
MSAP: Multi-Step Adversarial Perturbations on Recommender Systems
Embeddings

Vito Walter Anelli†, Alejandro Bellogı́n‡, Yashar Deldjoo†, Tommaso Di Noia†, Felice Antonio Merra†*
†Politecnico di Bari, Italy, firstname.lastname@poliba.it,

‡Universidad Autónoma de Madrid, Spain, firstname.lastname@uam.es

Abstract
Recommender systems (RSs) have attained exceptional per-
formance in learning users’ preferences and finding the most
suitable products. Recent advances in adversarial machine
learning (AML) in computer vision have raised interests in
recommenders’ security. It has been demonstrated that widely
adopted model-based recommenders, e.g., BPR-MF, are not
robust to adversarial perturbations added on the learned pa-
rameters, e.g., users’ embeddings, which can cause drastic re-
duction of recommendation accuracy. However, the state-of-
the-art adversarial method, named fast gradient sign method
(FGSM), builds the perturbation with a single-step procedure.
In this work, we extend the FGSM method proposing multi-
step adversarial perturbation (MSAP) procedures to study the
recommenders’ robustness under powerful methods. Letting
fixed the perturbation magnitude, we illustrate that MSAP is
much more harmful than FGSM in corrupting the recommen-
dation performance of BPR-MF. Then, we assess the MSAP
efficacy on a robustified version of BPR-MF, i.e., AMF. Fi-
nally, we analyze the variations of fairness measurements on
each perturbed recommender. Code and data are available at
https://github.com/sisinflab/MSAP.

Introduction
Recommender systems (RSs) are machine-learning (ML)
models involved in decision-making tasks to show to the
customers personalized lists of relevant products learned
from their historical interactions. However, adversarial ma-
chine learning (AML) (Huang et al. 2011) has revealed se-
curity breaches of ML models in several tasks with a par-
ticular focus on computer vision (CV) domain (Akhtar and
Mian 2018). In (Szegedy et al. 2014), the authors formalize
the first adversarial attacks against DNNs for image clas-
sification finding that a human-imperceptible pixel chang-
ing is sufficient to confuse the network to classify a pan-
das image into the wrong gibbon class. This perturbation,
named adversarial perturbation, consists in adding a norm-
constrained amount of noise to enforce the model to make
a wrong prediction. Starting from this work, several at-
tacks (Kurakin, Goodfellow, and Bengio 2017; Madry et al.
2018; Carlini and Wagner 2017), as well as defenses (Good-
fellow, Shlens, and Szegedy 2015), have been studied in CV
domain with the goal to make reliable ML models.
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(He et al. 2018) proposed the pioneering work of AML for
RSs. The authors clarified that attacks and defenses should
be treated differently in the CV and RS tasks since image
data are continuous-valued matrices, while recommender
data are discrete interactions (0/1 feedback). For this reason,
they tested adversarial perturbations on the model param-
eters, e.g., the embedding matrices of matrix-factorization
(MF) models. They discovered that the fast gradient sign
method (FGSM) (Goodfellow, Shlens, and Szegedy 2015),
a single-step adversarial perturbation procedure, leads to
five times larger deterioration of recommendation accuracy
than the one caused by random variation. This finding shows
the weaknesses of model-based recommenders in learning
embeddings that will cause drastic performance degrada-
tion when subjected to small changes. For instance, this
change can be caused when new users, or items, are added
to the system. Furthermore, they successfully applied an
adversarial training procedure (Goodfellow, Shlens, and
Szegedy 2015) on BPR-MF, named AMF, demonstrating
more robust RS performance under FGSM perturbations.
These techniques have been tested on multimedia recom-
mendation systems (Tang et al. 2020), deep RSs (Yuan, Yao,
and Benatallah 2019a; 2019b), and tensor factorization ap-
proaches (Chen and Li 2019).

In this work, inspired by the evidence in the CV do-
main that iterative attacks are more effective than single-step
ones (Kurakin, Goodfellow, and Bengio 2017), we present
two multi-step adversarial perturbation (MSAP) techniques,
namely basic iterative method (BIM) and projected gradient
descent (PGD), applied on the embeddings of two state-of-
the-art MF models (He et al. 2018; Rendle et al. 2009) to
answer the following research questions:
• Does MSAP outperform single-step attacks in degrading

the quality of the system with respect to accuracy and
beyond-accuracy evaluation measures?

• Is the adversarial regularization of RSs still useful against
the presented multi-step generated noise?

• Are adversarial perturbations, and in particular the MSAP,
able to impact in a significant direction on the observed
fairness of recommender models?
To this end, we evaluate MSAP against two model-based

recommenders, i.e., BPR-MF and its adversarial robustified
version AMF, on two datasets, i.e., ML-1M and LastFM.



Related Work
Collaborative Recommendation
Recommendation models proposed in the last thirty years
are categorized into collaborative filtering (CF), content-
based, and hybrid RS (Ricci, Rokach, and Shapira 2015).
The first category learns users’ preferences from historical
user-item interactions. The second category suggests unseen
products based on the content-based similarity of user con-
sumed items and other unseen items. The last class com-
bines both techniques to augment user-item interactions with
side information. Model-based CF models such as BPR-
MF (Rendle et al. 2009) and recent neural models such
as neural collaborative filtering (NCF) (He et al. 2017) are
popular choices in the RS and ML communities. MF-based
models are the major class of RSs used for research on
AML (He et al. 2018; Tang et al. 2020).

Adversarial Machine Learning
Security of RSs covers two research lines: based on hand-
engineered shilling attacks and adversarial machine-learned
attacks (Deldjoo, Noia, and Merra 2021). The former cat-
egory concentrates on the injection of manually generated
fake profiles (Burke, O’Mahony, and Hurley 2015). The lat-
ter category, the focus of the current work, studied the ap-
plication of AML techniques to generate perturbations to
reduce recommenders’ performance and their countermea-
sures (He et al. 2018; Beigi et al. 2020; Di Noia, Malitesta,
and Merra 2020). The work (He et al. 2018) reported se-
rious vulnerability of BPR-MF against adversarial perturba-
tion obtained from the FGSM attack and suggested an adver-
sarial regularization procedure as a defensive countermea-
sure. This work inspired other models such as AMR (Tang
et al. 2020), FG-ACAE (Yuan, Yao, and Benatallah 2019a;
2019b), and ATF (Chen and Li 2019). However, we found
that the RS community lacks studies on other categories
of adversarial perturbations, such as iterative attacks (e.g.,
PGD (Madry et al. 2018)), which are effective in altering
CV tasks. MSAP is the first iterative perturbation procedure
proposed in the RS domain.

The Proposed Framework
In this section, we describe the foundations of a personal-
ized matrix factorization (MF) recommender model. Then,
we recapitulate the baseline single-step adversarial pertur-
bation before defining the multi-step strategies.

Personalized Recommenders via MF
The recommendation problem is the task of estimating a
preference prediction function s(u, i) that maximizes the
utility of the user u ∈ U in getting the item i ∈ I rec-
ommended by the RS, where U and I are the set of users
and items respectively. Before we dive into the description
of the MF model, we introduce the following notation:

• P: the matrix of user embeddings, where pu is the em-
bedding vector associated to the user u;

• Q: the matrix of item embeddings, where qi is the em-
bedding vector associated to the item i;

• Θ: the set of model parameters (Θ = {P,Q});
• L: the loss function

The main intuition behind the MF model is to compute
the preference score s(u, i) as the dot product between the
user’s embedding (pu) and the item’s embedding (qi), i.e.,
s(u, i) = pTupi. The model parameters are learned by solv-
ing the optimization problem in the following general form:

argmin
Θ

L(Θ) (1)

The state-of-the-art approach to produce personalized rank-
ings is Bayesian personalized ranking (BPR) (Rendle et al.
2009). The idea is to reduce the ranking problem to a pair-
wise learning one where, for each user, the score of inter-
acted items has to be higher than non-interacted ones.

Adversarial Perturbation of Model Parameters
The main intuition behind an adversarial perturbation
method is to generate minimum perturbations (∆adv) ca-
pable of undermining the learning objective of the learning
model. The adversary’s goal is to maximize Eq. 1, under a
minimal-norm constraint:

∆adv ← argmax
∆0,||∆0||≤ε

L(Θ + ∆0) (2)

where ∆0 is the initial adversarial perturbation added to the
model parameters Θ and ε is the perturbation budget ( the
limit of the perturbation size). Eq. 1 and 2 can be unified in
the following minimax problem:

arg min
Θ

max
∆0,||∆0||≤ε

L(Θ + ∆0) (3)

in which two opposite players play an adversarial minimax
game, where the adversary tries to maximize the likelihood
of its success while the ML model tries to minimize the risk.
This minimax game is the main characteristic of tasks re-
lated to AML research (Tu, Zhang, and Tao 2019).

Fast Gradient Sign Method (FGSM). This perturbation
strategy is the baseline single-step adversarial perturbation
mechanism proposed by (He et al. 2018) to alter the recom-
mendation task. It builds on advances made in ML research
pioneered in (Goodfellow, Shlens, and Szegedy 2015) for
the classification task. It approximates L by linearizing it
around an initial zero-matrix perturbation ∆0 and applies
the max-norm constraint. The adversarial noise ∆adv is

∆adv = ε
Π

‖Π‖ where Π =
∂L(Θ + ∆0)

∂∆0
(4)

where || · || is the L2−norm. After the calculation of ∆adv ,
the authors added this perturbation to the current model pa-
rameters Θadv = Θ + ∆adv and generated the recommen-
dation lists with this perturbed model parameter.

Multi-Step Adversarial Perturbation (MSAP). This ad-
versarial noise generation mechanism is a straightforward
extension of the single-step strategy proposed in CV do-
main (Kurakin, Goodfellow, and Bengio 2017). In particu-
lar, the authors’ idea was to build an FGSM-based multi-step



strategy and create more effective ε-clipped perturbations.
The initial model parameters are defined as

Θadv
0 = Θ + ∆0 (5)

Starting from this initial state of model parameters, let
ClipΘ,ε be an element-wise clipping function to limit the
perturbation of each original embedding value inside the
[−ε,+ε] interval, let α be the step size which is the maxi-
mum perturbation budget of each iteration, and let L be the
number of iterations, the first iteration (l = 1) is defined by:

Θadv
1 = ClipΘ,ε

{
Θadv

0 + α
Π

‖Π‖

}
where Π =

∂L(Θ + ∆0)

∂∆0

(6)
and we generalize the l-th iteration of the L-iterations multi-
step adversarial perturbation as:

Θadv
l = ClipΘ,ε

{
Θadv
l−1 + α

Π

‖Π‖

}
where Π =

∂L(Θ + ∆adv
l−1)

∂∆adv
l−1

(7)
where l ∈ [1, 2, ..., L], ∆adv

l is the adversarial perturba-
tion at the l-th iteration, and Θadv

l is the sum of the original
model parameters Θ with the perturbation at the l-th itera-
tion. The MSAP computational cost is l-times the single-step
version. We considered two different MSAP: Basic Iterative
Method (BIM) (Kurakin, Goodfellow, and Bengio 2017) and
Projected Gradient Descent (PGD) (Madry et al. 2018). The
former approach initializes ∆0 as matrices of zeros, with the
same size of the matrix embeddings of the victim model. The
latter initializes the perturbation sampling a uniform distri-
bution. These different initializations make PGD more pow-
erful than BIM in confusing CV image classifiers (Athalye,
Carlini, and Wagner 2018). Since this has not been – to the
best of our knowledge – investigated in the RSs community,
we chose both strategies to investigate whether such a differ-
ence between two adversarial perturbation strategies exists
for the recommendation task. Note that we test our adver-
sarial method against MF recommenders, however it can be
reproduced against any BPR optimized recommender.

Experimental Setup
In this section, we introduce the datasets, recommenders,
evaluation measures, and reproducibility information.

Datasets
We conducted MSAP experiments on two datasets:

Movielens 1M (ML-1M) (Harper and Konstan 2016) con-
tains 1,000,209 ratings (|F|) given by 6,040 users (|U|) to-
wards 3,706 movies (|I|). Users’ gender and movies’ genres
are used in the fairness evaluation.

LastFM-1b (LastFM) (Schedl 2016) contains 935,875
listening events (|F|) given by 2,847 users (|U|) towards
33,164 authors (|I|) stored from the online music provider
Last.fm. Users’ gender and items’ artists are used for the
analysis of fairness.

Recommender Models
BPR-MF (Rendle et al. 2009) is a MF recommender opti-
mized with a pair-wise loss function (i.e., BPR). The fun-
damental intuition of BPR-MF is to discard not-interacted

items with respect to interacted ones in order to learn a rank-
based preference predictor. LBPR(Θ) = L(Θ) denotes the
BPR-MF loss function.

AMF (He et al. 2018) is a BPR-MF extension that in-
cludes an adversarial training procedure. The model param-
eters are learned with the following loss function:

LAMF (Θ) = LBPR(Θ) + λ LBPR(Θadv)︸ ︷︷ ︸
adversarial regularizer

(8)

where the model parameters of the adversarial regularizer
(Θadv) are perturbed with the single-step perturbation tech-
nique described in Eq. 4. AMF reduces up to 88% the de-
grading effect of single-step perturbations on the model ac-
curacy (He et al. 2018).

Evaluation Metrics
Accuracy The accuracy metrics used are: precision
(PR@K), the fraction of suggested items relevant to the
users, recall (RE@K), the average fraction of relevant rec-
ommended items, and normalized discounted cumulative
gain (nDCG@K), the users’ gain of a ranked list discount-
ing the relevant predictions by their positions.

Beyond-Accuracy The beyond-accuracy metrics used
are: expected free discovery (EFD@K) (Vargas and
Castells 2011), the capacity to suggest relevant long-tail
products, Shannon Entropy (SE@K), the diversity of rec-
ommendations, and coverage (ICov@K), the number of
recommended products.

Fairness metrics are evaluated before and after MSAP.
We explored: generalized cross-entropy (GCE) (Deldjoo
et al. 2019) that considers several possible ideal probabil-
ity distributions for each user, or item, clustering. Hence, it
computes the divergence of the recommendation results (by
considering a specific metric, i.e., nDCG) from the ideal
distributions. Consequently, GCE’s value close to zero de-
notes the recommender’s congruence with that distribution.
On the other hand, MAD focuses on the absolute variation
of a given metric from an ideal situation in which the rec-
ommender treats groups equally. The original formulation
of MAD (Zhu, Hu, and Caverlee 2018), namely MADr,
considers the user and item score pairs in the recommen-
dation results. Additionally, we considered the MAD exten-
sion proposed in (Deldjoo et al. 2019), MADR, in which
the per-user performance values of an accuracy metric, i.e.,
nDCG, are considered.

Reproducibility
We employed the leave-one-out evaluation protocol (He et
al. 2018), putting in the test set either the last — when that
information is available (i.e., ML-1M)– or a random (i.e.,
LastFM) interaction, and using the rest of the recorded
feedbacks to train the recommenders. We trained the BPR-
MF for 2,000 epochs. Then, we used the BPR-MF parame-
ters at the 1,000th epoch as the starting point to train AMF
— the BPR-MF adversarial regularized version– as pre-
sented in (He et al. 2018). We fixed the perturbation budget
(ε) to 0.5, which is the smallest perturbation experimented
in (He et al. 2018), and set the step size α of MSAP to ε/4.
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(a) nDCG on BPR-MF
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(b) nDCG on AMF
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(c) ICov on BPR-MF
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(d) ICov on AMF

Random BPR-MF AMF FGSM ( = 0.5) BIM ( = 0.5) PGD ( = 0.5)

Figure 1: nDCG and ICov results for LastFM. Results of the
(baseline) random recommender are in violet dotted line.
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(a) BPR-MF (varying ε)
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(b) AMF (varying ε)
Figure 2: MSAP results varying ε ∈ [0.001, 10.0] on LastFM (L =
25). Fig. 2a and 2b shows that with a small perturbation, e.g., ε '
0.1, MSAP is more effective than FGSM with ε = 0.5.

We used the following parameters for both models: embed-
ding size to 64, learning rate to 0.05, λ to 1, and the batch
size to 512.

Results and Discussion
In this section, we discuss the experimental results to answer
our open questions. All the metrics are evaluated on top-10
recommendation lists.

Investigating the MSAP effects
To better understand the merits of the presented adversarial
perturbations, we aim to answer the following questions:

• On the perturbation side: how much adversarial pertur-
bations obtained from the single-step and the MSAP meth-
ods can impair the quality of the original BPR-MF model?
Fig. 1a & 1c compare perturbations effects on BPR-MF
trained on LastFM.

• On the defensive side: what is the impact on the adversar-
ial regularized version of BPR-MF, i.e. AMF? The answer
can be found in Fig. 1b & Fig. 1d.

Table 1: Accumulated normalized values of the accuracy and
beyond-accuracy metrics. We put in bold the lower value when the
perturbation (ε = .5) is more effective.

Model Metric LastFM ML-1M

Initial FGSM BIM PGD Initial FGSM BIM PGD

BPR-MF

PR .0310 .0211 .0019 .0018 .0088 .0074 .0035 .0035
RE .3102 .2115 .0194 .0177 .0884 .0740 .0353 .0353
nDCG .2033 .1216 .0111 .0100 .0447 .0368 .0174 .0172
EFD .5144 .3069 .0313 .0284 .0977 .0791 .0355 .0353
SE 11.35 11.14 1.17 1.21 9.63 9.16 7.40 7.45
ICov 6220 5645 4352 4428 2247 2433 1189 1213

AMF

PR .0357 .0316 .0164 .0167 .0092 .0085 .0048 .0048
RE .3565 .3165 .1644 .1667 .0922 .0846 .0482 .0484
nDCG .2421 .2147 .1010 .1030 .0462 .0419 .0228 .0231
EFD .5987 .5184 .2303 .2352 .0971 .0853 .0442 .0447
SE 9.98 8.90 7.19 7.20 8.30 7.41 6.30 6.30
ICov 3847 2708 2315 2321 1486 1169 1066 1077

Since the performance of the MSAP varies based on the
number of iterations, firstly, we discuss and analyze the ef-
fectiveness of the presented perturbations across different it-
erations, then, we fix the iteration number and study how
MSAP impairs the RS varying the perturbation budget ε.

Impact of MSAP varying the number of iterations.
On the perturbation side, by looking at Fig 1a, one

can note that both MSAP strategies are more powerful com-
pared with the single-step one, for a fixed perturbation bud-
get ε = 0.5. For instance, the PGD perturbation technique
shows 15.1 (0.1216 v.s. 0.0080), 20.4 (0.1216 v.s. 0.0060),
and 23.8 (0.1216 v.s. 0.0051) times stronger impact with re-
spect to FGSM, for iterations 25, 40, and 50 respectively.
These results confirm CV’s findings on the superiority of
MSAP— in terms of model damage — compared to single-
step ones in RSs. To better reveal MSAP effects, analyzing
Fig 1a, we observe that after 25 iterations, the perturbed
BPR-MF starts to perform similar to the random recom-
mender. In other words, BPR-MF has lost all the learned
users’ personalized information.

Moreover, Table 1 confirms that MSAP strategies outper-
form FGSM for all <dataset, recommender> combinations.
For instance, the <ML-1M, BPR-MF> combination shows
the PGD perturbations reduced the accuracy by more than 2
times compared to FGSM, e.g., (0.0074 v.s. 0.0035), (0.0740
v.s. 0.0353), and (0.0368 v.s. 0.0172) for PR, RE, and
nDCG, respectively. Here, we should point out that both
Fig. 1 and Table 1 do not show a clear difference in PGD
perturbation compared to BIM perturbation. This finding is
different from the one previously reported in (Athalye, Car-
lini, and Wagner 2018) for CV. We motivate it because tested
model-based recommenders are less sensitive to the embed-
ding initialization than the weight initialization of neural
networks in CV since BPR computes gradients based on the
differences between pairs.

For what concerns beyond-accuracy analysis, we found
an interesting behavior for the BPR-MF. During the first 25
iterations of BIM, ICov increments nearly by 76% (from
6,220 to 10,928) compared to the coverage value of the non-
perturbed recommender (see Fig. 1c). After that, it steadily
diminishes with a minimum ICov value of 1,948 (for BIM).
This result, strengthened by looking into Table 1, may be
justified because when MSAP computes several iterations
(L ≥ 70), it steadily destructs the accuracy metrics and
brings the model to recommend a set of few items that all the



Table 2: Performance (measured in terms of nDCG) of the different approaches on each subset of users/items, where C1 and C4 denote the
least and most popular items and users with less and more interactions, respectively; for user gender C1 is associated to males and C2 to
females. Results for ML-1M are presented on the left, LastFM on the right. We highlight in bold the best results for each model.

Item pop User gender User interactions
Model C1 C2 C3 C4 C1 C2 C1 C2 C3 C4

BPR-MF

initial 0.054 0.035 0.045 0.300 0.046 0.043 0.079 0.044 0.032 0.023
FGSM 0.027 0.017 0.043 0.284 0.044 0.041 0.073 0.044 0.032 0.022

BIM 0.005 0.000 0.000 0.167 0.019 0.016 0.018 0.020 0.018 0.016
PGD 0.000 0.000 0.000 0.178 0.017 0.016 0.022 0.018 0.015 0.012

AMF

initial 0.172 0.096 0.096 0.334 0.047 0.043 0.078 0.047 0.034 0.026
FGSM 0.163 0.114 0.110 0.326 0.043 0.039 0.070 0.041 0.033 0.022

BIM 0.000 0.000 0.000 0.198 0.022 0.018 0.024 0.018 0.025 0.018
PGD 0.002 0.055 0.000 0.202 0.023 0.017 0.024 0.018 0.025 0.018

Item pop User gender User interactions
Model C1 C2 C3 C4 C1 C2 C1 C2 C3 C4

BPR-MF

initial 0.000 0.000 0.006 0.092 0.218 0.143 0.158 0.209 0.194 0.253
FGSM 0.000 0.001 0.004 0.062 0.131 0.085 0.102 0.118 0.123 0.143

BIM 0.000 0.000 0.000 0.004 0.007 0.009 0.011 0.007 0.009 0.002
PGD 0.000 0.001 0.000 0.002 0.004 0.006 0.007 0.005 0.004 0.004

AMF

initial 0.000 0.006 0.014 0.106 0.260 0.188 0.174 0.237 0.229 0.329
FGSM 0.000 0.000 0.010 0.095 0.230 0.168 0.153 0.211 0.198 0.297

BIM 0.002 0.001 0.005 0.046 0.098 0.066 0.052 0.081 0.086 0.143
PGD 0.000 0.002 0.003 0.046 0.097 0.061 0.054 0.082 0.090 0.142

Table 3: Fairness measured according to GCE where f0 represents a uniform distribution, fk denotes a distribution where group Ck accu-
mulates more probability than the rest, as in f1 = [0.75, 0.25] for user gender, MADr, and MADR. Rest of notation as in Table 2.

Item pop User gender User interactions
Data Model f0 f1 f4 MADr MADR f0 f1 f2 MADr MADR f0 f1 f4 MADr MADR

ML-1M

BPR-MF

initial −0.483 −1.574 −0.005 0.040 0.159 −0.001 −0.109 −0.143 0.050 0.003 −0.116 −0.138 −1.480 0.618 0.030
FGSM −0.929 −3.056 −0.042 0.029 0.140 0.000 −0.111 −0.140 0.067 0.002 −0.110 −0.158 −1.514 0.614 0.028

BIM −2,039.764 −334.326 −326.189 0.066 0.079 −0.003 −0.088 −0.170 0.373 0.003 −0.004 −0.542 −0.679 1.781 0.002
PGD −3,167.250 −8,615.699 −506.580 0.062 0.083 0.000 −0.111 −0.140 0.234 0.001 −0.024 −0.323 −0.910 1.564 0.005

AMF

initial −0.147 −0.576 −0.105 0.225 0.424 −0.001 −0.104 −0.149 0.084 0.004 −0.092 −0.162 −1.329 1.995 0.028
FGSM −0.104 −0.646 −0.121 0.171 0.302 −0.001 −0.105 −0.147 0.038 0.004 −0.093 −0.166 −1.403 1.674 0.025

BIM −3,533.378 −9,611.568 −565.161 0.095 0.155 −0.007 −0.074 −0.193 0.302 0.005 −0.014 −0.435 −0.719 4.175 0.005
PGD −1,543.481 −287.878 −246.845 0.263 0.330 −0.011 −0.064 −0.213 0.328 0.006 −0.010 −0.426 −0.702 4.177 0.004

f0 f1 f4 MADr MADR f0 f1 f2 MADr MADR f0 f1 f4 MADr MADR

LastFM

BPR-MF

initial −1,161.806 −4,646.677 −185.725 0.120 0.032 −0.016 −0.188 −0.499 0.147 0.051 −0.015 −0.822 −0.353 0.557 0.051
FGSM −397.483 −3,094.772 −63.435 0.123 0.033 −0.016 −0.180 −0.489 0.141 0.031 −0.008 −0.730 −0.395 0.686 0.022

BIM −46.740 −186.212 −7.314 0.031 0.003 −0.002 −0.372 −0.258 0.312 0.001 −0.206 −0.243 −2.591 3.153 0.005
PGD −20.224 −156.603 −3.149 0.021 0.002 −0.011 −0.480 −0.243 0.290 0.001 −0.025 −0.282 −0.694 3.062 0.002

AMF

initial −747.062 −5,853.077 −119.395 0.468 0.055 −0.010 −0.190 −0.416 0.224 0.048 −0.026 −0.921 −0.291 2.057 0.079
FGSM −1,242.414 −4,969.776 −198.632 0.583 0.066 −0.009 −0.193 −0.413 0.108 0.042 −0.028 −0.930 −0.279 1.060 0.074

BIM −2.238 −8.706 −0.217 0.672 0.035 −0.014 −0.178 −0.459 0.941 0.021 −0.067 −1.257 −0.200 6.127 0.046
PGD −309.333 −2,419.092 −49.342 0.742 0.039 −0.022 −0.200 −0.562 0.978 0.025 −0.063 −1.237 −0.210 7.015 0.046

users will not appreciate. Thus, we can conclude that MSAP
deteriorates the personalized recommender to perform as
bad as a random recommender (see Fig. 1a) on both accu-
racy and beyond-accuracy measures.

On the defensive side, Figure 1b shows an evident perfor-
mance drop in accuracy for AMF which is, on average, more
than 58% for MSAP and 11.31% for FGSM (see Table 1).
For instance, the PGD perturbation shows 1.48 (0.2147 v.s.
0.1448), 1.86 (0.2147 v.s. 0.1154), and 1.94 (0.2147 v.s.
0.1106) times stronger impact with respect to FGSM, for
iterations 20, 30, and 50, respectively. However, the accu-
racy reduction does not reach random performance as for
the BPR-MF recommender. We may explain this slight ro-
bustness by mentioning the partial effectiveness of the ad-
versarial regularization procedure, i.e., specifically designed
to protect against FGSM (He et al. 2018).

Impact of MSAP varying ε. Here, we fix the number of
iterations to 25 and vary ε from 0.001 to 10. Analyzing
Fig. 2a & 2b, we found that MSAP strategies reach the FGSM
(ε = 0.5) performance with ε ' 0.1. In other words, MSAP
uses 0.5/0.1 =5 times less perturbation budget to get the same
performance degradation of single-step strategies.

Fairness and Per-Attribute Performance Analysis
Before focusing on fairness, let us analyze recommenders’
behavior for the different groups/categories to uncover the
potential biases produced or removed by the attack strategies
(MSAP with 150 iterations). Table 2 depicts the nDCG per-
formance of the recommenders (BPR-MF, AMF, and their
attacked variants) regarding the clusters for three attributes:
item popularity, user gender, and user interactions. We com-
puted the clustering for item popularity and user interactions
considering the quartiles for the attributes, while the origi-

nal datasets contain already user gender clusters. As already
noted in the literature, Table 2 shows that BPR-MF achieves
higher values of nDCG for popular items on both ML-1M
and LastFM. In this respect, note the performance of BPR-
MF in C4 regarding the item pop attribute. Notably, the ef-
ficacy of the attacks is particularly evident here since, for
BPR-MF, the C4, for the item pop attribute column, shows
a degradation of the performance when the recommender
is under attack. On the other hand, AMF shows less ev-
ident performance deterioration, despite a similar trend is
observed.

Considering the user gender, we observe that the recom-
mendation performance for males (C1) is higher than for
women in both datasets. Even though the trends are simi-
lar to those observed for item popularity, it is worth noticing
that the degradation and the defense effects are more evident
in LastFM. Finally, the table shows two opposite behaviors
for user interactions: in ML-1M, BPR-MF seems to favor the
less active users, whereas LastFM favors the most active
ones. The reason for this behavior is probably twofold. First,
there are no proper cold-users in ML-1M: 25% of users (C1)
have from 19 to 43 interactions. In LastFM, on the other
hand, users in C1 have from 2 to 123 interactions. Second,
the datasets show a dramatically different number of items
in the catalogs, making the number of interactions sufficient
to produce meaningful recommendations for ML-1M.

Regarding the change in performance when using any of
the attack methods, we observe that in ML-1M the trend and
absolute values remain almost the same to the initial recom-
mender; however, in LastFM the situation is not identical:
while the degradation follows the same trend, AMF shows
higher accuracy values for all the clusters. Once we have
analyzed the performance found on an attribute basis, we



show in Table 3 the result of the fairness-aware evaluation
metrics. We first analyze which of the ideal distributions is
better approximated by the initial methods and whether this
situation changes when we use a defended model. Analyz-
ingGCE corresponding to the initial methods, w\o defense,
we observe a consistent behavior in both datasets: the order
derived from the GCE values is the same for both mod-
els. However, the actual values are different for some cases,
meaning that the defendant variant diverges differently (ei-
ther more or less) from that distribution than the original
method. For instance, for item popularity in ML-1M, the uni-
form (f0) and least popular items (f1) obtain a lower abso-
luteGCE value for the defended model, whereas the behav-
ior is the other way around for user interactions in LastFM.

Studying whether the attack methods modify fairness per-
formance, we observe that some attack methods like BIM
help to increase the fairness on some distributions (or at-
tribute values) at the expense of others, such as f1 for user
gender and f4 for user interactions in ML-1M, at the expense
of f2 and f1 respectively. Finally, we explore whether any
attribute is more sensitive under a fairness perspective since
this may be a strong signal that a recommender is under at-
tack. Thus, we note that FGSM tends to obtain very similar
GCE values and MADR values in almost every scenario,
whereas MADr tends to change independently from the
perturbation. Because of this, we conclude that if we mea-
sure fairness based on ranking performance (i.e., according
to GCE or MADR), an FGSM attack might go unnoticed,
whereasMADr is more sensitive to any attack. On the other
hand, the rest of the attack strategies seem to change too
much the recommendations’ distribution, as it becomes evi-
dent in the GCE values of item popularity.

Conclusion and Future Work
We proposed multi-step adversarial perturbation (MSAP) on
the embeddings of MF recommenders. We studied the MSAP
impact on two datasets and two MF recommenders, i.e.,
BPR-MF and AMF. Experiments show that under a fixed
perturbation budget, the MSAP strategies are more effective
than the state-of-the-art single-step method on degrading ac-
curacy and beyond-accuracy recommendation quality. They
showed that MSAP (i) impaired BPR-MF so much so that
it becomes worse than a random recommender, (ii) reduced
AMF performance by up to 50%, and (iii) produced the same
performance drop as of FGSM with 5-time smaller pertur-
bation (ε). Furthermore, we verified that MSAP impacted the
fairness measurements considerably. In the future, we plan
to study how to robustify the recommender against MSAP
and design perturbations to alter its fairness.
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