



# Discovering Related Users in Location-Based Social Networks

#### Sergio Torrijos, Alejandro Bellogín, Pablo Sánchez Universidad Autónoma de Madrid Spain

UMAP, July 2020



#### Motivation

Escuela Politécnico

- Neighbour-based recommender systems
  - Easy to understand and implement
  - Allow straightforward explanations
- In this work: focus on LBSN (users check-in in POIs)
  - Is it possible to adapt similarity metrics to this domain?
  - In particular: how can we integrate **sequentiality** and **geographical** information into neighbour-based recommendation?





- Recommender systems
  - Users interact (rate, purchase, click) with items



Escuela Politécnica Superior

Alejandro Bellogín – UMAP, July 2020





#### Recommender systems

• Users interact (rate, purchase, click) with items



\*\*\*\*\* \*\*\*\*\* \*\*\*\*\*







\*\*\*\*\* \*\*\*\*\* \*\*\*\*\*





#### Recommender systems

• Users interact (rate, purchase, click) with items



\*\*\*\*











\*\*\*\*\* \*\*\*\*\* \*\*\*\*\*





#### Recommender systems

• Users interact (rate, purchase, click) with items



\*\*\*\*\* \*\*\*\*\* \*\*\*\*\*





\*\*\*



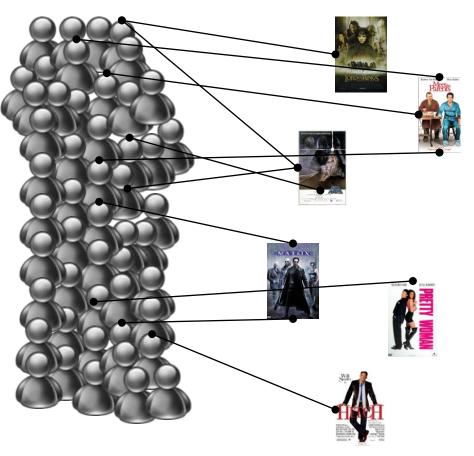
• Which items will the user **like**?







- Nearest-neighbour recommendation methods
  - The item prediction is based on "similar" users

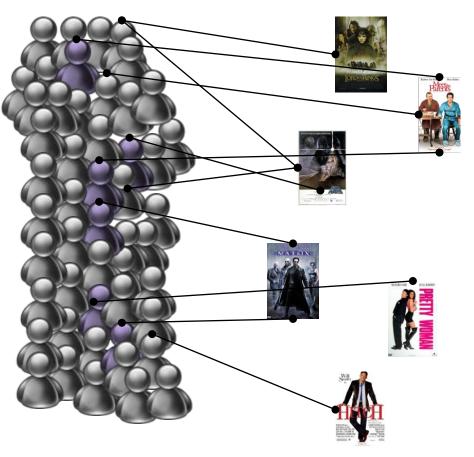






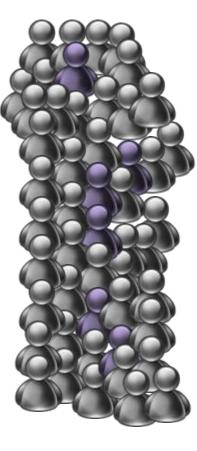


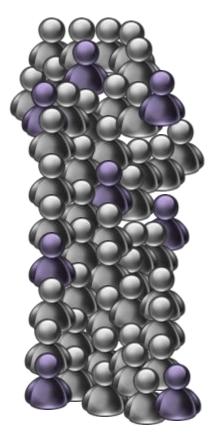
- Nearest-neighbour recommendation methods
  - The item prediction is based on "similar" users

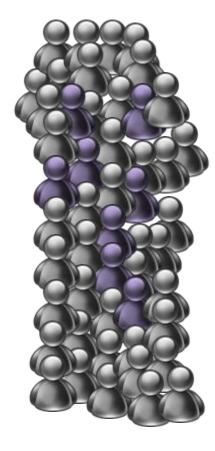






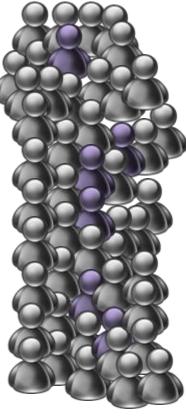




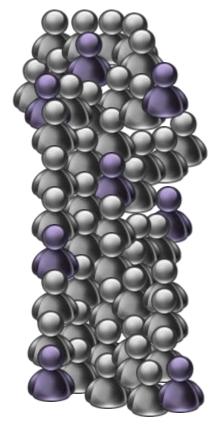


Escuela Politécnica Superior

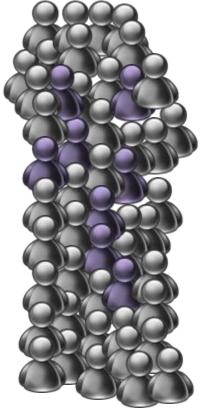






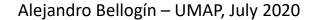




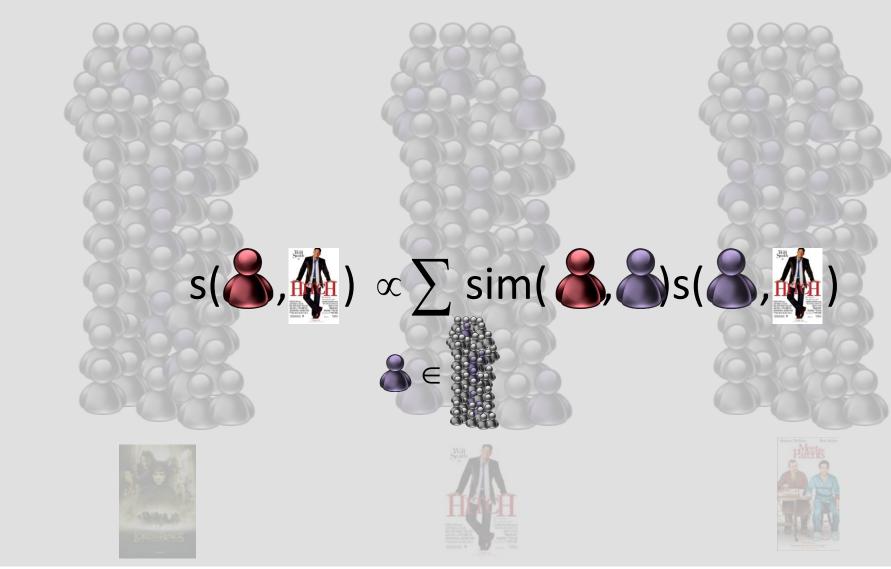


Escuela Politécnica Superior





#### Universidad Autónoma Different similarity metrics – different neighbours



de Madrid

11







#### **Research question**

#### Based on typical interactions in Location-Based Social Networks...

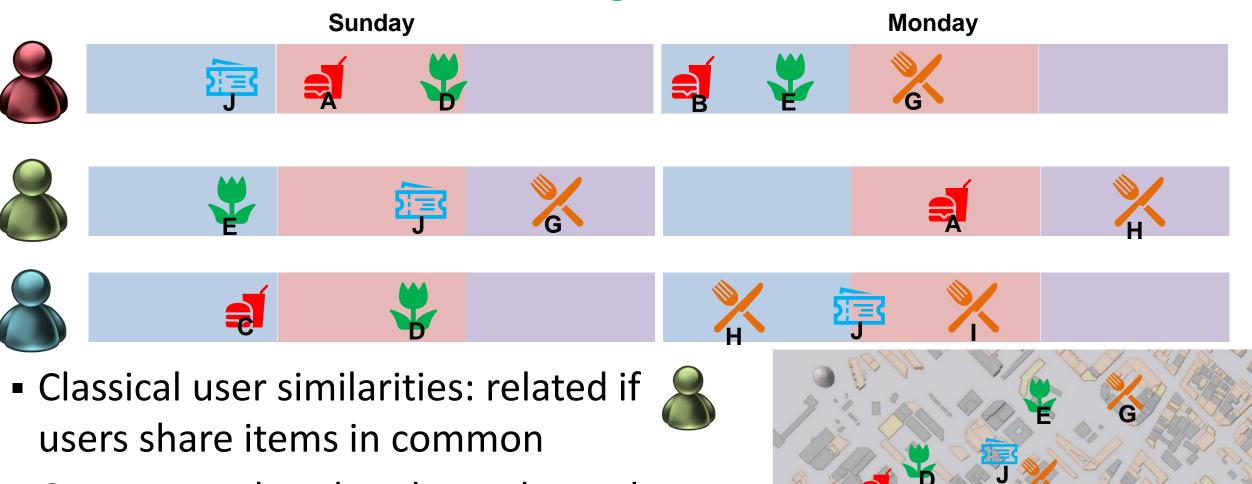


# can we identify different types of users and select the most relevant ones as neighbours?





#### **Discovering related users**



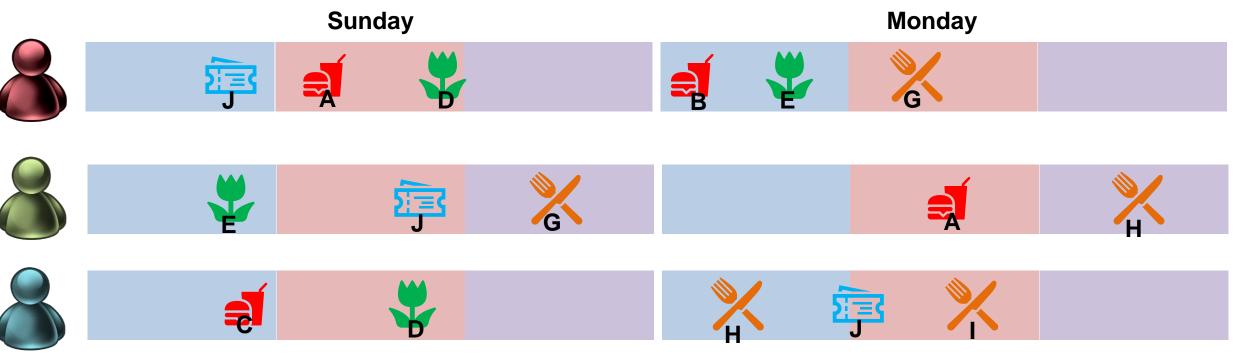
 Our approach: relatedness depends on when and how near items are





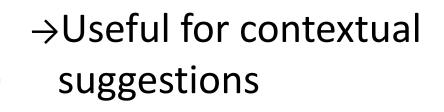


#### **Discovering related users**



- Classical user similarities: related if users share items in common
- Our approach: relatedness depends on when and how near items are

 $\rightarrow$ Captures global preferences



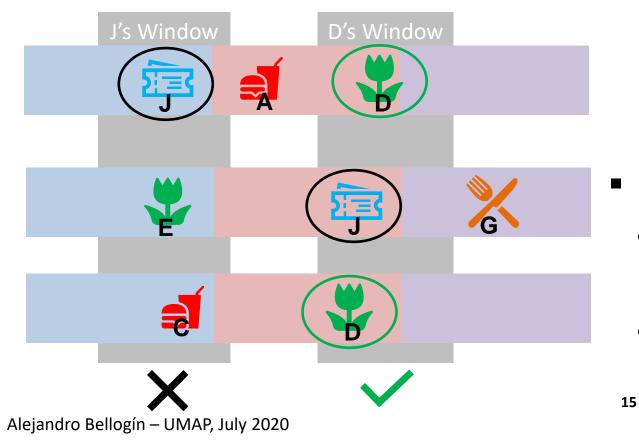
Alejandro Bellogín – UMAP, July 2020

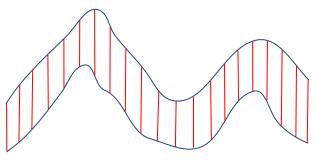




# Exploiting temporal and geographical information

- Exploiting check-ins within a temporal window: *ad-hoc*
  - focus on check-ins around the same time





Euclidean

DTW

- Exploiting common trajectories
  - Users are similar if their trajectories are similar
  - Trajectory similarity metrics:
    - Dynamic Time Warping (DTW)
    - Hausdorff distance



## Experiments

Escuela Alitécnico

- Foursquare data: Tokyo from global check-in dataset (33M) ~ 328K
- Temporal Split: 6 months for training, 1 month test
- Baselines
  - UB: neighbour recommender with classic user similarity
  - IB: neighbour recommender with classic item similarity
  - BPR: Bayesian Personalised Ranking using a matrix factorisation algorithm
  - IRenMF: matrix factorisation algorithm that exploits geographical influence
- Metrics
  - NDCG: accuracy of item recommendations
  - FA: feature agreement, or precision in terms of category matching (not items)
  - AD and EPC: diversity and novelty metrics

Alejandro Bellogín – UMAP, July 2020





#### Performance comparison

 Neighbours are not competitive against MF methods in terms of accuracy

| Recommender | NDCG   | FA     | AD      | EPC    |
|-------------|--------|--------|---------|--------|
| Ad-hoc      | 0.054  | 0.206  | 3,314   | 0.741  |
| TS-DTW      | 0.036  | 0.203  | 408     | 0.871  |
| TS-Haus     | 0.036  | 0.215  | 442     | 0.870  |
| UB          | 0.062  | 0.201  | 1,899   | 0.912  |
| IB          | 0.046  | †0.264 | †13,685 | †0.956 |
| BPR         | 0.066  | 0.229  | 28      | 0.872  |
| IRenMF      | †0.069 | 0.225  | 1,475   | 0.888  |





#### Performance comparison

- Neighbours are not competitive against MF methods in terms of accuracy
- Much better results are found for beyond-accuracy dimensions:
  - Ad-hoc is the best one for diversity (AD)
  - Similarity with Hausdorff is the best one for category accuracy (FA)

| Recommender | NDCG   | FA     | AD      | EPC    |
|-------------|--------|--------|---------|--------|
| Ad-hoc      | 0.054  | 0.206  | 3,314   | 0.741  |
| TS-DTW      | 0.036  | 0.203  | 408     | 0.871  |
| TS-Haus     | 0.036  | 0.215  | 442     | 0.870  |
| UB          | 0.062  | 0.201  | 1,899   | 0.912  |
| IB          | 0.046  | †0.264 | †13,685 | †0.956 |
| BPR         | 0.066  | 0.229  | 28      | 0.872  |
| IRenMF      | †0.069 | 0.225  | 1,475   | 0.888  |





## Impact on local vs tourist users

- There are different types of users in LBSNs:
  - Locals (if their check-ins span more than 21 days) vs tourists
- IRenMF is still the best approach
- But neighbour recommenders improve their performance for tourists
  - In particular, for FA

| Recommender | NDCG   | FA     | AD      | EPC    |
|-------------|--------|--------|---------|--------|
| Ad-hoc      | 0.050  | 0.181  | 2,829   | 0.735  |
| TS-DTW      | 0.032  | 0.179  | 358     | 0.869  |
| TS-Haus     | 0.032  | 0.191  | 405     | 0.869  |
| UB          | 0.057  | 0.177  | 1,440   | 0.704  |
| IB          | 0.042  | †0.250 | †11,929 | †0.872 |
| BPR         | 0.059  | 0.204  | 26      | 0.608  |
| IRenMF      | †0.063 | 0.200  | 1,199   | 0.647  |

| Recommender | NDCG   | FA              | AD     | EPC    |
|-------------|--------|-----------------|--------|--------|
| Ad-hoc      | 0.071  | † <b>0</b> .271 | 1,217  | 0.770  |
| TS-DTW      | 0.069  | 0.246           | 320    | 0.847  |
| TS-Haus     | 0.068  | 0.252           | 333    | 0.839  |
| UB          | 0.095  | 0.245           | 1,133  | 0.710  |
| IB          | 0.064  | 0.262           | †3,208 | †0.858 |
| BPR         | 0.108  | 0.266           | 18     | 0.566  |
| IRenMF      | †0.111 | 0.262           | 106    | 0.580  |

#### Local users

#### Tourist users





## Social network analysis

• How similar are the found neighbours to explicit social connections?

| Neigh. Sel. | Method  | Avg. | Total | T-NDCG | T-FA  |
|-------------|---------|------|-------|--------|-------|
| Best        | Ad-hoc  | 2    | 1,008 | 0.071  | 0.271 |
|             | TS-DTW  | 9    | 4,833 | 0.069  | 0.246 |
|             | TS-Haus | 9    | 4,833 | 0.068  | 0.252 |
| As UB       | Ad-hoc  | 2    | 1,008 | 0.071  | 0.273 |
|             | TS-DTW  | 2    | 1,074 | 0.056  | 0.271 |
|             | TS-Haus | 5    | 2,685 | 0.050  | 0.270 |
|             | UB      | 4    | 2,140 | 0.095  | 0.245 |

- TS-Haus always obtains more social connections than the baseline UB
- Performance accuracy on tourist users is competitive (T-NDCG)
- Feature agreement is always better than baseline (T-FA)



## Conclusions

Escuela Politécnico

- Two novel similarity metrics for LBSN are proposed
  - Integrating the temporal dimension and geographical information
- Competitive results in terms of beyond-accuracy metrics
  - Novelty and diversity
  - Especially positive when users are identified as tourists
- Future: explore research on mining GPS trajectories to analyse its application to check-ins from LBSNs







# Discovering Related Users in Location-Based Social Networks

Slides, code and more: <a href="http://ir.ii.uam.es/~alejandro/publications.html">http://ir.ii.uam.es/~alejandro/publications.html</a>

Sergio Torrijos, Alejandro Bellogín, Pablo Sánchez Universidad Autónoma de Madrid

Spain

#### UMAP, July 2020