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ABSTRACT
Users from Location-Based Social Networks can be characterised
by how and where they move. However, most of the works that
exploit this type of information neglect either its sequential or its
geographical properties. In this article, we focus on a specific fam-
ily of recommender systems, those based on nearest neighbours;
we define related users based on common check-ins and similar
trajectories and analyse their effects on the recommendations. For
this purpose, we use a real-world dataset and compare the per-
formance on different dimensions against several state-of-the-art
algorithms. The results show that better neighbours could be dis-
covered with these approaches if we want to promote novel and
diverse recommendations.
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1 INTRODUCTION
The aim of Recommender Systems (RS) is to help users in finding
relevant items, usually by filtering large catalogues and taking into
account the users’ preferences. Collaborative Filtering (CF) sys-
tems can be considered as the earliest and most widely deployed
recommendation approach [16], suggesting interesting items to
users based on the preferences from “similar” or related people [23].
Other types of recommendation algorithms include content-based
systems – that suggest items similar to those the user preferred or
liked in the past and based on content features of the items in the
system [22] –, demographic systems – where users are categorised
based on their demographic attributes [2] –, social filtering systems
– exploiting contacts, interactions, and trust between users [13] –,
and hybrid recommenders – where different techniques are com-
bined in order to palliate individual drawbacks of the algorithms [4].
In this work, we focus on Location-Based Social Networks (LBSNs),
where users share the venues, places, or Points-of-Interest (POI)
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they visit, establish connections with other users, and check venue
properties, such as their opening times, opinions, and pictures.

Because of the increasing number of users registered in LBSNs
and similar systems, POI recommendation approaches have become
particularly useful and several specific models have been proposed
in recent years. In particular, such approaches tend to incorporate
inherent properties of these systems, such as social, geographical,
or temporal information [20, 21]. However, nearest neighbour tech-
niques have been, in general, neglected in most of these studies, in
favour of matrix factorisation or neural networks models [21, 24].
Nonetheless, we believe that algorithms based on similarities have a
huge potential, since they may provide efficient computation, easy
implementation, and explainable recommendations [23], but also
because it has been demonstrated recently that these techniques
can also achieve quite competitive results, even when compared
against neural network approaches [9].

More specifically, in this work we propose to integrate user mo-
bility patterns in the computation of the similarity between users.
Hence, in order to decide which users should be considered when
producing recommendations, we present two different techniques:
one based on exploiting common check-ins and another that ac-
counts for how close two trajectories (defined as the trail left by
each user in the system) are. We show results on one city (Tokyo)
extracted from a real-world dataset of Foursquare check-ins. We
demonstrate that the proposed similarities are not better than clas-
sical methods in terms of performance, but they allow to better
predict the category of the next POI to visit, while producing more
diverse and novel recommendations, especially for those users iden-
tified as tourists (in contrast with those identified as locals). We
also show that the neighbours found by our approaches are more
similar to those in the social network of the users in comparison
with the neighbours found by pure CF user similarities.

2 BACKGROUND
Collaborative Filtering Recommender Systems are usually classified
in two categories: model-based and memory-based. Model-based
approaches build statistical models of user/item interaction patterns
to provide automatic predictions, through, e.g., matrix factorisation
(MF) or probabilistic models [16]; memory-based algorithms, on
the other hand, make predictions based on the entire collection of
interactions, usually by computing similarities between users or
items and taking those similarities into account when producing
the recommendations [23].

In this paper, our focus is on the second type of CF algorithms,
also known as nearest-neighbour recommender systems since they
exploit those similarities to rank the users/items and use the closest
ones (neighbours) to generate recommendations. While there are
several variations of the formulations for these methods, those tai-
lored for ranking purposes, instead of rating prediction, are more
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Figure 1: Check-ins collected from two users (one in blue
and the other in green) in the city of New York. Note that
there aremanymore places in common in the center ofMan-
hattan.

popular nowadays [1, 8], where the predicted score is not nor-
malised to fall in a pre-defined range:

r̂ (u, i) =
∑

v ∈Nk (u)

r (v, i)sim(u,v) (1)

where r (u, i) and r̂ (u, i) denote the recorded rating and predicted
score by user u on item i respectively, sim(u,v) is a user similarity
function, and Nk (u) provides a neighbourhood of size k for user u.

3 DISCOVERING RELATED USERS
In this paper, we propose different strategies to select users in a
Location-Based Social Network. Hence, we shall use the same for-
mulation as in the classical user-based nearest neighbour algorithm
(i.e., Equation 1) but changing the computation of the similarity
between users, hence impacting in the neighbourhood computation
and in the weight used to estimate the preferences. Thus, in the
next sections we present our user similarity approaches tailored
for LBSNs.

3.1 Exploiting common check-ins within a
temporal window

The first approach we propose is based on the assumption that
those users who visit the same venue around the same time are
more similar. In this sense, this strategy – that we name Ad-hoc –
is an adaptation of the frequently used overlap measure in classical
scenarios but tailored for a domain where the temporal dimension
is very important. It is formulated as follows:

simδ (u,v) = ∥{i ∈ I : |t(u, i) − t(v, i)| < δ }∥ (2)

where ∥S ∥ denotes the number of elements in S , I is the set of
all items in the system, t(u, i) returns the timestamp when user
u checked-in in item i (if this did not happen, then it is infinity),
and δ is a parameter to control the temporal window we allow to
consider two users as similar if they have an item in common.

Under this perspective, and considering the toy example shown
in Figure 1, those two users may be found as very similar or not
depending on whether they tend to visit the same places at similar
times. Hence, with this similarity function we impose a harder
constraint on the time dimension than other strategies.

3.2 Exploiting common trajectories
Our second approach is based on the assumption that users are
similar if their trajectories in the system are similar. For this, we
use standard methods to compute trajectory similarities such as
Dynamic Time Warping and Hausdorff distance [31]. We need first
to transform the user check-ins into trajectories; as in previous
works [24], we split the check-ins in such a way that if two consec-
utive user interactions are too distant in time (in our case, 8 hours)
they are assigned to different trajectories of that user.

Thus, once a useru has been split in several trajectories (xu1 , · · · ,x
u
n ),

we compute the following similarity by averaging the trajectory
similarity values over all pairs for both users:

sim(u,v) =
1

n ·m

n∑
j=1

m∑
k=1

tsim(xuj ,x
v
k ) (3)

where n andm correspond to the number of trajectories of users u
and v , respectively, and tsim(·, ·) is a trajectory similarity function.
In this work we shall use either a fast implementation of the Dy-
namic Time Warping function described in [29] and implemented
in Python1 (that we denote as TS-DTW), or an efficient version of the
Hausdorff distance described in [30] and implemented in Python’s
SciPy (named as TS-Haus).

If we revisit the example shown in Figure 1 with this type of
similarity, we argue that some parts of each user trajectory are
quite close to each other and, hence, similar, whereas other parts
are very distant to each other. Thus, we conclude that the proposed
similarity is more flexible in both temporal and spatial dimensions,
since all the points visited within a time frame (8 hours) will be
considered in a trajectory basis.

In the future, we would like to explore other, more complex algo-
rithms tailored at finding objects that move together, such as Flock,
Convoy, or ST-DBSCAN [6, 11, 28]. These methods are computa-
tionally very expensive and, to the best of our knowledge, they have
not been applied to check-in data, but to spatio-temporal data at dif-
ferent granularity levels. However, they could help us discriminate
check-ins that are geographically similar but temporally different
from those that are simply geographically or temporally similar, in
contrast to the ones presented in this work.

4 EXPERIMENTS
We performed experiments on the Foursquare global check-in
dataset2 used in [32]. This dataset is formed by 33M check-ins
in different cities around the world, although we decided to focus
1https://github.com/slaypni/fastdtw
2https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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Table 1: Performance comparison for all users. Best result
on each metric is identified by a †, whereas the best result
among those methods using neighbours (Ad-hoc, TS-DTW,
TS-Haus, and UB) is highlighted in bold.

Recommender NDCG FA AD EPC

Ad-hoc 0.054 0.206 3,314 0.741
TS-DTW 0.036 0.203 408 0.871
TS-Haus 0.036 0.215 442 0.870

UB 0.062 0.201 1,899 0.912

IB 0.046 †0.264 †13,685 †0.956
BPR 0.066 0.229 28 0.872

IRenMF †0.069 0.225 1,475 0.888

Table 2: Performance comparison on local users.

Recommender NDCG FA AD EPC

Ad-hoc 0.050 0.181 2,829 0.735
TS-DTW 0.032 0.179 358 0.869
TS-Haus 0.032 0.191 405 0.869

UB 0.057 0.177 1,440 0.704

IB 0.042 †0.250 †11,929 †0.872
BPR 0.059 0.204 26 0.608

IRenMF †0.063 0.200 1,199 0.647

on one city (Tokyo) since it is among those with more interactions
in the dataset, consistent with its cultural importance and tourism
impact. It is also a frequent city used in related works to test this
type of recommenders [10, 15, 33].

We created a temporal split, with 6 months of data for training
(May - Oct ’12) and one month for test (Nov ’12); this period of
the year was selected to capture seasonal trends related to summer,
while including enough data to obtain significant results. We per-
formed a 2-core before splitting the data, so that every user and
item have at least two preferences [26]. This resulted in a dataset
with 328K check-ins made by 8.6K users on 28.6K items.

In terms of the algorithms being tested, although our main base-
line is the user-based nearest neighbour (since our proposals use the
same formulation where we change the similarity function) [23],
we also include in our comparison other state-of-the-art recom-
menders that have demonstrated good performance for POI rec-
ommendation [20]: IB [23] provides item-based nearest neighbour
recommendations; BPR [25] is the Bayesian Personalised Rank-
ing method using a MF technique; and IRenMF [21] is a weighted
MF method that also exploits the geographical influence between
neighbour venues.

4.1 Performance comparison
In this section, we analyse the performance of the proposed user
similarities. For this, we report the following evaluation metrics
(always at top-10): NDCG captures the classical ranking-based ac-
curacy in terms of Normalised Discounted Cumulative Gain [12],
FA measures precision at the category level, i.e., a match is found
whenever a category in the recommendation list appears in the
test set of the user (named FA from feature agreement, as in [17]),

Table 3: Performance comparison on tourist users.

Recommender NDCG FA AD EPC

Ad-hoc 0.071 †0.271 1,217 0.770
TS-DTW 0.069 0.246 320 0.847
TS-Haus 0.068 0.252 333 0.839

UB 0.095 0.245 1,133 0.710

IB 0.064 0.262 †3,208 †0.858
BPR 0.108 0.266 18 0.566

IRenMF †0.111 0.262 106 0.580

and AD and EPC measure recommendation diversity and novelty,
respectively [5]: AD (Aggregate Diversity) considers how many
different items are being recommended whereas EPC (Expected
Popularity Complement) measures how unpopular (as a measure-
ment of novelty) the returned items are. These four dimensions
are significant in location-based recommendation since accuracy,
diversity, and novelty are important for users of these systems,
whereas the feature agreement provides a necessary tradeoff to
balance the difficulty of predicting the actual next POI that the
user will visit; because of that, in some works researchers measure
precision in terms of the item features (usually categories), so that a
correct recommendation is considered whenever the features of the
recommended items are found in the user test set [3, 14, 17, 19, 24].

Table 1 shows the results of the previously described metrics for
the recommenders optimised according to their NDCG value. In
this table we observe that the methods based on neighbours (either
those proposed in this work or the baselines UB and IB) are not
competitive when compared against BPR or IRenMF in terms of
accuracy. They obtain, however, better results in the other dimen-
sions, especially IB, where the proposed approaches outperform
UB, more specifically, in FA and AD.

Nonetheless, it is well-known that users from LBSNs are varied
in nature, in particular, these systems encompass local and tourist
users with different motivations and preferences when moving
around a city [18]. Because of this, in Tables 2 and 3 we restrict the
computations of themetrics to those users categorised as locals or as
tourists.We do this by discriminating their check-in behaviour, as in
previous works [7]: if the difference in timestamp between the first
and the last check-in is larger than 21 days, the user is classified as a
local, otherwise as a tourist – this period is taken from the literature
where it is assumed that most tourists concentrate their visits within
a short time period, whereas local users will perform the check-ins
on a city over a much longer period of time. It should be noted that
other approaches exist where, instead of considering a temporal
period between the check-ins, the average distance between all the
check-ins of the user are considered to estimate her home location
(and decide whenever the user is abroad) [7, 18, 20, 32]. In the same
process, we also remove those bogus users which show unrealistic
behaviour, such as too many check-ins in a short time or travels
that would require moving too fast for a person, as in [24, 32].

Under this perspective, we observe that neighbour recommenders
improve their performance: even though IRenMF is still the best
algorithm, UB shows NDCG values closer to that method. However,
it is for the rest of the dimensions – especially, FA – where these
methods, and our proposed approaches in particular, stand out. We



Table 4: Overlap between top neighbours and explicit social
network. The first column denotes the number of neigh-
bours selected: whether those that optimise performance
(Best, matching what is reported in Table 3) or the same
number as the baseline (As UB). Columns T-NDCG and T-FA
show the value of these metrics on tourist users.

Neigh. Sel. Method Avg. Total T-NDCG T-FA

Best Ad-hoc 2 1,008 0.071 0.271
TS-DTW 9 4,833 0.069 0.246
TS-Haus 9 4,833 0.068 0.252

As UB Ad-hoc 2 1,008 0.071 0.273
TS-DTW 2 1,074 0.056 0.271
TS-Haus 5 2,685 0.050 0.270

UB 4 2,140 0.095 0.245

observe that for tourist users the Ad-hoc approach is the best one in
terms of FA, and all the proposed strategies outperform classical UB
in this scenario, not only in FA, but also in terms of diversity (AD)
and novelty (EPC). Our hypothesis is that these strategies work bet-
ter for tourists because their trajectories are more meaningful than
those for local users, which might be shorter or too monotonous.

In summary, we conclude that obtaining related users (neigh-
bours) by exploiting common check-ins or trajectories is more
beneficial for tourists than for other users, especially when decid-
ing the category of the next place to visit (measured by FA) and to
enhance the recommendation with novel and diverse items.

4.2 Social network analysis
In this section we explore whether the neighbours found by the
proposed approaches are more similar to the social connections ex-
plicitly followed by the users. For this, we use an additional dataset
provided by the same authors as the global check-in dataset used
previously, where an external social network (Twitter) is extracted
for the same users whose Foursquare check-ins were collected. Ta-
ble 4 reports the average and total overlap between the groundtruth
connections (actual social network) and the top-N neighbours de-
pending on different strategies to discover related users. For this,
we explore two different number of neighbours for our approaches:
either the one that optimises performance (as in the previous sec-
tion) or, for the sake of comparison, the same number of neighbours
as the baseline.

Based on these results, we observe that the overlap with respect
to the explicit social network of the user does change depending
on the similarity employed to find users when optimising for per-
formance. Whereas classical UB is somewhat in the middle, both
strategies based on trajectory similarity are clearly better than the
rest, evidencing that in Location-Based Social Networks there is a
connection between the social network and the places visited by
the users.

Furthermore, when using the same number of neighbours as
the baseline, TS-Haus is the only approach that outperforms (by
a slight margin) the overlap with the explicit social network with
respect to the baseline. However, it should be noted that even for

this (smaller) amount of neighbours, the obtained FA for tourist
users remains competitive.

It is, however, not obvious which part is the cause and which the
effect: whether users visit some places because their social network
instigates it or if they follow certain users in the network because
they observe that they share some places in common. Investigating
an explanation for this phenomenon is left for future work, together
with an exhaustive comparison against recommender systems ap-
proaches based on social networks, such as those using semantic
associations or trust and reputation techniques [13, 27].

5 CONCLUSIONS AND FUTUREWORK
In this paper, we have proposed two novel similarity metrics be-
tween users for a recommendation system that exploits user check-
ins in Location-Based Social Networks. One metric captures the
amount of common visited places within a predefined temporal
window, so as to consider users as similar whenever they tend to
visit the same places around the same time. The other metric is the
first adaptation, to the best of our knowledge, of trajectory similar-
ity metrics for recommendation; we make use of previous methods
to transform check-ins into trajectories, and, after that, two popular
trajectory metrics (Dynamic TimeWarping and Hausdorff distance)
are integrated.

The empirical evaluation of our proposal shows competitive
results in terms of beyond-accuracy metrics (diversity and novelty).
Especially positive results have been obtained when we isolate the
evaluation only for tourists users (separated from users classified
as locals), evidencing the inherently different behaviour of users in
these systems, which should entail different strategies for each type
of users.We have also found that our approaches were very accurate
on predicting the category of the next item to visit, although not
so good on predicting the actual items, as measured by classical
accuracy metrics. Our analysis shows that one possible explanation
for this effect is that the proposed similarity functions – in particular,
those that exploit common trajectories – are able to predict better
than classical similarity metrics the users that belong to a user’s
social network.

Several directions open up from this point to explore the poten-
tial of the proposed similarity metrics, some of them have already
been mentioned in the paper. We are particularly interested in
exploring algorithms from the co-movement pattern mining com-
munity, even though they tend to be particularly expensive. We
would also like to analyse in detail how the advances done in POI
recommendation based on check-ins could be translated into sce-
narios where GPS trajectories with high granularity are available,
such as data generated from mobility and smart city applications.
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