from the popularity bias category, standard deviation of popularity
bias scores (f9) and kurtosis popularity bias (f11) were discarded. Similarly
standard deviation of long-tail items (f13) and kurtosis of long-tail items (f15)
were excluded. On the distribution of rating values, skewness of rating values570

(f18) and their kurtosis (f19) were also discarded. Note that these correlations
may change depending on the datasets; as shown in Table 2, features such as
shape (f2) or density (f3) are removed for BookCrossing. Finally, as reported
in [72, 73], since VIF is sensitive to mean centralization, we mean-centered all
the variables and obtained the final pool of DCs and corresponding VIF values,575

that can be found in Table 2 (second column in each dataset) and bottom part
of Figure 2. Note that the same pattern of outcomes was obtained for the other
MovieLens dataset.
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Figure 2: Correlation plot of the data characteristics in ML-1M before (top) and after (bottom)
data sanity check. Note that higher correlation values are harmful for the regression model
estimation. Note also that the square clusters on the top figure occur when aggregating
a certain feature over users via different statistical aggregation functions (e.g., mean, std,
skewness, kurtosis).
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Table 3: Regression results for the within dataset analysis (target metric: MAP).

Target
MAP

Memory-based Model-based
UserKNN-
Amplified

UserKNN-
BM25

UserKNN-
Cosine

UserKNN-
IDF

ItemKNN-
Adjusted BPR MF SVD PMF NMF

ML
-1

00
K

R2 (adj.R) 0.825 (0.822) 0.826 (0.823) 0.824 (0.821) 0.826 (0.822) 0.881 (0.879) 0.868 (0.865) 0.727 (0.722) 0.725 (0.719) 0.75 (0.745) 0.827 (0.824)
Constant 0.02322*** 0.02364*** 0.02503*** 0.02391*** 0.02215*** 0.09795*** 0.0522*** 0.04895*** 0.0395*** 0.03873***
SpaceSize 0.00149*** 0.00146*** 0.00152*** 0.00146*** 0.00213*** -0.00059 0.00396*** 0.00332*** 0.00175*** 0.00042

Shape 0.00352*** 0.00357*** 0.00352*** 0.00356*** 0.00404*** 0.0088*** 0.00537*** 0.00533*** 0.00226*** 0.00483***
Density 0.00368*** 0.0037*** 0.00371*** 0.00371*** 0.0013*** -0.00236*** 0.00625*** 0.00515*** 0.00327*** 0.0032***

Rpu -0.00433*** -0.00433*** -0.00437*** -0.00434*** -0.00339*** -0.0126*** -0.00968*** -0.00878*** -0.00593*** -0.00634***
Giniu -0.00081*** -0.00081*** -0.00081*** -0.00081*** -0.00066*** -0.00138*** -0.00157*** -0.00163*** -0.00085*** -0.00062*
Ginii 0.0001 9e-05 9e-05 8e-05 3e-05 0.00384*** 0.00024 0.00024 0.00022 0.00023

Popavg -0.00012 -0.00012 -0.00013 -0.00013 0.00104*** 0.00802*** -0.00037 -0.00021 0.00056 0.00057
Popskew 0.00114*** 0.00116*** 0.00115*** 0.00116*** 0.00038*** 0.0059*** 0.00272*** 0.00255*** 0.00096*** 0.00162***
LTailavg 0.00025 0.00024 0.00024 0.00024 0.00036*** 0.00176*** -1e-05 0.00021 0.00051* 5e-05
LTailskew 0.00198*** 0.00198*** 0.00199*** 0.00199*** 0.00087*** 0.00444*** 0.00343*** 0.00307*** 0.00119*** 0.00209***
Stdrating 0.00017 0.00018 0.00019 0.00018 -0.0 -0.00021 0.0008 0.00081 0.00011 0.00059*
Accuracy 0.025 ± 0.009 0.025 ± 0.0091 0.025 ± 0.0091 0.025 ± 0.0091 0.0247 ± 0.0071 0.102 ± 0.0281 0.0535 ± 0.0179 0.0524 ± 0.017 0.0415 ± 0.0095 0.0398 ± 0.013

ML
-1

M

R2 (adj.R) 0.863 (0.861) 0.845 (0.842) 0.864 (0.861) 0.861 (0.858) 0.866 (0.863) 0.931 (0.93) 0.709 (0.704) 0.746 (0.742) 0.849 (0.847) 0.878 (0.875)
Constant 0.01625*** 0.01896*** 0.01623*** 0.01934*** 0.02073*** 0.08667*** 0.04403*** 0.04454*** 0.05167*** 0.02261***
SpaceSize 0.0007*** 0.00051* 0.0007*** 0.00056* 0.00234*** 0.00087 0.00459*** 0.0031*** 0.00255*** 0.00125***

Shape 0.00258*** 0.00301*** 0.00258*** 0.00448*** 0.00198*** 0.00644*** 0.00517*** 0.00515*** 0.00278*** 0.00363***
Density 0.00063*** 0.00041 0.00063*** 0.00051 0.00033* -0.00503*** 0.00126 0.00073 0.00037 0.00137***

Rpu -0.00208*** -0.00288*** -0.00208*** -0.00258*** -0.00251*** -0.01121*** -0.00682*** -0.00622*** -0.00855*** -0.00399***
Giniu -0.00033*** -0.00019 -0.00033*** -0.00027 -0.00023*** -0.00062* -0.00051 -0.00056 -0.00073*** -0.0005***
Ginii 0.00075*** 0.00062* 0.00074*** 0.00035 -0.00078*** 0.00692*** 0.00129 0.00037 0.00262*** 0.00159***

Popavg 0.0005*** 0.00054* 0.0005*** 0.00053* 0.00067*** 0.00937*** 0.00249*** 0.00239*** 0.0034*** 0.00113***
Popskew 0.0008*** 0.00147*** 0.00079*** 0.00146*** 0.00032* 0.006*** 0.00145*** 0.00139*** 0.00213*** 0.0016***
LTailavg -0.00038*** -0.00057*** -0.00038*** -0.00048*** -0.00033*** -0.00093*** -0.00077* -0.001*** -0.00139*** -0.00046***
LTailskew 0.00168*** 0.0026*** 0.00168*** 0.00188*** 0.00154*** 0.00745*** 0.0031*** 0.00292*** 0.00432*** 0.00307***
Stdrating -0.00024* -0.00018 -0.00024* -8e-05 -9e-05 -0.00082*** 0.00069* 0.00068* -0.00036 -0.00019
Accuracy 0.0162 ± 0.0059 0.019 ± 0.0085 0.0162 ± 0.0059 0.0193 ± 0.0089 0.0207 ± 0.0053 0.0867 ± 0.0266 0.044 ± 0.0141 0.0445 ± 0.0137 0.0517 ± 0.0149 0.0226 ± 0.0101

Bo
ok

Cr
os

si
ng

R2 (adj.R) 0.337 (0.33) 0.337 (0.33) 0.337 (0.33) 0.337 (0.33) 0.634 (0.63) 0.143 (0.134) 0.104 (0.095) 0.111 (0.102) 0.049 (0.04) 0.717 (0.715)
Constant 0.00032*** 0.00032*** 0.00032*** 0.00032*** 0.00022*** 0.00575*** 0.00148*** 0.00135*** 0.00146*** 0.00023***
SpaceSize 3e-05*** 3e-05*** 3e-05*** 3e-05*** 0.0 -4e-05 -0.00029*** -0.00027*** -8e-05* -2e-05***

Rpu -3e-05* -3e-05* -3e-05* -3e-05* -2e-05* -0.00038*** -3e-05 -1e-05 -0.00017*** -2e-05***
Popavg 0.00016*** 0.00016*** 0.00016*** 0.00016*** 0.00017*** -0.00024*** 7e-05 9e-05* 3e-05 0.0002***
Popskew 1e-05 1e-05 1e-05 1e-05 -1e-05 -0.00028*** -5e-05 -7e-05 -4e-05 -1e-05*
LTailavg 1e-05 1e-05 1e-05 1e-05 1e-05* 0.00014* 6e-05 5e-05 7e-05* 1e-05
LTailskew 1e-05 1e-05 1e-05 1e-05 1e-05 0.00054*** 7e-05 6e-05 0.00015*** 1e-05*
Accuracy 0.0003 ± 0.0003 0.0003 ± 0.0003 0.0003 ± 0.0003 0.0003 ± 0.0003 0.0002 ± 0.0002 0.0058 ± 0.0016 0.0015 ± 0.0011 0.0014 ± 0.001 0.0015 ± 0.0007 0.0002 ± 0.0002
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5.2. Explanatory framework on accuracy target metric
We begin our experimental analysis by presenting the result of the explanatory580

study on accuracy as target metric, which we present in Table 3 (and in the
Appendix, in Table A.7). The results obtained for the coefficient of determination
(R) indicate that the 11 DCs can explain (on average) more than 90% of the
variation in MAP and NDCG, respectively, in MovieLens datasets. It should
be noted that for BookCrossing, NDCG is not reported because results were585

not reliable; this is due to this dataset being more sparse (see Figure 1) which
produces the recommenders to generate relevant suggestions for less than 10%
of the users, for this reason we decided to ignore this metric for this dataset
and focus on MAP. In this situation (BookCrossing), these DCs can explain up
to 70% of the metric variation. More specifically, by focusing on three random590

choices, UserKNN-Cosine, ItemKNN-Adjusted, and BPR, we can note that their
corresponding values for adj.R in ML-1M are 0.861, 0.863, and 0.930, respectively.
For BookCrossing, these values correspond to 0.330, 0.630, and 0.134.

However, when the significance of the DCs is considered, we observe a few
surprising observations:595

• The first observation is related to BPR, the state-of-the-art method for
personalized ranking. We observe that this method does not get impacted
by SpaceSize, while the rest of methods do in all the datasets. This is
important because, as presented in Figure 1 and the accuracy rows in
these tables, BPR is the best performing technique, hence, the fact that600

a DC is not helpful for this method might be particularly revealing to
understand optimal requirements or constraints on input data of well-
performing approaches.

• Most of the features significantly contribute to the explanation of the
target metric (denoted with ***). Even in this case, a reasonable question605

we would like to answer is: can we tell them apart and understand which
EV provides more impactful effects on the target metric? More specifically,
would we be able to explain the variation in the target metric by using a
smaller set of DCs?

• Whereas for MovieLens, the explanatory power remains quite high for all610

recommendation methods, in BookCrossing this is only true for ItemKNN
and NMF.

To answer the first question regarding BPR, we carefully checked the regression
coefficient results, and hypothesized that, due to the introduction of the newly
introduced DCs in this work compared with previous works [7, 8] – namely Rpu615

(ratings per user) – the latter captures all the necessary information in other
DCs such as Density. Thus, when Density and Rpu are used together in BPR,
Rpu becomes more impactful. However, when we removed the feature Rpu,
an additional set of experiments showed that Density became at that moment
an important factor (hence, receiving ***, i.e., its p-value is significant). These620

results show the inter-dependence that exist between the different DCs and their
effect on the regression model.
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This first observation was a very good move forward to better understand
the role and impact of DCs. This moved us to the second related question: if
some of the DCs contain similar information as others, how can we distinguish625

between them? In particular, because the p-value just tells us which DCs are
important but it does not say anything about how important they are.

To address this concern, we report the regression coefficient of determination
R2, for each of the DCs in isolation in Figure 3 and for all possible pairs of DCs
as shown in visualization heatmaps provided in Figure 4 and Figure 5.630

The results are quite insightful and suggest the following:

• We observe that Shape is the most impactful EV in all the reported
recommender models together with Rpu.

• ItemKNN-Adjusted has characteristics that are (i) in common with UserKNN,
and also (ii) different from UserKNN and/or the rest of recommenders; for635

instance, only Shape explains more than 60% of memory-based models’
accuracy-metric variations; Rpu is the second important DCs for user-
based models but it is less important for ItemKNN-Adjusted.

• Rpu impacts almost both families of recommenders, memory-based and
model-based quite significantly; for instance on ML-1M, BPR-MF can explain640

65% of the accuracy variations and when combined with LTailskew about
75% of variations, which is substantially high. The only exception is
ItemKNN-Adjusted, which is less impacted by Rpu. In particular, this may
suggest that this recommender could be useful in scenarios with cold-start
users.645

• A very insightful observation by this exploratory research is the impact
of skewness-based DCs, namely Popskew and LTailskew on the overall
performances; essentially what Popskew measures is the asymmetry of the
probability distribution on user popularity profiles (or popularity biases);
a high value of this asymmetry value in the absolute sense, it means650

the distribution has a longer tail, which can impact CF recommenders
compared to the case where users have an average popularity profile.

We now show the pairwise impact of DCs on two recommender models (due
to space constraints, but results hold for the others). Thus, based on the results
presented in Figures 4 and 5 we find the two best features among all. Hence, we655

can record Shape as the second most impactful EV (the first one after Rpu). By
following this process (inspired by the feature selection literature from Machine
Learning), we obtain a ranking list based on the importance of these variables
regarding their explanatory power with respect to each recommendation algorithm.
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Figure 4: Choosing the two best DCs on ML-1M dataset for two RSs: ItemKNN (left) and BPR
(right).
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Table 4: Regression results for the within dataset analysis (target metric: fairness as MAD (MAP)).

Fairness
MAD (MAP)

Memory-based Model-based
UserKNN-
Amplified

UserKNN-
BM25

UserKNN-
Cosine

UserKNN-
IDF

ItemKNN-
Adjusted BPR MF SVD PMF NMF

ML
-1

00
K

R2 (adj.R) 0.265 (0.251) 0.263 (0.249) 0.265 (0.251) 0.264 (0.25) 0.277 (0.263) 0.327 (0.314) 0.233 (0.218) 0.255 (0.241) 0.234 (0.219) 0.241 (0.227)
Constant 0.00166*** 0.00174*** 0.00181*** 0.00178*** 0.00237*** 0.0113*** 0.00583*** 0.00628*** 0.00456*** 0.00386***
SpaceSize 0.00037* 0.00036* 0.00037* 0.00036* 0.00013 0.00183* 0.00076 0.00093 0.00015 -0.00033

Shape -0.00018 -0.00024 -0.0002 -0.00024 -9e-05 -0.00125 -0.00049 -0.00076 -0.00057* -0.00014
Density 0.00084*** 0.00081*** 0.00081*** 0.00081*** 1e-05 0.00392*** 0.00202*** 0.00206*** 0.00141*** 0.00105***

Rpu -0.00086*** -0.00088*** -0.00088*** -0.00089*** -0.00078*** -0.00555*** -0.00257*** -0.00292*** -0.00164*** -0.00081***
Giniu 4e-05 2e-05 2e-05 3e-05 -0.00025* 0.00029 0.0001 1e-05 -0.00011 -0.00019
Ginii 0.0003* 0.00029* 0.00031* 0.00029* 0.00059*** 0.00215*** 0.00118*** 0.00114*** 0.00028 9e-05

Popavg -0.0 0.0 2e-05 1e-05 0.00048*** 7e-05 -0.00067 -0.00102* -0.00044 -0.00057***
Popskew 0.00028*** 0.00031*** 0.00028*** 0.00031*** 0.0003* 0.00118* 0.00095*** 0.00095*** 0.00022 0.00043*
LTailavg -5e-05 -4e-05 -3e-05 -4e-05 -8e-05 4e-05 -0.0009*** -0.00095*** 8e-05 -0.00029
LTailskew 0.00028*** 0.00029*** 0.00029*** 0.00028*** 0.00056*** 0.00191*** 0.00066* 0.00077* 6e-05 0.00074***
Stdrating 0.0003*** 0.0003*** 0.0003*** 0.0003*** 5e-05 0.00085 0.00031 0.00025 0.0001 7e-05
Accuracy 0.0019 ± 0.0023 0.002 ± 0.0023 0.002 ± 0.0023 0.002 ± 0.0023 0.0025 ± 0.0027 0.0116 ± 0.012 0.0065 ± 0.0075 0.0065 ± 0.0073 0.0047 ± 0.0044 0.0041 ± 0.0039

ML
-1

M

R2 (adj.R) 0.431 (0.421) 0.436 (0.426) 0.431 (0.421) 0.415 (0.404) 0.255 (0.241) 0.392 (0.381) 0.307 (0.294) 0.338 (0.325) 0.302 (0.289) 0.39 (0.378)
Constant 0.00061*** 0.00084*** 0.00061*** 0.0008*** 0.0008*** 0.00483*** 0.00235*** 0.00263*** 0.00287*** 0.00106***
SpaceSize 0.00033*** 0.00027*** 0.00033*** 0.00032*** 0.00013* 0.00081* 0.00061*** 0.00055*** -5e-05 0.00021*

Shape -0.00013* -9e-05 -0.00013* 3e-05 -3e-05 -0.0003 -0.00062*** -0.0007*** -0.00081*** -0.00018*
Density 0.00023*** 4e-05 0.00023*** 0.00017* 2e-05 9e-05 0.00063*** 0.00062*** 0.00064* 0.00028***

Rpu -0.00039*** -0.00043*** -0.00038*** -0.00046*** -0.00026*** -0.00176*** -0.00106*** -0.00109*** -0.00067* -0.00047***
Giniu -0.00018*** -0.0002*** -0.00018*** -0.00016*** -0.0 -9e-05 -1e-05 6e-05 0.00036* -0.0001
Ginii 0.00045*** 0.00058*** 0.00044*** 0.00054*** 0.00029*** 0.00297*** 0.00088*** 0.00089*** 0.00058* 0.00036***

Popavg -3e-05 0.00011 -3e-05 -1e-05 0.00016*** 0.00045 -8e-05 3e-05 -2e-05 0.00016*
Popskew 0.00012* 0.00014* 0.00013* 6e-05 3e-05 0.00064* 0.00047* 0.00043* 0.00075*** 0.00035***
LTailavg -4e-05 -5e-05 -3e-05 2e-05 -3e-05 -0.00025 -0.0003* -0.00041*** -0.00037* -5e-05
LTailskew 0.00029*** 0.00039*** 0.00029*** 0.00037*** 0.00027*** 0.00082*** 0.00074*** 0.00077*** 0.0009*** 0.00027***
Stdrating -9e-05* -0.00012*** -8e-05* -4e-05 -6e-05 -0.00012 -0.00013 -0.00022 -0.00056*** -1e-05
Accuracy 0.0007 ± 0.0011 0.0008 ± 0.0013 0.0007 ± 0.0011 0.0008 ± 0.0013 0.0009 ± 0.0009 0.0048 ± 0.0057 0.0026 ± 0.0033 0.0027 ± 0.0033 0.0031 ± 0.004 0.0011 ± 0.0015

Bo
ok

Cr
os

si
ng

R2 (adj.R) 0.017 (0.003) 0.018 (0.004) 0.015 (0.001) 0.005 (-0.01) 0.023 (0.009) 0.069 (0.055) 0.077 (0.064) 0.062 (0.048) 0.064 (0.05) 0.04 (0.026)
Constant -1e-05 -2e-05 -1e-05 -3e-05 -0.0 0.0002 -0.00014 -0.00013 -2e-05 1e-05
SpaceSize -0.0 -0.0 -0.0 -0.0 -0.0* -0.0*** -0.0*** -0.0*** -0.0*** -0.0*

Rpu -0.00014 -0.0002* -0.0001 -4e-05 -2e-05 -0.00031 7e-05 0.00011 -0.00032 2e-05
Popavg -0.01364 0.05176 -0.00586 -0.01904 0.00156 0.04031 -0.03635 -0.13582 -0.16387 0.01028
Popskew 3e-05 3e-05 2e-05 1e-05 -1e-05 -8e-05 -0.0 -1e-05 -9e-05* -1e-05
LTailavg 0.00391 0.00271 -9e-05 0.0014 -0.00146 0.01073 0.01864 -0.00123 -0.00024 0.00129
LTailskew 0.00014 0.00038 0.00038 0.00012 0.00032* 0.00189 -0.00085 0.00071 0.00211*** -4e-05
Accuracy 0.0003 ± 0.0005 0.0003 ± 0.0005 0.0003 ± 0.0005 0.0003 ± 0.0006 0.0002 ± 0.0003 0.0025 ± 0.0029 0.0012 ± 0.0018 0.001 ± 0.0015 0.0011 ± 0.0014 0.0001 ± 0.0003
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5.3. Explanatory framework on fairness-aware target metric660

The second dimension of the explanatory study in this work, that differentiates
it from the previous works [7, 8], is the attempt to explain the impact of DCs on
the fairness of recommendation models. The results of the regression modeling
based on the complete pool of DCs is presented in Table 4 (and extended in the
Appendix in Table A.8), depending on how MAD is computed. These tables665

have been generated in a similar manner to Table 3 with the difference that
they use the MAD metric as the dependent variable (cf. Section 3.3). When
comparing these new results with those obtained for the accuracy dimension,
two immediate observations are observed:

• The amount of explainability, derived from the R2 statistics, is much670

smaller in the fairness dimension that in accuracy dimension.

• The variables that significantly contribute to the explainability of fairness,
compared with accuracy, are much lower in terms of number, and different
(at least partially) in terms of type.

As for the first observation, it can be seen that in ML-100K the proposed DCs675

can explain 33% of the target metric (fairness using NDCG as base metric) in
the best case (UserKNN-BM25), and 15% in the lowest case (ItemKNN-Adjusted),
while for ML-1M, these values are relatively higher for neighborhood-based models,
e.g., 43% for UserKNN-Cosine, while 18% for ItemKNN-Adjusted. The corresponding
values when the fairness metric uses MAP as base metric are similar, although680

the explainability is lower in ML-100K, but the results are more stable in ML-1M.
These results can be justified considering several viewpoints (i) the proposed

set of DCs reflect the global characteristics of datasets, and not their biases;
to answer unfairness based on data, it might be more relevant to capture
data biases instead of global DCs, as influential factors in unfairness; (ii) the685

metric used as the DV for fairness may inherently entail lower explainability.
Consider that, since MAD essentially computes the difference between the average
MAP (or NDCG) of two groups, it could be that in some cases, two DCs
have a neutralizing impact; for instance, one EV may impact the Male group
significantly, while the other EV may impact the Female group also significantly,690

and due to the subtraction sign in the MAD metric, their impacts could be
evened out. This means some DCs, despite being important, may not be
identified as significantly impactful by the regression analysis.

In the direction of measuring and using biases instead of global DCs, we now
provide a novel explorative procedure. Table 5 shows the results when using the695

DCs as in previous experiments, together with (at the bottom of the table)
the results when the corresponding DCs of Male and Female are multiplied
and then used as the explanatory variable. The explanation for multiplying
the DCs corresponding to each sensitive group (in this case, males and females
because we are reporting ML-1M) is that, given a fixed value for a global EV,700

such as EVM +EVF = cte, their multiplication EVM ×EVF is maximal, when
EVM = EVF and different otherwise; thus the multiplication/interaction of
two features from the constituting fairness groups (Male, Female) is effectively
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measuring differences in DCs interpreted as data bias in this work. We can note
that, interestingly, by defining DCs as the relation between Male and Female705

(or as we call them, biases) we get slightly more explainability. For instance,
we can note that the R2 statistics for UserKNN-Cosine increases from 0.431 to
0.471, an improvement on explanatory power of about 9.3%.

As for the second observation, the general trend is that a lower number of
DCs contribute significantly to the fairness explainability, for instance Shape,710

Density, and Rpu. We can find a number of nuances captured by these results,
they include: first Ginii, which was never significant in the accuracy study;
in addition, we observe that BPR does not get impacted significantly by DCs,
perhaps indicating robustness of this method against DC variations.
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Table 5: Comparison in regression results (for target metric: fairness as MAD (MAP)) between using directly the DCs or their corresponding values
normalized for males and females and multiplied.

Fairness
MAD (MAP)

Memory-based Model-based
UserKNN-
Amplified

UserKNN-
BM25

UserKNN-
Cosine

UserKNN-
IDF

ItemKNN-
Adjusted BPR MF SVD PMF NMF

ML
-1

M

R2 (adj.R) 0.431 (0.421) 0.436 (0.426) 0.431 (0.421) 0.415 (0.404) 0.255 (0.241) 0.392 (0.381) 0.307 (0.294) 0.338 (0.325) 0.302 (0.289) 0.39 (0.378)
Constant 0.00061*** 0.00084*** 0.00061*** 0.0008*** 0.0008*** 0.00483*** 0.00235*** 0.00263*** 0.00287*** 0.00106***
SpaceSize 0.00033*** 0.00027*** 0.00033*** 0.00032*** 0.00013* 0.00081* 0.00061*** 0.00055*** -5e-05 0.00021*

Shape -0.00013* -9e-05 -0.00013* 3e-05 -3e-05 -0.0003 -0.00062*** -0.0007*** -0.00081*** -0.00018*
Density 0.00023*** 4e-05 0.00023*** 0.00017* 2e-05 9e-05 0.00063*** 0.00062*** 0.00064* 0.00028***

Rpu -0.00039*** -0.00043*** -0.00038*** -0.00046*** -0.00026*** -0.00176*** -0.00106*** -0.00109*** -0.00067* -0.00047***
Giniu -0.00018*** -0.0002*** -0.00018*** -0.00016*** -0.0 -9e-05 -1e-05 6e-05 0.00036* -0.0001
Ginii 0.00045*** 0.00058*** 0.00044*** 0.00054*** 0.00029*** 0.00297*** 0.00088*** 0.00089*** 0.00058* 0.00036***

Popavg -3e-05 0.00011 -3e-05 -1e-05 0.00016*** 0.00045 -8e-05 3e-05 -2e-05 0.00016*
Popskew 0.00012* 0.00014* 0.00013* 6e-05 3e-05 0.00064* 0.00047* 0.00043* 0.00075*** 0.00035***
LTailavg -4e-05 -5e-05 -3e-05 2e-05 -3e-05 -0.00025 -0.0003* -0.00041*** -0.00037* -5e-05
LTailskew 0.00029*** 0.00039*** 0.00029*** 0.00037*** 0.00027*** 0.00082*** 0.00074*** 0.00077*** 0.0009*** 0.00027***
Stdrating -9e-05* -0.00012*** -8e-05* -4e-05 -6e-05 -0.00012 -0.00013 -0.00022 -0.00056*** -1e-05
Accuracy 0.0007 ± 0.0011 0.0008 ± 0.0013 0.0007 ± 0.0011 0.0008 ± 0.0013 0.0009 ± 0.0009 0.0048 ± 0.0057 0.0026 ± 0.0033 0.0027 ± 0.0033 0.0031 ± 0.004 0.0011 ± 0.0015

ML
-1

M
(m

al
e,

fe
m

al
e

m
ul

tip
lie

d)

R2 (adj.R) 0.472 (0.462) 0.452 (0.442) 0.471 (0.462) 0.431 (0.42) 0.231 (0.216) 0.413 (0.402) 0.327 (0.314) 0.353 (0.341) 0.318 (0.305) 0.407 (0.396)
Constant 0.00069*** 0.00084*** 0.00069*** 0.00084*** 0.00088*** 0.00484*** 0.00259*** 0.00266*** 0.00306*** 0.00111***
SpaceSize 0.00012* 0.00013* 0.00012* 0.00012 5e-05 0.0008*** 0.00026 0.0002 2e-05 0.00016*

Shape -7e-05 0.0 -7e-05 7e-05 1e-05 -8e-05 -0.00019 -0.00027* -0.0003 -7e-05
Density 0.00077*** 0.00061*** 0.00076*** 0.00079*** 0.00018* 0.00123*** 0.00166*** 0.00158*** 0.0008* 0.00043***

Rpu -0.00016*** -0.00021*** -0.00015*** -0.00022*** -0.00013*** -0.00129*** -0.00061*** -0.00062*** -0.00056*** -0.00039***
Giniu 0.00023*** 0.00026*** 0.00023*** 0.00024*** -0.0 0.00025 0.00017 0.00015 -9e-05 0.00011*
Ginii 6e-05 -7e-05 6e-05 8e-05 -0.0001 -0.00212*** -0.0001 -0.00013 -0.00087*** -0.00031*

Popavg -0.00022*** -0.00011 -0.00021*** -0.00024*** 0.0001* 5e-05 -0.00039* -0.00028 7e-05 0.00015
Popskew 0.00022*** 0.00031*** 0.00023*** 0.00026*** 0.00012* 0.00104*** 0.00053*** 0.0005*** 0.00044* 0.00023***
LTailavg -8e-05* -0.00011* -8e-05* -2e-05 2e-05 -0.0001 -0.00046*** -0.00054*** -0.0005*** -7e-05
LTailskew 0.00024*** 0.00027*** 0.00024*** 0.00027*** 0.00021*** 0.0008*** 0.00047*** 0.00048*** 0.00095*** 0.00039***
Stdrating -7e-05 -9e-05* -7e-05 -3e-05 -3e-05 -0.00023 0.0 -0.0001 -0.00064*** -3e-05
Accuracy 0.0007 ± 0.0011 0.0008 ± 0.0013 0.0007 ± 0.0011 0.0008 ± 0.0013 0.0009 ± 0.0009 0.0048 ± 0.0057 0.0026 ± 0.0033 0.0027 ± 0.0033 0.0031 ± 0.004 0.0011 ± 0.0015
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5.4. Discussion and Limitations715

Based on the analysis of the results related to the presented approach, we
are now ready to answer the three research questions posed in the introduction.

[RQ1.] Which DCs contribute the most to the explainability of the performance
of different families of recommendation algorithms when optimizing for accuracy?
Is it possible to use a smaller set of DCs?720

We have presented a suite of DCs based on (i) the structure of the URM,
(ii) the rating frequency of the URM, (iii) the item properties of user profiles,
and (iv) distribution of rating values. After the data sanity phase, a number
of col-linearly related DCs were discarded, leaving us with the pool of 11 DCs
for ML-100K and ML-1M, and 6 DCs for BookCrossing categorized in the above725

four dimensions. Results of the explanatory study based on regression analysis
indicate that:

• In general, Rpu and Shape impact both types of recommendation models
(memory and model-based) quite consistently. While Shape – which is a
structural DC – impacts memory-based models more, Rpu impacts model-730

based such as BPR more. What is very interesting in these results is
the emergence of the DCs Popskew and LTailskew. These are DCs that
measure the skewness of the average popularity and average long tail items
of user profiles. The way we can interpret this is that the higher the
skewness, the more this distribution looks like a belly short-head long-735

tail distribution. For Popskew for instance, this means that few users
are popular item consumers, while many are not (or vice versa). In this
situation, BPR quality is impacted strongly.

• More specifically, between ML-100K and ML-1M dataset: Two out of three
most important DCs are similar, they include: Rpu and Shape. For the740

third feature, they are Density (in ML-100K) and LTailskew (in ML-1M),
the latter one in a consistent way for all the recommendation models.
The main exception is BPR, which gets impacted by the popularity bias,
i.e., Popavg, by a significant degree. See Table 6 for a summary. In
BookCrossing, on the other hand, the number of significant DCs gets745

reduced, where Popavg and SpaceSize are the most important ones.

• Between recommendation algorithms: the general trend is that the latent-
factor models PMF and NMF have a correlated behavior with BPR. BPR,
PMF, and NMF are well-known to have a strong popularity bias in their
recommendations, so it is not surprising that Popavg and Popskew are such750

an important characteristic for these approaches. However, BPR is the only
method in ML-100K to have this characteristic in its top 3 (in detriment
of Density); our hypothesis is that for BPR, Popavg is more influential
than Density because it affects to how this technique works internally:
since BPR samples items according to their observed interactions, those755

situations where items are clearly different with respect to their popularity
would allow to capture better which items are relevant for a user, on
the other hand, when all items are equally popular (the distribution is
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flatter) this sampling procedure would work in a random way, impacting
dramatically in the performance of BPR.760

Furthermore, while neighborhood-based methods also show similar behavior,
we notice that the behavior of Item-KNNAdjusted is considerably different
from user-based methods. For instance, it is interesting to note Density
is not impacting Item-KNNAdjusted in ML-1M, while SpaceSize does, a
trend which is opposite of user-based methods. Finally, we can note that765

for UB-kNN, the similarity metric is not affected by the DCs.

The above results are reported based on individual and pairwise feature
importance approach, shown in Figures 3, 4, and 5. We noticed that via the
proposed feature selection approach we are able to explain more than 60% on
accuracy variation (in some cases, up to 75%). This would allow to identify a770

small set of DCs to control for during training of recommendation algorithms.

[RQ2.] How do these DCs change when the goal of the system is shifted
towards fairness? is it easier to predict the impact of DCs for fairness or for
accuracy?775

In general, our observation was that it is much harder to explain variation in
fairness based on global DCs than that for accuracy. The amount of explainability
for accuracy v.s. fairness in full case is about 80% on average, while for fairness
is less than 40%. We tried to provide two explanations for this new finding: (i)
data biases (as identified based on interaction of Male and Female features) can780

explain better fairness, (ii) the target fairness-evaluation metric may influence
the generality of the obtained results.

Finally, we see slight differences between the target set of most important
features: while for accuracy, Rpu, Shape, and Popskew are very important
features, for the fairness dimension Rpu, Shape, and Ginii are the ones showing785

more explanatory power. Our hypothesis is that Ginii, which measures how
uniform the item distribution is, emphasizes internal biases in the data, such as
a very concentrated or spread distribution, which seems to impact more strongly
user groups (based on some predefined sensitive attributes) rather than the
recommendation algorithms.790

[RQ3.] Is it possible to augment the set of DCs so that the inherent biases
are also considered?

To answer this question, for each DC, we computed the relative DC value
with respect to its constituting groups, e.g., relative male to female DC value in
ML-100K and ML-1M datasets. The goal is to measure the proportionality biases795

in the underlying data. Specifically, we used for a given EV, the relative EV
according to EV = EVM × EVF (where M and F denote male and female
users). By transforming DCs according to this procedure, following the data
sanity check, and running regression analysis, we obtained improvement in
explanation of fairness dimension, as summarized in Table 5. For instance for800

UserKNN-Amplified, ItemKNN-Adjusted, BPR-MF, and NMF, the changes in R2

respectively are: 0.432 v.s 0.472, 0.255 v.s. 0.231, 0.392 v.s. 0.413 and 0.39
v.s. 0.407. Thus, we can note by performing this data transformation, we
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Table 6: The best three impactful data characteristics (variables) based on their explanatory
power measured via R2 statistics. 3 is used to note that such characteristic is among the 3
most impactful ones in ML-100K, and 7 for ML-1M.

UserKNN-
Amplified

UserKNN-
BM25

UserKNN-
Cosine

UserKNN-
IDF

ItemKNN-
Adjusted BPR MF SVD PMF NMF

SpaceSize 3 7

Shape 37 37 37 37 37 3 3 37 3 3

Density 3 3 3 3 3 3 3 3

Rpu 37 37 37 37 37 37 37 37 37 37

Giniu
Ginii
Popavg 37 7 7

Popskew

LTailavg

LTailskew 7 7 7 7 7 7 7 7 7 7

Stdrating

obtain about 10% improvement in the explanation of fairness metric. This
transformation however did not improve the accuracy dimension as much.805

These improvements open up the possibility to explore other features that
might be relevant when injected in a multiplicative way; hence, we believe there
is room for improvement and that further gains might be obtained based on our
approach to incorporate biases for fairness explanation.

Limitations. It should be emphasized that, because of the experimental810

settings considered (where the recommendation models are not tuned to achieve
an optimal performance), the proposed procedure would identify the variables
that explain the performance of any given recommender, which we argue is closer
to what any practitioner could find in the real world, especially for cases where
fine-tuning is not feasible or proper groundtruth is not available. Because of this,815

we incorporate the quality control step presented in Section 5.1. An alternative
possibility would be to test this framework on algorithms tuned with respect to
some evaluation metric. In that case, the presented framework would identify
which data characteristics explain the performance of optimized recommenders.
However, how to define these ’optimized recommenders’ is usually unclear; one820

needs to select the range of the parameters, the metric to be optimized, the
cutoff of such metric, etc. Therefore, even though the experimental setting used
in the paper is not the only possible one, we believe it might be useful on several
scenarios, and, in any case, it might be applicable even when recommenders are
tuned appropriately.825

Moreover, at the moment the presented analysis produces different results
depending on the dataset under consideration. This is somewhat expected as
the data characteristics should change based on the dataset. However, it is
important to emphasize that it is possible to extend the regression analysis
to explore variability over datasets, as done in [7, 8]. We aim to incorporate830

this variation in the future, granted more datasets with sensitive attributes
are available so we could also explore the explanatory power of the fairness
dimension, as presented before.

Finally, it is worth mentioning another limitation of the current work. The
regression analysis depends on the number of sensitive attributes and their835

granularity. While some sensitive attributes are binary or discrete in nature,
such as gender or nationality, others are continuous (like age). Hence, the result
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of the analysis could change dramatically depending on the number of sensitive
classes the fairness metric aims to measure. Nonetheless, we want to emphasize
that this limitation does not come from the framework per se, but from the840

high variability of state-of-the-art fairness metrics that depend on that; at the
moment, the presented results could change if a different granularity of the
attributes is considered, but the interesting aspect to take into account is that
the same framework could be applied independently of the number of classes of
such attributes.845

6. Conclusions and future work

In this work, we have applied an explanatory framework based on regression
models to better understand how data characteristics impact on the fairness and
accuracy of recommender systems. We considered a suite of data characteristics,
which can be classified according to: (i) the structure of the user-rating matrix,850

(ii) the rating frequency distribution, (iii) the item properties of the user profiles,
and (iv) the distribution of rating values. We conducted extensive experiments
based on sampling the original datasets to generate a large number of different
training instances. Then, we compared and analyzed the significance of a wide
array of data characteristics to verify the impact on the performance of classical855

recommendation approaches.
Our results show that the top three data characteristics may explain up to

80-90% of the performance (depending on the target metric) of recommendation
algorithms when aiming for accuracy. These results, however, are not so positive
when fairness is considered as target metric. This evidences the delicate entanglement860

between accuracy, fairness, and input information that should be managed in a
recommendation system.

We have shown the potential of the explanatory framework presented in this
work. We consider this framework is far from being fully explored; in particular,
we envision many other useful variables could be incorporated into the analysis865

to derive fruitful conclusions. For instance, as done in [8] a between-dataset
analysis could be incorporated into the model. Furthermore, we believe the
regression model could be extended to also incorporate the hyper-parameters of
the algorithms as explanatory variables, in such a way that richer outputs and
explanations about the behavior of the models could be obtained. Additionally,870

and considering the current trend in the area where realistic training-test splits
are preferred, the presented framework would benefit if the sampling could be
done by satisfying temporal constraints. In this way, the derived conclusions
could be extended more easily to production systems. This, however, is probably
too difficult to achieve if timestamps are not realistic or the datasets do not cover875

a large period of time. In the future, we would like to explore the proposed
framework to study the impact of data characteristics collected from implicit-
feedback datasets on RSs performance. This is important because implicit
datasets are more frequently used at recommendation engines in industrial
applications. We also think explanatory frameworks like the one proposed in880

this work could be easily adapted in more specialized tasks such as based on
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hybrid models employing content [13, 10] and multi-modal data [74, 11], or in
session-based recommendation tasks [75, 76]. We would also like to extend the
explanatory framework proposed here to counterfactual analysis, as done in the
Machine Learning area for classifiers [77]. It should be noted that adapting such885

analysis to personalized data is probably not a straightforward task, as the data
becomes sparser and the counterfactual conclusions would be less reliable.
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Appendix A. Extended results

In this appendix we show some results that complement those included in the rest of
the paper. First, Table A.7 shows the same results as in Table 3 but for target metric
NDCG (recall that this metric did not produce reliable performance results in BookCrossing).
Similarly, Table A.8 shows the equivalent results to those presented in Table 4 but for NDCG,1190

for the same reasons as before.
Additionally, in Table A.9 we include an analysis on how the explainability changes

depending on the number of samples considered. It is important to observe that the results,
in general, hold, independently of the number of samples, however, we decided to use 600
samples as in previous works [7, 8].1195
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Table A.7: Regression results for the within dataset analysis (target metric: NDCG@100).

Accuracy
nDCG@100

Memory-based Model-based
UserKNN-
Amplified

UserKNN-
BM25

UserKNN-
Cosine

UserKNN-
IDF

ItemKNN-
Adjusted BPR MF SVD PMF NMF

ML
-1

00
K

R2 (adj.R) 0.9 (0.898) 0.9 (0.898) 0.9 (0.898) 0.9 (0.898) 0.918 (0.916) 0.927 (0.925) 0.862 (0.86) 0.863 (0.86) 0.894 (0.892) 0.915 (0.913)
Constant 0.09129*** 0.08548*** 0.08963*** 0.08562*** 0.0882*** 0.23965*** 0.1446*** 0.14888*** 0.12805*** 0.12924***
SpaceSize 0.00774*** 0.00753*** 0.00775*** 0.00753*** 0.01347*** 0.00096 0.00837*** 0.00814*** 0.00481*** 0.00241*

Shape 0.01504*** 0.01507*** 0.01498*** 0.01506*** 0.01308*** 0.01062*** 0.01184*** 0.01225*** 0.0089*** 0.01367***
Density 0.01284*** 0.01285*** 0.01284*** 0.01286*** 0.00574*** -0.00166 0.01306*** 0.0117*** 0.00905*** 0.01021***

Rpu -0.03233*** -0.03229*** -0.03237*** -0.03229*** -0.0282*** -0.0321*** -0.03001*** -0.0289*** -0.02483*** -0.03204***
Giniu -0.00304*** -0.00301*** -0.00302*** -0.00301*** -0.003*** -0.00171*** -0.00298*** -0.00309*** -0.00248*** -0.00238***
Ginii 0.00213* 0.00207* 0.00206* 0.00207* 1e-05 0.00358*** 0.00111 0.00113 0.00126 0.00135

Popavg 0.00099 0.00097 0.00096 0.00096 0.00342*** 0.01137*** 0.001 0.0014 0.00214*** 0.00226*
Popskew 0.00539*** 0.00544*** 0.00546*** 0.00543*** 0.00214*** 0.00555*** 0.00542*** 0.00515*** 0.00316*** 0.00481***
LTailavg -8e-05 -0.00013 -7e-05 -0.00013 0.00108* 0.00198*** 0.00028 0.00061 0.00078 0.00045
LTailskew 0.00693*** 0.007*** 0.00698*** 0.007*** 0.00323*** 0.00501*** 0.00651*** 0.00631*** 0.0035*** 0.00542***
Stdrating 0.00154* 0.00156* 0.0016* 0.00156* 0.0002 0.00012 0.00222*** 0.00195* 0.00024 0.00226***
Accuracy 0.0925 ± 0.0484 0.0923 ± 0.0485 0.0926 ± 0.0484 0.0923 ± 0.0485 0.0903 ± 0.0365 0.2589 ± 0.047 0.1587 ± 0.0438 0.1566 ± 0.0429 0.1411 ± 0.0349 0.1336 ± 0.0484

ML
-1

M

R2 (adj.R) 0.903 (0.901) 0.905 (0.904) 0.903 (0.901) 0.918 (0.916) 0.891 (0.889) 0.954 (0.953) 0.851 (0.848) 0.865 (0.863) 0.907 (0.905) 0.925 (0.924)
Constant 0.04839*** 0.05745*** 0.04976*** 0.05759*** 0.07027*** 0.20276*** 0.11985*** 0.12334*** 0.13607*** 0.06403***
SpaceSize 0.00696*** 0.00576*** 0.00698*** 0.00744*** 0.00769*** 0.0026*** 0.01375*** 0.01047*** 0.0061*** 0.00656***

Shape 0.00945*** 0.00859*** 0.00948*** 0.01196*** 0.00837*** 0.00805*** 0.00959*** 0.00945*** 0.00447*** 0.00988***
Density 0.00325*** 0.00221* 0.00322*** 0.00269*** 0.00116 -0.00458*** 0.00341*** 0.00271* 0.00226* 0.00428***

Rpu -0.01947*** -0.02316*** -0.01948*** -0.02328*** -0.01509*** -0.02909*** -0.02343*** -0.02205*** -0.02443*** -0.02392***
Giniu -0.00173*** -0.00133* -0.00173*** -0.00166*** -0.00138*** -0.00114*** -0.00116 -0.00126* -0.00118* -0.00154***
Ginii 0.00303*** 0.0011 0.00304*** 0.00026 -0.0027*** 0.00768*** 0.00431*** 0.00206 0.00392*** 0.00529***

Popavg 0.00212*** 0.00186* 0.00213*** 0.00163* 0.00231*** 0.01286*** 0.00646*** 0.00578*** 0.00679*** 0.00404***
Popskew 0.00416*** 0.00525*** 0.00415*** 0.00498*** 0.00236*** 0.00672*** 0.00398*** 0.00369*** 0.0039*** 0.00543***
LTailavg -0.00199*** -0.00257*** -0.00196*** -0.00242*** -0.00184*** -0.00126*** -0.00173*** -0.00235*** -0.00224*** -0.00163***
LTailskew 0.01101*** 0.01283*** 0.01098*** 0.01074*** 0.00912*** 0.01135*** 0.00875*** 0.00848*** 0.00923*** 0.01106***
Stdrating -0.00199*** -0.00162*** -0.002*** -0.00146*** -0.00069 -0.00128*** 0.00015 0.00022 -0.0007 -0.00113*
Accuracy 0.0516 ± 0.0346 0.063 ± 0.0399 0.0516 ± 0.0346 0.064 ± 0.0402 0.0711 ± 0.0278 0.2207 ± 0.0466 0.1288 ± 0.035 0.1297 ± 0.0342 0.1461 ± 0.0345 0.0711 ± 0.04
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Table A.8: Regression results for the within dataset analysis (target metric: fairness as MAD (NDCG@100)).

Fairnesss
MAD (NDCG@100)

Memory-based Model-based
UserKNN-
Amplified

UserKNN-
BM25

UserKNN-
Cosine

UserKNN-
IDF

ItemKNN-
Adjusted BPR MF SVD PMF NMF

ML
-1

00
K

R2 (adj.R) 0.322 (0.309) 0.339 (0.327) 0.323 (0.31) 0.339 (0.327) 0.155 (0.139) 0.236 (0.222) 0.251 (0.237) 0.251 (0.237) 0.197 (0.182) 0.233 (0.219)
Constant 0.00646*** 0.00698*** 0.007*** 0.00684*** 0.00735*** 0.01433*** 0.01173*** 0.01164*** 0.00949*** 0.00905***
SpaceSize 0.00102* 0.00107* 0.00105* 0.00105* 0.00049 0.00066 1e-05 -6e-05 -0.00076 -0.00012

Shape -0.00158*** -0.00161*** -0.00158*** -0.00162*** -0.00039 -0.00255*** -0.0021*** -0.00227*** -0.00112* -0.00173***
Density 0.00163*** 0.00157*** 0.00159*** 0.00155*** 0.00054 0.00372*** 0.00224* 0.00211* 0.00167* 0.00256***

Rpu -0.00372*** -0.00367*** -0.00365*** -0.00367*** -0.00197*** -0.00481*** -0.00356*** -0.00356*** -0.00181*** -0.00224***
Giniu 0.00013 5e-05 0.00011 5e-05 -0.00045 0.00033 0.00023 -0.00018 0.00041 -0.00048
Ginii 0.00126*** 0.00142*** 0.00135*** 0.00142*** 0.00131*** 0.00179* 0.00241*** 0.00229*** 0.00123* 0.00067

Popavg 0.00055 0.00074* 0.0007* 0.00076* 0.00072 4e-05 0.00053 0.00011 -0.00057 -0.00022
Popskew 0.00029 0.00032 0.0003 0.00031 0.00054 0.00026 0.00012 2e-05 0.00025 2e-05
LTailavg -0.00047 -0.00047 -0.00048 -0.00047 -0.00012 0.00023 -0.00104* -0.00141*** 0.00047 -0.00039
LTailskew 0.00054* 0.00057* 0.00059* 0.00056* 0.00031 0.0018*** 0.00087 0.00095* -0.00031 0.00053
Stdrating 0.00054* 0.00046 0.00045 0.00047 0.0002 0.0012* 0.0001 -0.0001 0.00083* 0.00054
Accuracy 0.0071 ± 0.0067 0.007 ± 0.0067 0.0071 ± 0.0067 0.007 ± 0.0067 0.0076 ± 0.0072 0.0156 ± 0.0135 0.0127 ± 0.0116 0.0124 ± 0.0114 0.0098 ± 0.0089 0.0096 ± 0.0083

ML
-1

M

R2 (adj.R) 0.434 (0.424) 0.419 (0.408) 0.434 (0.423) 0.402 (0.391) 0.185 (0.17) 0.323 (0.31) 0.293 (0.28) 0.309 (0.296) 0.248 (0.234) 0.398 (0.386)
Constant 0.00215*** 0.00242*** 0.00213*** 0.0026*** 0.0028*** 0.00637*** 0.00477*** 0.00463*** 0.00521*** 0.00278***
SpaceSize 0.00088*** 0.00078*** 0.00087*** 0.00071*** -0.00013 0.00025 0.00086* 0.00067 3e-05 0.00036*

Shape -0.00089*** -0.00068*** -0.00087*** -0.00079*** -0.0004*** -0.00053 -0.00122*** -0.00138*** -0.0012*** -0.00059***
Density 0.00016 -0.00033 0.00011 -4e-05 0.00032 0.00119* 0.00231*** 0.00217*** 0.00106* 0.00012

Rpu -0.00168*** -0.00171*** -0.00166*** -0.0017*** -0.00084*** -0.00121* -0.00155*** -0.00146*** -0.00129*** -0.00109***
Giniu -0.00057*** -0.00058*** -0.00056*** -0.00056*** 0.00034*** 0.00024 0.0001 -1e-05 0.0004 8e-05
Ginii 0.00146*** 0.00182*** 0.00148*** 0.00142*** 0.00021 0.00298*** 0.0008 0.00079 0.00124*** 0.00127***

Popavg 0.00014 0.00031 0.00015 0.00013 0.00033* -0.0 -0.00092*** -0.0007* -0.00014 0.00027
Popskew 0.00025 -4e-05 0.00024 8e-05 -0.00014 0.00057 0.00049 0.00046 0.00051 0.0006***
LTailavg 0.00013 0.00026* 0.00014 0.00011 -0.00013 -0.00015 -0.00039 -0.00058*** -0.00072*** -0.00014
LTailskew 0.00074*** 0.0008*** 0.00071*** 0.00084*** 0.00046*** 0.00034 0.00115*** 0.00131*** 0.00095*** 0.00047***
Stdrating 9e-05 2e-05 9e-05 -4e-05 5e-05 0.00013 8e-05 2e-05 -0.00047* 0.00017
Accuracy 0.0024 ± 0.0033 0.0026 ± 0.0034 0.0024 ± 0.0033 0.0029 ± 0.0034 0.0029 ± 0.0027 0.0071 ± 0.0074 0.0051 ± 0.0059 0.0052 ± 0.0058 0.0054 ± 0.0062 0.003 ± 0.0031
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Table A.9: Regression results for the within dataset analysis when changing the number of samples (target metric: MAP).

Target
MAP

Memory-based Model-based
UserKNN-
Amplified

UserKNN-
BM25

UserKNN-
Cosine

UserKNN-
IDF

ItemKNN-
Adjusted BPR MF SVD PMF NMF

ML
-1

M
10

%
of

sa
m

pl
es

R2 (adj.R) 0.861 (0.858) 0.848 (0.844) 0.872 (0.869) 0.859 (0.856) 0.858 (0.855) 0.929 (0.927) 0.711 (0.705) 0.745 (0.739) 0.849 (0.846) 0.876 (0.874)
SpaceSize 0.0*** 0.0* 0.0*** 0.0* 0.0*** 0.0 0.0*** 0.0*** 0.0*** 0.0***

Shape 0.0009*** 0.00105*** 0.00092*** 0.00155*** 0.00064*** 0.00216*** 0.00171*** 0.00152*** 0.00098*** 0.00128***
Density 0.20084*** 0.09057 0.17931*** 0.14358 0.11192* -1.69882*** 0.29074 0.18977 0.2299 0.43962***

Rpu -5e-05*** -6e-05*** -5e-05*** -6e-05*** -6e-05*** -0.00025*** -0.00015*** -0.00013*** -0.00019*** -9e-05***
Giniu -0.02004*** -0.00963 -0.02278*** -0.01924* -0.01451* -0.03729 -0.02959 -0.00679 -0.05815*** -0.03274***
Ginii 0.02541*** 0.02513* 0.02647*** 0.00909 -0.02864*** 0.24251*** 0.05867* 0.00657 0.08546*** 0.05314***

Popavg 0.04931*** 0.07545*** 0.05904*** 0.05846* 0.06679*** 1.06203*** 0.29591*** 0.29901*** 0.36944*** 0.11726***
Popskew 0.00313*** 0.00597*** 0.00265*** 0.00583*** 0.00146*** 0.02369*** 0.00503* 0.00763*** 0.00831*** 0.00654***
LTailavg -0.10792*** -0.12076*** -0.12429*** -0.13506*** -0.08756*** -0.2235* -0.26582*** -0.18109* -0.34633*** -0.12707***
LTailskew 0.00831*** 0.01299*** 0.00858*** 0.0096*** 0.00801*** 0.03779*** 0.01682*** 0.01499*** 0.02148*** 0.01585***
Stdrating -0.02189* -0.01749 -0.02178* -0.00467 -0.00743 -0.06878* 0.05447 0.1109*** -0.0138 -0.01484
Accuracy 0.0161 ± 0.0059 0.019 ± 0.0085 0.0163 ± 0.006 0.0195 ± 0.0091 0.0207 ± 0.0052 0.0864 ± 0.0264 0.0442 ± 0.0143 0.0443 ± 0.013 0.0516 ± 0.0149 0.0226 ± 0.0103

ML
-1

M
20

%
of

sa
m

pl
es

R2 (adj.R) 0.858 (0.855) 0.859 (0.855) 0.876 (0.872) 0.853 (0.849) 0.871 (0.868) 0.926 (0.924) 0.696 (0.688) 0.762 (0.755) 0.855 (0.852) 0.871 (0.868)
SpaceSize 0.0*** 0.0 0.0*** 0.0* 0.0*** 0.0* 0.0*** 0.0*** 0.0*** 0.0***

Shape 0.00095*** 0.00109*** 0.00094*** 0.00157*** 0.00062*** 0.00192*** 0.00169*** 0.00159*** 0.00103*** 0.00111***
Density 0.25582*** 0.00711 0.13943* 0.32581*** 0.1643*** -1.90918*** 0.4385 0.39799 0.35887 0.40915***

Rpu -5e-05*** -6e-05*** -5e-05*** -6e-05*** -5e-05*** -0.00026*** -0.00016*** -0.00013*** -0.00018*** -0.0001***
Giniu -0.01741* -0.00131 -0.02743*** -0.02452* -0.00512 -0.04004 -0.04061 -0.01095 -0.00243 -0.01744
Ginii 0.03119*** 0.02783* 0.03682*** 0.00139 -0.03652*** 0.28185*** 0.04554 -0.02479 0.05609*** 0.04457***

Popavg 0.04203* 0.06436* 0.06825*** 0.02093 0.06696*** 1.14946*** 0.29732*** 0.29459*** 0.36885*** 0.15916***
Popskew 0.00249*** 0.00665*** 0.00213*** 0.00638*** 0.00207*** 0.02497*** 0.00527* 0.00705*** 0.01064*** 0.00504***
LTailavg -0.10169*** -0.15129*** -0.12087*** -0.08273 -0.04943 -0.16398 -0.182 -0.19372* -0.29175*** -0.13853***
LTailskew 0.00871*** 0.01449*** 0.00927*** 0.00955*** 0.00751*** 0.03884*** 0.01703*** 0.01398*** 0.01762*** 0.01699***
Stdrating -0.02628* -0.01519 -0.0127 -0.01942 0.00218 -0.07307* 0.06119 0.10775*** 0.01393 0.00179
Accuracy 0.0162 ± 0.0059 0.0193 ± 0.009 0.0165 ± 0.0062 0.0194 ± 0.009 0.0207 ± 0.0051 0.0863 ± 0.0257 0.0445 ± 0.0149 0.0445 ± 0.0136 0.0514 ± 0.0143 0.0227 ± 0.01

ML
-1

M
50

%
of

sa
m

pl
es

R2 (adj.R) 0.832 (0.825) 0.853 (0.847) 0.863 (0.858) 0.856 (0.851) 0.875 (0.87) 0.931 (0.928) 0.672 (0.659) 0.753 (0.744) 0.853 (0.848) 0.875 (0.871)
SpaceSize 0.0*** 0.0 0.0*** 0.0* 0.0*** 0.0* 0.0*** 0.0*** 0.0*** 0.0***

Shape 0.00076*** 0.00122*** 0.00088*** 0.00161*** 0.00065*** 0.00193*** 0.00154*** 0.00142*** 0.00116*** 0.00121***
Density 0.26872*** 0.12033 0.09572 0.38869*** 0.15933* -1.39887*** -0.05485 0.35969 0.61439* 0.35838***

Rpu -5e-05*** -5e-05*** -5e-05*** -5e-05*** -5e-05*** -0.00024*** -0.00015*** -0.00013*** -0.00018*** -0.00011***
Giniu -0.00356 0.02361 -0.02964*** -0.03039* -0.00642 -0.07353*** -0.01156 -0.02729 0.01201 0.00126
Ginii 0.02148* 0.00885 0.03564*** 0.00256 -0.03564*** 0.24642*** 0.04755 -0.04167 0.06687*** 0.06128***

Popavg 0.04051 0.05217 0.08452*** 0.01873 0.0632*** 1.05682*** 0.32432*** 0.33649*** 0.36431*** 0.21573***
Popskew 0.00375*** 0.00696*** 0.00159* 0.00703*** 0.00192*** 0.02774*** 0.00578* 0.00804*** 0.0099*** 0.00393***
LTailavg -0.12143*** -0.18236*** -0.09734* -0.11712* -0.08977*** -0.15476 -0.11594 -0.13081 -0.36575*** -0.0435
LTailskew 0.00863*** 0.01416*** 0.00991*** 0.00798*** 0.00665*** 0.03953*** 0.01389*** 0.01537*** 0.01768*** 0.01556***
Stdrating -0.02889* -0.01667 -0.00888 -0.03846 0.02176* -0.10871* 0.09504* 0.1227*** 0.00972 0.01441
Accuracy 0.0159 ± 0.0053 0.0196 ± 0.0095 0.0164 ± 0.0061 0.0196 ± 0.0087 0.0207 ± 0.0052 0.0859 ± 0.0252 0.0438 ± 0.0138 0.0445 ± 0.0141 0.052 ± 0.0152 0.0226 ± 0.0099

ML
-1

M
fu

ll
sa

m
pl

es

R2 (adj.R) 0.863 (0.861) 0.845 (0.842) 0.864 (0.861) 0.861 (0.858) 0.866 (0.863) 0.931 (0.93) 0.709 (0.704) 0.746 (0.742) 0.849 (0.847) 0.878 (0.875)
SpaceSize 0.0007*** 0.00051* 0.0007*** 0.00056* 0.00234*** 0.00087 0.00459*** 0.0031*** 0.00255*** 0.00125***

Shape 0.00258*** 0.00301*** 0.00258*** 0.00448*** 0.00198*** 0.00644*** 0.00517*** 0.00515*** 0.00278*** 0.00363***
Density 0.00063*** 0.00041 0.00063*** 0.00051 0.00033* -0.00503*** 0.00126 0.00073 0.00037 0.00137***

Rpu -0.00208*** -0.00288*** -0.00208*** -0.00258*** -0.00251*** -0.01121*** -0.00682*** -0.00622*** -0.00855*** -0.00399***
Giniu -0.00033*** -0.00019 -0.00033*** -0.00027 -0.00023*** -0.00062* -0.00051 -0.00056 -0.00073*** -0.0005***
Ginii 0.00075*** 0.00062* 0.00074*** 0.00035 -0.00078*** 0.00692*** 0.00129 0.00037 0.00262*** 0.00159***

Popavg 0.0005*** 0.00054* 0.0005*** 0.00053* 0.00067*** 0.00937*** 0.00249*** 0.00239*** 0.0034*** 0.00113***
Popskew 0.0008*** 0.00147*** 0.00079*** 0.00146*** 0.00032* 0.006*** 0.00145*** 0.00139*** 0.00213*** 0.0016***
LTailavg -0.00038*** -0.00057*** -0.00038*** -0.00048*** -0.00033*** -0.00093*** -0.00077* -0.001*** -0.00139*** -0.00046***
LTailskew 0.00168*** 0.0026*** 0.00168*** 0.00188*** 0.00154*** 0.00745*** 0.0031*** 0.00292*** 0.00432*** 0.00307***
Stdrating -0.00024* -0.00018 -0.00024* -8e-05 -9e-05 -0.00082*** 0.00069* 0.00068* -0.00036 -0.00019
Accuracy 0.0162 ± 0.0059 0.019 ± 0.0085 0.0162 ± 0.0059 0.0193 ± 0.0089 0.0207 ± 0.0053 0.0867 ± 0.0266 0.044 ± 0.0141 0.0445 ± 0.0137 0.0517 ± 0.0149 0.0226 ± 0.0101
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