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Abstract Venue recommendation approaches have become particularly useful nowa-
days due to the increasing number of users registered in Location-Based Social
Networks (LBSNs), applications where it is possible to share the venues someone
has visited and establish connections with other users in the system. Besides, the
venue recommendation problem has certain characteristics that differ from traditional
recommendation, and it can also benefit from other contextual aspects to not only
recommend independent venues, but complete routes or venue sequences of related
locations. Hence, in this paper we investigate the problem of route recommendation
under the perspective of generating a sequence of meaningful locations for the users,
by analyzing both their personal interests and the intrinsic relationships between the
venues. We divide this problem into three stages, proposing general solutions to each
case: first, we state a general methodology to derive user routes from LBSNs datasets
that can be applied in as many scenarios as possible; second, we define a reranking
framework that generate sequences of items from recommendation lists using different
techniques; and third, we propose an evaluation metric that captures both accuracy and
sequentiality at the same time. We report our experiments on several LBSNs datasets
and by means of different recommendation quality metrics and algorithms. As a result,
we have found that classical recommender systems are comparable to specifically tai-
lored algorithms for this task, although exploiting the temporal dimension, in general,
helps on improving the performance of these techniques; additionally, the proposed
reranking strategies show promising results in terms of finding a tradeoff between
relevance, sequentiality, and distance, essential dimensions in both venue and route
recommendation tasks.
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1 Introduction

Research on Point-of-Interest (POI) or venue recommendation – i.e., suggesting new
places for users to visit like hotels, restaurants, museums, etc. – has grown in recent
years, in part due to the increasing number of users in Location-Based Social Networks
(LBSNs) such as Foursquare, Gowalla, or Yelp. Because of this, many recommendation
techniques that exploit these information sources have been proposed, including the
works of (Li et al 2015; Lian et al 2014; Zhang et al 2014; Zhang and Chow 2013;
Gao et al 2013; Liu et al 2014). In general, all of these approaches incorporate
different contextual factors such as geographical, social, or temporal aspects (Liu
et al 2014, 2017); however, most of them are focused on recommending a set of
venues (presumably) interesting for the user, neglecting the sequential nature of the
POI recommendation problem. Furthermore, in some cases, the algorithms are tested
under time-agnostic evaluation conditions, ignoring the temporal behavior of the users,
which is critical and very informative in LBSNs.

At the same time, there are some works where route recommendation approaches
have been proposed in the area of LBSNs (also known as trip or travel recommendation)
– see the techniques presented by Fang et al (2014), Zhang et al (2015a) and Yu et al
(2016) –, considering additional user constraints such as visiting time, POI availability,
travel time, etc., while giving importance to the visit order of the venues. However, in
these works it is not common to find comparisons between their approaches and other
classic recommendation algorithms, nor the use of sequence-aware evaluation metrics
in their experiments. On the other hand, the route recommendation problem has been
addressed from adjacent, related areas such as Operational Research to recommend
trips (not only independent POIs), defining the so-called Tourist Trip Design Problem
(TTDP) (Gavalas et al 2014). However, most of these works are less focused at
modeling the user preferences, since they either apply basic filters to take into account
only some specific places, solve the problem for each user independently, or generate
a sequence of venues by simultaneously considering the transition patterns between
POIs, their popularity, and a given length (Gunawan et al 2016; Ayala et al 2017; Chen
et al 2016). In most cases, these works are not aware of the large body of research
available in the Recommender Systems (RS) and User Modeling communities.

Furthermore, the analysis of sequential information is not new in RS, since there
are many applications in which past user sessions (equivalent to the user routes in our
case) are determinant to make future recommendations, such as music recommenda-
tion or online purchases (Quadrana et al 2018). However, while in those domains it
is common to find datasets with user sessions, and the definition of these sessions is
straightforward, this is not the case when working in the venue or route recommenda-
tion domain, since public datasets typically consist of raw user-POI check-ins or GPS
coordinates, where, as mentioned before, few works address this task using a temporal
evaluation setting, and even less create or exploit routes so that consecutive check-ins
belong to the same route, once a set of constraints are satisfied. As a consequence,
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there is no unified approach on how to build routes from check-ins– besides the works
of Choudhury et al (2010) and Lim et al (2015) –, which we believe could be useful
to develop new methods and adapt recommendation algorithms using routes as user
sessions, as well as to evaluate them according to the ones observed in the test set.

Regarding the evaluation of POI recommenders, there are several aspects that need
further consideration from the research community. On the one hand, the evaluation
of RS at large is still an open problem, where the current understanding is that ranking
metrics (like Precision, Recall, or NDCG) are more established and better suited
than error metrics (Gunawardana and Shani 2015), even though they are prone to
biases (Bellogı́n et al 2017; Jannach et al 2015), but other dimensions such as novelty,
diversity, or freshness are equally, or more, important nowadays (Castells et al 2015;
Sánchez and Bellogı́n 2018b). Related problems such as new or cold-start users, trust
and confidence in the system, and privacy, remain unresolved even though they are
relevant to the community, and prevalent in POI recommendation (Gunawardana
and Shani 2015). On the other hand, temporal and sequential aspects have been
recently studied and introduced in the evaluation process, such as in the survey
presented by Campos et al (2014) or in recent approaches by Monti et al (2018)
and Sánchez and Bellogı́n (2018a), where the amount of agreement between the
provided recommendations and the sequence followed by the user (in test) has been
included as a key input to the evaluation metrics.

Therefore, based on the aforementioned problems still unsolved in venue and route
recommendation, in this paper we address the following research questions:

RQ1: How do classical collaborative filtering algorithms compare against ap-
proaches tailored to venue and route recommendation? These methods (col-
laborative filtering approaches and solutions to the venue and route recommenda-
tion problem) have been surveyed and categorized as belonging to different groups
in the past, but no explicit comparison between them has been made available,
nor using real-world datasets with a large number of users and interactions. In
principle, domain-focused algorithms from the TTDP literature would perform
better, but they are usually less personalized, whereas classical collaborative filter-
ing approaches understand the user better but fail at modeling the domain and its
inherent characteristics. To address this question, we empirically compare state-of-
the-art recommenders that belong to these two families on diverse datasets. We
explore various evaluation dimensions such as accuracy, novelty, and diversity,
and also include other popular and useful dimensions in the venue and route
recommendation tasks, such as the total distance of the suggested sequence and its
similarity in terms of categories.

RQ2: Is it possible to improve the results of these algorithms by reranking the
recommendations so as to create meaningful sequences? We explore rerank-
ing strategies and propose a generic framework that takes into account different
hypotheses to build sequences based on the recommendations produced by any
algorithm. This framework would allow to generate sequences aiming to maximize
different criteria relevant for route and venue recommender systems, while, at the
same time, it would take into account the personalization component provided by
the recommendation techniques.
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RQ3: How does the performance change when the user sequences in test are
compared against the generated recommendations in a formal, principled
way? We address this question by presenting an evaluation metric that captures the
similarity between the user sequences available in the test set and the recommen-
dation lists, by adapting the Longest Common Subsequence technique (Apostolico
1997) so that it can be integrated in any ranking-based metric. Once such a metric
is available, we can measure how effective the recommendation algorithms are in
terms of predicting the actual user sequences, together with the reranking strategies
developed for the previous research question.

Hence, the main contributions of this paper include:

– A framework to build venue sequences or routes from raw check-in data. In fact,
even though there are some steps in this framework tailored to the venue recom-
mendation domain, it is generic enough to be applied to any dataset containing
temporal or sequential information.

– The definition of and experimentation with item reranking strategies to generate
venue sequences from non-sequential recommenders.

– A new family of evaluation metrics where sequentiality has been incorporated into
classical evaluation metrics in order to favor those recommenders that return the
venues in the same order as the one followed by users in test. As before, these
novel sequence-aware metrics could be applied within any time-aware dataset, not
only those based on LBSNs.

The remainder of the paper is organized as follows: first, Section 2 summarizes
recent approaches for the standard problem of POI recommendation as well as the
problem of recommending personalized routes, presenting the specific characteristics
and main issues that these algorithms face at the moment. Then, Section 3 defines
our generic and configurable framework to generate routes (as sequences of venues)
from datasets formed by user interactions with different POIs or venues represented as
check-ins throughout time. Section 4 introduces our novel approach based on reranking
to create routes by reordering the top candidates suggested by any recommendation
algorithm using several strategies based on different hypotheses. Section 5 reformulates
standard evaluation metrics to include the order of the sequences in the analysis of the
recommendation quality. Finally, Sections 6 and 7 present in detail the methodology
and different datasets we have used in the experiments, as well as the recommenders
tested, together with a detailed study of their performance on different dimensions
(relevance, novelty, diversity, distance, and sequentiality). The paper ends in Section 8
with the main conclusions and possible future work directions, although additional
results and details not presented in the main text are included in an appendix at the
end of the paper.

2 State of the art

As in other traditional recommendation domains, venue or POI recommendation
approaches aim to maximize the number of relevant POIs they suggest to the users, to
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alleviate the problem of an ever-increasing number of venues which should fit the user
preferences. However, despite their commonalities, this type of recommendation has
some inherent properties that differ from the classic recommendation problem. Firstly,
the sparsity of the datasets used by POI recommendation algorithms are considerably
higher than those used in traditional recommendation; for example, the density of the
Movielens10M dataset is 1.34% whereas the global check-in dataset from Foursquare
is 0.0034% and a popular dataset from Gowalla is 0.0047% (Harper and Konstan 2016;
Yang et al 2016; Cho et al 2011). This might be attributed to a very large number of
items (POIs) in each city and the fact that users do not interact with most of them,
either because they are not close to the most visited areas of the user or because the
user is not linked to that city (she is a tourist). In fact, this problem in worldwide
datasets is even worse, since POIs from different cities are, by definition, different,
hence, the more cities are included in a dataset, the larger the number of items, in
contrast to other domains such as music or movies where an expansion of the dataset
could overlap with the items already included.

Secondly, when performing venue or POI recommendations, the geographical
influence is perhaps the most important feature to be taken into account, since it
is generally assumed that users tend to prefer venues that are close to each other
(Miller 2004); because of this, most current approaches propose different models
to exploit such feature. Nevertheless, there are other contextual factors that can be
used to improve the quality of recommendations, including social and temporal
information or even the weather (Liu et al 2017; Braunhofer et al 2014). Along with
the geographical influence, temporal information has proven to be truly useful as it
helps to discriminate better the user behavior at different granularity levels (seasonal
trends, different moments of the day, etc.). On the other hand, while geographical
and temporal information are normally available in datasets based on LBSNs (both
geographical locations and timestamps are included in popular datasets gathered, for
instance, from Foursquare and Gowalla), weather data is more difficult to capture. It
normally requires external sources of information, although it has been demonstrated
that it affects the behavior of tourists (Braunhofer et al 2014) and that some weather
factors have an impact on users’ check-in behavior (Trattner et al 2018). However, a
proper investigation about the difference between exploiting weather forecasts and
actual weather conditions in place is still missing in the literature (Trattner et al 2018).

Regarding the geographical component, there are several proposed approaches that
model this aspect; for example, Liu et al (2014) and Li et al (2015) use the influence
of neighbor POIs of a target POI to compute the score of a given user with a weighted
Matrix Factorization (MF) scheme and the Bayesian Personalized Ranking (BPR)
optimization algorithm (Rendle et al 2009), respectively. The USG model from Ye
et al (2011) estimates the probability of visiting the target POI using the history of
POIs already visited by the target user, which is then combined with a user-based and
a friend-based collaborative filtering algorithm. On the other hand, Zhang and Chow
(2013) and Zhang et al (2014) apply the Kernel Density Estimation (KDE) technique
to learn distributions to model the probability of a user visiting a venue, combined
with a friend-based collaborative-filtering model. In the first article, the authors use the
KDE technique to estimate a one dimensional distance probability distribution using
the distances between the target POI and the rest of the POIs visited by the user. In the
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second one, they use the same technique but over a two-dimensional space (latitude
and longitude of the venues visited by the user), and they compute the probability
of visiting the target POI based on its location, which is estimated according to the
check-in probability distribution for the user.

Nevertheless, the venues suggested by these types of recommenders are not usually
related to each other (beyond that they are all hypothetically interesting at the same
time for the target user). In general, these algorithms aim to suggest as many relevant
venues for the user as possible, but these venues are not expected to be visited one after
the other, as a route, which is in contrast with the solutions proposed to the Tourist
Trip Design Problem (TTDP). The TTDP extends the classic POI recommendation
problem so that instead of recommending independent POIs, it intends to recommend
a sequence of POIs to be visited in a specific order (Ayala et al 2017); however, as
mentioned in the previous section, these approaches are usually less personalized or
the user preferences are considered as a pre-filtering stage. Indeed, there are several
variants of the TTDP, one of the most important ones is the Orienteering Problem
(OP), a generalization of the Traveling Salesman Problem in which the goal is to
maximize the score of visiting a subset of nodes in a graph so that the travel cost does
not exceed a maximum bound (Gunawan et al 2016). Temporal information has also
been incorporated to this problem, under the OP with Time Windows which considers
that a node can be accessed only in a specific time window, or the Time Dependent
OP where the travel time between two nodes may vary, instead of assuming to have a
constant value (Gunawan et al 2016).

Finally, even though the problem of venue recommendation has been studied from
different perspectives (see the surveys collected by Liu et al (2017) and Zhao et al
(2018a), for example), there are few works devoted to the problem of personalized
route (as a sequence of venues) recommendation. Specifically, Ayala et al (2017)
proposed three approaches to solve the TTDP incorporating information of public
transport by adjusting the visit plans according to the real travel times. Chen et al
(2016) defined a probabilistic model combining ranking scores and transition probabil-
ities for their route recommender. Lim et al (2018) created PersTour, an algorithm that
combines the user interests, POI popularity, and trip constraints in order to recommend
trip itineraries. Laß et al (2017) proposed TourRec, a context-aware tour recommen-
dation application for tourists that first scores each POI for every user by combining
the venue popularity and the user preferences and it then finds a route by applying
a Dijkstra-based algorithm. Finally, Choudhury et al (2010) proposed a method to
generate a graph of POIs from photo streams extracted from Flickr, which is then
used to build travel itineraries automatically by exploiting the popularity of the POIs.
Regarding other approaches that specifically use LBSNs, Fang et al (2014) proposed a
two-step model that first infers the scores of the venues taking into account temporal
information and later tries to connect the POIs by optimizing the trip that satisfies
the user constraints. Zhang et al (2015a), on the other hand, presented a probabilistic
model that considers the user time budget, the time-window of the POIs, and the user
preferences, whereas Yu et al (2016) developed an app that uses collaborative filtering
approaches together with the popularity of the POIs and the frequency at which two
POIs are visited in sequence to suggest travel packages to the users accessing their
system via mobile phones.
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This limited number of proposals on the problem of route recommendation is
reasonable, since the task is more difficult than simply recommending independent
venues to a user. Even more if we consider that public datasets with enough information
are not always available, especially regarding explicit routes followed by the users. In
the next section we present a framework to alleviate this issue in typical scenarios, i.e.,
when using datasets with raw check-ins, which are the most popular ones and used in
the community nowadays.

3 A general framework to build routes from check-in datasets

In the route recommendation domain, users follow travel sequences or routes by
visiting POIs that are related with each other (for example, it is common to visit POIs
that are close to each other) (Miller 2004) and following a specific order, where the
starting and end points play an important role in the definition of such sequences.
However, raw, public data in check-in datasets are not presented in the form of routes
or itineraries, but as (somewhat) independent interactions between users and POIs,
where a user may check-in in the same venue more than once. Hence, restoring these
routes is critical if we aim to learn, recommend, and evaluate interesting and useful
travel sequences (routes) to the users.

With this goal in mind, we present here a framework that includes three steps
tailored to sequence-aware venue recommendation: preprocessing the data, building
the sequences, and filtering the sequences; in each step, we provide a description
and solutions to the inherent challenging issues, together with a list of the main
parameters that could be used when needed. For such a framework, we took inspiration
from works on session identification on web search and e-commerce (Jansen et al
2007; Spiliopoulou et al 2003), due to the commonalities between a user session
in those domains and touristic sequences or routes (also called trips, itineraries, or
trajectories in the literature). It should be noted, however, that existing datasets in
those domains such as YOOCHOOSE (Ben-Shimon et al 2015) and Tmall (Liu et al
2016), tend to provide explicit sessions, something, at the moment, not so common
in the POI recommendation domain, which emphasizes the importance of such a
framework to build travel sequences. We have also integrated and formalized ad-hoc
strategies developed explicitly in the venue and route recommendation domains, such
as the works of Choudhury et al (2010), Lim et al (2015) and Lim et al (2018), even
though they were proposed to work with data from Flickr (mostly pictures taken
at specific coordinates), not from standard LBSNs, without establishing a common
working methodology, hence, making it difficult to perform comparisons between
these different approaches.

Thus, by borrowing ideas from the aforementioned works, we now introduce a
generic framework to obtain meaningful routes or travel sequences from raw check-in
datasets; for a visual description of the different steps see Figure 1, together with
Table 1 where we summarize the most important parameters considered in each step.

Step 1: Preprocessing data:
– Description: remove users or items the system has very little information about

(e.g., cold-start) (Gunawardana and Shani 2015). At the same time, only a



8 Pablo Sánchez, Alejandro Bellogı́n

Fig. 1: Visual description of the framework presented in Section 3 to obtain sequences
from raw check-ins. Each number and color represent a different user in the system
and each shape depicts the type of the POI (museums, restaurants, hotels, etc.) a user
interacted with (not necessarily a different POI each time).

subset of the users or items might want to be considered (for instance, only
cultural venues – i.e., museums – or users identified as tourists) (Liu et al
2017). However, due to the characteristics of the domain, further analyses
could be performed on the data, analogous to those taken on e-commerce or
web search data, where noise in the interactions is also prevalent.

– Solution: identify and remove noisy check-ins, for example, too many check-
ins in the same instant, either intentionally or because of a bug in the application
that collects the data; also users could be classified as spam, e.g., due to explicit
attacks (Burke et al 2015) or because a not-human behavior – bot – is identified,
i.e., when users visit a high number of POIs in a short time.

– Parameters to consider: minimum number of check-ins provided by users and
items to be included in the processed data (pu and pi), alternatively, a pc-core
subset of the data might be computed by forcing that every user has interacted
with at least pc items and every item by at least pc users (Rendle et al 2010),
a concept borrowed from graph theory to describe that in a k-core (where
k = pc) every node has at least k connections; additionally, a reported strategy
to distinguish bots from valid users consists of removing those users that spent
less than pt

b seconds transitioning between venues a given number of times
(pi

b), see (Palumbo et al 2017) for more details.
– Challenging issues: correctly identifying noisy data without removing too

much valid or useful information corresponding to users and items; besides,
reproducibility of the reported results could be virtually impossible if these
preprocessing steps are not properly explained (Said and Bellogı́n 2015).

Step 2: Building sequences:
– Description: group those check-ins the user visited during the same route in a

sequence (as if it was an e-commerce or web session). In this domain, temporal
and geographical information are important signals that can be exploited to
identify different groups of check-ins.
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Table 1: Summary of the parameters used in the framework presented in Section 3.

Step Parameter Description

Preprocessing
data

pu, pi
Minimum number of check-ins a user (pu) or item (pi) must have to be
considered in the dataset

pc All users and items must interact with pc items and users respectively

pt
b, pi

b
Number of times (pi

b) a user has consumed consecutive items spending
less than a number of seconds (pt

b)

Building
sequences bt

Maximum temporal difference between two consecutive check-ins to be
considered in the same sequence

bg
Maximum distance between two consecutive check-ins to be considered
in the same sequence

Filtering
sequences fm, fM

Minimum ( fm) or maximum ( fM) length of each travel sequence to be
considered in the final dataset

fu, fi
Minimum number of sessions linked to each user ( fu) or item ( fi) to be
considered in the final dataset

– Solution: build different sequences of POIs ordering them by timestamp for
every user; for instance, if the corresponding venues are too far away from each
other or if the timespan is too long, they may belong to different routes, since
it is assumed that a user does not follow a given route indefinitely, as she has to
rest and sleep (Choudhury et al 2010; Lim et al 2015). We might also impose
other constraints on the sequences such as a maximum number of visited
venues, traveled length, or time spent in the route. In fact, these constraints
could be defined based on dynamic thresholds according to previous check-
ins. In any case, these alternatives are left for future work, due to the lack of
large-scale datasets with groundtruth information to test these hypotheses.

– Parameters to consider: maximum temporal difference between two consecu-
tive check-ins (bt) and maximum distance between two consecutive venues
(bg) to consider they belong to the same sequence.

– Challenging issues: building correct sequences, since they could be used to
train and evaluate the algorithms, hence, if these sequences are not realistic
(too long, too short, or the constraints imposed are too flexible or strict) the
whole recommendation process will be adulterated and invalid conclusions
might be reached.

Step 3: Filtering sequences:
– Description: identify and remove noisy or incomplete sequences, so that the

system could train with the most informative data regarding users and items.
– Solution: remove routes with very few check-ins and/or users having very few

sequences.
– Parameters to consider: minimum and maximum length (defined as the number

of check-ins) of each travel sequence ( fm and fM), minimum number of routes
linked to each user and item ( fu and fi).

– Challenging issues: as in the first step, discriminating which sequences are
noisy is critical, but care must be taken to not define too strict constraints,
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otherwise, we might produce data biased to specific types of users or items
(those with larger interactions, popular items, etc.) or very small datasets.

Once the raw check-in data has been processed according to this framework, we
would obtain tuples (u, i, t,sn

u), where sn
u denotes the n-th travel sequence associated

to user u, which would contain every item identified as belonging to the same route.
Since we still have the typical user-item tuples, we could still make use of classical
splitting, recommendation, and evaluation techniques, however, the unique advantage
of such a processed dataset would be to exploit the sequences in the rest of the stages.

First, regarding data splitting, and assuming we want a time-aware evaluation
strategy (Campos et al 2014) where the test set should occur after the training set – at
least in a user basis –, we have the following possibilities: find a global timestamp
where all the sessions after that timestamp are included in the test set, or decide a
number of sessions tn to be included in the test set and create the test split by taking the
last tn sessions of every user, the remaining information would determine the training
split. Additional constraints could be imposed on the length of the sessions in test (tl)
and the minimum number of sessions in training (ts) for a user to be included in the
test set, so as to have more control on the users being tested. In any case, it is important
to consider complete (not partial) sequences of the users in this process (Quadrana
et al 2018).

Then, at the recommendation stage, we could again use standard recommendation
approaches or ad-hoc techniques able to exploit the travel sequences. In both situations,
a decision should be made about the repetitions in the system since, contrary to classic
RS where the users consume an item only once, in this domain a user may check-in
in the same venue an unlimited number of times. Hence, at least the following three
possibilities open up: transform the data as in classic RS (only one interaction between
users and items remains in the data), aggregate the check-ins in an item basis, so that
the frequency could at least discriminate the most interesting venues for a user from
the rest, as done with implicit feedback data (Hu et al 2008), or keep the repeated
interactions. It should be noted that only the last strategy allows to maintain the
original temporal information available in the system.

Finally, the evaluation should be aware of the sequences followed by the user (in
the test set), especially when the recommendations provided are assumed to be visited
in the order returned by the algorithm, which is the main premise in this work. In
Section 5, we introduce a novel evaluation metric that captures exactly this aspect
when comparing the recommendations against the groundtruth; but before that, in
the next section we present a general recommendation approach that aims to produce
meaningful routes or travel sequences from sequence-agnostic algorithms.

4 A novel approach for sequential venue recommender systems based on
reranking

4.1 Item reranking in retrieval and recommendation

In the fields of Recommendation Systems and Information Retrieval, some models
frequently tend to recover very similar items in top-N rankings. To solve this prob-
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lem, researchers have proposed different techniques to improve the diversity of the
results (Santos et al 2015; Castells et al 2015). Among them, possibly the best known
and most popular approach is item reranking, a strategy whose objective is to improve
the quality of a list of recommended items by reordering them according to a topic
diversification model. Some articles related to this subject include the works of Ziegler
et al (2005), where the authors propose a diversification approach by minimizing the
intra-list similarity between items, the methods to collect diverse results by exploiting
past query reformulation of the user’s query from (Radlinski and Dumais 2006), and
the probabilistic xQuAD framework presented in (Santos et al 2010) where the authors
analyze the underlying aspects of a query q in the form of sub-queries in order to
obtain more diverse results.

At the same time, this issue has been adapted to and analyzed in the recommenda-
tion context; for instance, Vargas et al (2011) introduced the notion of user intent as a
translation of the query intents from retrieval, this idea was extended in (Wasilewski
and Hurley 2018), where the authors injected components based on user intents in
item similarity measures; from a different perspective, Kaminskas and Bridge (2017)
provided an experimental comparison where the same reranking framework is ex-
ploited but on different criteria: diversity, serendipity, novelty, and coverage, this
allows to analyze the cross-effects and correlations between these criteria on several
recommendation algorithms. More recently, these techniques have been used to reduce
the popularity bias (Abdollahpouri et al 2019), which is equivalent to promote novelty
on the results, as it was already explored in some of the previous works, although the
authors here focused on maintaining acceptable levels of recommendation accuracy.

4.2 Using item reranking to generate sequences of venues

In this paper, we aim to optimize different criteria, all of them related (based on our
hypotheses) to more realistic and useful routes or venue sequences from the user
perspective, such as shorter routes or popular transitions between venues (according to
the collaborative knowledge or to their attributes). With this goal in mind, we propose
to exploit item reranking techniques to create more meaningful sequences of items, in
particular, we propose to start from non-sequential recommender systems and generate
sequential recommendations, an approach, as far as we know, novel in the area of
venue and route recommendation.

Hence, based on the formulation from Kaminskas and Bridge (2017), we define
an objective function fob j(u, i,R) that is used in a greedy reranking process, where we
select the item i maximizing such function among the candidate items available at any
moment – where the original set of candidate items come from a recommendation
algorithm –; then, that item is removed from the candidate items and concatenated in
the recommendation list R to be returned. As stated by Kaminskas and Bridge (2017),
researchers typically formulate this objective function as a linear combination of the
item’s relevance and the complementary dimension that we aim to maximize (usually
diversity in the works surveyed in the previous section); in our case, such function
combines the output of a recommendation algorithm and the utility provided by the
sequence-aware reranker component, which are denoted as frec(u, i,R) (although since



12 Pablo Sánchez, Alejandro Bellogı́n

most recommendation algorithms typically ignore the previously ranked items, the
notation could be simplified to frec(u, i)) and fseq(u, i,R), respectively:

fob j(u, i,R) = λ · frec(u, i)+(1−λ ) · fseq(u, i,R) (1)

As we shall show later, since some of the proposed fseq functions are able to
provide complete recommendation sequences – instead of a pointwise score in an item-
basis –, we combine the scores provided by each function after doing a rank-based
normalization (Renda and Straccia 2003). This means that we use the scores provided
by the recommender and the reranker components to sort the items, then, each item is
assigned a score based on its position; the final, combined value of fob j(u, i,R) thus
depends on this normalized score and the weight λ .

We propose 8 different formulations for the sequence-aware reranker component
fseq (for simplicity, we shall refer to this function also as reranker since it is the main
discriminating piece in the whole reranking process), classified in the following 3
families (a summary of these approaches can be found in Table 2):

• Independent: the score only depends on the target user-item pair. The reranking
procedure has no memory, hence, it does not incorporate any sequential component
and the reranked items are independent of each other:

– Random: the items are reranked randomly: f rnd
seq (u, i,R) = rnd ∈ [0,1].

– Recommender-based: the items are reranked using a score r(u, i) produced
by a recommender for user u and item i (e.g., popularity, user neighborhood,
etc.): f rec

seq (u, i,R) = r(u, i). It is important to note that if the recommender
used to perform the reranking and the one to produce the candidate items are
different, the resulting list (its order) could be very different; in particular,
this reranker opens up the possibility of producing personalized sequences
based on a non-personalized algorithm like the popularity recommender, where
the output produced by such a reranking compared against the ones obtained
directly using either recommenders will be potentially very different.

• Dependent on the previous item: the score for item i depends only on the last
item included in list R; let us denote such last item as in−1, i.e., R = {i1, · · · , in−1}.
We define three rerankers that aim to maximize a particular dimension between
the target item i and previous item in−1; hence, these rerankers optimize different
criteria based on a 2-length sequence by exploiting the last item:

– Distance: reranker that selects the closest venue to the previous suggested one:
f dist
seq (u, i,R) = 1/dist(in−1, i).

– Feature-based Markov Chain: reranker that selects those venues whose
features maximize the transition probability with respect to target item i’s
features: f f eat

seq (u, i,R) = p(ia|ian−1), where ia denotes the attributes of item i.
– Item-based Markov Chain: reranker that selects the venue that is more fre-

quently visited after item in−1: f item
seq (u, i,R) = p(i|in−1).

• Dependent on the whole sequence: the score depends on the entire sequence being
generated, i.e., the current list R and the potential following item i. We define three
different algorithms:

– LCS-based: reranker that maximizes the Longest Common Subsequence
(an algorithm that will be defined in detail in the next section) between the
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Table 2: Summary of the rerankers defined in Section 4.2.

Family Name Abbr. Description

Independent Random f rnd
seq Items reranked randomly

Recommender-based f rec
seq

Items reranked according to the score provided
by a recommender

Dependent on the
previous item Distance f dist

seq
Next selected item is the closest one to the
previous item in the sequence

Feature-based
Markov Chain

f f eat
seq

Next selected item based on the category that
maximizes the transition probability with re-
spect to the category of previous item

Item-based
Markov Chain

f item
seq

Next item is selected by maximizing the tran-
sition probability with respect to previous item

Dependent on the
whole sequence LCS-based f lcs

seq

Items reranked by maximizing the LCS be-
tween the categories of the recommended
items and the user profile

Suffix tree f stree
seq

Items reranked by searching the potential se-
quence as a substring in the suffix tree built
based on the item categories in user profile

Oracle f oracle
seq

Reranked items following the same order as
in the test set

sequence of item features in the current recommended list R assuming item i
is recommended at the end (R+ i) and the item features built from the training
set of the user (ua) ordered by timestamp: f lcs

seq(u, i,R) = lcs((R+ i)a,ua).
– Suffix tree: reranker that searches in linear time whether a specific substring

exists or not in a given sequence, in this case, it searches whether the last
m−1 recommended items attached to each of the candidate items (denoted
as {(R+ i)}m, where {s}m stands for the last m items in a sequence s) can
be found in the suffix tree built from the item features of the user profile
ua: f stree

seq (u, i,R) = δST (ua)({(R+ i)a}m), where δST (ua)(s) denotes whether the
suffix tree ST contains the sequence s.

– Oracle: reranker whose output will be the sequence of POIs returned by the
recommender in the same order as they appear in the test set of the user, it is,
hence, the ideal reranker in terms of accuracy metrics and is used as an upper-
bound for the rest of the reranking strategies: f oracle

seq (u, i,R) = ordertest(u, i).
It should be noted, however, that this reranker is not realistic since it has
complete access to the test set. As a consequence, it produces an optimal
ranking (in terms of relevance metrics) based on the candidates returned by
the recommender; hence, f oracle

seq , like the other components, depends on the
original set of candidate items to be reranked, it does not simply returns the
test set of the user, but the best possible ranking using the candidate items.

Each reranker family is inspired by the three main problems related to data in
the form of check-ins (Chen et al 2016): standard POI recommendation (independent
rerankers), next-POI recommendation (dependent on the last item), and route recom-
mendation (dependent on the whole sequence). Our main hypothesis is that those
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rerankers that exploit more information about the sequence are the ones that should ob-
tain a higher performance or, in general, should generate more meaningful sequences.
This may translate either into better accuracy or by reducing the geographical distance
of the recommended routes, since these dimensions incorporate in a natural way the
user preferences and the geographical context inherent in the route recommendation
problem.

4.3 Solving ties and coverage issues of reranking strategies

As it might be obvious from the definitions of the reranker components presented in
the previous section, some scoring functions may return the same value for different
items; a simple example is those rerankers based on features, since every candidate
item with the same feature will obtain the same score. Because of that, we propose
to consider other characteristics of the items that could improve the user experience
when receiving a recommendation of a travel sequence: the item popularity (measured
as the number of check-ins received by that POI) and the distance between consecutive
venues. Hence, in the experiments, and in order to solve these ties in a deterministic
way, we order the subset of candidate items that share the same maximum score by a
combination of (inverse) distance and popularity and then by id, both in descending
order. It should be noted that, for most of the rerankers, however, sorting by distance
was counter-productive and we decided to solve ties based only on popularity; as a
consequence, the rerankers based on the whole sequence are the only ones that use
both criteria to solve ties.

Furthermore, another problem that may occur when instantiating these rerankers
when they are applied to real data is that they may have less coverage than the
original recommendation list, since some candidate items may obtain no score from
the reranker component. To address this issue, we propose the following strategies:

– Filling the rest of the reranked list with the items that could not be scored by the
reranker but keeping the order from the original list.

– Filling the rest of the reranked list with the items that could not be scored by
the reranker but ordering those items according to some criteria, for instance, by
popularity.

– Not filling the list in any way, as a result, some of the candidate items only receive
a score from the recommendation algorithm.

Depending on the selected strategy, the result after reranking could be very dif-
ferent, in particular when measuring metrics related to user or item coverage and
considering the last strategy, since in that case the reranked list could be (much)
shorter than the original recommendation list. Unless stated otherwise, in this work we
use the first strategy (keeping the original order) to make a fair comparison between
the baseline recommenders (without reranking) and those where a reranking strategy
(probably, with some coverage problems) has been applied. Therefore, we leave for
future work the analysis of the performance of the three strategies in the different
rerankers.
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Fig. 2: Comparison of 5 sequences of venues generated by different reranking strategies
as presented in Section 4.2. Those POIs colored in white form the training set of the
user; the orange POIs denote the candidate items to be reranked, that is, the items
suggested by a recommender that will be reordered by the presented rerankers. We also
show in yellow those POIs that appear in the test set but have not been recommended,
together with the starting POI of the test sequence in green. The arrows show the order
followed by the user, either based on the training set (solid line) or test set (dotted line).
For each item, we show the POI categories (as M, P, F, and R, denoting museums,
parks, food, and restaurants) and their ids (as subscripts of the categories), together
with their popularity using the marker size (the larger the POI, the more popular it is).

4.4 Further details about reranker components and toy example

In this section, we present specific aspects regarding some of the presented rerankers
that should be carefully considered. First, those rerankers based on probabilities ( f f eat

seq
and f item

seq ) need to incorporate a smoothing component to avoid zero probabilities (due
to sparsity issues of the data); we use the Jelineck-Mercer smoothing that linearly
balances the prior with the conditional probability: p(a|b) = α pml(a|b)+(1−α)p(a),
where pml denotes the maximum-likelihood probability.

Second, the difference between f lcs
seq and f stree

seq is subtle but important: whereas
f lcs
seq aims to find those items that produce the longest common subsequence when

added to the recommendation list, f stree
seq checks whether a given sequence is exactly

contained in another sequence and finds those items that allow to produce the matching
sequences.
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In order to help the reader to better understand the differences between the
rerankers, we present in Figure 2 a visual example of how some of them gener-
ate sequences from a set of candidate POIs. In this figure we observe the following
candidate items: M2, M4, R3, R6, P5, and P8. Note that F12, even though it is in the
test set, it was not recommended, so it is not a candidate item for any of the rerankers.
The f stree

seq reranker obtains the sequence M4→ P5→ R3 as it appears verbatim in the
training data (when only the item categories are considered, not the corresponding
items with those categories). This is because the suffix tree is built from the visited
POIs in the training set (white markers in the figure), thus, after a museum (category
M) the suffix tree continues this pattern either with another museum or with a park
(category P); in this case, since P5 is more popular than M2, the next POI ranked by
this reranker after M4 is P5. Once this strategy has generated the route M4→ P5, a
restaurant (category R, and hence, the POI R3) is the only possible candidate based
on the training data, since the user always visited a restaurant after a park. Then, this
reranker cannot continue the sequence because after a park the suffix tree only accepts
food venues, but there is no POI with this feature among the set of candidate items. In
contrast, the f lcs

seq reranker is able to add another POI following the Longest Common
Subsequence with P8, since it allows gaps when searching for the subsequence. The
other sequences obtained by the reranking approaches are more straightforward: they
either exploit the popularity (size) of the POIs ( f rec

seq approach using the Popularity
recommender as reranker) or the distance between them ( f dist

seq ). Finally, the oracle
reranker f oracle

seq returns the items in the test set in the order followed by the user, except
for F12 because it does not belong to the set of candidate items.

5 Sequential recommender systems evaluation

When analyzing the performance of recommenders systems, the community has usu-
ally focused on maximizing the number of relevant items the algorithm is able to
recommend. However, traditional IR metrics (typically used in the RS area) like Preci-
sion, Recall, MAP, or NDCG do not consider the order in which the user consumed the
items in the test set to measure the accuracy of the recommendations, they only focus
on the relevance of the items. While this may be sufficient for most recommendation
tasks, for others (such as route or playlist recommendation) the order in which items
are returned may be quite important to maximize the user satisfaction.

In fact, except for the work presented in (Chen et al 2016), where the authors
propose a metric based on F1 that takes into account the pairwise order between
POIs, and the evaluation done in (Menon et al 2017) that used the same metric based
on F1 on pairs of points, we have not found other approaches where the evaluation
metrics explicitly compare the order of the recommendations against the visited venues.
Nonetheless, this topic is gaining interest nowadays; in Sánchez and Bellogı́n (2018b)
we experimented with different temporal models to assess the freshness of the items
when evaluating the recommendations received by an algorithm in a general context,
whereas Monti et al (2018) proposed a framework for sequence-based recommender
systems, although the authors did not include any sequence-aware metric comparing
against the order observed in the test set. We find a similar situation in a recent
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challenge on playlist continuation, where no sequence-aware metrics were used even
though sequentiality was key for the solutions proposed (Zamani et al 2018) and
simple metrics based on the proportion of common elements in two top-N lists have
been applied in the past to 2-song and 3-song sequences (Maillet et al 2009); on the
other hand, in the context of trajectory mining we do find measures that compare
two trajectories with respect to all points in those trajectories while considering the
order (Jeung et al 2011).

One of those techniques that allows us to perform alignments between two se-
quences is the Longest Common Subsequence (LCS). The LCS algorithm is a tech-
nique used to find a subsequence of elements (not necessarily consecutive) whose
length is the maximum possible between two sequences (Apostolico 1997). This
algorithm is common in the fields of text editing and molecular sequence comparisons,
and we have used it for recommendation to define a user similarity approach aware of
sequential patterns in (Bellogı́n and Sánchez 2017a) which was extended in (Sánchez
and Bellogı́n 2019) to also work with content data; here we propose to use it for
evaluation instead, as we shall describe next.

Our proposal, hence, is to incorporate the LCS technique into well-known ranking
evaluation metrics such as Precision or NDCG (Gunawardana and Shani 2015). We
aim to measure how many items were recommended in the same order as the user
visited them, while considering, at the same time, the inherent evaluation dimensions
defined by each evaluation metric. As a consequence, the sequence-aware evaluation
metrics (based on LCS) will always achieve a lower or equal value than their non-
sequential counterparts, since the LCS component would serve as a penalization factor
every time a sequence is not followed in order.

More specifically, when adapting the LCS technique for evaluation, one of the
sequences to be compared will be the recommendation list (Ru) and the other the
actual visited venues that appear in the test set of the user (Tu, ordered by ascending
timestamp). We propose to perform a slight modification on how the LCS is computed
so that any classical ranking metric could be adapted in such a way that sequentiality is
integrated seamlessly in their computation. In particular, to compute the LCS between
two strings X and Y with lengths lx and ly, a dynamic programming approach is
normally used that fills a matrix C(lx+1) × (ly+1) following this equation:

C[i, j] =


0 if i = 0 or j = 0
C[i−1, j−1]+1 if i, j > 0 and xi = y j

max(C[i, j−1],C[i−1, j]) if i, j > 0 and xi 6= y j

(2)

where xi and y j represent the characters at indexes i and j (starting in 1) of strings X
and Y . Hence, the final value in C[lx, ly] will be the length of the LCS between the two
input strings.

Based on this definition, a straightforward modification would be to create a
new variable that will compute the value in a user basis for any evaluation metric.
Such a variable would need to be updated whenever there is a match (second line in
Equation 2), since that means that the subsequence found is now larger than before
and, hence, the sequentiality will be considered. However, this process would not
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Data: r(u), te(u),C
Result: value of a given metric m on the subsequence found by LCS

1 s← 0;
2 (i, j)← dim(C);
3 while i > 1 AND j > 1 do
4 xi← r(u)[i];
5 y j ← te(u)[ j];
6 if xi = y j then // There is a matching

7 s← s+m(r(u), te(u),xi, i);
8 i← i−1;
9 j← j−1;

10 else if C[i−1][ j]>C[i][ j−1] then
11 i← i−1;
12 else
13 j← j−1;
14 end
15 end
Algorithm 1: Using backtracking in Longest Common Subsequence to update
evaluation metrics based on sequentiality.

always work, since during the LCS computation there are matches that are not used
because other subsequences are actually longer1.

In any case, this observation helps us on finding where and how we should modify
the LCS algorithm to produce valid measurements. The correct place to integrate
the evaluation metric component into the LCS algorithm is whenever the longest
subsequence is being restored: at the end of the LCS algorithm, in the backtracking
step (shown in Algorithm 1) that uses the computed matrix C to find which elements
belong to the common subsequence.

When performing the backtracking step as in Algorithm 1, we assume any evalua-
tion metric can be divided in a user-item basis in such a way that m(r,u,xi, i) provides
the contribution that item xi presented in the recommendation list r at ranking position
i makes to user u as evidenced in her test set. In the following, we provide these user-
item components for some of the most well-known evaluation metrics: mP = 1/|r| for
Precision, mR = 1/|u| for Recall, mNDCG = (2rel(xi,u)− 1)/(log(i+1)) for NDCG,
mARHR = 1/i for ARHR (Gunawardana and Shani 2015). Note that, in the case of the
metrics that need to be normalized by an ideal metric value (like NDCG), it would
be enough to call the same procedure but with the test set of the user instead of the
recommendation list. From now on, to denote the sequential variation of a specific
metric M (provided a user-item component of such metric mM is available) we shall
use Ms.

In order to illustrate the differences between classical ranking metrics and the
proposed adaptation (based on LCS) for sequence-aware metrics, we show in Figure 3
an example of how these metrics behave when using a user-item component based
on Precision for two recommendation lists r1

u and r2
u. Here we observe that Ps is

equivalent to P only when the relevant items are returned in the same order – that is,

1 Consider, for example, a symbol that appears at the beginning of the first sequence and at the end of the
second one (such as A in ABCDE and BDFA); even if this is a valid matching, the difference between the
position of the symbol in both subsequences makes it to not be part of the longest common subsequence.
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Fig. 3: Comparison between two lists that return the same number of relevant items
(3, marked in green), but in one case the list does not present all the items in the
correct order (r1

u), hence LCS(Tu,r1
u) = 2, whereas in the other case, the order is the

same and the value of LCS is maximum: LCS(Tu,r2
u) = 3. As a consequence, Ps

(r2
u) = P(r2

u) = 3/5, whereas Ps (r1
u) = 2/5 and P(r1

u) = 3/5.

for list r2
u – and produces a lower value in other case, as explained before. Note that

by using the LCS algorithm we admit sequences of symbols that are not necessarily
consecutive. This differs from the problem of finding the Longest Common Substring,
whose algorithm can also be used to compare sequences (Gusfield 1997); however we
believe such technique is less suitable for the task we address here because of its lack
of flexibility, since a recommended route, despite having gaps with respect to the test
set, should also be considered interesting for the user.

Finally, it is important to emphasize that this evaluation metric would not be, in
any case, biased towards the previously defined LCS-based reranking approach or any
other sequence-aware recommendation methods. It is true that it is designed to produce
higher values if the recommended list follows the order in the test set, but besides that,
it is agnostic as to how such ranking was generated. This is because of the following
reasons: a) first, the metric checks the test of the user against the recommendation
list, whereas a reranking strategy or a recommendation algorithm would compare a
recommendation list against the user historical preferences; b) second, there is no
learning process, in contrast to situations where an optimization method is used with a
metric and the same metric is later used in the evaluation; c) and, third, the definition of
what a sequence is, is universal, the LCS algorithm provides us one possible technique
to (more or less) efficiently obtain the sequences, but the same result could be obtained
if LCS is not used in the evaluation (or in the reranking strategy) but another method
to obtain sequences (such as brute force) is used instead.
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Table 3: Statistics of the three unprocessed datasets used in the experiments: users (U),
items (I), and number of check-ins (Cr) and unique check-ins (Cr).

Dataset |U| |I| |Cr| |Cr|

Global-scale check-in dataset 266,909 3,680,126 33,263,633 15,074,342
Semantic trails 399,292 1,887,799 11,910,007 8,518,529

Trip builder (photos) 25,052 443,394 443,394 443,394
Trip builder (clusters/POIs) 22,611 1,349 133,089 133,089

6 Experimental setup

6.1 Datasets

For the experiments, we used three different datasets built from two data sources:
the Global-scale check-in dataset from Yang et al (2016), the Semantic trails dataset
by Monti et al (2018), and Trip builder used in the work of Brilhante et al (2013);
the first two exploit the Foursquare LBSN, whereas the last one uses photos from
Flickr to build the sequences (called trajectories in that work) followed by the users.
Table 3 shows the main statistics of these datasets as provided by their authors; in
the next sections we describe in more detail these datasets and how we used them
in our experiments. One key process we performed in these datasets was to only
select those interactions related to a particular city, instead of experimenting with
all the information as a whole. The rationale for this is that, in many works on POI
recommendation, authors tested their experiments on datasets built with check-ins
belonging to one specific city (He et al 2017; Li et al 2017; Liu et al 2014) because it is
a realistic, natural partition of the data; besides, items in this domain are by definition
unique in each city and, hence, the benefit of combining information from many other
venues of other cities (or even countries) is reduced.

6.1.1 Global-scale check-in dataset

This dataset covers more than 33M check-ins on 415 cities in 77 countries covering 18
months of user interactions with Foursquare captured through Twitter; it is available
in the author’s website2. In this dataset, most of the check-ins come from Turkey and
Indonesia, however, to better compare against the state-of-the-art, we decided to select
the cities of New York and Tokyo, as they are the most commonly used in the literature
and still appeared in the top-10 most checked-in cities in this dataset.

6.1.2 Semantic trails

In this dataset, the authors integrated different data sources to provide semantically
annotated user trails. They did this by starting from the dataset described in the previous
section, grouping the check-ins into sequences of activities, and then enriching it with

2 https://sites.google.com/site/yangdingqi/home/foursquare-dataset

https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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semantic information (mainly mapping the Foursquare categories to the Schema.org
terms and identifying the cities and countries to their corresponding Wikidata entities).

As described in (Monti et al 2018), the authors applied three filters to remove
problematic check-ins: multiple check-ins in a row in the same POI by a user are
ignored and only the last one is maintained, those check-ins performed by a user in
less than one minute were discarded, and those check-ins that required a speed greater
than Mach 1 to move from one venue to the next one were also removed. Then, the
remaining check-ins were grouped in trails assuming that two check-ins that are not
distant in time more than eight hours belong to the same trail.

It is interesting to note that the authors provide two versions of the dataset, the
first one (STD 2013) is mostly based on the Global-scale check-in dataset described
before, whereas the second one (STD 2018) is an expanded and updated version of the
first one, which is the one we use in this paper and can be obtained here3. In particular,
among all the cities available in the STD 2018 dataset, we decided to select the second
one with the highest number of interactions, as the city with more check-ins was
Tokyo, already selected in the other dataset. Thus, the selected city was Petaling Jaya
(with Wikidata code Q864965). To obtain comparable information with the other cities
used in our experiments, we used the Foursquare API to obtain the categories and the
coordinates of its POIs, since these are not provided by the authors.

6.1.3 Trip builder

This dataset, as the previous one, also combines two data sources (Flickr and Wikipedia)
and is the only one that does not use Foursquare as the main source for the user in-
teractions. The authors performed the following process for three Italian cities: the
Wikipedia pages corresponding to the geographical region of each city were down-
loaded – it was assumed that each of these pages corresponds to a POI –, these POIs
were clustered according to their geographical coordinates – since the authors assumed
that a user does not have to take a photo of one POI if she takes a photo of a very
close POI –, then, user trajectories were obtained by using Flickr and retrieving the
metadata of photos taken in the given cities, finally a matching between the photos
and the POIs was performed. The dataset is available in this repository4.

In our experiments, we selected the largest city among the three provided: Rome.
We considered the clusters as the items in the dataset, hence, mapping real sets of
venues with an item from the point of view of the recommenders and the evaluation. As
it can be observed in Table 3, by doing this process, the number of items in the system
is greatly reduced, which is an important aspect to consider when performing the
experiments, since the characteristics of this dataset is very different to the other ones;
in fact, probably these items reflect more faithfully interesting items from a tourist
perspective than those included in the other datasets, since they are mostly limited to
neighborhoods, museums, and religious buildings. Finally, a manual mapping had to be
performed between the categories provided by the authors (taken from the Wikipedia
page and, thus, very specific) and a subset of the first level categories from Foursquare;
this mapping is included in our code repository.

3 https://figshare.com/articles/Semantic_Trails_Datasets/7429076
4 https://github.com/igobrilhante/TripBuilder

https://figshare.com/articles/Semantic_Trails_Datasets/7429076
https://github.com/igobrilhante/TripBuilder


22 Pablo Sánchez, Alejandro Bellogı́n

Table 4: Statistics of the four cities used in the experiments. We show the number of
users, number of venues, number of check-ins, number of unique check-ins (without
repetitions), data density computed according to whether repetitions are considered or
not, and number of routes (sessions) found by our framework. We present these values
for the entire city, together with the corresponding training and test splits.

City Split |U| |V| |Cr| |Cr| |Cr |
|U|·|V|%

|Cr |
|U|·|V|% |S|

NYC
Complete 11,590 20,842 235,607 148,774 0.097 0.062 170,397
Training 11,590 20,813 234,235 147,629 0.097 0.061 170,144
Test 253 815 1,372 1,322 0.665 0.641 253

TOK
Complete 9,707 44,458 511,800 286,418 0.119 0.066 308,404
Training 9,707 44,424 509,071 284,402 0.118 0.066 307,915
Test 489 1,473 2,729 2,595 0.379 0.360 489

ROM
Complete 7,954 394 61,330 49,608 1.957 1.583 27,252
Training 7,954 394 58,201 47,358 1.857 1.511 26,778
Test 474 229 3,129 2,723 2.883 2.509 474

PJ
Complete 14,858 18,385 149,904 119,760 0.055 0.044 79,418
Training 14,858 18,302 148,689 118,831 0.055 0.044 79,165
Test 253 772 1,215 1,186 0.622 0.607 253

6.1.4 Datasets processing

The three datasets described earlier have been processed to obtain 4 cities where the
recommenders will be trained and evaluated: New York and Tokyo from the Global-
scale check-in dataset, Petaling Jaya from Semantic trails, and Rome from Trip builder.
We selected (on purpose) different cities from each dataset so that we could show how
the recommendation algorithms work on different types of cities with different inherent
characteristics. Moreover, selecting the same city from all the datasets would raise
additional problems, namely: not all the datasets contain the same information and, in
particular, the same cities, so in order to perform such a comparison we would need
to restrict ourselves to the smallest dataset and select the cities available in it, which
might be under-represented in the other datasets; two of the presented data sources
take the check-ins from the same LBSN (i.e., Foursquare), hence, by using the same
city we would probably obtain the same or very similar results at the end; another issue
that we believe is very important is that, as it is standard in the literature, researchers
typically use more than one city, usually those well-known or more touristic, such as
New York or Tokyo, a criteria we also follow here (as described before).

The steps developed to transform the check-ins included in these datasets into
routes or venue sequences match those presented in Section 3, and even though we
aimed to process all of them in the same way, due to their inherent characteristics
some minor changes had to be done either in the value of the parameters or in the
followed process. Thus, as the first step (preprocessing data), we performed a 2-core
in New York and Tokyo (pc = 2); we also identified and removed those users who
made consecutive check-ins in 60 seconds or less more than 3 times for all the cities
(pt

b = 60, pi
b = 3). The second step (building routes) was only performed on the first



Reranking strategies for route recommender systems 23

dataset, since we assume the trails and trajectories included in the other datasets
are valid; hence, in New York and Tokyo we build the venue sequences so that the
difference between consecutive POIs is less than 8 hours (bt = 8,bg = ∞). Finally,
regarding the third step (filtering sequences), we did not impose any constraint on this
(hence, fm = 0, fM = ∞, fu = 0, fi = 0), although we used some of these constraints
when creating the training-test splits, as explained in the next section.

6.2 Evaluation methodology

As discussed at the end of Section 3, there are different possibilities to split sequential
data. We decided to build the test set with the last route identified for each user in
order to have more control and experiment with a large number of users (tn = 1).
Additionally, we impose the following constraints to the users so the recommenders
are tested on enough training and test data: only users with a minimum of 3 routes and
at least 4 venues in the last route are included in the test set, all the other information
is kept in the training split. The statistics of the four cities with their corresponding
training and test sets once this methodology is applied can be seen in Table 4. Note that
due to these constraints, the number of users and items in the resulting test sets is much
lower than in the complete or training sets, and, hence, the density of these subsets is
remarkably higher; however, these values are only included for completeness, since
no recommendation algorithm is trained using the test data and, hence, the density of
the test set has no effect on this aspect.

Some recommenders need item attributes such as the categories and geographical
coordinates of the venues. For the cities with a Foursquare id (New York, Tokyo,
Petaling Jaya) we take this information from Foursquare, using the categories of level
1 unless stated otherwise; for Rome, we use the information available in the dataset
and a manual mapping for the categories to obtain a comparable number of categories
across the four cities, as described in the previous section.

Finally, due to the intrinsic nature of the user-item interactions in this domain, we
may have repetitions in both splits (users who have visited the same POI more than
once, so that they may appear both in training and test set and also more than once in
the training or test splits). As some recommenders may not deal well (or their behavior
is not defined) when this happens, we create two different training sets:

– Aggregated: we aggregate all the check-ins where a user interacted with the same
venue by assigning the number of times a user checked-in in the POI as the
preference value and the first timestamp of the repetitions as its timestamp.

– Not aggregated: we leave the training set with the repetitions.

As we shall show in Section 6.4, depending on the assumptions of the recommen-
dation algorithms, we use one or the other training set. We do not change the test set
because it does not affect the recommenders but their evaluations, and the proposed
metric (see Section 5) is able to deal with repeated items.

Unless stated otherwise, the results are shown using the Train Items methodol-
ogy (Said and Bellogı́n 2014), that is, the candidate POIs are the ones appearing
in the training set that the target user has not visited before. More specifically, all



24 Pablo Sánchez, Alejandro Bellogı́n

recommenders rank all the possible items, although they have been configured to store
the top-100 items for each user; this parameter has no effect in the reported results
since we always report lower cutoffs. Furthermore, since some recommenders need an
starting POI to build the sequence, in order to make a fair comparison across all the
recommenders, the first POI in the test sequence of each user is also provided to every
recommendation algorithm, as it is often done in the literature (Kumar et al 2017;
Monti et al 2018; Zhao et al 2018b).

6.3 Evaluation metrics

To analyze the performance of the recommenders, we use metrics oriented at measuring
different dimensions like accuracy (relevance), novelty, and diversity; additionally,
since we deal with potentially real recommendations, we want to measure the distance
of the obtained route, to assess how realistic such recommendations might be5. For
relevance, we show the results using Precision (P) and NDCG, together with their
sequential counterparts: Ps and NDCGs, according to their definitions in Section 5.
On the other hand, for novelty and diversity, we show the results in terms of EPC
(where it assumes that the higher the popularity of the POI, the lower its novelty)
and Gini (which accounts for how evenly distributed the recommended items are,
so that the higher the obtained value, the higher the diversity) (Vargas and Castells
2014). We also report the distance (denoted by Dist) in Km as the sum of the distance
between each venue in the recommendation list and the next one. Except for the
distance metric, higher values indicate better results (i.e., recommendations are more
relevant/novel/diverse).

Furthermore, because of the high sparsity in this domain and the difficulty to match
the exact same venue the user visited in the test set, some authors report accuracy
metrics but at the category level instead of the item level, this means that a metric
like precision, for example, would measure how many categories that appear in the
test set are recommended by the algorithm, or other variations, such as measuring the
likelihood that the recommended categories would be produced at random (perplexity),
or measuring the interest of a user in a recommended tour based on the time she spends
on venues that belong to those categories (He et al 2017; Brilhante et al 2013; Palumbo
et al 2017; Lim et al 2015). According to this, we define the Test Feature Precision
(TFP) that takes into account the features of the POIs that we retrieved correctly but
each category is only taken into account based on the number of categories of each
type available in the test set, so, for instance, if the recommended list consists of
3 museums and in the test set there are only 2, only 2 of them will be used in the
computation of the metric.

It is worth noting that, by capping the maximum number of times each feature
can be considered in the whole list (according to the frequency such feature appears

5 While it is true that a lower distance between recommended items is not necessarily requested by
the user, since it might depend on the actual context of the user (such as the city type or the possibility
of driving a car), in the POI recommendation literature it is common to exploit closeness between points
as a source of information for the algorithms (Miller 2004), even though very few works have explicitly
presented experimental results based on this dimension. However, one of our main hypotheses is that the
geographical dimension is critical and should be minimized when recommending realistic routes.
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Table 5: Summary of the evaluation metrics used in the experiments, including their
abbreviation and description.

Metric Abbr. Description

Precision P Counts how many items from the test set are recommended
Normalized Discounted
Cumulative Gain

NDCG Compares the recommendation list against an ideal ranking where the items in the test set
are ranked first

Test Feature Precision TFP Counts how many categories from the items in the test set are recommended, with some
restrictions; see Section 6.3

Sequential Precision Ps Counts how many items from the test set are recommended taking into account the order
of those items as they appear in the test set

Sequential NDCG NDCGs Compares the recommendation list against an ideal ranking where the items in the test set
are ranked according to the order followed by the user in the test set

Sequential Feature
Precision

FPs An extension of Test Feature Precision where the order of the items as they appear in the
test set is considered

Distance Dist Measures the pairwise distance between each item in the recommended list and the next
one

Gini Gini Measures the diversity of the recommended list by considering how uniform the distribution
of recommended items is; see (Vargas and Castells 2014)

Expected Popularity
Complement

EPC Measures the novelty of the recommended items by assuming that the larger the popularity
of an item, the lower its novelty; see (Vargas and Castells 2014)

in the test set), this metric could also measure to some extent the diversity on the
recommended features, since once it saturates the metric value (because the maximum
number of items with a specific feature has been reached), then recommending such
feature will not improve any more the value of the metric, which is similar to how
some diversity metrics are defined (Castells et al 2015), although considering a more
extreme user behavior: one where the user abandons the ranking list once too many
items with a specific feature have been examined.

Additionally, and based on the sequential metrics defined in Section 5, we include
in our evaluation a category-based sequential metric that considers the correct order
of the features according to the sequence followed by the user in the test set; it is
computed as Ps but matching categories instead of POIs, we call it Sequential Feature
Precision or FPs. We note that this is one of the few works where both types of metrics
(either matching by category or by item) are shown and reported together; moreover,
this is the first time that sequentiality has been incorporated into the category-based
precision.

We include in Table 5 a summary of the evaluation metrics used in the experiments,
together with a brief description and their abbreviation.

6.4 Recommenders

We experiment with 27 algorithms, covering different types and information sources,
because of this, we decided to group them in the following 6 families: Basic, Classic,
Temporal, Geo, Tour, and Skylines. We include standard methods in the Recommender
Systems literature and others more oriented to the contexts of venue and route rec-
ommendation. However, we should mention that we were not able to apply some
of the most typical solutions to the TTDP since they need additional data that is
not easily available in public datasets, such as the price and schedule of the venues,
although we plan to collect this information and extend the comparison in the future.
In any case, we aimed at providing an exhaustive comparison of techniques using
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Table 6: Parameters of evaluated recommenders; the values that are not between the
symbols {} are considered fixed and not tuned. Third column indicates the abbreviation
used in tables and figures. Fourth column shows whether the recommender uses an
aggregated training set (Y) or one where repetitions are allowed (N).

Family Recommender Abbr. Agg? Parameters

Basic

Random Rnd Y None
Popularity Pop Y None
Training Train Y None
Reverse training Train Y None

Classic

Content-based CBUI Y Wgt = Yes
Content-collaborative filtering CBCF Y k = {40,60,80,100,120}, Wgt = {Yes, No}
User-based nearest neighbor UB Y k = {40,60,80,100,120}, sim = {Jac, Cos }
Item-based nearest neighbor IB Y k = {40,60,80,100,120}, sim = {Jac, Cos }
MF using Alternate Least Squares HKV Y k = {10,50,100}, α = {0.1,1}, λ = {0.1,1}
MF with Bayesian Personalized Ranking BPR Y k = {10,50,100}, λu = λi = {0.001,0.0025,0.005,0.01,0.1},

λ0 = {0,0.5,1}, λ j = λu/10, iter = 50

Temporal

Temporal Popularity TPop Y None
User-based time decay TD Y k = {40,60,80,100,120}, sim = {Jac, Cos }, λ = {0.05,0.1}
Backward-Forward BF N k = {40,60,80,100,120}, sim = {Jac, Cos }, Wgt = {T, F },

Nrm = {Def, Std, Rks }, L−m = L+
m = {5,10}

Markov Chain MC N k = {2,5,10,20}, λ = {0.1,0.2}
Factorized Personalized Markov Chain FPMC N k = {2,5,10,20}, λ = {0.1,0.2}
Factorized Sequences with Item Similarities Fossil N k = {2,5,10,20}, λ = {0.1,0.2}, L = {1,2,3}
Convolutional Neural Network Caser N T = {1,2}, d = {10,50}, nh = {4,16}, L = 2, n iters = 30,

l rate = 0.003, nv = 4, drops = 0.5, ac convs = relu,
ac fcs = relu, batch size = 512, l2 = 10−6

Geo

Average Distance AvgDis Y None
Kernel Density Estimation KDE Y None
Hybrid: Pop + UB + AvgDis PGN Y k = {40,60,80,100,120}, sim = {Jac, Cos }
Instance-Region Neighborhood MF IRenMF Y k = {50,100}, α = {0.4,0.6}, λ3 = {0.1,1}, Clusters = {50, 5},

λ1 = λ2 = 0.015, GeoNN = 10, Factors = 100, α = 10
Ranking Geographical Factorization RankGeoFM Y k = {50,100}, α = {0.1,0.2}, n = {10,50,100,200}, C = 1,

ε = 0.3, iter = 120

Tour
Closest by distance DistNN Y None
Feature Markov Chain FeatMC N Smooth = {None, JM (0.1), JM (0.5), JM (0.9)}
Item Markov Chain ItemMC N Smooth = {None, JM (0.1), JM (0.5), JM (0.9) }

Skylines TestOrder TestOrder N None
TestOrder Reverse TestOrder N None

different data – to avoid biases in the results – and provide a wide perspective of how
each of these techniques may perform in the real world, by considering a realistic
evaluation methodology, including both the metrics and how the training-test splits
was performed.

Below, we briefly introduce each recommendation algorithm used, including its
main reference paper; we also include details about where its implementation is taken
from (either our own, or using public libraries, mainly RankSys6 and MyMediaLite7).
All the code for these experiments is available in the following Bitbucket repository:
PabloSanchezP/SeReRSys.

• Basic: simple baselines, useful to test biases on the recommendations:
– Rnd: a random recommender; RankSys implementation.
– Pop: recommender that returns the items ordered by descending popularity;

RankSys implementation.
– Train: recommender that suggests the items already interacted by the user in

the training set, ordered by frequency and, in case of ties, by popularity; our
own implementation.

6 Java 8 Recommender Systems framework, available at https://github.com/RankSys/RankSys
and described in (Vargas 2015).

7 MyMediaLite Recommender System Library, available at http://www.mymedialite.net and de-
scribed in (Gantner et al 2011).

https://bitbucket.org/PabloSanchezP/SeReRSys
https://github.com/RankSys/RankSys
http://www.mymedialite.net
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– Train: same as the Train recommender but using an inverse ordering of the
items; our own implementation.

• Classic: family of classic recommenders using a collaborative filtering or a content-
based component but, in any case, time and geographical agnostic:

– CBUI: a pure content-based recommender using a Vector Space Model where
users are represented as an aggregation of the features corresponding to the
items she visited, and every item as a combination of those users that interacted
with each item (de Gemmis et al 2015). For the users, we allow each item
feature to have a weight proportional to the number of times the user visited
that item (parameter Wgt); our own implementation.

– CBCF: a hybrid recommender system where a user-based nearest neighbor
formulation is used with content-based similarities between users, where the
users are represented as in CBUI. Based on the collaborative-via-content
approach (Balabanovic and Shoham 1997); our own implementation.

– UB: a user-based nearest neighbor algorithm with k neighbors (k-nn) using
collaborative similarities between users (Ning et al 2015), we follow a variation
that performs better in terms of ranking metrics because it does not normalize
the score by the sum of similarities (Aiolli 2013); RankSys implementation.

– IB: an item-based nearest neighbor algorithm with k neighbors (k-nn) using
collaborative similarities between items (Ning et al 2015), without normalizing
by the sum of similarities; RankSys implementation.

– HKV: a matrix factorization approach as described in (Hu et al 2008) that uses
Alternate Least Squares in the minimization formula; RankSys implementa-
tion.

– BPR: the Bayesian Personalized Ranking from (Rendle et al 2009) using a
matrix factorization technique; MyMediaLite implementation.

• Temporal: recommenders exploiting the temporal or sequential information of the
items (using the item timestamps or its ordering in the user profile):

– TPop: similar to the Pop recommender, but the item popularity computation
also involves penalizing old check-ins by applying the min-max normalization
in the timestamps of the training set. It is based on the freshness models
presented in (Sánchez and Bellogı́n 2018b); our own implementation.

– TD: a modified version of UB with an exponential time decay (controlled
by parameter λ ), so that the neighbors’ scores are more penalized if the
timestamp when the neighbor interacted with the target item is much older
than the last interaction of the target user. We use a variation from the one
defined in (Campos et al 2014) where we do not normalize by the sum of
similarities; our own implementation.

– BF: a sequence-aware approach presented in (Bellogı́n and Sánchez 2017b)
that extends the UB recommender so that each neighbor selects the candidate
items according to the last common interaction with respect to the target user,
the different lists are combined using rank fusion techniques (parameters Wgt
and Nrm); our own implementation.
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– MC: first order Factorized Markov Chain recommender algorithm (Rendle
et al 2010); implementation provided by other authors8.

– FPMC: Factorized Personalized Markov Chain recommender, that is, a com-
bination of Markov Chain and Matrix Factorization techniques (Rendle et al
2010); same implementation as MC.

– Fossil: Factorized Sequential Prediction with Item Similarity Models from (He
and McAuley 2016), this model combines Factorized Item Similarity Models
and high-order Markov Chains; same implementation as MC.

– Caser: Convolutional Neural Network proposed in (Tang and Wang 2018)
that combines the sequential patterns inferred from the data and the general
preferences of the users to make recommendations; implementation provided
by the authors9.

• Geo: family of venue recommenders that exploit the geographical influence com-
ponent of the POIs:

– AvgDis: algorithm that suggests the closest POIs to the user’s average location,
the average is computed by calculating the midpoint of the coordinates of the
visited POIs in the user profile; our own implementation.

– KDE: the geographical influence component from (Zhang et al 2014), it models
a probability distribution over a two-dimensional space (latitude and longitude)
using Kernel Density Estimation for every user; our own implementation.

– PGN: a hybrid POI recommendation algorithm that combines the UB, Pop,
and AvgDis recommenders (giving the three recommenders the same weight);
our own implementation.

– IRenMF: weighted Matrix Factorization method proposed in (Liu et al 2014)
that also exploits the geographical influence between neighbor venues; imple-
mentation provided by other authors10.

– RankGeoFM: Matrix Factorization method using BPR as proposed in (Li et al
2015), this method exploits the geographical influence between neighbor POIs,
but it also maintains an additional latent matrix to model the user geographical
preferences; our own implementation based on the one available in LibRec11.

• Tour: recommenders that explicitly aim to recommend a route or a sequence of
POIs optimizing different criteria:

– DistNN: it selects the next item in the sequence by minimizing the distance
between the current venue and the next one; our own implementation.

– FeatMC: it selects the next item in the sequence by maximizing the transition
probability between the features of the current and candidate POIs, if there are

8 The authors of (He and McAuley 2016) provide implementation of some related algorithms, they
are all available at https://drive.google.com/file/d/0B9Ck8jw-TZUEeEhSWXU2WWloc0k/view,
although we adapted such code to generate a ranking from any recommendation algorithm, since the original
code only used AUC as evaluation metric and did not produce rankings.

9 We use the Python implementation available here: https://github.com/graytowne/caser_
pytorch.

10 The authors of (Liu et al 2014) provide an implementation of this technique that is used in their
experimental comparison, available at http://spatialkeyword.sce.ntu.edu.sg/eval-vldb17/ .

11 A Leading Java Library for Recommender Systems, available at https://www.librec.net and
described in (Guo et al 2015).

https://drive.google.com/file/d/0B9Ck8jw-TZUEeEhSWXU2WWloc0k/view
https://github.com/graytowne/caser_pytorch
https://github.com/graytowne/caser_pytorch
http://spatialkeyword.sce.ntu.edu.sg/eval-vldb17/
https://www.librec.net
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Table 7: Optimal parameters found in each city, see Table 6 for the explored range of
the parameters.

Rec NYC TOK ROM PJ
CBCF: k, Wgt 100, Yes 120, No 120, No 120, No
UB: k, sim 100, Jac 120, Cos 120, Jac 120, Jac
IB: k, sim 60, Jac 120, Jac 100, Jac 100, Jac
HKV: k, α , λ 50, 0.1, 1 10, 0.1, 0.1 10, 0.1, 1 10, 1, 1
BPR: k, λu = λi, λ0 100, 0.005, 0 50, 0.005, 0 100, 0.1, 0 50, 0.1, 0

TD: k, sim, λ 120, Jac, 0.1 120, Cos, 0.1 120, Cos, 0.05 120, Cos, 0.05
BF: k, sim, Wgt, Nrm, L−m = L+

m 120, Jac, F, Def, 10 100, Cos, F, Def, 5 120, Jac, T, Def, 10 120, Cos, T, Def, 5
MC: k, λ 2, 0.1 10, 0.1 2, 0.2 20, 0.2
FPMC: k, λ 2, 0.2 10, 0.2 20, 0.2 20, 0.1
Fossil: k, λ , L 10, 0.2, 3 20, 0.1, 2 10, 0.2, 2 2, 0.1, 1
Caser: T , d, nh 1, 50, 4 1, 10, 4 2, 10, 4 1, 50, 16

PGN: k, sim 100, Jac 100, Cos 100, Cos 100, Jac
IRenMF: k, α , λ3, Clusters 50, 0.6, 1, 50 100, 0.6, 1, 50 50, 0.6, 1, 5 50, 0.4, 0.1, 5
RankGeoFM: k, α , n 100, 0.1, 100 100, 0.1, 10 100, 0.1, 200 100, 0.1, 200

FeatMC: Smooth JM (0.9) JM (0.1) JM (0.1) JM (0.5)
ItemMC: Smooth JM (0.1) JM (0.5) JM (0.5) JM (0.1)

several items with the same probability, they will be sorted by popularity; our
own implementation.

– ItemMC: it selects the next item in the sequence by maximizing the transition
probability between POIs by counting how often any user checked-in in the
two POIs (the current one and any of the candidates) one after the other; our
own implementation.

• Skylines: oracle recommenders that recommend the test set, they are useful to
analyze the maximum values that a recommender can achieve, at least in terms of
accuracy metrics:

– TestOrder: method that returns the test set for every user ordered by ascending
timestamp (mirroring the order followed by the user according to the test set);
since the test set may contain repeated venues, this algorithm only recommends
each item once (based on its first timestamp) to be more comparable to the rest
of the algorithms; our own implementation. Note that additional constraints
could apply to mimic the behavior of the other recommenders being compared,
for instance, by limiting the candidate items to those in the training set, as
described in Section 6.2.

– TestOrder: same as the TestOrder but the items are ordered by descending
timestamp (i.e., the route followed by the user in the test set is reversed); our
own implementation.

We present in Table 6 the range of the parameters tested in the experiments,
whereas Table 7 shows the best parameters found for each recommender in every city.
The optimal parameters were selected according to the performance obtained using the
NDCGs@10 evaluation metric. Note that we also include whether the recommender
uses an aggregated training or not (as explained in Section 6.2); we based this decision
according to the nature of each algorithm and, in some cases, because better results
were obtained for the reported combination.
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7 Results

7.1 Performance of venue recommender systems

Table 8 shows the performance for each recommender in the city of New York where
all metrics are computed at cutoff 10 except the distance metric at cutoff 5. We decided
to present the results in this way because most sequences in test have less than 5 POIs
(see ratio between |Cr| and |S| in Table 4, which is between 4.8 and 6.6 for all the
test sets) and, thus, computing the distance of routes for the first 10 recommended
venues would produce a less realistic situation and not fair when compared against the
skylines. This effect will be further analyzed in Section 7.3.

The first thing we observe in this table is that the Skylines are not achieving a
perfect score (i.e., 1.0) in terms of relevance metrics such as NDCG or Precision.
This is because in our experimental setting we simulate a realistic situation, where
all recommenders – including the Skylines – can only recommend those venues that
appear in the training set, so those items that only appeared in the test set cannot
be recommended; in this way, the comparison between the Skylines and the rest of
algorithms is fair, since they all consider the same set of candidate items. Besides, it
should also be noted that we are measuring performance at cutoff 10 but many users
have less items in their test set, which impacts the value of the evaluation metrics.
Moreover, since the test set may contain repeated items for some users, the length of
the test routes could decrease even more, which, together with the fact that none of the
evaluated recommenders are allowed to suggest the same item more than once, may
amplify such effect (see Section 7.3 for more details).

In the following sections, we analyze these and other results according to different
evaluation dimensions.

7.1.1 Analysis based on evaluation dimensions: distance, sequential and
non-sequential metrics, and novelty and diversity

As we observe in the table, the total distance of the recommended venues is very low
for the Skylines (which actually reflects the distance traveled by users in the test set),
and specifically, much lower than most of the other recommenders, whose distances
range from 20 to 40 Km (demonstrating that users tend to prefer shorter routes instead
of very long ones and, thus, validating our hypothesis that geographical distance is
an important dimension to be minimized in route recommendation). However, as
evidenced by the poor performance in terms of relevance of DistNN, AvgDis, and
KDE, it is a challenge to produce short, but interesting routes. This is one of our main
motivations to integrate reranking strategies into route recommendation, where not
only relevance, but other alternative criteria, ought to be maximized at the same time.

When comparing Precision and NDCG metrics against their sequential counter-
parts (Ps and NDCGs) – hence comparing, to some extent, the performance of the
algorithms on the venue recommendation task against that on route recommendation
–, we find that the sequential metrics always achieve a value lower or equal than the
standard metric result. This makes sense since these metrics penalize those POIs that
have not been returned in the exact order with respect to the test set of the user (as
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Table 8: Performance for the city of New York. All metrics presented are computed at
cutoff 10, except Dist at cutoff 5. They are grouped in three categories: accuracy (P,
NDCG, TFP), sequential accuracy (Ps, NDCGs, FPs), and non accuracy (Dist, Gini,
EPC). In bold, we show the best recommender in each family, a † is used to emphasize
the best one for that metric without considering the skylines, whereas N is used when
the skylines are also considered.

Accuracy Seq. Accuracy Non Accuracy
Family Rec P NDCG TFP Ps NDCGs FPs Dist Gini EPC

Basic Rnd 0.100 0.354 0.324 0.100 0.345 0.290 32.1 N0.104 0.997
Pop 0.144 0.417 0.326 0.139 0.402 0.284 43.9 0.001 0.904

Classic

CBUI 0.100 0.354 0.310 0.100 0.346 0.294 32.0 0.080 N0.998
CBCF 0.127 0.395 0.301 0.126 0.385 0.284 38.2 0.012 0.945

UB 0.139 0.409 0.340 0.136 0.396 0.300 40.8 0.008 0.933
IB 0.121 0.383 0.326 0.119 0.373 0.298 24.2 0.047 0.971

HKV 0.121 0.382 0.323 0.120 0.372 0.289 35.8 0.004 0.949
BPR 0.145 0.418 0.330 0.141 0.404 0.285 45.3 0.001 0.905

Temporal

TPop 0.145 0.418 0.321 0.140 0.404 0.284 43.2 0.001 0.904
TD 0.135 0.405 0.342 0.131 0.391 0.300 40.6 0.011 0.937
BF 0.142 0.417 †0.349 0.138 0.402 0.307 41.8 0.004 0.926
MC 0.140 0.413 0.314 0.138 0.401 0.284 43.9 0.002 0.912

FPMC 0.138 0.406 0.323 0.136 0.395 0.294 16.1 0.002 0.932
Fossil 0.137 0.405 0.332 0.135 0.394 0.300 29.4 0.002 0.919
Caser 0.138 0.408 0.339 0.136 0.396 0.307 35.3 0.005 0.934

Geo

AvgDis 0.100 0.354 0.305 0.100 0.346 0.281 3.3 0.075 0.997
KDE 0.101 0.354 0.300 0.101 0.346 0.278 3.1 0.087 0.997
PGN 0.133 0.405 0.336 0.132 0.394 0.300 46.3 0.017 0.927

IRenMF †0.147 †0.420 0.345 †0.143 †0.405 0.306 43.9 0.002 0.916
RankGeoFM 0.130 0.394 0.334 0.127 0.382 †0.308 18.0 0.013 0.956

Tour
DistNN 0.109 0.367 0.311 0.107 0.356 0.288 N0.1 0.065 0.997
FeatMC 0.118 0.382 0.206 0.117 0.372 0.206 18.4 0.002 0.972
ItemMC 0.132 0.404 0.295 0.129 0.391 0.279 44.9 0.001 0.911

Skylines TestOrder 0.453 0.928 0.453 0.205 0.569 0.335 11.6 0.023 0.979
TestOrder N0.453 N0.928 N0.453 N0.453 N0.909 N0.453 8.3 0.023 0.979

mentioned in Section 5); however, most of the obtained differences are around 0.01
below the value of the non-sequential metric. To further analyze this issue, in Figure 4
we show the number of users with a specific difference between the values of P and Ps
(left image) and TFP and FPs (right image) for the best performing approach, which
corresponds to the IRenMF algorithm; since we contrast this difference against the
number of relevant items/features returned, it is obvious that the sequential varia-
tions of the metrics have more margin to affect the final result when the algorithms
return more than 1 or 2 relevant items/features. The number of potential relevant
items/features recommended depends, on the other hand, on the test size of each
user. In other set of experiments (not reported for lack of space) we observe a similar
situation: the larger the test size of the users, the larger the differences between se-
quential and non-sequential measurements. Therefore, the behavior we observe here is
caused by the inherent properties of these datasets and this particular recommendation
task which, as we discussed at the beginning of the paper, is very sparse; in fact, for
features, where sparsity is lower, the differences tend to be higher.

Independently of the previous observation, larger differences between the se-
quential and non-sequential metrics are obtained for Skylines, in particular between
TestOrder and TestOrder, since all the items returned by both are relevant but the
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Fig. 4: Difference between sequential (Ps and FPs) and non-sequential (P and TFP)
metric values and the number of users with such difference, depending on the number
of relevant items or features returned by IRenMF in NYC.

former receives a strong penalty for returning the test items in the reverse order. As
expected, non-sequential metrics obtain the same value for either Skyline, evidencing
their lack of sensitivity to the order of the recommendation list, since they only account
for the number of relevant items (which is the same in both Skylines, since every
recommended item is relevant).

These results evidence that sequential metrics work as expected, but, at the same
time, they also show that it is very difficult to recommend interesting venues for users
that are at the same time presented in the correct order, or, in other terms, to optimize at
the same time for the venue and route recommendation tasks. Because of this, when we
analyze the TFP and FPs metrics we observe that, in general, it is easier to recommend
fitting categories than actual POIs. Moreover, when considering the feature relevance,
the sequences give us more information: for example, even though the Pop recom-
mender has a high value in TFP, its performance in FPs decreases considerably. We
want to highlight that this is the first work – to the best of our knowledge – where such
comparison has been made. Additionally, it should be noted that it is straightforward
to compare FPs and Ps since in the ideal case (Skylines) their performance is the same,
and in any other case, they are computed very similarly, although one finds matches
at the category level and the other at the item level. According to this, we find some
examples (such as UB and BF) where the recommendation algorithm is the best in
terms of FPs but it is not as good in terms of Ps.

Now, regarding novelty and diversity (EPC and Gini), we notice a general trend
where the recommenders that perform the worst in terms of relevance, they tend to be
the best in terms of these dimensions. This is related to the classical tradeoff between
relevance and novelty/diversity (Vargas and Castells 2011), but it is also related to how
prone each recommendation algorithm is to recommend popular items (Jannach et al
2015), since the novelty metric penalizes the most popular venues; diversity behaves
in a similar way, since if we are recommending the same (popular) venues for all the
users, the overall diversity of the system decreases.
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7.1.2 Behavior of evaluated recommenders

According to the presented results in Table 8, we observe that the geographical and
temporal recommenders are normally the ones that achieve the best results in terms of
pure relevance metrics (P, Ps, NDCG, NDCGs). Even though this might be reasonable,
there are two important aspects to analyze: the first one is the strong popularity bias
observed in these datasets, as this baseline is able to beat most of the recommenders
(both Pop and TPop). This effect, although common in RS, is even more pronounced
in the POI recommendation domain due to the high sparsity, as other baselines find it
difficult to exploit the preferences of users. Also, in relation to this effect, it can be
observed that algorithms using neighbors for collaborative similarity need to consider
large neighborhoods (a large value for the parameter k, see Table 7 where only in
one case it is under 100), indicating that they need to exploit more information to
make recommendations. In fact, as discussed by some authors recently, when nearest
neighbor recommenders increase the number of neighbors, they tend to get closer to
popularity, and hence, their popularity bias is stronger (Cañamares and Castells 2017).

The second aspect to consider is related to the tour recommenders as their perfor-
mance is rather low (except for ItemMC). One possible explanation for this is that
taking into account the distance between items or only how frequent users go from
one venue category to another is a rather incomplete heuristic (in fact, we also observe
a similar effect in the AvgDis and KDE recommenders, belonging to the Geo family)
and more information should be exploited in combination. More specifically, we need
to consider that some of these algorithms do not work with any kind of collaborative
information, just with the coordinates of the POIs the users have visited, and even
though users tend to go to venues that are close to each other (as the Dist metric
shows) maximizing only this component may not reflect their interests as a whole.
However, when we combine the geographical component with other features like
collaborative information (as in RankGeoFM, IRenMF, and PGN), the performance
increases considerably.

On the other hand, it is interesting and somewhat surprising that sequential ap-
proaches like MC, FPMC, Fossil, and Caser are not able to obtain higher results than
other, more simple models. These sequence-aware models are defined and formulated
to consider sequences when training the preference data from users, but not to generate
interesting sequences for the users, in the sense of items being consumed in sequence.
That is, these models are focused on predicting the next venue, not the whole route
or sequence of venues; because of this, it is not so strange that these algorithms do
not perform as well as expected, or that other simple techniques (such as those based
on popularity) could obtain better results. Additionally, we hypothesize this might be
due to the high sparsity of POI recommendation datasets in contrast with the original
papers where these algorithms were proposed, and in some cases the authors even
filtered out those users with a low number of interactions.

From the Temporal family, only BF is able to get a performance close to the
TPop recommender in terms of relevance and it is the best one in the FPs metric
(slightly better than the IRenMF approach), illustrating that it is possible to improve
the performance of simple models like UB if we combine them with sequential
components. In relation to the Classic family, we also find large differences between the
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Table 9: Performance for New York, Rome, and Petaling Jaya, only showing the best
recommender for each family. Notation and cutoffs like in Table 8.

Accuracy Seq. Accuracy Non Accuracy
City Family Rec P NDCG TFP Ps NDCGs FPs Dist Gini EPC

NYC

Basic Pop 0.144 0.417 0.326 0.139 0.402 0.284 43.9 0.001 0.904
Classic BPR 0.145 0.418 0.330 0.141 0.404 0.285 45.3 0.001 0.905

Temporal TPop 0.145 0.418 0.321 0.140 0.404 0.284 †43.2 0.001 0.904
Geo IRenMF †0.147 †0.420 †0.345 †0.143 †0.405 †0.306 43.9 †0.002 †0.916
Tour ItemMC 0.132 0.404 0.295 0.129 0.391 0.279 44.9 0.001 0.911

Skylines TestOrder N0.453 N0.928 N0.453 N0.453 N0.909 N0.453 N8.3 N0.023 N0.979

ROM

Basic Pop 0.227 0.508 0.517 0.202 0.447 0.464 5.0 0.050 0.848
Classic BPR 0.226 0.508 0.518 0.201 0.447 0.460 6.3 0.050 0.848

Temporal FPMC 0.227 0.508 0.516 0.201 0.447 0.469 4.9 0.052 0.849
Geo RankGeoFM 0.211 0.486 0.516 0.187 0.427 0.457 5.6 †0.082 0.865
Tour ItemMC †0.231 †0.537 N0.519 †0.212 †0.477 †0.473 N2.0 0.076 †0.871

Skylines TestOrder N0.481 N0.915 0.481 N0.481 N0.858 N0.481 2.1 N0.217 N0.915

PJ

Basic Pop 0.128 0.413 0.249 0.126 0.404 0.245 35.0 0.001 0.915
Classic BPR †0.131 †0.418 0.274 0.128 0.408 0.270 30.0 0.001 0.917

Temporal BF 0.130 0.416 †0.328 †0.129 †0.409 †0.310 †24.7 0.004 †0.938
Geo PGN 0.129 0.415 0.296 0.126 0.406 0.286 30.0 †0.008 0.931
Tour ItemMC 0.127 0.412 0.244 0.125 0.403 0.240 28.4 0.002 0.918

Skylines TestOrder N0.369 N0.864 N0.368 N0.369 N0.853 N0.368 N7.0 N0.023 N0.980

two MF approaches – HKV and BPR– as the results for the latter are in general much
better. This can be explained by the way they create the models and the assumptions
they make: while HKV uses the score of the user in the minimization formula, BPR
focuses on optimizing the ranking (why some items are consumed and why others
are not), the most appropriate approach in this type of situations where no ratings or
explicit scores are available.

Finally, it is also interesting to observe that the IRenMF model obtains better
results than RankGeoFM. Although this contradicts the work of Liu et al (2017), this
can be due to differences in the evaluation methodology, more specifically, in that
work the authors considered entire datasets, without dividing them into cities, which
could confuse geographical methods like these; moreover, heavy filters were applied
to those datasets, in particular, in the Foursquare dataset all users and POIs with less
than 10 interactions were removed, reducing its sparsity in comparison with the ones
we use here. Additionally, the implementation of these techniques could be slightly
different with respect to those tested in that paper, since while for IRenMF we have
taken the implementation as provided by the authors, for RankGeoFM we adapted the
implementation provided by the LibRec library (see Section 6.4).

7.1.3 Analysis on other cities

So far, we have only explored the results for the city of New York; now in Table 9 we
summarize the results for the best recommender in each family (according to NDCGs)
for New York and present the same results for Rome and Petaling Jaya, in this way
showing one city from each of the three datasets used. In the Appendix A.1, we show
and discuss the results for all the cities described in Section 6.1, but in the rest of the
paper we shall focus on these three cases for the sake of space.

There are some interesting similarities between the results for these cities, which
are, in principle, very different (culturally but also regarding the data collected, ac-
cording to Table 4). First, the BPR recommender is the best one for the Classic family,
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whereas Pop performs the best for the Basic family. It should be noted that the best
recommenders from other families often obtain very close or lower values in terms
of relevance than Pop, evidencing a strong popularity bias. These results are only
improved when including different contextual factors like temporal or geographical
information. Second, the TestOrder algorithm produces recommendations with the
lowest distance in every case, although in Rome, the ItemMC obtains slightly shorter
routes, but the difference is negligible. An important difference, however, is that the
best recommender in terms of sequential relevance belongs to the Geo family in one
case (New York), to the Tour family in another (Rome), and to the Temporal family in
the third one (Petaling Jaya). This confirms the importance of these recommendation
families in venue and, especially, route recommendation.

We do observe, however, an interesting difference in these results regarding the
larger values of the metrics in Rome. This is especially true for the FPs metric, and
in particular for the ItemMC recommender which is very close to the optimal value
as reported by the TestOrder skyline, although all the families obtain values much
higher (and closer to the optimal ones) than in the other cases. Our assumption is that
this unique behavior in Rome is related to the inherent characteristics of this dataset
(see Table 4) in comparison with the others: the number of items is very small, which
results in a more dense dataset, between 10 and 20 times less sparse than Tokyo or
New York12, together with the fact that the items in this dataset are artificially created
by the authors, by clustering existing venues by distance, assuming these items may
be more related from a touristic point of view. Even though these conditions may
distort the obtained results, we believe it is important to include at least one dataset not
based on check-ins, despite their pervasiveness in the field, since they could provide a
different perspective of user behavior.

7.1.4 Short summary

Based on the conclusions drawn so far, we can provide an answer to RQ1 regard-
ing how the classical collaborative filtering algorithms compare against approaches
tailored to venue and route recommendation. According to our results, simple mod-
els tend to obtain better results than other complex models (mostly because these
datasets suffer from very high sparsity), although adding temporal or geographical
contexts tend to improve the results. Moreover, those based on geographical or se-
quential properties tend to be amongst the best ones, but it should be considered that a
non-personalized method like a recommender based on popularity provides a strong
baseline which some algorithms are not able to beat while others obtain very close,
comparable performance. This conclusion, although surprising, follows from the fact
that, to the best of our knowledge, this is the first work where so many families have
been thoroughly compared and evaluated under a realistic evaluation.

Regarding RQ3 and whether performance changes when user sequences in test are
considered, we have not found many differences at the item level; our analysis shows
that this is because of the large number of potential items in these datasets, which

12 It should be noted that we tried to reproduce these statistical conditions on any of the other datasets
by running simulations and discarding users, items, and check-ins, but we run out of data before we could
obtain a comparable dataset.
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makes it very difficult to suggest relevant venues and in the correct order, since larger
differences between sequential and non-sequential metrics were found for those users
that receive more relevant recommendations. On the other hand, when the category
level is considered instead, larger differences between algorithms arise, where the
temporal and geographical ones tend to stand out.

In summary, we have found that many recommenders perform somewhat similarly
in terms of relevance, but they differ on other dimensions more related to the route
recommendation domain (geographical distance, venue categories) or to the sequen-
tiality dimension. We aim to improve this by using reranking strategies; for instance,
by taking a simple, but good enough recommender, is it possible to improve the rest
of dimensions? We address this question and summarize the obtained results in the
next section.

7.2 Performance of reranking strategies

In this section, we present experiments for the proposed reranking strategies. For this,
we take Equation 1 with λ = 0, thus, only the sequence-aware reranker component
is considered (later in Section 7.3 we analyze the results at different values of λ ).
Moreover, we rerank the first 20 items returned by each recommender for every user
using the 8 components presented in Section 4; specifically, f rec

seq uses a user-based
nearest neighbor with k = 100 and vector cosine as user similarity, f item

seq and f f eat
seq

obtain better results without the smoothing component (α = 0) so it is not used in the
reported experiments, and f stree

seq considers the last 4 items when querying the suffix
tree (m = 4), the rest of the rerankers are used as defined previously, since they do not
need additional parameters.

Table 10 shows the results obtained for the rerankers described in Section 4 in New
York, Rome, and Petaling Jaya and for five out of the six families of recommenders –
we do not include the Skylines because their performance is optimal since they return
the test set of the user (see Section 6.4), so none of the reranking strategies would
help in increasing their performance. In these results, we focus on 3 complementary
dimensions that are very important for route recommendation according to our previ-
ous discussion: NDCGs (sequence-aware item-level relevance), FPs (sequence-aware
category-level relevance), and Dist (distance of the recommended route). As before,
complete results are presented in Appendix A.2 as separate tables, showing the re-
sults for all the cities presented in previous sections on every evaluation metric (see
Tables 12, 13, 14, 15, and 16).

7.2.1 Performance comparison on a city basis

We observe a similar behavior in the three cities. First, the feature-based Markov Chain
reranker ( f f eat

seq ) is usually the worst (together with the random one, f rnd
seq ), especially

in terms of FPs, but also for NDCGs, where it tends to decrease the performance with
respect to the baseline (base recommender without reranking). This can be attributed
to the fact that we are working with a limited number of features (note that there are
only 9 categories in the level 1 of Foursquare), so venues with the same feature can be
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Table 10: Effect of the reranking strategies (λ = 0, 20 candidate items reranked) on
each family of recommendation algorithms under three evaluation metrics.

NYC ROM PJ
Family Reranker NDCGs FPs Dist NDCGs FPs Dist NDCGs FPs Dist

Basic

Baseline 0.402 0.284 43.9 0.447 0.464 5.0 0.404 0.245 35.0
f rnd
seq 0.383 0.297 28.0 0.402 0.452 5.9 0.387 0.274 29.5

f dist
seq 0.396 N0.308 N4.1 0.469 †0.474 N1.4 †0.409 N0.296 N7.2

f f eat
seq 0.400 0.267 33.3 0.422 0.371 5.0 0.402 0.267 33.2

f item
seq 0.399 0.279 37.8 †0.473 0.469 1.8 0.408 0.262 19.5
f rec
seq †0.406 0.298 42.4 0.422 0.452 6.0 0.407 0.271 26.3
f lcs
seq 0.395 0.285 17.8 0.440 0.446 2.3 0.403 0.274 14.8

f stree
seq 0.402 0.289 38.4 0.446 0.466 3.2 0.403 0.263 25.9

f oracle
seq N0.468 0.296 43.2 N0.614 N0.482 4.2 N0.456 0.247 34.2

Classic

Baseline 0.404 0.285 45.3 0.447 0.460 6.3 0.408 0.270 30.0
f rnd
seq 0.382 0.292 30.3 0.403 0.450 5.9 0.394 0.278 30.7

f dist
seq 0.395 N0.309 N4.2 0.468 †0.475 N1.4 †0.410 N0.294 N7.4

f f eat
seq 0.398 0.267 33.5 0.424 0.373 5.0 0.402 0.269 34.0

f item
seq 0.400 0.276 38.0 †0.476 0.468 1.8 0.409 0.268 18.5
f rec
seq †0.406 0.300 42.4 0.422 0.452 6.0 0.407 0.273 26.5
f lcs
seq 0.395 0.284 17.9 0.440 0.447 2.3 0.405 0.279 13.2

f stree
seq 0.404 0.294 38.6 0.447 0.465 3.7 0.405 0.275 22.1

f oracle
seq N0.468 0.300 44.3 N0.612 N0.482 4.9 N0.455 0.269 29.0

Temporal

Baseline 0.404 0.284 43.2 0.447 †0.469 4.9 0.409 0.310 24.7
f rnd
seq 0.385 0.300 30.3 0.409 0.449 6.0 0.393 N0.329 25.9

f dist
seq 0.395 N0.308 N4.1 0.464 0.468 N1.4 0.405 0.327 N5.4

f f eat
seq 0.399 0.266 33.3 0.421 0.375 5.0 0.397 0.294 23.1

f item
seq 0.399 0.277 37.7 †0.474 0.465 1.9 †0.410 0.291 18.7
f rec
seq †0.406 0.299 42.5 0.422 0.452 6.1 0.408 0.308 25.4
f lcs
seq 0.395 0.288 18.1 0.441 0.447 2.3 0.401 0.319 9.8

f stree
seq 0.404 0.294 38.2 0.445 0.468 3.1 0.403 0.322 15.7

f oracle
seq N0.469 0.296 42.8 N0.608 N0.482 4.1 N0.453 0.313 23.7

Geo

Baseline 0.405 0.306 43.9 0.427 0.457 5.6 0.406 0.286 30.0
f rnd
seq 0.378 0.307 22.5 0.397 0.447 5.9 0.390 0.307 25.1

f dist
seq 0.385 0.315 N3.6 0.456 †0.468 N1.4 0.405 N0.315 N5.8

f f eat
seq 0.393 0.281 32.8 0.414 0.364 5.3 0.397 0.282 26.8

f item
seq 0.402 0.291 37.1 †0.467 0.466 2.1 †0.412 0.270 18.8
f rec
seq †0.405 0.311 42.0 0.417 0.453 6.0 0.407 0.290 25.8
f lcs
seq 0.390 0.311 11.9 0.426 0.440 2.2 0.401 0.308 10.5

f stree
seq 0.402 N0.321 31.3 0.431 0.458 3.5 0.404 0.302 19.4

f oracle
seq N0.464 0.314 41.7 N0.586 N0.472 4.6 N0.449 0.287 28.8

Tour

Baseline 0.391 0.279 44.9 †0.477 0.473 2.0 0.403 0.240 28.4
f rnd
seq 0.364 0.305 23.9 0.400 0.448 5.7 0.390 0.291 30.8

f dist
seq 0.381 0.311 N4.2 0.467 †0.474 N1.4 †0.412 N0.309 N7.1

f f eat
seq 0.374 0.277 20.9 0.420 0.359 5.0 0.401 0.278 31.6

f item
seq 0.397 0.283 38.1 0.477 0.470 1.8 0.406 0.271 16.9
f rec
seq †0.403 0.289 41.4 0.427 0.451 5.8 0.408 0.273 26.6
f lcs
seq 0.382 N0.312 12.0 0.438 0.446 2.1 0.406 0.290 13.9

f stree
seq 0.386 0.295 32.4 0.457 0.466 2.4 0.403 0.272 21.5

f oracle
seq N0.442 0.285 44.4 N0.600 N0.482 3.0 N0.455 0.244 28.0

quite different (consider for instance a bar that belongs to the same category as a fast
food restaurant, or a hotel whose corresponding level 1 category is the same as a bus
station).

Second, it is interesting to observe that the baseline is often generating the longest
routes, hence, the reranking strategies allow to create more realistic and affordable
routes to the final user (except for the f rnd

seq , as the reranked items are sorted randomly).
However, there is a clear, non-negligible gap between the maximum values achievable
with the rerankers (illustrated by the oracle-based reranker f oracle

seq ) and the results
we obtain with the rest. Nonetheless, if we analyze this information from a different
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perspective, we conclude that by simply reordering the first N candidates (in these
results, N = 20), the performance of some recommenders not specifically designed for
route recommendation can be improved in a varied range of percentages (depending on
the dimension that we are analyzing). For example, the distance of the route obtained
by the recommender from the Basic family (Pop) in PJ is 35.0 Km, while applying
f dist
seq this distance is reduced to 7.2 Km – a decrease of 80% –; the value of FPs in

NYC for the Temporal family increases from 0.284 to 0.299 when applying the f rec
seq

reranker – an improvement of 4.9% –, and the performance on NDCGs for the Geo
family compared against when the item-based Markov Chain reranker is applied in
ROM is 0.426 and 0.467 respectively – an improvement of 9.6%. We believe these
outcomes are very positive and promising, as route recommenders normally require
many different information sources and long execution times in order to work well,
but using this kind of techniques may help to find simple solutions for these cases by
balancing a tradeoff between relevance and the rest of the dimensions.

7.2.2 Performance comparison on a reranker basis

Regarding specific rerankers, the distance-based reranker ( f dist
seq ) is, by definition,

the one that reduces the most the distance of the recommended route, but what is
more important is that, in some situations, it is able to improve the performance in
both NDCGs and FPs (see for example the results in PJ for most of the families, but
especially for Tour, or the results in ROM for all the families except Temporal). The
performance of the rerankers based on subsequences ( f lcs

seq and f stree
seq ) depend heavily

on the recommendation family, where in some situations they are able to decrease the
distance and improve FPs, as in PJ, where they outperform the baseline in every case,
or in NYC, where these rerankers obtain the best overall result in terms of FPs.

Finally, we observe that the recommender-based reranker ( f rec
seq ) does not usually

improve the recommendation performance in any of the dimensions (except in some
cases in New York regarding the FPs); in particular, the distance tends to be very high,
not surprisingly since it does not consider explicitly any geographical component.
Despite these preliminary negative results, we believe this technique might evidence
better results if other recommenders are used (recall that we have only tested a user-
based nearest neighbor algorithm without tuning any of its parameters), especially
when applied to not collaborative baselines, as in the case of the Tour family in New
York where it manages to improve both FPs and NDCGs. A special mention deserves
the item-based Markov Chain reranker ( f item

seq ), since it is able to reduce the distance of
the recommended route in ROM consistently for any recommender family, and, on top
of that, it produces some of the best performing results in terms of NDCGs and FPs.

7.2.3 Performance comparison on a recommender family basis

Now, if we analyze these results from the perspective of the family of the recom-
menders, we observe that the behavior is pretty stable in each city, independently of
the origin of the recommendations being reranked. We observe, however, that the
oracle reranker obtains different values depending on the family, which makes sense
since each family may produce a difference set of candidate items to be reranked
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Fig. 5: Frequency of the number of venues each user visited in test for New York and
Rome.
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Fig. 6: Frequency of the number of venues each user visited in test for New York and
Rome after removing repeated items in a per-user basis.

(those in the top-N). These optimal values are lower for those in the Tour family in
New York, and higher in the rest, evidencing that the candidate items have a lot of
potential (except, to a lower extent, those in the Tour family) and there is room for
improvement.

7.2.4 Short summary

Overall, these results confirm that it is possible to improve the performance of algo-
rithms by reranking the recommendations (RQ2), at least, in terms of reducing the
distance of the routes being suggested to the user, but also in terms of the category-
level relevance (FPs), while keeping the same (or lower but very close) item-level
sequential relevance (NDCGs). In particular, there is always a reranking strategy that
allows to improve the performance of the baseline recommender in each of the three
compared evaluation dimensions.

7.3 Discussion

In previous sections, we have presented and analyzed the performance of different
recommendation techniques applied to the task of route recommendation. We now aim
to discuss in more detail some aspects that may have a large impact on the evaluation
of these techniques. We first analyze the length of the route from every user in the test
set; then, we show the impact of the linear combination weight (λ in Equation 1) on
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Fig. 8: Same information as in Figure 7 but for the IRenMF recommender.

the different evaluation dimensions for some rerankers and recommenders. We have
also analyzed the case where recommenders are allowed to return items previously
interacted by the user, a situation very common in POI recommendation that produces
a repetition bias since users tend to visit the same venues more than once; however,
since this aspect is slightly out of the scope of this paper, we moved those additional
results to Appendix A.3

Figure 5 shows a bar plot where we present the number of users with a given
length in their test routes, for New York and Rome. In that figure we observe that most
users have routes with very few venues (note that the minimum length, as explained
in Section 6.2, is 4), this effect is further emphasized when repeated venues in the
test set are removed (see Figure 6), where there are users with only 2 (unique) items
in their test set. This situation could, in principle, affect the experiments shown in
previous sections, since when calculating the metrics presented before, users with short
routes contribute much more – because we compute the average of the performance
obtained by each user – than those few users with longer routes. Looking at the plots,
the number of users with routes of length 5 or less represents more than 50% of the
test users in any city. Note that this is an issue related to the general formulation of
the cold-start problem, as it reflects that user routes are usually short (regardless of
whether users have more or less interactions in the training set), which makes the task
of route recommendation even more difficult, in combination with the high sparsity
inherent in these datasets.
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Moreover, we show in Figures 7 and 8 the evolution of different λ values to
analyze the impact of the sequence-aware reranker component according to Equation 1
(recall that the results presented in the previous sections were for λ = 0). Figure 7
shows the results for the Pop recommender on New York whereas Figure 8 does
the same for IRenMF. We select these recommenders because we want to analyze
the effect of the reranking strategies on a non-personalized algorithm (Pop) and on
the best-performing method (IRenMF) in this city; in both cases, we compare five
rerankers: distance, item-based Markov Chain, based on LCS, based on subsequences
computed using a Suffix Tree, and oracle. We observe that, for the three reported
dimensions, the larger the value of λ , the smaller the gap between the rerankers and
the oracle; this is a plausible result since for λ = 1 the output of the reranking strategy
is equivalent to that of the baseline recommender. More importantly, the performance
of most of the rerankers improve steadily until around λ = 0.5, where it tends to
abruptly get closer to the final value; hence, a safe value for λ to obtain a tradeoff
in all the dimensions would be, as expected, λ = 0.5. This value would allow us, for
instance, to improve FPs and the distance of the Pop recommender by using a simple
distance-based reranker, while for the IRenMF recommender, a reranker based on
LCS would even slightly improve on NDCGs (although the distance-based reranker
would also provide a good-enough tradeoff in the other dimensions). These results
evidence that reranking strategies could be exploited to create more meaningful routes
based on recommendations produced by either complex models (such as IRenMF) or
simple, not-personalized algorithms (such as Pop).

8 Conclusions and future work

In this paper we have presented an analysis on the performance of a comprehensive
set of recommenders from different families in the area of recommending sequences
of venues (routes) obtained from user check-ins. Firstly, we have defined a generic
framework to obtain routes from independent check-ins using different constraints,
which can actually be applied to other domains as long as temporal information is
available. We have also formalized a set of sequential metrics integrating the Longest
Common Subsequence (LCS) algorithm into ranking evaluation metrics. Our third
main contribution is the proposal, adaptation, and experimentation of several reranking
strategies – originally used within the scope of classical recommendation to increase
the diversity of the results – to generate more meaningful sequences of venues.

Our results show that those recommendation approaches that use temporal or
geographical information are capable of obtaining better results in terms of relevance.
This is in line with results from the literature, however, this is the first work, to the best
of our knowledge, where so many algorithms from different families have been tested
under a common, realistic evaluation framework. Furthermore, we have also shown
that it is possible to define sequence-aware ranking metrics, in such a way that those
recommenders suggesting the venues in the same order as the user test are rewarded.
However, due to the high sparsity of POI datasets, we have observed that it is more
illustrative to analyze these metrics not only at the item level (i.e., matching exactly
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the recommended venues) but also at the category level, extending and integrating
already defined metrics in the literature.

On the other hand, the proposed reranking techniques have shown their usefulness
at improving the quality of the recommendations provided originally by the algorithms,
aiming, in principle, to provide more meaningful sequences for the users. Although in
terms of traditional performance, measured by NDCG or its sequential counterpart,
they have not achieved a substantial improvement with respect to the recommendations
without reranking, they have demonstrated that by reordering a small number of items
(20 in the reported experiments) from the recommendation list, we can enrich the
performance of the recommenders in terms of distance and category accuracy.

Nonetheless, the task of route recommendation is far from being solved, and our
experiments evidence several aspects that should be addressed in the future. First,
the high degree of sparsity in these datasets produces that simple models often work
better or at the same level than more complex algorithms; this effect is emphasized
by the well-known popularity bias and the repetition bias, an experimental setting
that is often ignored in the area but that in venue and route recommendation tasks has
a strong impact on the results, since users tend to visit the same venues more than
once; in both cases, simple baselines (either returning the most popular items or those
venues previously seen by the user) achieve very good results. Moreover, sparsity
has a large impact on related evaluation problems such as cold-start or new users or
items; hence, a thorough investigation on this issue should be devoted in the context of
sequence-aware evaluation. Second, we have shown that alternative evaluation criteria
beyond relevance, such as geographical distance, should be considered if we expect the
recommended venues to be followed by the user; however, it is a challenging problem
to provide relevant but close venues, as we have presented some algorithms based
only on geographical information that recommend very short but not relevant enough
routes, while other methods suggest longer routes that fit better the user preferences.
For this problem, we have experimented with our proposed reranking strategies, with
some positive and promising results, but we envision this could be an area where new
methods, probably based on combining existing approaches, could optimize all these
criteria at the same time.

Finally, the fields of venue and route recommendation would clearly benefit from
having realistic datasets made with routes followed by actual tourists in a particular
city; so far, most of the works in the area (including ours) transform in some way
datasets based on check-ins at different LBSNs, however, as we have discussed, this
process is not perfect and it is difficult to neutralize the inherent biases in these
systems (Papalexakis et al 2014; Zhang et al 2018). At the same time, it is not clear
how many of the users of LBSNs are actually tourists, since the performance and
movemement patterns of users categorized as tourists or locals may differ (Le et al
2014). We, as a surrogate, decided to experiment with datasets coming from different
sources and domains to prevent this effect, but a more realistic dataset would allow to
experiment and draw conclusions closer to the final users of any venue recommender
system. With the growing proliferation of datasets with cellphone, taxi, or bus usage
throughout cities (Zhang et al 2015b), new opportunities to collect such realistic
datasets open up. Once several information sources become available to produce this
type of datasets, it will be interesting to compare – in contrast or in addition to the
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Table 11: Performance for all the cities, only showing the best recommender for each
family. Notation and cutoffs like in Table 8.

Accuracy Seq. Accuracy Non Accuracy
City Family Rec P NDCG TFP Ps NDCGs FPs Dist Gini EPC

NYC

Basic Pop 0.144 0.417 0.326 0.139 0.402 0.284 43.9 0.001 0.904
Classic BPR 0.145 0.418 0.330 0.141 0.404 0.285 45.3 0.001 0.905

Temporal TPop 0.145 0.418 0.321 0.140 0.404 0.284 †43.2 0.001 0.904
Geo IRenMF †0.147 †0.420 †0.345 †0.143 †0.405 †0.306 43.9 †0.002 †0.916
Tour ItemMC 0.132 0.404 0.295 0.129 0.391 0.279 44.9 0.001 0.911

Skylines TestOrder N0.453 N0.928 N0.453 N0.453 N0.909 N0.453 N8.3 N0.023 N0.979

TOK

Basic Pop 0.127 0.385 0.385 0.126 0.374 0.372 25.8 0.001 0.849
Classic BPR 0.128 0.386 †0.389 0.126 0.374 †0.375 22.7 0.001 0.852

Temporal BF †0.131 0.388 0.378 †0.129 0.376 0.363 24.6 0.002 0.877
Geo IRenMF 0.131 †0.389 0.376 0.129 †0.377 0.361 23.7 0.002 0.870
Tour ItemMC 0.128 0.388 0.366 0.127 0.376 0.351 †17.9 †0.002 †0.878

Skylines TestOrder N0.443 N0.885 N0.443 N0.443 N0.865 N0.443 N8.1 N0.019 N0.965

ROM

Basic Pop 0.227 0.508 0.517 0.202 0.447 0.464 5.0 0.050 0.848
Classic BPR 0.226 0.508 0.518 0.201 0.447 0.460 6.3 0.050 0.848

Temporal FPMC 0.227 0.508 0.516 0.201 0.447 0.469 4.9 0.052 0.849
Geo RankGeoFM 0.211 0.486 0.516 0.187 0.427 0.457 5.6 †0.082 0.865
Tour ItemMC †0.231 †0.537 N0.519 †0.212 †0.477 †0.473 N2.0 0.076 †0.871

Skylines TestOrder N0.481 N0.915 0.481 N0.481 N0.858 N0.481 2.1 N0.217 N0.915

PJ

Basic Pop 0.128 0.413 0.249 0.126 0.404 0.245 35.0 0.001 0.915
Classic BPR †0.131 †0.418 0.274 0.128 0.408 0.270 30.0 0.001 0.917

Temporal BF 0.130 0.416 †0.328 †0.129 †0.409 †0.310 †24.7 0.004 †0.938
Geo PGN 0.129 0.415 0.296 0.126 0.406 0.286 30.0 †0.008 0.931
Tour ItemMC 0.127 0.412 0.244 0.125 0.403 0.240 28.4 0.002 0.918

Skylines TestOrder N0.369 N0.864 N0.368 N0.369 N0.853 N0.368 N7.0 N0.023 N0.980

methodology followed here – the performance of several recommender systems on
the same city, since in that situation the observations gathered by each dataset could
be (potentially) very different.
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A Appendix

A.1 Complete performance results of venue recommender systems

Table 11 shows the results in the four cities for the best recommender for each family (we do not show
the performance of all recommenders in all cities due to space constraints). We observe that the distance
obtained in the TestOrder recommender is the lowest in every city except Rome. Moreover, the Pop
recommender is the best one for the Basic family in all cities; in fact, it is a very hard baseline to beat since
the best recommenders from other families often obtain very close or lower values in terms of relevance.
Finally, we also observe that the best recommenders in terms of relevance are among the Temporal, Geo,
and Tour families. These results, hence, confirm that there is a strong popularity bias in all cities and that
including different contextual factors like temporal or geographical information is critical to improve the
effectiveness of the models.

Regarding specific recommenders, the behavior of the ItemMC and the BPR recommenders is inter-
esting, as they are the best in their families, obtaining positive results in all the metrics, but especially in
the sequential ones. The reason for the good performance of ItemMC might be attributed to the fact that
it exploits collaborative – but sequential – information, which suffers from a popularity bias, which, as
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analyzed before, tends to produce good results just for statistical reasons. The BPR approach, on the other
hand, is tailored to optimize the ranking by modeling the implicit feedback captured by the system in a
pairwise fashion (Rendle et al 2009), which fits the POI recommendation scenario very well and, according
to the results, could be a key technique to take advantage of the available data.

A.2 Complete performance results of reranking strategies

In Tables 12, 13, 14, 15, and 16 we present the complete results for the same reranker strategies as in
Table 10, but not limited to distance and item-level and category-level accuracy. We observe from these
tables a similar behavior in every city although each one has different characteristics. Firstly, the feature-
based Markov Chain reranker ( f f eat

seq ) is usually the worst (together with the random one, f rnd
seq ), especially in

terms of FPs, but also for NDCGs, where it tends to decrease the performance with respect to the baseline
(base recommender without reranking).

Secondly, it is interesting to observe that the baseline is often providing the longest routes to the users,
hence, the reranking strategies allow to create more realistic and affordable routes to the final user. Another
example of the varied range of improvements in different dimensions (below those already provided in the
main part of the paper) is the following: the distance of the route obtained by the recommender from the
Basic family (Pop) in PJ is 34.95 Km, while applying f dist

seq this distance is reduced to 7.21 Km – a decrease
of 80%. We believe these outcomes (together with those already presented) are very positive and promising,
as route recommenders normally require many different information sources and long execution times in
order to work well, but using this kind of techniques may help to find simple solutions for these cases by
balancing a tradeoff between relevance and the rest of the dimensions.

Regarding specific rerankers, the distance-based reranker ( f dist
seq ) is, by definition, the one that reduces

the most the distance of the recommended route, but what is more important is that, in some situations, it is
able to improve the performance in both NDCGs and FPs (see for example the results in PJ for most of the
families, but especially for Tour) or at least in one of the metrics (for example, in NYC this reranker is the
best in terms of FPs). The performance of the rerankers based on subsequences ( f lcs

seq and f stree
seq ) actually

depends on each dataset, although it seems they work better in PJ; nonetheless, they tend to decrease
the distance and improve FPs, but these results also depend on the recommender family, so they are not
conclusive except in PJ, where these strategies work better than the baseline in every case.

Now, if we analyze these results from the perspective of the family of the recommenders, we observe
that the behavior is pretty stable in each city, independently of the origin of the recommendations being
reranked; however, we observe how the oracle reranker obtains different values depending on the family,
which tends to be lower for those in the Tour family except in Rome, and higher in the rest, evidencing
that the recommended items being reranked (those in the top-N) have a lot of potential (except, to a lower
extent, in the Tour family) and there is room for improvement.

A.3 Extended analysis on repeated interactions

In this section, we present additional results where recommenders are allowed to return items previously
interacted by the user, a situation very common in the venue recommendation task. In the previous results
in the paper (either those shown in the main part or in the appendix), we have not processed in any way
the routes included in the test sets, hence, they may include repeated items or items previously visited by
the user; we decided not to do anything with these cases to not “break” the sequentiality inherent in the
routes followed by the users. However, as we show in Table 17, by allowing the algorithms to recommend
items the user has previously interacted with – we denote this methodology as Items in Train (as opposed to
Train Items), since every candidate item needs to appear in the training set with no further restrictions –,
the behavior of the recommenders is markedly different, in particular for those in the Basic, Classic, and
Temporal families.

More specifically, in Petaling Jaya and Tokyo, the best recommender from the Basic family is the
one returning just the training set of the user (Train); moreover, in Petaling Jaya, it is actually the best
recommender after the skylines. Thus, this is a strong baseline to beat, where some of the more complex
algorithms such as UB, Caser, or IRenMF obtain worse performance values or very close to the ones from
this method. Furthermore, in this scenario, the popularity bias found in the Train Items methodology and
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well-known in classical recommendation (Bellogı́n et al 2017) is strongly reduced, favoring another type of
baseline, evidencing that in this domain, well-known, popular venues are not as important as previously
visited venues by each user, confirming that these two scenarios (Train Items against Items in Train) are
actually modeling two different recommendation situations and hypotheses. This change of behavior could
be the reason for the change in the optimal recommenders of the other families, instead of BPR in Tokyo,
UB is the best algorithm in the Classic family, whereas in Petaling Jaya, the switch is between BPR and BF
to UB and Caser.

At the end, we argue that, by evaluating with items already interacted by the user we are aiming at
a different kind of algorithm than when those items are removed; in other terms, a recommender system
that performs very well with known items (Items in Train) is expected to distinguish well which of the
previously visited venues the user will visit next, hence, its final goal is to generate recommendations
already known by the user, probably the opposite of a recommender evaluated with only new items in the
test set (Train Items), thus aiming at recommending new, novel venues for each particular user – in fact,
some authors define explicitly such a task as recommending new places (Bothorel et al 2018).
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Bothorel C, Lathia N, Picot-Clémente R, Noulas A (2018) Location recommendation with social media
data. In: Brusilovsky P, He D (eds) Social Information Access - Systems and Technologies, Lecture

https://aaai.org/ocs/index.php/FLAIRS/FLAIRS19/paper/view/18199
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS19/paper/view/18199
http://doi.acm.org/10.1145/2507157.2507189
http://dx.doi.org/10.1007/978-3-662-07675-0_8
http://ceur-ws.org/Vol-1906/paper2.pdf
http://ceur-ws.org/Vol-1906/paper2.pdf
http://doi.acm.org/10.1145/245108.245124
https://doi.org/10.1016/j.ins.2017.08.016
https://doi.org/10.1016/j.ins.2017.08.016
http://ceur-ws.org/Vol-1922/paper8.pdf
https://doi.org/10.1007/s10791-017-9312-z
https://doi.org/10.1007/s10791-017-9312-z
https://dl.acm.org/citation.cfm?id=2798723


46 Pablo Sánchez, Alejandro Bellogı́n

Notes in Computer Science, vol 10100, Springer, pp 624–653, DOI 10.1007/978-3-319-90092-6 16,
URL https://doi.org/10.1007/978-3-319-90092-6_16

Braunhofer M, Elahi M, Ricci F, Schievenin T (2014) Context-aware points of interest suggestion with
dynamic weather data management. In: Xiang Z, Tussyadiah I (eds) Information and Communication
Technologies in Tourism 2014, ENTER 2014, Proceedings of the International Conference in Dublin,
Ireland, January 21-24, 2014, Springer, pp 87–100
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Table 12: Performance of the rerankers for the Basic family of recommenders. Same
notation as in Table 8.

Accuracy Seq. Accuracy Non Accuracy
City Reranker P NDCG TFP Ps NDCGs FPs Dist Gini EPC

NYC

Baseline 0.144 0.417 0.326 0.139 0.402 0.284 43.9 0.001 0.904
f rnd
seq 0.132 0.396 0.324 0.128 0.383 0.297 28.0 N0.002 0.935

f dist
seq 0.137 0.408 †0.331 0.134 0.396 N0.308 N4.1 0.001 N0.940

f f eat
seq 0.143 0.415 0.285 0.138 0.400 0.267 33.3 0.001 0.914

f item
seq 0.137 0.412 0.309 0.134 0.399 0.279 37.8 0.001 0.908
f rec
seq †0.147 †0.422 0.331 †0.142 †0.406 0.298 42.4 0.001 0.913
f lcs
seq 0.137 0.406 0.313 0.136 0.395 0.285 17.8 0.001 0.918

f stree
seq 0.143 0.416 0.326 0.140 0.402 0.289 38.4 0.001 0.905

f oracle
seq N0.163 N0.479 N0.332 N0.163 N0.468 0.296 43.2 0.001 0.904

TOK

Baseline 0.127 0.385 †0.385 0.126 0.374 0.372 25.8 0.001 0.849
f rnd
seq 0.118 0.368 0.379 0.116 0.356 0.365 27.5 N0.001 N0.894

f dist
seq 0.122 0.378 0.383 0.121 0.367 N0.373 N6.9 0.001 0.893

f f eat
seq 0.126 0.384 0.315 0.124 0.372 0.315 26.0 0.001 0.860

f item
seq 0.127 0.386 0.369 0.125 0.374 0.359 18.2 0.001 0.856
f rec
seq †0.129 †0.386 0.358 †0.127 †0.374 0.346 24.5 0.001 0.858
f lcs
seq 0.123 0.378 0.351 0.122 0.367 0.344 10.4 0.001 0.880

f stree
seq 0.127 0.383 0.372 0.126 0.371 0.359 15.5 0.001 0.862

f oracle
seq N0.138 N0.419 N0.386 N0.138 N0.408 0.372 25.1 0.001 0.849

ROM

Baseline 0.227 0.508 0.517 0.202 0.447 0.464 5.0 0.050 0.848
f rnd
seq 0.186 0.449 0.511 0.171 0.402 0.452 5.9 N0.077 N0.885

f dist
seq 0.225 0.523 †0.523 0.211 0.469 †0.474 N1.4 0.072 0.884

f f eat
seq 0.199 0.476 0.423 0.181 0.422 0.371 5.0 0.048 0.876

f item
seq †0.232 †0.534 0.520 †0.214 †0.473 0.469 1.8 0.067 0.872
f rec
seq 0.207 0.477 0.510 0.187 0.422 0.452 6.0 0.058 0.857
f lcs
seq 0.202 0.487 0.488 0.189 0.440 0.446 2.3 0.069 0.881

f stree
seq 0.218 0.502 0.520 0.198 0.446 0.466 3.2 0.063 0.861

f oracle
seq N0.289 N0.659 N0.531 N0.289 N0.614 N0.482 4.2 0.052 0.850

PJ

Baseline 0.128 0.413 0.249 0.126 0.404 0.245 35.0 0.001 0.915
f rnd
seq 0.118 0.394 0.283 0.117 0.387 0.274 29.5 N0.002 N0.939

f dist
seq †0.132 †0.418 N0.311 †0.130 †0.409 N0.296 N7.2 0.002 0.937

f f eat
seq 0.129 0.412 0.296 0.126 0.402 0.267 33.2 0.001 0.917

f item
seq 0.130 0.417 0.267 0.127 0.408 0.262 19.5 0.001 0.920
f rec
seq 0.131 0.415 0.277 0.129 0.407 0.271 26.3 0.002 0.924
f lcs
seq 0.130 0.413 0.293 0.128 0.403 0.274 14.8 0.002 0.926

f stree
seq 0.130 0.413 0.283 0.126 0.403 0.263 25.9 0.001 0.919

f oracle
seq N0.144 N0.463 0.251 N0.144 N0.456 0.247 34.2 0.001 0.916
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Table 13: Performance of the rerankers for the Classic family of recommenders. Same
notation as in Table 8.

Accuracy Seq. Accuracy Non Accuracy
City Reranker P NDCG TFP Ps NDCGs FPs Dist Gini EPC

NYC

Baseline 0.145 0.418 0.330 0.141 0.404 0.285 45.3 0.001 0.905
f rnd
seq 0.130 0.393 0.320 0.127 0.382 0.292 30.3 N0.002 0.935

f dist
seq 0.136 0.407 0.332 0.133 0.395 N0.309 N4.2 0.002 N0.941

f f eat
seq 0.142 0.413 0.287 0.137 0.398 0.267 33.5 0.002 0.915

f item
seq 0.138 0.413 0.307 0.136 0.400 0.276 38.0 0.001 0.908
f rec
seq †0.147 †0.422 0.332 †0.142 †0.406 0.300 42.4 0.002 0.913
f lcs
seq 0.138 0.407 0.316 0.136 0.395 0.284 17.9 0.002 0.919

f stree
seq 0.145 0.418 N0.335 0.141 0.404 0.294 38.6 0.001 0.906

f oracle
seq N0.163 N0.479 0.334 N0.163 N0.468 0.300 44.3 0.001 0.905

TOK

Baseline †0.128 †0.386 †0.389 †0.126 †0.374 N0.375 22.7 0.001 0.852
f rnd
seq 0.116 0.366 0.371 0.115 0.356 0.357 27.0 N0.001 N0.897

f dist
seq 0.123 0.378 0.374 0.122 0.367 0.362 N6.8 0.001 0.896

f f eat
seq 0.125 0.384 0.315 0.124 0.372 0.315 26.0 0.001 0.860

f item
seq 0.127 0.385 0.370 0.126 0.373 0.360 17.4 0.001 0.856
f rec
seq 0.127 0.385 0.358 0.126 0.373 0.346 24.7 0.001 0.859
f lcs
seq 0.123 0.377 0.349 0.122 0.365 0.343 10.3 0.001 0.885

f stree
seq 0.127 0.382 0.371 0.124 0.369 0.360 13.9 0.001 0.866

f oracle
seq N0.137 N0.416 N0.390 N0.137 N0.405 0.375 22.4 0.001 0.852

ROM

Baseline 0.226 0.508 0.518 0.201 0.447 0.460 6.3 0.050 0.848
f rnd
seq 0.187 0.451 0.512 0.171 0.403 0.450 5.9 N0.077 N0.886

f dist
seq 0.223 0.521 †0.525 0.210 0.468 †0.475 N1.4 0.071 0.884

f f eat
seq 0.200 0.478 0.426 0.183 0.424 0.373 5.0 0.047 0.875

f item
seq †0.234 †0.536 0.519 †0.216 †0.476 0.468 1.8 0.067 0.871
f rec
seq 0.207 0.477 0.509 0.187 0.422 0.452 6.0 0.058 0.857
f lcs
seq 0.200 0.487 0.487 0.188 0.440 0.447 2.3 0.068 0.880

f stree
seq 0.218 0.502 0.520 0.199 0.447 0.465 3.7 0.063 0.861

f oracle
seq N0.287 N0.657 N0.530 N0.287 N0.612 N0.482 4.9 0.052 0.850

PJ

Baseline 0.131 0.418 0.274 0.128 0.408 0.270 30.0 0.001 0.917
f rnd
seq 0.124 0.402 0.288 0.122 0.394 0.278 30.7 N0.002 N0.939

f dist
seq 0.132 0.418 N0.309 †0.130 †0.410 N0.294 N7.4 0.002 0.938

f f eat
seq 0.128 0.411 0.298 0.125 0.402 0.269 34.0 0.001 0.918

f item
seq 0.130 †0.419 0.272 0.127 0.409 0.268 18.5 0.001 0.920
f rec
seq 0.131 0.415 0.279 0.129 0.407 0.273 26.5 0.002 0.924
f lcs
seq †0.132 0.416 0.302 0.128 0.405 0.279 13.2 0.002 0.926

f stree
seq 0.131 0.415 0.297 0.128 0.405 0.275 22.1 0.001 0.919

f oracle
seq N0.144 N0.462 0.275 N0.144 N0.455 0.269 29.0 0.001 0.917
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Table 14: Performance of the rerankers for the Temporal family of recommenders.
Same notation as in Table 8.

Accuracy Seq. Accuracy Non Accuracy
City Reranker P NDCG TFP Ps NDCGs FPs Dist Gini EPC

NYC

Baseline 0.145 0.418 0.321 0.140 0.404 0.284 43.2 0.001 0.904
f rnd
seq 0.131 0.395 0.325 0.130 0.385 0.300 30.3 N0.002 0.935

f dist
seq 0.136 0.408 0.331 0.133 0.395 N0.308 N4.1 0.001 N0.940

f f eat
seq 0.143 0.414 0.284 0.138 0.399 0.266 33.3 0.001 0.914

f item
seq 0.138 0.413 0.309 0.135 0.399 0.277 37.7 0.001 0.907
f rec
seq †0.147 †0.422 N0.332 †0.142 †0.406 0.299 42.5 0.001 0.913
f lcs
seq 0.138 0.407 0.313 0.136 0.395 0.288 18.1 0.001 0.918

f stree
seq 0.145 0.418 0.327 0.141 0.404 0.294 38.2 0.001 0.905

f oracle
seq N0.163 N0.480 0.328 N0.163 N0.469 0.296 42.8 0.001 0.904

TOK

Baseline †0.131 †0.388 0.378 †0.129 †0.376 0.363 24.6 0.002 0.877
f rnd
seq 0.120 0.371 0.391 0.120 0.361 0.366 24.5 0.004 0.917

f dist
seq 0.125 0.378 N0.395 0.123 0.367 N0.368 N6.2 N0.004 N0.924

f f eat
seq 0.126 0.384 0.320 0.124 0.372 0.318 25.9 0.001 0.872

f item
seq 0.129 0.388 0.364 0.127 0.375 0.352 19.3 0.002 0.870
f rec
seq 0.129 0.388 0.370 0.128 0.376 0.357 25.1 0.002 0.871
f lcs
seq 0.125 0.379 0.361 0.123 0.367 0.350 9.3 0.003 0.905

f stree
seq 0.129 0.383 0.378 0.127 0.371 0.360 13.9 0.003 0.890

f oracle
seq N0.139 N0.420 0.380 N0.139 N0.409 0.363 24.0 0.002 0.877

ROM

Baseline 0.227 0.508 0.516 0.201 0.447 †0.469 4.9 0.052 0.849
f rnd
seq 0.188 0.453 0.507 0.175 0.409 0.449 6.0 N0.080 N0.887

f dist
seq 0.221 0.518 †0.520 0.207 0.464 0.468 N1.4 0.075 0.886

f f eat
seq 0.199 0.476 0.431 0.180 0.421 0.375 5.0 0.050 0.874

f item
seq †0.234 †0.535 0.518 †0.214 †0.474 0.465 1.9 0.068 0.871
f rec
seq 0.207 0.476 0.508 0.187 0.422 0.452 6.1 0.060 0.857
f lcs
seq 0.204 0.489 0.488 0.191 0.441 0.447 2.3 0.071 0.880

f stree
seq 0.218 0.501 0.519 0.198 0.445 0.468 3.1 0.065 0.863

f oracle
seq N0.285 N0.654 N0.529 N0.285 N0.608 N0.482 4.1 0.054 0.851

PJ

Baseline 0.130 0.416 0.328 0.129 0.409 0.310 24.7 0.004 0.938
f rnd
seq 0.122 0.400 0.351 0.121 0.393 N0.329 25.9 0.007 0.954

f dist
seq 0.127 0.413 N0.353 0.126 0.405 0.327 N5.4 N0.008 N0.960

f f eat
seq 0.126 0.405 0.332 0.124 0.397 0.294 23.1 0.006 0.941

f item
seq 0.130 †0.417 0.308 0.128 †0.410 0.291 18.7 0.003 0.930
f rec
seq †0.132 0.417 0.321 †0.130 0.408 0.308 25.4 0.004 0.936
f lcs
seq 0.127 0.410 0.342 0.125 0.401 0.319 9.8 0.007 0.953

f stree
seq 0.128 0.411 0.349 0.126 0.403 0.322 15.7 0.006 0.944

f oracle
seq N0.143 N0.460 0.330 N0.143 N0.453 0.313 23.7 0.004 0.938
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Table 15: Performance of the rerankers for the Geo family of recommenders. Same
notation as in Table 8.

Accuracy Seq. Accuracy Non Accuracy
City Reranker P NDCG TFP Ps NDCGs FPs Dist Gini EPC

NYC

Baseline †0.147 0.420 0.345 †0.143 0.405 0.306 43.9 0.002 0.916
f rnd
seq 0.126 0.388 0.346 0.125 0.378 0.307 22.5 N0.004 0.946

f dist
seq 0.131 0.397 0.353 0.128 0.385 0.315 N3.6 0.004 N0.959

f f eat
seq 0.137 0.406 0.311 0.133 0.393 0.281 32.8 0.004 0.930

f item
seq 0.142 0.416 0.330 0.138 0.402 0.291 37.1 0.002 0.915
f rec
seq 0.145 †0.421 0.348 0.141 †0.405 0.311 42.0 0.003 0.920
f lcs
seq 0.138 0.402 0.346 0.134 0.390 0.311 11.9 0.004 0.938

f stree
seq 0.146 0.416 N0.362 0.142 0.402 N0.321 31.3 0.003 0.921

f oracle
seq N0.162 N0.475 0.348 N0.162 N0.464 0.314 41.7 0.002 0.917

TOK

Baseline †0.131 †0.389 0.376 †0.129 †0.377 0.361 23.7 0.002 0.870
f rnd
seq 0.122 0.372 0.394 0.120 0.360 0.374 25.3 0.003 0.910

f dist
seq 0.127 0.382 N0.398 0.125 0.370 N0.375 N5.9 N0.003 N0.917

f f eat
seq 0.126 0.384 0.319 0.125 0.372 0.317 26.2 0.001 0.866

f item
seq 0.128 0.386 0.366 0.126 0.374 0.354 18.2 0.002 0.866
f rec
seq 0.130 0.388 0.365 0.128 0.376 0.354 25.2 0.002 0.870
f lcs
seq 0.125 0.379 0.355 0.123 0.367 0.346 9.0 0.003 0.902

f stree
seq 0.129 0.383 0.368 0.127 0.372 0.357 12.9 0.002 0.883

f oracle
seq N0.144 N0.428 0.380 N0.144 N0.417 0.363 23.0 0.002 0.870

ROM

Baseline 0.211 0.486 0.516 0.187 0.427 0.457 5.6 0.082 0.865
f rnd
seq 0.178 0.440 0.507 0.167 0.397 0.447 5.9 N0.127 N0.900

f dist
seq 0.213 0.507 †0.520 0.201 0.456 †0.468 N1.4 0.114 0.899

f f eat
seq 0.189 0.464 0.411 0.174 0.414 0.364 5.3 0.077 0.890

f item
seq †0.225 †0.526 0.519 †0.207 †0.467 0.466 2.1 0.081 0.872
f rec
seq 0.200 0.469 0.510 0.181 0.417 0.453 6.0 0.073 0.862
f lcs
seq 0.189 0.472 0.483 0.178 0.426 0.440 2.2 0.115 0.896

f stree
seq 0.202 0.481 0.514 0.186 0.431 0.458 3.5 0.103 0.880

f oracle
seq N0.268 N0.630 N0.527 N0.268 N0.586 N0.472 4.6 0.083 0.866

PJ

Baseline 0.129 0.415 0.296 0.126 0.406 0.286 30.0 0.008 0.931
f rnd
seq 0.121 0.397 0.322 0.119 0.390 0.307 25.1 0.015 0.949

f dist
seq 0.127 0.413 N0.337 0.125 0.405 N0.315 N5.8 N0.023 N0.960

f f eat
seq 0.126 0.406 0.316 0.123 0.397 0.282 26.8 0.007 0.929

f item
seq 0.131 †0.420 0.279 †0.130 †0.412 0.270 18.8 0.003 0.922
f rec
seq †0.132 0.416 0.301 0.130 0.407 0.290 25.8 0.003 0.931
f lcs
seq 0.128 0.410 0.331 0.126 0.401 0.308 10.5 0.013 0.943

f stree
seq 0.130 0.413 0.326 0.127 0.404 0.302 19.4 0.010 0.934

f oracle
seq N0.141 N0.456 0.297 N0.141 N0.449 0.287 28.8 0.008 0.931
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Table 16: Performance of the rerankers for the Tour family of recommenders. Same
notation as in Table 8.

Accuracy Seq. Accuracy Non Accuracy
City Reranker P NDCG TFP Ps NDCGs FPs Dist Gini EPC

NYC

Baseline 0.132 0.404 0.295 0.129 0.391 0.279 44.9 0.001 0.911
f rnd
seq 0.117 0.374 0.343 0.115 0.364 0.305 23.9 N0.002 0.945

f dist
seq 0.126 0.392 N0.350 0.124 0.381 0.311 N4.2 0.002 N0.950

f f eat
seq 0.122 0.385 0.312 0.121 0.374 0.277 20.9 0.002 0.942

f item
seq 0.137 0.410 0.316 0.134 0.397 0.283 38.1 0.002 0.912
f rec
seq †0.143 †0.417 0.316 †0.140 †0.403 0.289 41.4 0.001 0.911
f lcs
seq 0.127 0.392 0.349 0.126 0.382 N0.312 12.0 0.002 0.934

f stree
seq 0.131 0.397 0.323 0.129 0.386 0.295 32.4 0.002 0.914

f oracle
seq N0.149 N0.452 0.301 N0.149 N0.442 0.285 44.4 0.002 0.910

TOK

Baseline 0.128 †0.388 0.366 0.127 †0.376 0.351 17.9 0.002 0.878
f rnd
seq 0.115 0.365 0.380 0.115 0.355 0.359 25.7 0.002 0.924

f dist
seq 0.120 0.374 N0.385 0.119 0.364 N0.364 N6.7 0.002 N0.927

f f eat
seq 0.126 0.384 0.319 0.124 0.372 0.318 26.1 0.001 0.869

f item
seq 0.127 0.386 0.369 0.126 0.375 0.352 17.0 N0.002 0.882
f rec
seq †0.129 0.387 0.353 †0.127 0.375 0.342 24.7 0.001 0.868
f lcs
seq 0.123 0.376 0.353 0.121 0.365 0.343 11.4 0.002 0.896

f stree
seq 0.126 0.381 0.365 0.125 0.370 0.353 13.8 0.002 0.884

f oracle
seq N0.131 N0.406 0.367 N0.131 N0.395 0.352 18.5 0.002 0.878

ROM

Baseline 0.231 †0.537 0.519 0.212 †0.477 0.473 2.0 0.076 0.871
f rnd
seq 0.182 0.445 0.507 0.168 0.400 0.448 5.7 N0.100 N0.896

f dist
seq 0.221 0.519 †0.521 0.208 0.467 †0.474 N1.4 0.097 0.892

f f eat
seq 0.193 0.470 0.402 0.178 0.420 0.359 5.0 0.063 0.888

f item
seq †0.232 0.536 0.521 †0.213 0.477 0.470 1.8 0.081 0.875
f rec
seq 0.213 0.485 0.509 0.190 0.427 0.451 5.8 0.058 0.856
f lcs
seq 0.198 0.487 0.487 0.186 0.438 0.446 2.1 0.097 0.894

f stree
seq 0.215 0.510 0.515 0.201 0.457 0.466 2.4 0.090 0.882

f oracle
seq N0.279 N0.644 N0.529 N0.279 N0.600 N0.482 3.0 0.076 0.871

PJ

Baseline 0.127 0.412 0.244 0.125 0.403 0.240 28.4 0.002 0.918
f rnd
seq 0.123 0.399 0.306 0.120 0.390 0.291 30.8 N0.002 N0.941

f dist
seq †0.134 †0.422 N0.325 †0.132 †0.412 N0.309 N7.1 0.002 0.938

f f eat
seq 0.128 0.411 0.312 0.125 0.401 0.278 31.6 0.001 0.921

f item
seq 0.129 0.416 0.277 0.126 0.406 0.271 16.9 0.002 0.923
f rec
seq 0.132 0.416 0.280 0.130 0.408 0.273 26.6 0.002 0.923
f lcs
seq 0.132 0.417 0.315 0.129 0.406 0.290 13.9 0.002 0.929

f stree
seq 0.128 0.412 0.291 0.126 0.403 0.272 21.5 0.002 0.921

f oracle
seq N0.143 N0.462 0.250 N0.143 N0.455 0.244 28.0 0.002 0.918
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Table 17: Performance for all the cities when items already seen by the user are also
allowed in the recommendations. Notation as in Table 11.

Accuracy Seq. Accuracy Non Accuracy
City Family Rec P NDCG TFP Ps NDCGs FPs Dist Gini EPC

NYC

Basic Pop 0.152 0.431 0.326 0.146 0.414 0.286 47.6 0.001 0.896
Classic UB 0.155 0.433 †0.354 0.148 0.416 †0.320 †27.6 †0.011 †0.939

Temporal BF 0.160 0.443 0.340 0.151 0.424 0.306 40.1 0.004 0.922
Geo IRenMF †0.163 †0.445 0.353 †0.155 †0.427 0.319 37.0 0.003 0.918
Tour ItemMC 0.143 0.422 0.291 0.138 0.406 0.281 48.3 0.001 0.902

Skylines TestOrder N0.497 N0.990 N0.497 N0.497 N0.970 N0.497 N9.3 N0.024 N0.976

TOK

Basic Train 0.166 0.448 †0.403 0.157 0.424 †0.376 22.2 †0.016 †0.940
Classic UB 0.162 0.439 0.371 0.155 0.420 0.359 23.2 0.003 0.864

Temporal BF 0.164 0.442 0.373 0.158 0.422 0.359 21.1 0.002 0.858
Geo IRenMF †0.172 †0.449 0.376 †0.162 †0.426 0.364 21.7 0.002 0.855
Tour ItemMC 0.156 0.429 0.386 0.151 0.413 0.375 †12.4 0.002 0.846

Skylines TestOrder N0.518 N0.994 N0.518 N0.518 N0.970 N0.518 N9.1 N0.020 N0.955

ROM

Basic Pop 0.233 0.514 0.532 0.204 0.450 0.477 4.0 0.035 0.819
Classic BPR 0.235 0.516 †0.534 0.206 0.452 0.467 4.7 0.035 0.821

Temporal Fossil 0.232 0.515 0.526 0.206 0.453 0.442 5.1 0.036 0.829
Geo RankGeoFM 0.210 0.482 0.513 0.190 0.429 0.458 5.3 0.068 0.841
Tour ItemMC †0.255 †0.567 0.533 †0.234 †0.501 †0.483 N1.3 †0.082 †0.886

Skylines TestOrder N0.546 N1.000 N0.546 N0.546 N0.936 N0.546 2.3 N0.202 N0.907

PJ

Basic Train †0.160 †0.473 0.355 †0.151 †0.454 0.325 21.5 N0.029 †0.972
Classic UB 0.158 0.468 0.330 0.150 0.449 0.313 21.5 0.006 0.939

Temporal Caser 0.151 0.450 0.324 0.148 0.439 0.310 22.2 0.007 0.942
Geo IRenMF 0.155 0.457 †0.367 0.149 0.444 0.343 22.0 0.010 0.964
Tour ItemMC 0.143 0.443 0.356 0.141 0.433 †0.345 †11.0 0.002 0.942

Skylines TestOrder N0.436 N0.967 N0.434 N0.436 N0.954 N0.434 N8.5 0.025 N0.977
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