
Time and Sequence Awareness in Similarity Metrics for
Recommendation

Pablo Sánchez, Alejandro Bellogı́n

Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain

Abstract

Modeling the temporal context efficiently and effectively is essential to provide useful
recommendations to users. In this work, we focus on improving neighborhood-based
approaches where we integrate three different mechanisms to exploit temporal informa-
tion. We first present an improved version of a similarity metric between users using a
temporal decay function, then, we propose an adaptation of the Longest Common Sub-
sequence algorithm to be used as a time-aware similarity metric, and we also redefine
the neighborhood-based recommenders to be interpreted as ranking fusion techniques
where the neighbor interaction sequence can be exploited by considering the last com-
mon interaction between the neighbor and the user.

We demonstrate the effectiveness of these approaches by comparing them with
other state-of-the-art recommender systems such as Matrix Factorization, Neural Net-
works, and Markov Chains under two realistic time-aware evaluation methodologies
(per user and community-based). We use several evaluation metrics to measure both
the quality of the recommendations – in terms of ranking relevance – and their temporal
novelty or freshness. According to the obtained results, our proposals are highly com-
petitive and obtain better results than the rest of the analyzed algorithms, producing
improvements under the two evaluation dimensions tested consistently through three
real-world datasets.

Keywords: Recommender Systems, Time-aware, Sequence, Neighborhood,
Collaborative filtering

1. Introduction

Recommender Systems (RS) are software tools whose main objective is to suggest
items that may be relevant to the users of a system [1, 2]. They are especially signifi-
cant today because of their ability to deal with the growing massive information on the
Internet by filtering data and providing personalized recommendations to the users [3].5

For that reason, a large number of companies like Netflix (streaming platform), Spo-
tify (music), LinkedIn (business oriented social network), TripAdvisor (travel-content
website), and many more make use of them, in order to adapt to the needs of each
user individually. Depending on how these recommendations are made, different types
of models can be distinguished. Two of the most well-known approaches include the10

content-based (CB) recommenders, which suggest items similar to the ones the user

Preprint submitted to Information Processing and Management February 11, 2020

liked in the past [4] and the collaborative filtering (CF), that exploit the preferences
between users and items to perform recommendations [1]. However, as each proposal
has drawbacks under some circumstances, typically several strategies are combined by
creating hybrid approaches in order to alleviate these problems [2].15

Beyond these classic algorithms that typically work with user-item-rating tuples
or with user/item features, it has been argued recently that incorporating contextual
knowledge like location, time, or even the weather can be crucial in order to perform
recommendations in some situations [5, 6]. Among the different contexts, temporal
information is one of the most interesting ones to be integrated into the recommenda-20

tion algorithms, due to its facility to be captured and because it usually discriminates
better than other dimensions, allowing us to detect patterns in the user behavior and
recommend items matching the current user’s needs [5, 7]. Nevertheless, the integra-
tion of this type of information into other classical strategies such as those based on
user or item similarities is not trivial and it has typically been proposed as heuristic fil-25

ters [8, 7]; because of this, it is one of the main problems we aim to address in this work.
On the other hand, other recommendation techniques have emerged to model the tem-
poral context with more or less success, mainly based on Markov Chains [9], Matrix
Factorization [10] (or different combinations of methods using these models [11, 12]),
and Neural Networks [13, 14, 6]. However, and as discussed in recent works [15],30

recommendation based on temporal information is not the same as recommendation
based on sequences: those methods that exploit the time dimension need the actual
time a user interacted with an item, whereas those that exploit sequences only use the
order of the interacted items (this order, of course, could be derived from the temporal
information, but it could also be derived from any other information that encodes the35

order).
At the same time, RS evaluation has been traditionally linked to the analysis of

the relevance of the recommendations using Information Retrieval (IR) metrics such as
Precision, MAP, or nDCG normally in a cross-validation (random) evaluation method-
ology [16]. Nonetheless, some researchers alerted about the use of more realistic eval-40

uation methodologies by taking the interaction time into account when creating the
splits [7]. The use of such methodologies is not straightforward, and there are several
options worth of exploration [7], although, in summary, they are characterized by the
fact that all the interactions of a particular user in the test set must occur in the orig-
inal dataset after her interactions included in the training set. In this work, since we45

deal with temporal information and time-aware recommendation algorithms, we will
follow some of these temporal evaluation methodologies and analyze their effect on
the performance of the studied methods. Furthermore, once that temporal information
becomes available, other evaluation dimensions besides relevance can be measured.
One of the most obvious and interesting metrics, which has been recently formalized,50

is the temporal novelty, or freshness, of the recommendations [17], which will also be
included in our measurements.

Our work. In this paper, we propose to use the temporal information in two inde-
pendent ways. Firstly, we state that we can define new similarities that consider prefer-
ences as temporal sequences, instead of time-agnostic representations of user and item55

interactions. In this regard, we advocate the use of the Longest Common Subsequence
(LCS) algorithm [18] as a similarity metric because of its useful properties that can be

2

exploited in the context of recommender systems. This is an extension of the approach
presented in [19], where we adapted that algorithm to work in the recommendation do-
main, however the temporal dimension was not considered either in the modeling step60

nor in the evaluation, in contrast to what we propose and analyze here.
Secondly, we also propose to revisit the neighborhood-based recommenders as

ranking fusion algorithms, following and extending the approach we introduced in [20].
Thus, in this new scheme (named as backward-forward), each neighbor will provide
the target user a list of items by exploiting the last common interaction between the65

target user and the neighbor, recommending the items that are close to that last inter-
action. The final ranking is then obtained combining all the neighbors lists of recom-
mendations. Under this perspective, modeling the temporal aspect of user preferences
is straightforward – as we shall show here – and provides an intuitive rationale about
what is being recommended and why. As a novelty with respect to our previous work,70

we use different normalization components when fusing the neighbor lists, we explore
the use of sequence-aware similarity metrics (both in isolation and integrated in the
backward-forward approach), and we compare our proposals against a more complete
set of state-of-the-art recommenders in more, larger datasets. Additionally, we refor-
mulate a well-known time-aware similarity metric so that this model could perform75

better with ranking-oriented evaluation metrics under more realistic scenarios.
Research questions. In order to test the performance of our proposal, we have

followed two instances of a time-aware evaluation methodology on three real-world
datasets aimed at answering the following research questions: (RQ1) Are time- and
sequence-aware neighbor-based recommenders competitive against other state-of-the-80

art algorithms that consider user/item similarities? (RQ2) Is it possible to formulate
this problem using ranking fusion techniques from Information Retrieval, so that we
can incorporate temporal sequences into this formulation? (RQ3) How do time- and
sequence-aware approaches affect the resulting freshness of the recommended items?
Specifically, the main contributions of this paper are:85

• A new approach that redefines the classical generation of item rankings by con-
sidering the order (sequentiality) in neighbor-based recommender systems, bor-
rowing ideas from Aggregated Search and Information Retrieval in general that
can be used in combination with any user similarity.

• The adaptation of the Longest Common Subsequence algorithm as a sequence-90

aware similarity metric on RS in such a way that users are considered more
similar when they interact with the items in the same order, together with a mod-
ification of a time-aware similarity metric more oriented towards item ranking
tasks.

• A thorough comparison between our approach and other classical algorithms95

used in the recommendation area analyzing different perspectives of evaluation
(relevance and freshness) under time-aware evaluation methodologies on three
real-world datasets.

Implications. As we will see in the presented results, our proposals obtain com-
petitive results under different evaluation strategies, demonstrating the premise that100

performance can be improved by reformulating the problem while using time- and

3

sequence-aware similarities and neighborhoods. In particular, the use of a time-aware
similarity metric seems to produce the best outcome despite its simplicity. Further-
more, our approaches usually perform better than other, more complex models, while,
at the same time, they remain easy to understand and to explain why a recommendation105

was produced, a very important aspect of recommender systems nowadays [21].
The remainder of the paper is organized as follows: in Section 2 we present with

more details some well-known state-of-the-art recommendation approaches together
with a brief introduction about how they are evaluated, also including a definition of
the freshness measure we shall use later in this paper. In Section 3, we present our110

approaches aware of time and interaction sequences, including a modification of a pre-
viously proposed time-aware similarity metric, the use of the Longest Common Sub-
sequence as a sequence-aware similarity metric, and a novel neighborhood approach
based on rank fusion techniques that integrates sequences seamlessly. In Section 4, we
present the evaluation methodology followed in the experiments, including the datasets115

used and how the optimal parameters were found, and then, in Section 5, we present the
results obtained, answering the previous research questions. Finally, Section 6 summa-
rizes the main contributions of this paper and discuss some lines of work that might be
addressed in the future.

2. Background120

Formally, the recommendation process is sometimes formulated as an optimization
problem whose main objective is to suggest the most useful items to users based on
their interests and needs [3]:

i∗(u) = arg max
i∈I

g(u, i) (1)

that is, the goal is to find the optimal item i∗ that maximizes the utility function g which
measures the interest of user u on any item i, where I denotes the complete set of items
in the system.

While the objective is the same for every recommendation model, we can distin-
guish different types of methods depending on how they work with the data and how125

they make the recommendations. As mentioned before, the most extended ones are
content-based (CB) and collaborative filtering (CF) recommenders; while the former
exploit the intrinsic features of the items in order to recommend other items similar to
the ones the user liked in the past, the latter exploit the information stored in the user ×
item matrix in order to perform the recommendations.130

In this article, we will focus on CF approaches, specifically in those based on sim-
ilarity metrics. Among the different types of CF techniques, we explain in detail the
neighborhood-based approaches in Section 2.1, then, in Sections 2.2 and 2.3 we present
time-aware and sequential recommendation approaches and a brief description of how
recommender systems are evaluated nowadays.135

2.1. Neighborhood-based approaches
The collaborative filtering family of recommendation algorithms can be divided

in two different classes: neighborhood approaches (also called memory-based CF or

4

k-NN recommenders) and the latent factor models (often called Matrix Factorization
approaches or MF). The latter represent both items and users as vectors with the same140

dimension as the number of latent factors, after that transformation the ratings are pre-
dicted by the scalar product of both vectors, which are typically learned using Stochas-
tic Gradient Descent (SGD) or Alternating Least Squares (ALS) techniques [10]. Neigh-
borhood-based approaches, on the other hand, obtain similarities between users or
items and make recommendations based on those similarities.145

The classical formulation of the user-based neighborhood recommender is the fol-
lowing:

r̂ui =

∑
v∈Nu

rviwuv∑
v∈Nu
|wuv|

(2)

where wuv is the similarity between user u and v and Nu are the user’s u neighbors.
The previous formulation is oriented to the rating prediction problem, i.e., it aims

to predict a predicted rating r̂ui as close as possible to the real rating. Recently, more150

attention has been paid to the task of generating an item ranking for a given user. In
such scenario, Equation 3 – where the denominator is not used and, hence, the output
of such computation is not in the range of ratings because the similarity normalization
has been removed – has shown much better performance when evaluated with ranking
instead of error metrics [22]:155

r̂ui =
∑
v∈Nu

rviwuv (3)

Besides the size of the neighbors, usually represented with the variable k, the per-
formance of neighborhood recommenders critically depend on the similarity metric
being used. The most extended approaches are the Cosine Similarity (CS), the Pearson
Correlation (PC), and the Jaccard Index (JI):

CS(u, v) =

∑
i∈Iuv

ruirvi√∑
i∈Iu

r2
ui
∑

j∈Iv
r2

v j

(4)

PC(u, v) =

∑
i∈Iuv

(rui − ru)(rvi − rv)√∑
i∈Iuv

(rui − ru)2 ∑
i∈Iuv

(rvi − rv)2
(5)

JI(u, v) =
|Iu ∩ Iv|

|Iu ∪ Iv|
(6)

where ru is the average of the ratings used by user u, Iu denotes the items rated by u,160

and Iuv represents the items rated by both u and v.
These formulations show different neighborhood-based recommendation approaches

from a user-based perspective, item-based approaches can be similarly derived in a
complementary way [23]. Nevertheless, although these techniques may not achieve a
performance as competitive as other more complex methods in their basic formulation,165

they have important advantages as efficient real-time personalization, easy implemen-
tation, and explainable recommendations [23].

5

2.2. Time-aware and sequential recommendation
Temporal information in RS has proven to be of vital importance to be able to

understand the user behavior and, therefore, several approaches that incorporate this170

dimension have been proposed in order to produce better recommendations. For ex-
ample, in [10] the authors incorporate the timestamps of the ratings in the SVD++

minimization formula, in [24] the short-term and long-term preferences of the users
are exploited using a temporal graph model, and in [14] a Convolutional Neural Net-
work model is proposed to learn sequential patterns applying convolutional filters to175

the item embeddings. Another interesting approach related to this topic closer to our
paper is defined in [8], where the authors incorporate a time decay (TDec) function in
an item-based neighborhood recommender as follows:

r̂ui =

∑
j∈Ni

ru j · sim(i, j) · fλ(tu j)∑
j∈Ni

sim(i, j) · fλ(tu j)
(7)

where rui is the rating given by user u to item i, sim(i, j) denotes the similarity between
items i and j, and tu j is the moment when u rated item j. The time function fλ(t) is180

defined as fλ(t) = e−λt, with λ = 1
T0

(T0 in days). The authors introduce the exponential
function where λ is the decay rate or half-life parameter. It is defined so that old
data obtains small weights, which means that larger values of t correspond to older
interaction times, where t = 0 is the present. It is not clear, however, how such values of
t are computed or normalized from the original timestamps, since no other information185

is provided; in particular, it is not obvious what t = 0 actually represents for the authors,
is it the last interaction in training? in the whole dataset?

This approach based on a time decay function has also been adapted to user-based
recommenders, as shown in [7]:

r̂ui = ru +

∑
v∈Nu

(rvi − rv) · sim(u, v) · e−λ·(t−tvi)∑
v∈Nu

sim(u, v)
(8)

where we observe that the authors used a mean-centering formulation for the user-190

based recommender [23]; moreover, in this case the time decay function receives the
difference of two timestamps (instead of only one as before): the neighbor’s interaction
time tvi and the prediction time t. Again, it is not obvious how such time t is used in
this formulation, although it is very likely that it would represent the timestamp that
appears in the test set, which exposes an unrealistic situation since the recommender195

would be using a different t for every item in the test set, exploiting information that
should remain hidden to the algorithm in the prediction stage.

Leaving aside this time decay similarity function, time analysis of user’s prefer-
ences has also favored the emergence of algorithms that exploit these user-item in-
teractions as sequences in their models. In this type of sequential recommendation re-200

searchers model each user in the system as a sequence of actions S (u) = (S 1, S 2, S 3, · · · , S n)
– taking the same notation as in [12] – where each action corresponds to one item the
user has consumed. Thus, the recommendation problem here is to predict the next item
to be consumed by the user. While most traditional algorithms rely on the full history
of the user, in sequence recommendation only the latest interactions of the user are205

normally considered (or, at least, the most recent ratings receive more attention than
the others).

6

One classical approach to identify these sequential patterns is to use an L-Markov
chain model, where L denotes the number of previous actions that are taken into ac-
count in order to make the recommendations. The L-order Markov chain for modeling210

user sequences can be represented as:

P(S t | S t−1, S t−2, · · · , S t−L) (9)

When considering a first order Markov chain (L = 1), the probability of choosing
item j given the actual item i at the next step, p(j | i), is obtained by using maximum
likelihood estimation on the item-to-item transition matrix. This model, although sim-
ple, is at the core of many approximations. For example, the authors of [11] proposed215

a more complex approach where each user has its own transition matrix, leading to
a global representation of a tensor. Besides, they also incorporated matrix factoriza-
tion techniques in their probabilistic framework, combining both approaches (MF and
Markov Chains) into a single model: Factorizing Personalized Markov Chain (FPMC).

Another interesting approach that model sequences of actions is defined in [12]. In220

that article, the authors use an L-order Markov Chain making a weighted sum for the
short and long term dynamics of the user preferences. The proposed model (named
Fossil, for Factorized Sequential Prediction with Item Similarity Models) is a com-
bination of both Factored Item Similarity Models (FISM) and Markov Chains with
personalization. According to the reported results, the Fossil approach outperforms225

many sequential state-of-the-art algorithms, including the FISM techniques, FPMC,
and BPRMF model (a matrix factorization technique optimized using BPR, i.e., Bayesian
Personalized Ranking), although the researchers did not analyze the performance of
other classic recommenders such as standard MF approaches or neighborhood-based
algorithms. Nevertheless, both approaches emphasize the use of Markov Chains for230

their recommendations, neglecting other possible ways of modeling the temporal con-
text, as we propose in this paper.

In addition to the aforementioned algorithms, neural networks techniques have also
acquired special relevance recently due to their ability to model sequences. One exam-
ple is GRU4Rec, proposed in [13], a Recurrent Neural Network session-based algo-235

rithm that captures the sequential dependencies between the user preferences in order
to make recommendations. Additionally, a Convolutional Neural Network method was
proposed in [14], also known as Caser, that exploits both the sequential patterns of the
data and the general preferences of the users in order to make the predictions. These
techniques are prevalent nowadays in the recommender systems literature, however it240

should be noted that, in contrast to the main focus of our paper, they do not exploit user
or item similarities in their models.

Finally, it is worth mentioning neighborhood approaches applied to other tasks,
such as session-based recommendation, typically applied to the e-commerce domain.
These methods also exploit the sequential context, such as the sequential k-NN tech-245

nique from [25] and the STAN model from [26], which have proven to be competitive
against other modern algorithms, including those based on deep learning. However, we
consider they are out of the scope of this paper as they are tailored for a specific task
(i.e., session-based recommendation, as it is the case of the GRU4Rec model), while
in this work we aim to exploit the temporal and sequential contexts without any further250

assumptions.

7

2.3. Recommender systems evaluation
The aim of RS evaluation is to determine which recommenders (or configurations

of recommenders) are better than others based on the results obtained in certain met-
rics under a specific evaluation methodology. However, in recent years the evaluation255

paradigm has moved in new, unexplored directions. On the one hand, researchers have
realized that evaluating recommender systems based on random splits does not translate
well to the real-world scenario where algorithms receive information constantly, either
in streaming or in batches, but where the unknown actions will happen after the already
observed interactions. In fact, this matches the typical definition of recommender sys-260

tems: suggesting items to users based on their previous actions; nonetheless, for many
years these systems have been evaluated where the future and the past was randomly
mixed. To address these issues, time-aware evaluation methodologies have been pro-
posed and their effects analyzed with time-aware and time-agnostic recommendation
algorithms [7].265

In [7], a taxonomy of recommendation evaluation protocols or methodologies is
presented, where they are classified according to the following conditions: base set (it
specifies if the splitting is applied to the whole dataset or to each sub-dataset indepen-
dently, such as one dataset for each user), ordering (it establishes an ordered sequence
for the ratings), and size (criterion to compute the number of ratings to be assigned to270

each training and test split). As expected, the ordering condition is the one that con-
trols whether an evaluation methodology is sensitive to the temporal dimension, the
other two conditions entail different constraints that may produce more or less realis-
tic methodologies, such as fixed vs proportion size (where all the users in the test set
contain exactly the same number of interactions or a ratio of their whole user profile)275

or community-centered vs user-centered base set (where all the ratings are used as a
whole or each user is considered as a separate dataset).

On the other hand, the score provided by a recommender was traditionally inter-
preted as an approximation of the rating that the user would give to that item; because
of this, researchers started using error metrics like Mean Absolute Error (MAE) or280

Root Mean Squared Error (RMSE) in order to test the quality of their recommenders,
where the lower the error, the better. However, some researchers alerted that this kind
of metrics were not prepared for real-world problems as they only considered the ob-
served items, not all the items in the collection [27, 28]. Thus, IR ranking metrics like
Precision, Recall, MAP, or nDCG became more popular in RS, where the goal now285

shifted to include as many relevant items as possible in the ranking provided to the
user, so that (usually) the higher the value in these metrics, the better the quality of the
recommender.

Moreover, despite the importance of relevance in recommendations, there has been
a growing awareness on measuring other evaluation dimensions like novelty and di-290

versity, as sometimes producing only accurate recommendations may not surprise or
discover new items to the target user [29, 30]. When this principle is applied in a tem-
poral context, the concept of temporal novelty or freshness arises (i.e., retrieving newer
items according to a temporal model). Although there is no general consensus on how
to compute freshness in general (see [31, 32, 33]), there has been an attempt recently to295

define this concept in recommendation [17]. That work takes as starting point a general
framework for novelty and diversity evaluation metrics defined in [34], where different

8

temporal models for the items are incorporated. The authors propose four models to
account for the novelty of the items, producing four different definitions for when an
item is considered novel. The MIN model (where an item novelty is measured accord-300

ing to the median timestamp of its occurrences in the system) is proposed as the least
biased among these four options while keeping most of the desired properties for this
type of metric.

3. Sequence-aware neighborhood-based recommenders

We have presented in the previous section many Collaborative Filtering approaches305

that take into account temporal information to improve the performance of their rec-
ommendations, however most of them neglect neighborhood-based approaches, which
constitutes our main motivation to study and incorporate such information into those
methods. Hence, we now propose three techniques that aim to outperform the cur-
rent state-of-the-art while integrating and properly modeling temporal information in310

neighborhood-based recommenders. First, in Section 3.1 we reformulate a time-aware
similarity to incorporate some features to improve its reproducibility, practicality, and
efficiency, then, in Section 3.2 we define how to use the LCS algorithm as a sequence-
aware similarity metric, and in Section 3.3 we propose a novel framework to incor-
porate sequence-awareness into neighbor-based recommenders by reformulating the315

problem as rank aggregation. Finally, in Section 3.4 we briefly analyze the complexity
of the proposed approaches.

3.1. Revisiting time-aware similarity metrics
As presented in Section 2.2, other researchers have proposed time-aware similar-

ities integrated in a neighborhood-based recommender, either for an item-based ap-320

proach [8] or for a user-based one [7]. However, these methods have some limitations.
As stated before, it is not fully clear what the timestamp used in those similarity compu-
tations means or where it is captured from. This raises problems about reproducibility
but, more important yet, about their practical utility: if the actual time when the user
rated or interacted with a particular item is needed, the usefulness of a recommender325

system is very limited, since the only missing piece of information is the score the
user would give to such an item at that moment. This problem statement is inherited
from the first studied recommendation tasks, which aimed at predicting the rating given
by a user to an item to decrease the system error [3], similar to a classification or re-
gression task in Machine Learning. However, the Recommender System community330

has evolved and its focus is now on ranking-oriented tasks, such as providing an item
ranking to a user that matches the user preferences [27].

Because of this, we propose a reformulation of these time-aware similarity met-
rics. Our starting point is Equation 8 instead of Equation 7, since we shall work with
user-based neighborhood recommenders, however, similar developments could be de-335

rived for a time-aware item similarity. Hence, putting all this together, we propose the
following formulation for a time-aware user similarity:

r̂ui =
∑
v∈Nu

sim(u, v) · rvi · fc(tL
u , tv,i) (10)

9

where tv,i is the time when user v rated item i, tL
u is the time of the last rating of user

u in the training set, and fc(·, ·) is our soften time decay function. This function, as
in the presented approaches from the literature, is based on an exponential function,340

which, by default, has the following form: fc(t1, t2) = e−λ·diff(t1,t2), where diff(t1, t2)
indicates the difference in the same time units as λ (recall that λ is the decay rate and
is usually defined in days by default) between two timestamps (i.e., t1 − t2). A soften
value is applied when diff(t1, t2) < 0 and abs(diff(t1, t2)) > 1

λ
· c, where we force

diff(t1, t2) = − 1
λ
· c, which bounds the time decay factor to a value of ec, to avoid large345

values when the neighbor rated the item further away in the future with respect to the
last interaction of the target user. It should be noted that factor c, thus, allows us to
control up to which point in the future (c times the period T0 = λ−1) all the neighbor
interactions will have the same weight.

Hence, in summary, our adaptation of a time-aware user similarity – based on the350

one defined in [7] – incorporates the following features: it specifies how the timestamps
are selected and compared, making easier to reproduce this method but also having in
mind a realistic use case scenario where the test set is unknown for the recommendation
method. Moreover, the score produced by the method is not bounded in a given rating
scale, in line with recent methods that perform better in ranking-oriented tasks [22];355

and, because of this last change, a soften function is applied to avoid producing very
large score values.

3.2. Sequence-aware similarity metrics
As presented in Section 2.2, there is a family of recommendation approaches that

model the temporal information by exploiting the sequences of user interactions. We360

now propose another user similarity approach for neighbor-based recommenders in
this line, where instead of integrating a time decay function or modeling explicitly the
actual time each user interacted with any item, we build user sequences based on their
historical preferences and define a similarity measure based on those sequences.

With this goal in mind, we propose to adapt the Longest Common Subsequence365

(LCS) algorithm as a similarity metric between user sequences. The original LCS
problem consists on finding the longest common subsequence (that is, a sequence that
can be obtained from another sequence by removing, not necessarily consecutive, none
or some of its symbols), normally between two strings. In general, such subsequence is
not unique even though the length of such subsequence is unique. This problem arises370

in a number of applications, from text editing to molecular sequence comparisons [18],
and more recently in [35] to compare movement paths.

To compute the LCS between two strings X and Y with lengths lx and ly, a dynamic
programming approach is normally used that fills a matrix C(lx+1) × (ly+1) following this
equation:375

C[i, j] =


0 if i = 0 or j = 0
C[i − 1, j − 1] + 1 if i, j > 0 and xi = y j

max(C[i, j − 1],C[i − 1, j]) if i, j > 0 and xi , y j

(11)

where xi and y j represent the characters at indexes i and j (starting in 1) of strings X
and Y . Hence, the final value in C[lx, ly] with be the length of the LCS between the two
input strings.

10

This definition of the problem is not directly applicable to the recommendation do-
main, since there might be different ways to define the user sequences as strings, mostly380

depending on the symbols used to represent those sequences. That is why in [19] we
analyzed this problem and proposed a generic method to transform the user history of
ratings into sequences. However, in that work the user sequences neglected the use
of temporal information both in the model – user sequences were ordered according
to a global item ordering, instead of in a user basis depending on how the user inter-385

acted with the items – and in the evaluation – random splits were used, not time-aware
evaluation methodologies as we present later. In any case, once these sequences are
created, they can be exploited by any string distance algorithm such as Jaro-Winkler or
Levenshtein [36], although in this paper we shall focus on the LCS algorithm.

Hence, in this work we propose to apply the framework presented in [19] to tempo-390

ral data, by creating a sequence for each user based on the items such user has interacted
with, sorting those sequences from older to newer interactions, where the symbols of
the sequences consist of the item ids (this allows us to apply the same procedure to
both explicit and implicit datasets). Once these sequences are generated, the standard
LCS algorithm can be applied, and the similarity between two users would correspond395

to the LCS between their respective sequences (sim1). To obtain bounded values in the
[0, 1] interval as classical similarity metrics, we test the following normalizations as
presented in [37, 19]:

sim1(u, v) = LCS(u, v) (12)

sim2(u, v) =
sim1(u, v)2

|Iu| · |Iv|
(13)

sim3(u, v) =
2 · sim1(u, v)
|Iu| + |Iv|

(14)

We note that these normalization functions allow to scale the raw LCS value (sim1)
by considering the lengths of the user sequences. Besides, they can be obtained from400

the original sim1(u, v) almost with no extra cost, so three different recommendation
scores can be computed at the same time.

It is important to mention that using LCS as a similarity metric has additional ad-
vantages against other classical similarities. It does not only fit well the sequential
recommendation problem, but it also allows us to work with repetitions (where users405

have rated the same item more than once), while other similarities cannot take this
effect into account. This is interesting because, even though in traditional recommen-
dation a user does not rate the same item more than once [23], in some situations the
fact that a user has consumed the same item several times is an indicator that the item
is of interest to the user (e.g., music or tourism recommendation) [15].410

3.3. Sequence-aware item selection in neighborhood approaches
Neighborhood-based recommenders can be revisited as ranking fusion algorithms

where each neighbor contributes a ranking (of potentially relevant items for the target
user) and the goal of the recommender system is to combine these rankings into one
final output [20]. In terms of Aggregated Search [38, 39], each neighbor would be415

11

denoted as a judge (in IR these judges are usually different search engines) who gives
a complete ordering of all the alternative items to be ranked; each of these rankings is
denoted as τ, and the final fused ranking is τ̂. Formally, the process of rank aggregation
is divided into normalization (where the scores or the ranks of τ are normalized into a
common scale, wτ(i), for each item i) and combination (where the normalized weights420

wτ(i) are combined into one fused score).
There are several methods for each of these stages, see [39] for an in-depth review

of the most prominent ones. Interestingly, by taking the identity normalizer for the
scores (wτ(i) = τ(i)) and the so-called CombSUM combiner (where the normalized
weights are simply added for each item) with a preference weight for each ranking425

equals to the similarity between the neighbor and the target user, we obtain a linear
combination of the normalized weights, which is equivalent to the neighborhood-based
recommender formulation. In fact, when we take into account the ratings of the neigh-
bors, the “score” of user u to item i using CombSum and the identity normalizer pro-
duces the formulation in Equation 3. In this situation, each ranking τ is composed of430

the item-rating pairs rated by a particular neighbor, excluding, as a standard practice in
the community, those items already rated by the target user in training. Further exten-
sions and ad-hoc modifications could be made to these normalizers and combiners so
that other formulations of this problem – such as mean-centering or Z-score normal-
ization [23] – are obtained.435

Once we have reformulated the problem of neighborhood-based recommendation
as a ranking fusion technique, we now describe how we can incorporate temporal infor-
mation – and, in particular, sequence-awareness – in the process. The main idea is that
each neighbor will find which is her last common interaction with the target user and
will create a ranking of her candidate alternatives iterating around that item, taking into440

account the order (sequence) in which she rated each of those alternatives. Although in
this case we are not taking into account the actual moment of the interaction (i.e., we
can end up recommending items from a neighbor whose last common item was rated
long time ago), we can easily improve this approach by filtering out neighbors whose
last common item was rated before a certain threshold date; in this paper we will not445

explore this option and leave it as future work. Note, however, that the temporal aspect
is considered twice in this model: it is used to involve the target user (through the last
common interaction) in setting the actual moment (context) of the recommendation
and, at the same time, to exploit the temporal sequence (order) in which the neighbor
interacted with the items.450

In the following, we present our model, consisting in a method to compute the last
common interaction and different strategies to exploit the order of the neighbor ratings
to produce a ranking with candidate items from each neighbor; since these strategies
iterate around the last common interaction, as we shall see, we call this technique the
backward-forward (or BF) approach. Then, a single recommendation ranking is gen-455

erated by normalizing and combining the different item rankings produced by each
neighbor. There are several methods that can be applied in these stages. In the normal-
ization step, the most common strategies are the default normalization (Def) where the
normalized item value is the same as the item score, the standard normalization (Std)
where a min-max normalization is applied to the score of every item in the list, and460

the rank-sim normalization (Rks) in which the normalized value of an item is inversely

12

proportional to its position in the ranking. On the other hand, for the combination
scheme the most extended approach, as mentioned above, is the CombSUM combiner
that simply computes a weighted average of the normalized weights of each item using
an additional preference weight for each ranking. Other approaches such as Comb-465

MIN, CombMAX, and CombMNZ (where the minimum, maximum, and the number
of nonzero values is used in the combination step) have been proposed [39], but these
techniques are not included in our analysis.

As described before, the first step in our backward-forward approach is to obtain
the last common interaction item between two users u and v. This is computed as470

follows:

n∗(u; v) = max
k

(
ik ∈ It

u : ik ∈ It
v

)
(15)

where It
u are the items rated by user u ordered by timestamp in ascending order:

It
u = sort (Iu, t) =

(
itk
)|Iu |

k=1
, with t

(
itk
)
< t

(
itk+1

)
(16)

Once we have calculated this last common interaction (that, from Equation 15, is
not symmetrical, since n∗(u; v) , n∗(v; u) because it looks for the preferences of the first
user in the second user historical preferences), we propose the following strategies to
build the lists with candidate items from each neighbor (with respect to the target user475

u): (a) take the m items that have been rated after that common interaction (L+
m(v; u))

(b) take the m items that have been rated before that common interaction (L−m(v; u))
(c) take the m items that have been rated before and after that last common interaction
alternating them (La

m(v; u)) (d) take the m items that have been rated after the last com-
mon interaction first and concatenate them the m that have been rated before (L±m(v; u)).480

Formally:

Let It(v; u) = sort (Iv − Iu, t)

L+
m(v; u) =

(
itk
)n∗(v;u)+m

n∗(v;u)
, itk ∈ I

t(v; u) (17)

L−m(v; u) =
(
itk
)n∗(v;u)

n∗(v;u)−m
, itk ∈ I

t(v; u) (18)

La
m(v; u) =

(
at

k, b
t
k

)max(|L+
m(v;u)|,|L−m(v;u)|)

k=1
at

k ∈ L+
m(v; u), bt

k ∈ L−m(v; u) (19)

L±m(v; u) =
(
L+

m(v; u), L−m(v; u)
)

(20)

Therefore, for each neighbor we obtain a list L(v; u) with all the candidate items
from that neighbor, which will be later normalized and combined, as explained before,
to produce a single ranking, containing the recommendations for the target user u.
Since these items are related to the last interactions between users u and v, they can be485

interpreted as “the recent difference” in interaction history between these users. It is
important to note that any similarity can be used in such scheme when obtaining the
last common interaction between the users or generating the lists with candidate items,
since these two steps do not depend on the user similarity, although the neighbors might
be different or the weights used at the combination step if the similarity changes.490

13

Figure 1: Example of user interactions in the movie domain. Items denoted with an asterisk (∗) and a yellow
border correspond to the last common interaction between u and each neighbor, those with a − symbol as
superscript and a red border are included in L−2 (v; u), whereas those with a + as superscript and a green
border in L+

2 (v; u).

In summary, when using this formalization, we obtain a neighbor-based recom-
mendation model equivalent to classical formulations that can further incorporate the
temporal information under different models. Nonetheless, it should be mentioned how
possible it is to combine into a single model this approach with the previous proposed
methods. While using sequence-aware similarity metrics together with sequence-aware495

neighborhoods (i.e., the proposed BF technique) is straightforward, since any similar-
ity metric could be used to compute the neighborhood and weight each neighbor; using
the time-aware k-NN approach within the BF algorithm is not trivial. The reason for
this is that, as we can see in Equation 10, the temporal decay function in the pro-
posed time-aware k-NN approach depends on the last timestamp of the user and on500

the timestamp of the neighbor’s rating to the target item, however that information is
not available in our current formulation for the sequence-aware neighborhood. In any
case, it is possible to combine sequence-aware similarity metrics with the time-aware
algorithm proposed, since the latter method could work with any user similarity metric
and, in particular, with the proposed LCS-based similarity.505

Finally, let us illustrate the whole process with an example shown in Figure 1 using
the movie domain. For the sake of simplicity, we do not include the user’s rating, so the
reader should assume that all sequences correspond to items that the user has equally
liked. In the movie domain, the temporal component is usually determining, since
newer movies tend to be consumed more often than older ones. In our example, user u510

is the target user, and we represent three neighbors v1, v2, and v3, where v1 and v3 have
three items in common whereas v2 shares four items with the target user. According to
these interactions, the candidate items generated with respect to the different strategies
presented before (limited to size 2) will be (considering that n∗(v1; u) = i9, n∗(v2; u) =

14

i10, n∗(v3; u) = i7):515

L+
2 (v1; u) = (i14, i13), L−2 (v1; u) = (i6, i2), L±1,1(v1; u) = (i14, i6), La

1,1(v1; u) = (i14, i6)

L+
2 (v2; u) = (i12, i13), L−2 (v2; u) = (i2), L±1,1(v2; u) = (i12, i2), La

1,1(v2; u) = (i12, i2)

L+
2 (v3; u) = (i12, i15), L−2 (v3; u) = (i5, i6), L±1,1(v3; u) = (i12, i5), La

1,1(v3; u) = (i12, i5)

Note that in this case, as we are selecting only two items, La
m and L±m are equiva-

lent. Suppose now that items i12, i13, and i14 are in the test set (as mentioned before,
newer items are more likely to be chosen by user u). A standard neighborhood-based
recommender (that does not consider any temporal aspect of the data) would probably
recommend item i2 whereas in our approach, we are favoring more recent items, like520

the movie i12. In fact, i2 only appears in our method once for strategy L± and twice
for L−. Moreover, we believe that moving forward from the last common interaction
is more useful in terms of recommendation performance – especially for novelty pur-
poses – than moving backwards, this is evidenced by the strategies L+ and L± that
recommend i13 and i14; because of this, we ignore the L± strategy, since in some pre-525

liminary experiments we found it was equivalent to L+, due to very sparse data.

3.4. Complexity and scalability
In this section, we discuss the algorithm complexity and potential scalability issues

of the proposed approaches. According to the analysis presented in [23], the mem-
ory and time complexity of user-based nearest neighbor recommenders is O(U2) and530

O(U2 p), where U is the number of users in the system and p is the maximum num-
ber of ratings per user (similar derivations can be found for the item-based variations).
Additionally, it should be considered that the similarity computation is much less ex-
pensive than the worst-case complexity indicated before, since most users only interact
with few items. Moreover, at prediction time we can consider that, for every user, we535

need to access to the preferences of the k neighbors, hence, in terms of time complexity
this can be summarized as O(Ukp).

Based on this, we argue that the time-aware similarity metric proposed in Sec-
tion 3.1 incurs in no extra cost with respect to the standard similarity computations.
On the other hand, this is not so clear for the sequence-aware similarity metric based540

on LCS presented in Section 3.2. Although the computation of the LCS algorithm
is an NP-hard problem, it can be calculated in quadratic time thanks to the dynamic
programming solution presented before, in particular, O(U2 p2), since time and space
complexity of the standard algorithm is O(lxly) for two strings X and Y with lengths
lx and ly, although it is possible to obtain even lower bounds for this problem [18].545

Besides, it can be performed offline with no impact on prediction time; hence, as stated
in [40], although the sequence-aware similarity might be more expensive, this is not
necessarily a critical aspect when applied to recommendation due to the following rea-
sons:

• The computation of LCS similarities can be done offline, before the actual rec-550

ommendations are requested.

15

• The computed similarities can be stored at training time, just as we would do
with other similarity metrics.

• The normalized versions of the LCS-based similarities can be computed based on
the value obtained by the sim1 metric; therefore, the use of these normalizations555

do not increase the execution or training times.

• As with other similarity metrics, the computation can be easily parallelized by
distributing the load in a user basis (for instance, the similarities associated to a
particular user could be calculated in a specific thread, since there is no inter-user
dependency).560

Nevertheless, regarding the sequence-aware approach to select items from neigh-
bors, we identify two critical steps that are different from the traditional k-NN: com-
puting n∗ and obtaining the list L, both impacting the prediction time, independently
of the memory or time needed to compute the similarities. Whereas the generation of
list L is actually less expensive (if the value m is small) since only m items are consid-565

ered, finding the last common interaction between the users is an additional step that
should be done in a user basis. This step, however, can be performed in linear time if
the preferences of both users are sorted (as evidenced in Equation 15), hence its cost is
O(p log p), which should be done for every pair of users, resulting in a slightly higher
time complexity than the one for the standard user-based k-NN: O(Ukp log p).570

4. Experimental Settings

4.1. Datasets
We experiment with three datasets from different domains where all the provided

ratings have been timestamped: Epinions, Foursquare, and MovieTweetings. The Epin-
ions dataset contains the purchases of different products made by users. Foursquare,575

on the other hand, comes from the tourism domain (the items in this case are touristic
venues or points-of-interest, as they are usually denoted); finally, MovieTweetings is
a movie dataset where IMDb ratings have been collected from Twitter [41]. For both
Epinions and MovieTweetings, the users have indicated their tastes with different val-
ues (1 to 5 in the case of Epinions and 0 to 10 in the case of MovieTweetings), low580

values representing bad opinions about the items in both cases. On the other hand,
the Foursquare dataset contains implicit feedback and we only have information about
whether a user visited a specific venue. The first two datasets were also used by the
authors of [12] and can be obtained from that paper. MovieTweetings is a dataset that
is constantly updated, we decided to take a specific snapshot of approximately 600K585

ratings1.
For all datasets, we have filtered the original data by removing all the repeated

preferences, taking into account only the newest preference when a user rated the same
item more than once. This processing only had an effect on Epinions and Foursquare,

1This snapshot can be obtained here: https://github.com/sidooms/MovieTweetings/tree/
7a1fae8d9faafe90c084065fe8bb924bff2c3cd2.

16

https://github.com/sidooms/MovieTweetings/tree/7a1fae8d9faafe90c084065fe8bb924bff2c3cd2
https://github.com/sidooms/MovieTweetings/tree/7a1fae8d9faafe90c084065fe8bb924bff2c3cd2

Table 1: Statistics from the datasets used in the experiments.

Dataset k-core Users Items Ratings Density Scale Unique times Time interval

Epinions 2 22k 15k 76k 0.022% 1-5 4k Jan 2001 - Nov 2013
Foursquare 5 16k 3k 105k 0.205% 1 102k Dec 2011 - Apr 2012
MovieTweetings 5 15k 8k 519k 0.399% 0-10 517k Feb 2013 - Apr 2017

since MovieTweetings does not include repetitions. Additionally, we performed a k-590

core in all datasets, this means that we removed every user or item that did not have
at least k preferences, where k = 5 in MovieTweetings and Foursquare datasets, and
k = 2 for Epinions. Because the Epinions dataset is much more sparse than the other
two, when a 5-core is performed in this dataset, no ratings remain, that is why we
needed to lower k in this case. The final statistics of the processed datasets are shown595

in Table 1.
We would like to draw the attention on the difficulty of obtaining datasets with re-

alistic temporal information. In some preliminary analyses, we discarded Movielens
(one of the most popular datasets in the area but where some researchers alerted about
its non-realistic timestamps [42]) and Amazon reviews datasets2, because too many600

items were consumed at the same time (in the exact same second) by a user, which
does not make sense for either performing a temporal evaluation or running a time-
aware recommendation algorithm. The datasets used in this paper are not perfect either
(see column ’Unique times’ in Table 1 which, ideally, should be close to the number
of interactions in every case), but are the best ones we could find with a large number605

of users and items and a decent number of interactions. We hypothesize the larger dif-
ference between ’Unique times’ and ’Ratings’ columns in Epinions– evidencing more
“repeated” timestamps – may be caused by some users making purchases in sessions,
where all the items consumed in the same session are logged with the same timestamp.
Figure 2 shows the temporal distribution of the ratings in the three tested datasets, and610

how they evolve over time.

4.2. Evaluation methodology
Since we deal with temporal information and its effect on recommender systems,

we should use time-aware evaluation methodologies such as the ones introduced in
Section 2.3. In this paper, we use a time-dependent rating order (the timestamps of615

the test split for each user occur after those of the training split) in two evaluation
methodologies: one with a user-centered base set and a fixed size condition (the last
2 actions of each user with at least 6 actions are included in the test split) and another
with a community-centered base set and a proportion-based size condition (the same
timestamp is used for all the users, in such a way that we retain the data corresponding620

to the 20% of the most recent rating times for testing, and the rest for training). We
name the first configuration as Fix and the second as CC. There are obvious differences
between these two evaluation methodologies: whereas in CC the test set is always (for
every user) after the training set, in Fix this may not be the case; besides, (almost) every
user is included in the test set of Fix but this is not the case for CC. Because of these625

2Available here: http://jmcauley.ucsd.edu/data/amazon/.

17

http://jmcauley.ucsd.edu/data/amazon/

Time

N
um

be
ro

fi
nt

er
ac

tio
ns

Epinions

Time

Foursquare

Time

MovieTweetings

Figure 2: Distribution of ratings in the datasets for the CC split. Epinions (left), Foursquare (middle),
and MovieTweetings (right). The first blue line represents the ratings used for the parameter optimization
(validation training set) and the second one represents the data used in the reported results (full training set).

features, the CC methodology represents better a real environment, where there are
some users that may not be active at some point, whereas with the Fix evaluation we
can analyze the recommendations for all the users, not only the most active (or active
in the last period when the dataset was collected) ones.

Furthermore, according to the terminology in [16], we report the results obtained630

following the TrainItems strategy to select the candidate items to be ranked by each
algorithm; that is, a ranking is generated for each user by predicting a score for every
item that has at least one interaction in the training set; as it is standard, we remove
those items already rated in training by the user from each candidate list (in a user
basis). We then compute standard Information Retrieval metrics on the rankings, con-635

sidering as relevant every item rated at least with a 5 and a 9 in the test split for Epinions
and MovieTweetings, whereas for Foursquare every item in the user’s test set is con-
sidered as relevant. More specifically, we report the results obtained using Precision,
nDCG, and MAP and we also show the results in terms of freshness using the MIN
metric (measuring freshness of the items with respect to their median timestamp). All640

metrics are reported using a cutoff of 5. In every case, higher values means more accu-
rate/fresh recommendations. These evaluation metrics have been implemented using
the RankSys framework3.

4.3. Parameter tuning
Unless stated otherwise, we report tuned versions of the recommendation algo-645

rithms. To allow a fair comparison of the algorithms and to avoid overfitting, we
performed the following procedure (further details in Appendix A): we tested the pa-
rameters shown in Table A.4 in the training subset of the data; based on the optimal

3Standard IR metrics are available at https://github.com/RankSys/RankSys, whereas freshness
metrics are available at https://bitbucket.org/PabloSanchezP/timeawarenoveltymetrics.

18

https://github.com/RankSys/RankSys
https://bitbucket.org/PabloSanchezP/timeawarenoveltymetrics

Complete
Dataset

Split data:
CC or Fix

Test Set

Full
Training

Set

Evaluate with
best parameters

Split data:
CC or Fix

Validation
Training

Validation
Test

Obtain best
parameters

Figure 3: Methodology followed to obtain optimal parameters and the performance values of their corre-
sponding recommendation algorithms.

parameters found there (selected according to their values of nDCG@5), we evaluate
the recommenders using the remaining data (test subset, where the whole training sub-650

set is used to train the algorithms) and report the results obtained here. Note that, as
summarized in Figure 3, the training subset is further divided into a validation training
and a validation test, so that the parameters are selected according to the performance
obtained in the validation test (for an algorithm trained on the validation training), in
such a way that the test subset is only looked at to report the final results.655

Observe that the optimal parameters are thus found for a smaller subset (validation
training) than the one used for the reported results (test subset) – this is a common
practice in Machine Learning with temporal information [43]. As a consequence, some
of the parameters found might not be globally optimal, since the test set is not used to
select the parameters. In fact, for some methods the optimal parameters in validation660

produced invalid results when used in the full training set and we had to test the next
best set of parameters. For further details about the range of the parameters and the
actual values of the optimal parameters found for each recommender, see Appendix A.

Furthermore, since our training and test subsets have been created using a time-
aware evaluation methodology, we follow a similar procedure when creating the vali-665

dation splits mentioned above. In particular, for the CC methodology we split the full
training data leaving the 20% more recent items in the validation test, and the rest in
the validation training. For the Fix methodology, the last 2 items of those users with at
least 4 interactions are sent to the validation test, and the remaining ratings are used to
create the validation training. Additionally, we show in Figure 2 the temporal evolution670

of the rating distribution in all the datasets for the CC methodology in the three subsets:
validation training, validation test, and test.

4.4. Evaluated recommenders
In our experiments, we include an array of recommender systems that combine

implementations provided in different libraries with our own code. These algorithms675

19

can be classified into non-personalized baselines, standard collaborative filtering ap-
proaches, time-aware/sequential baselines, and our proposed approaches.

First, as non-personalized baselines, we report a popularity recommender (Pop)
that ranks the items according to the number of interactions received in the training
set; we also experimented with a random recommender, but we did not include it in the680

final results due to its low performance in all methodologies and datasets.
Second, as standard CF methods, we use the classical item-based (IB) and user-

based (UB) k-NN recommenders as explained in Section 2.1, and the MF recommender
using ALS optimization (denoted as HKV [44]), both implemented in the RankSys
library. We also include the BPRMF algorithm proposed in [45], as provided by the685

MyMediaLite library4.
Third, we include as sequential recommenders the Fossil approach from [12], where

we adapted the code provided by the authors5 to generate a ranking for each user,
following the methodology already described, and two algorithms based on Markov
Chains (denoted as MC and FPMC) also available in that code. Since the authors690

evaluated these methods with the AUC metric, we modified the original code in order
to generate a ranking from the recommendations provided to a user, so that any IR met-
ric could be used instead. We also consider Caser as a sequential recommender based
on Neural Networks. This method (Convolutional Sequence Embedding Recommen-
dation Model) was proposed in [14] and combines the sequential patterns inferred from695

the data and the general preferences of the users to make recommendations; we use the
implementation provided by the authors6.

Finally, we test the following combinations of our approaches (all of them im-
plemented on top of the RankSys framework): our adaptation of the temporal de-
cay method (TDec, Equation 10) as an example of a time-aware similarity metric,700

a sequence-aware user-based similarity with a classical UB approach denoted as sUB
(where LCS with a temporal ordering is an example of such similarity), and our backward-
forward approach using a standard k-NN similarity (BFUB) and a sequence-aware sim-
ilarity (BFsUB).

5. Empirical evaluation705

In this section, we analyze the recommenders presented before according to the
explained evaluation methodology. First, in Section 5.1 we present and discuss the
results obtained when using a global temporal split, then, we do the same process for
the per user temporal split in Section 5.2. Finally, Section 5.3 shows further analyses
regarding our proposed approaches, where we present a detailed sensitivity analysis710

based on the parameters of the backward-forward method.

5.1. Performance analysis: global temporal split
In Figure 4, we show the results obtained in the three datasets under the CC eval-

uation methodology. We present three ranking metrics (MAP, nDCG, and Precision)

4Available at http://www.mymedialite.net.
5Available at https://drive.google.com/file/d/0B9Ck8jw-TZUEeEhSWXU2WWloc0k/view.
6We use the Python implementation available here: https://github.com/graytowne/caser_

pytorch.

20

http://www.mymedialite.net
https://drive.google.com/file/d/0B9Ck8jw-TZUEeEhSWXU2WWloc0k/view
https://github.com/graytowne/caser_pytorch
https://github.com/graytowne/caser_pytorch

MAP nDCG Precision

0.0000

0.0005

0.0010

E
pi

ni
on

s

Performance metrics

MIN

0.0

0.2

0.4

0.6

Freshness

MAP nDCG Precision

0.00

0.05

0.10

0.15

0.20

Fo
ur

sq
ua

re

MIN

0.0

0.2

0.4

0.6

MAP nDCG Precision

0.00

0.01

0.02

0.03

0.04

M
ov

ie
Tw

ee
tin

gs

MIN

0.0

0.2

0.4

0.6

0.8

Pop HKV Caser MC FPMC Fossil
IB UB sUB TDec BFUB BFsUB

Figure 4: Performance of recommenders using the global temporal split (CC evaluation methodology) at
cutoff 5. Recommendation methods are separated by vertical dotted lines into five groups (non-personalized,
matrix factorization, sequential baselines, classical nearest-neighbors, and the proposed time- and sequential-
aware approaches) to facilitate the identification of the different approaches.

21

Time

N
um

be
ro

fi
nt

er
ac

tio
ns

Epinions

Time

Foursquare

Time

MovieTweetings

Figure 5: Rating evolution of the ten most popular items in the datasets. Epinions (left), Foursquare (middle),
and MovieTweetings (right).

and one freshness metric (MIN) as explained in Section 4.2. Let us focus first on the715

relevance metrics, in particular, in the low results achieved in this kind of metrics, es-
pecially in both Epinions and MovieTweetings. There are several reasons that explain
this behavior: on the one hand, we are using a high relevance threshold (we only con-
sider as relevant items those rated with a 5 in Epinions and 9 or 10 in MovieTweetings).
However, for Foursquare this is not so critical since in that case we deal with implicit720

information, hence, all items in the test set are relevant for the user, which is why these
metrics obtain higher values, i.e., around 0.2. On the other hand, since we have per-
formed a temporal split, we may end up having users and items in the test set that do
not appear in the training data, thus, modeling user profiles under these circumstances
becomes a difficult task.725

It is also important to consider the sparsity of the datasets, since, obviously, high
sparsity datasets leads to more difficult conditions for the algorithms, which translates
into very low performance results, as we observe in Epinions (whose density is only
0.022%, in comparison with MovieTweetings with 0.399%, as reported in Table 1). In
any case, results in Epinions are very sensitive to the ranking metric, since a different730

optimal recommender is obtained depending on the evaluation metric. Nonetheless, it
should be noted that the relative differences in the figure for Epinions are much smaller
(one or two orders of magnitude) with respect to the other datasets.

Furthermore, a strong popularity bias is exposed in the Epinions dataset, since this
is the second best recommender in terms of relevance. This bias is a well-known effect735

in the recommender systems literature [46, 47], where this type of not-personalized
recommender sometimes produces very good results only due to statistical, aggregated
effects. In our case, this high performance in such dataset can be attributed to the effect
we show in Figure 5, where some of the most popular items (in training) tend to receive
more interactions in the test set, something also noticeable in the Foursquare dataset,740

where this recommender is also very competitive with respect to other personalized

22

algorithms. However, in Epinions this effect is combined with a small coverage of the
rest of the algorithms (because the density in this dataset is very small), which results
in a recommender that produces good (in statistical terms) recommendations for many
people. Nonetheless, this bias is observed to a lower extent when the Fix methodology745

is used (see Section 5.2) and in the other datasets (mostly in Foursquare, although Pop
never achieves the best performance).

We also observe a low performance of time-agnostic recommenders (UB, IB, and
HKV) in Epinions. Although these algorithms are typically very competitive (i.e.,
using a random evaluation partition in other domains such as movies or music), they750

are clearly at a disadvantage when using a temporal split. This might be attributed
to the fact that both matrix factorization and neighborhood-based methods take into
account all user ratings in the same way, but usually the most modern ratings tend to be
more important as they better represent the users’ tastes in the future (test split). In the
other datasets a similar situation is shown, although less extreme for some cases, for755

instance, HKV is at the level of sequential recommenders in Foursquare and Movie-
Tweetings, whereas UB is among the best recommenders in Foursquare. On the other
hand, IB tends to be the worst performing ones in all the cases. We note that BPRMF
is not shown in the figures because it is always outperformed by another method of the
same family, HKV.760

It is surprising that some of the sequential recommenders (MC, FPMC, and Fos-
sil) do not produce good results in any of the domains. One possible reason is that
in the original paper [12] no ranking metrics were tested, only the AUC metric was
used, the same metric these algorithms aim to optimize; moreover, they did not use any
evaluation threshold for any dataset, so that every item in the test set was considered765

relevant [12]. Besides, they focused on predicting the next item to consume, as they
left for testing the recommender just the last item rated by the user in the dataset. At the
same time, state-of-the-art recommenders such as nearest-neighbor were ignored in the
experimental comparison in that paper. Similarly, Caser does not perform as well as in
the original paper [14] except in Epinions, where it is the best recommender. We hy-770

pothesize that we have not replicated those positive results mostly because the authors
performed a heavy pruning of the dataset – removing all the cold-start users (those with
less than 15 or 10 interactions, depending on the dataset) – and they did not include
more traditional recommenders (such as k-NN or MF) which are very competitive in
our experiments. In any case, sequential recommenders remain competitive, even beat-775

ing other baselines such as HKV in Epinions, or IB and UB in MovieTweetings; in
these two datasets, Caser and MC show the best performance among the sequential
baselines, whereas Caser and Fossil obtain the best results in Foursquare.

On the other hand, our time-aware and sequential-aware approaches (sUB, TDec,
BFUB, and BFsUB) tend to perform better than most of the other approaches, except780

in Epinions due to the aforementioned popularity bias and the large difference between
the number of ratings and unique times (see Table 1), which, as discussed before, is an
indication about the number of repeated timestamps and, hence, about the confidence
of the temporal dimension captured in that dataset. For instance, sUB is always better
than UB, evidencing that using a sequence-aware similarity metric allows to better785

capture the preferences of the user when a temporal evaluation is performed. Moreover,
BFUB and BFsUB are also better than UB – recall these three methods are based

23

on neighbors –, although depending on the dataset BFUB or BFsUB performs better,
but, in general, the differences between these methods are not significant. Finally, the
TDec approach shows very positive results, being always among the top performing790

recommenders, despite its simplicity. Hence, we can conclude that using temporal
information in a recommender when performing a CC temporal split improves
the ranking quality.

In terms of temporal novelty (freshness) we notice some interesting patterns. First,
we see that in Epinions and MovieTweetings datasets, TDec, BFsUB, and BFUB obtain795

better results than the rest of the recommenders. This is an expected result since these
methods give more importance to the items that are closer to the test split or to the last
interacted items by the neighbors, hence, it is more likely that these recommendations
are more temporally novel than those from time-agnostic approaches. Nevertheless
it is also relevant that this effect does not happen in Foursquare, where most of the800

recommenders achieve a comparable level of the freshness metric MIN. This could
be attributed to the fact that the timespan in this dataset is rather short (less than a
year), whereas in the other datasets many years of interactions are available, so the
temporal patterns that we may be learning and evaluating upon in Foursquare may not
be discriminating enough.805

5.2. Performance analysis: per user temporal split
Let us now analyze the results obtained when using the per user temporal split

(Fix evaluation methodology). Figure 6 shows the results for this scenario using the
same notation presented before. We observe in Epinions a considerable change in the
behavior of the recommenders with respect to when the CC methodology was used:810

the performance values are higher now and also the trend in the algorithms is different,
the popularity bias (now less strong) being one of the most obvious changes. On the
other hand, results in Foursquare remains quite stable, whereas in MovieTweetings
the trend in terms of types of recommenders (non-personalized, matrix factorization,
sequential, nearest-neighbors) is very similar, although some methods perform now815

better than before (such as BFsUB, which is now better than BFUB, the opposite of
what we observed in Figure 4). This different behavior might be attributed to the actual
differences already explained about these two methodologies: in Fix all test users are
also in the training set and more ratings are available from those users in training, since
only users with previous interactions are considered in test. A related aspect that could820

also affect the behavior of the recommenders is how realistic these datasets are; in fact,
we have detected that in Epinions there are many repeated timestamps (meaning that
a user has consumed more than one item in the same moment), as shown in Table 1,
thus, exploiting the temporal information in this dataset might be less reliable for some
users. Probably for this reason, results in Epinions are very sensitive to the ranking825

metric, as already discussed in the previous section.
Regarding the behavior of the recommendation approaches, we observe some sit-

uations that are very different to what we found using the global temporal split. Both
IB and HKV do not perform as bad as before, in fact, they are better or at the same
level than sequential recommenders. Interestingly, the baselines based on sequences830

(MC, FPMC, and Fossil) do not achieve very good results, even though this evaluation
methodology is closer to the one presented in the original paper [12]; however, as dis-
cussed before, we should consider that in that paper the authors reported results based

24

MAP nDCG Precision

0.0000

0.0020

0.0040

0.0060

E
pi

ni
on

s
Performance metrics

MIN

0.00

0.10

0.20

0.30

0.40

Freshness

MAP nDCG Precision

0.00

0.05

0.10

0.15

0.20

Fo
ur

sq
ua

re

MIN

0.00

0.20

0.40

0.60

MAP nDCG Precision

0.00

0.02

0.04

0.06

M
ov

ie
Tw

ee
tin

gs

MIN

0.00

0.20

0.40

0.60

Pop HKV Caser MC FPMC Fossil
IB UB sUB TDec BFUB BFsUB

Figure 6: Performance of recommenders using the per user temporal split (Fix evaluation methodology) at
cutoff 5. Same vertical lines as in Figure 4.

25

Table 2: Sensitivity of Backward-Forward components using the global temporal split (CC evaluation) at
cutoff 5. Column Nrm shows normalization strategies as defined in Section 3.3, whereas column Wgt in-
dicates whether to consider the weight of the neighbors (W) or not (U). Best results for each Sim in bold.
Columns 10·MAP and 10·nDCG in Epinions show the corresponding metric values but multiplied by 10 due
to the original values being too small (because the dataset is very sparse).

Recommender Epinions Foursquare MovieTweetings

Sim Nrm Wgt 10·MAP 10·nDCG MIN MAP nDCG MIN MAP nDCG MIN

BFUB

Def U 0.005 0.007 0.528 0.129 0.171 0.574 0.021 0.028 0.781
W 0.005 0.008 0.539 0.130 0.173 0.577 0.021 0.028 0.782

Std U 0.005 0.006 0.534 0.129 0.171 0.574 0.019 0.026 0.769
W 0.005 0.007 0.543 0.130 0.173 0.577 0.019 0.026 0.755

Rks U 0.002 0.003 0.536 0.127 0.169 0.577 0.017 0.024 0.770
W 0.004 0.007 0.533 0.127 0.169 0.579 0.018 0.025 0.771

BFsUB

Def U 0.005 0.007 0.528 0.128 0.172 0.579 0.019 0.027 0.785
W 0.001 0.002 0.555 0.129 0.174 0.581 0.019 0.026 0.787

Std U 0.003 0.003 0.534 0.128 0.172 0.579 0.017 0.024 0.819
W 0.003 0.003 0.552 0.129 0.174 0.581 0.017 0.024 0.822

Rks U 0.002 0.003 0.536 0.128 0.172 0.582 0.018 0.024 0.774
W 0.001 0.002 0.538 0.129 0.173 0.583 0.017 0.024 0.775

on the AUC metric whereas we are evaluating with other ranking metrics. Moreover,
MC is not the best performing sequential baseline anymore, but FPMC (in Movie-835

Tweetings) and Fossil (in Epinions and Foursquare) always obtain better results.
We now note that one aspect where both evaluation methodologies agree on is that

the proposed time-aware and sequential-aware recommenders are always the best per-
forming approaches. Here, we observe this is especially clear in MovieTweetings,
where time-agnostic recommenders obtain very bad results; however, in the other840

datasets, our proposed approaches (TDec, BFUB, BFsUB) achieve the highest val-
ues, sometimes tied with UB (Epinions) or with IB and UB (Foursquare). Hence, we
conclude that using temporal information in a recommender when performing a
Fix temporal split does not necessarily improves the ranking quality but it helps
achieving high performance, mostly due to inconsistencies in the way this evaluation845

methodology deals with the preference data.
Finally, when analyzing the temporal novelty of the recommendations, we observe

an strange behavior in the Epinions dataset. The BF approaches achieve lower values
than most of the baselines; this effect, despite being counter-intuitive, can be explained
if we bear in mind that this evaluation methodology is not considering a global split850

for all users, so there can be users that stop being active at the beginning of the system
lifetime and their recommendations may be less fresh than those from other users. The
TDec recommender is not affected by this effect, as in that case the method considers
the timestamp, not the specific interaction sequence of the user. Nevertheless, we note
that for the MovieTweetings dataset it is clear that the time-aware neighborhood rec-855

ommenders are able to improve the performance of their corresponding time-agnostic
approaches in terms of both relevance and freshness.

26

Table 3: Sensitivity of Backward-Forward components using a per user temporal split (Fix evaluation). Same
notation as in Table 2.

Recommender Epinions Foursquare MovieTweetings

Sim Nrm Wgt 10·MAP 10·nDCG MIN MAP nDCG MIN MAP nDCG MIN

BFUB

Def U 0.045 0.061 0.221 0.139 0.188 0.526 0.039 0.048 0.488
W 0.043 0.054 0.227 0.141 0.192 0.525 0.039 0.049 0.490

Std U 0.043 0.061 0.233 0.139 0.188 0.526 0.030 0.038 0.477
W 0.047 0.058 0.244 0.141 0.192 0.525 0.029 0.036 0.477

Rks U 0.038 0.051 0.231 0.137 0.187 0.527 0.033 0.042 0.473
W 0.040 0.052 0.236 0.140 0.190 0.527 0.034 0.042 0.475

BFsUB

Def U 0.045 0.061 0.221 0.138 0.188 0.550 0.042 0.052 0.529
W 0.052 0.064 0.227 0.138 0.189 0.546 0.042 0.052 0.532

Std U 0.042 0.059 0.233 0.138 0.188 0.550 0.045 0.055 0.527
W 0.052 0.067 0.231 0.138 0.189 0.546 0.045 0.055 0.529

Rks U 0.038 0.052 0.231 0.138 0.188 0.546 0.038 0.047 0.532
W 0.049 0.063 0.229 0.140 0.191 0.546 0.038 0.048 0.536

5.3. Sensitivity of backward-forward components
To better understand the behavior of the different components in the proposed

neighborhood approach where items are selected based on a sequence-aware strategy,860

we show in Tables 2 (for CC) and 3 (for Fix) the results for the best configurations us-
ing a sequence-aware similarity metric (LCS) against a classic neighborhood similarity
(BFsUB vs BFUB) using our backward-forward approach. In these tables, we compare
these similarities when using the normalization strategies (Nrm) defined in Section 3.3
and testing whether to consider the weight of the neighbors or not (column Wgt).865

Based on these results, we observe that the performance achieved by the sequen-
tial similarity is usually not the best one except in a few cases (Epinions and Movie-
Tweetings with the Fix strategy), however, the differences are, in general, small. We
hypothesize that considering sequences by using the BF method is enough to capture
the user preferences, and by also using a sequential similarity we impose too many870

constraints on the algorithm to find proper, valid neighbors.
Moreover, regarding the other components of the BF approach, we observe that

usually the best results are obtained with the Default (Def) aggregation function in
both evaluation strategies, although other functions do not really produce very differ-
ent results; however, the use of the neighbor similarity to weight her contribution is875

important and tends to obtain much better results when it is used (W), except in Epin-
ions and MovieTweetings using BFsUB in CC.

Finally, in terms of freshness we can see that, in general, BFsUB reports higher
results than BFUB. This is an expected behavior since, when selecting the neighbors,
we give more importance to the users that have rated the same items in the same order,880

hence, the items that are recommended at the end of the sequences are more likely
to be retrieved. If the sequences are long enough, the neighbors will represent better
the trends in the system. Nevertheless, we can see that we do not find a general trend
with respect to the normalization functions, although the use of the neighbor similarity
to weight the neighbor ranking improves the results, as observed when analyzing the885

relevance metrics.

27

We conclude that, although the proposed approach takes many parameters, some of
them do not contribute much to the final performance and could be considered as fixed,
such as the weighting component (in general it is better to consider the neighbor sim-
ilarity as a weight) or the normalization function (where the Default function usually890

obtains very good results).
We would like to note that, even though the proposed sequence-aware neighbor-

hood model (with or without a sequential similarity) usually does not beat the time-
aware similarity as it was defined here, we believe both approaches are complemen-
tary and could serve different purposes. While the sequence-aware neighborhoods are895

easy to understand and explain why the recommendations are being generated, this
is not so straightforward to achieve with the time-aware similarity which, on top of
that, is very sensitive to different parameters such as the decay function or the param-
eters of the soften function, which will need to be tuned appropriately for every new
dataset. Besides, we consider that the proposed sequence-aware models could work900

better in an online environment since, as indicated above, the timestamps collected
in these datasets do not always reflect the exact moment in which the user consumed
the items. Nevertheless, we also argue that these two approaches could be combined
into a sequence-aware neighborhood where neighbors are computed by performing a
time-aware similarity metric. However, we leave this possibility as a future work.905

6. Conclusions and future work

In this paper, we have presented a new formulation for neighborhood-based rec-
ommendation (backward-forward approach) that allows to integrate the temporal di-
mension based on rank fusion techniques seamlessly and successfully, according to the
reported experiments. Besides, we have also presented the use of LCS as a sequence-910

aware similarity metric, which can further benefit from our proposed backward-forward
approach. Additionally, we have reformulated the time-aware similarity metrics to in-
corporate features aiming at improving their usefulness and efficiency.

We present experiments on three datasets, under two different evaluation method-
ologies, one considering a global temporal split for all users and another that selects915

the most recent interactions as the test set. We have found that the results depend on
the selected methodology, although the presented approaches are competitive in both
of them, in constrast with some of the baselines that only perform well in one method-
ology. The proposed approaches also outperform recent state-of-the-art algorithms
specifically tailored for sequential recommendation.920

More specifically, when formulating the recommendation problem as an aggrega-
tion of several rankings and introducing the temporal dimension in the process, the
performance clearly improves, up to a 30% with respect to another neighbor-based
recommender without using the temporal component and up to a 75% with respect
to a sequential baseline. Furthermore, by using a realistic and ranking-oriented time-925

aware similarity metric with a standard, time-agnostic neighbor-based recommender,
we also obtain very good results in almost every evaluated scenario, which evidences
the importance of time-awareness when modeling the user behavior in a recommender
system.

In summary, according to the presented results the three research questions stated930

in the introduction have been positively answered. We have shown that the time-

28

aware and sequence-aware neighborhood recommenders are able to outperform other
state-of-the-art recommenders, and in particular those that consider user/item simi-
larities (RQ1); not only time-agnostic approaches but also other sequential recom-
menders based on Markov Chains, in both relevance and freshness evaluation dimen-935

sions. Moreover, we have also seen many differences in terms of performance results
between the CC and the Fix strategies; for instance, while the first one represents a
more realistic environment, its results are lower than the ones obtained with the Fix
methodology. On the other hand, even under the Fix methodology (which does not
follow a realistic evaluation protocol) these approaches are able to learn the user pref-940

erences better.
We have also observed the utility of the LCS algorithm as a sequence-aware sim-

ilarity metric and the methods based on sequences to select items in neighborhood
approaches. In this sense, the backward-forward approach outperforms most of the
baselines in all situations (RQ2), except the proposed reformulation of a time-aware945

similarity metric, modified from its original definition in [8, 7], that tends to be among
the top-performing algorithms. Nonetheless, we believe that even when the proposed
sequence-aware approaches do not outperform this time-aware similarity metric, they
are more intuitive and easier to understand, in the sense that they produce recommen-
dations directly by interpreting the users interactions as a temporal sequence.950

With respect to the temporal novelty of recommendations, it is clear that, in general,
time-aware neighborhood-based recommenders outperform the rest of the baselines in
terms of freshness (RQ3). This might be an expected result a posteriori, but it was not
so clear before the experiments, in part because the metric we are using was proposed
recently and, hence, it has not been fully analyzed [17], but also, because as we have955

shown, this metric is sensitive to the evaluation methodology. We want to emphasize
that this is the first time an exhaustive temporal evaluation has been performed us-
ing recommendation algorithms from different types (matrix factorization, sequential,
time-aware) on datasets whose temporal information is as realistic as possible; because
of this, it becomes very important to understand – as we show here – that it is possible960

to improve both relevance and temporal novelty when making recommendations in a
temporal scenario, which translates into presenting relevant or interesting items that
are also fresh to the user.

As a consequence of these results, we advocate for simple models that properly ex-
ploit the temporal dimension. The theoretical and practical implications of our findings965

can be summarized as that, by learning how these sequence- and time-aware recom-
mender systems work, new recommenders that better model the temporal context may
arise. Moreover, since complex techniques or algorithms with many parameters do not
perform, in general, as good as our proposed approaches, researchers and practitioners
should focus on simple techniques, while more effort should be devoted on modeling970

the temporal and sequence information.
The results obtained open up several possibilities for the future. First, since the

backward-forward framework proposed is general enough to work with any rank ag-
gregation function, we plan to explore the use of alternative aggregation functions –
such as those based on the score distribution [48] – when integrated in our proposal.975

Furthermore, an exhaustive analysis – with more datasets, baselines such as SVD++

with temporal information [10] or other Neural Networks techniques [13, 49, 50], and

29

other evaluation methodologies – should be made to better understand each compo-
nent of the proposed models. For instance, the number of items allowed to be selected
before and after the last common interaction, together with alternative definitions for980

sequence-aware similarity metrics. As an example, we aim to extend the proposed sim-
ilarity based on LCS by exploiting other dimensions to build the sequence upon (such
as item features, ratings, or combinations thereof) or even by applying filters to select
those items that have been rated with a higher value than a specific threshold to create
the user sequences, as recently proposed in [40]. Furthermore, it would be interesting985

to observe the impact on users’ online behavior once they receive the recommenda-
tions, as it was recently analyzed for social networks in [51]. Besides, by performing
a validation step to obtain the best parameters of the recommenders and optimize their
performance, we observed how difficult it was to find consistent results (from the val-
idation subset to the full dataset), especially in temporal splits as the ones used here;990

because of this, we aim to analyze these issues in more detail in the future to obtain
guidelines or theoretical guarantees that the parameters learned using a temporal val-
idation split would fit well using the complete data, since we believe this is the most
realistic way to tune the parameters, as if it was done in a real-world system.

Acknowledgements995

This work has been funded by the Ministerio de Ciencia, Innovación y Universi-
dades (reference TIN2016-80630-P) and by the European Social Fund (ESF), within
the 2017 call for predoctoral contracts. The authors thank the reviewers for their
thoughtful comments and suggestions.

Appendix A. Reproducibility1000

We now present more details about how the recommenders were parametrized in
order to ease the reproducibility of our experiments. Firstly, Table A.4 shows all the
parameters tested for each recommender (i.e., we evaluated an instance of the recom-
mender for every possible value of every parameter of the table, except those marked
as fixed, which denote parameters that were not tuned). The best parameters, as ex-1005

plained in Section 4.3, were obtained for both methodologies (CC and Fix) according
to the highest nDCG@5 values found by those recommenders in the validation test
(see Figure 3). These parameters are included in Tables A.5 and A.6 for the CC and
Fix methodologies, respectively. All the necessary scripts and source code to repli-
cate the results, together with the value of the optimal parameters, can be found in the1010

following Bitbucket repository: PabloSanchezP/BFRecommendation.
It should be noted that some of the algorithms start with a random initialization

so the results may change. To reduce this effect, we decided to repeat 5 times each
execution and calculate the average, so the best parameters are selected according to
the average performance. This applies to BPRMF, HKV, Fossil, MC, and FPMC ap-1015

proaches.

30

https://bitbucket.org/PabloSanchezP/BFRecommendation

Table A.4: Tested recommenders and parameters to be optimized. For BPRMF, the parameters k, λu, λi,
λ0, and λ j correspond to MyMediaLite’s parameters num factors, reg u (regularization for user factors),
reg i (regularization for positive item factors), bias reg (regularization for the bias term) respectively, and
reg j (regularization for negative item factors). For Caser, the parameters T, d, nh, L, nv, ac conv, ac fcs,
drop rate correspond to the number of targets (T), number of latent dimensions (d), number of horizontal
filters (nh), length of the sequence (L), number of vertical filters (nv), activation functions for convolu-
tional layers (ac conv) and for fully-connected layers (ac fc), and the drop ratio when performing dropout
(drop rate). For the rest of the notation, SJ, VC, and VJ denote SetJaccard, VectorCosine, and VectorJaccard
(as named in RankSys) respectively and L+

m and L−m represent the forward and backward indexes to consider
when using the BF approach and n iters represent the number of iterations of the model.

Rec Parameters to optimize (in parenthesis, those fixed)

Pop None

HKV k = {10, 50, 100}, α = {0.1, 1, 10, 100}, λ = {0.1, 1, 10} (n iters = 20)
BPRMF k = {10, 50, 100}, λu = λi = {0.0005, 0.001, 0.0025, 0.005, 0.01, 0.1}, λ0 = {0, 0.5, 1}

(λ j = {λu/10}, n iters = 50, l rate = 0.05, UniformUserSampling = false, WithReplacement = false)

Caser T = {1, 2}, d = {10, 50}, nh = {4, 16}
(L = 2, nv = 4, drop rate = 0.5, ac conv = relu, ac fc = relu, batch size = 512, l2 = 10−6, n iters = 30, l rate = 0.003)

MC k = {2, 5, 10, 20}, λ = {0.1, 0.2}
FPMC k = {2, 5, 10, 20}, λ = {0.1, 0.2}
Fossil k = {2, 5, 10, 20}, λ = {0.1, 0.2}, L = {1, 2, 3}

IB sim = {SJ, VC, VJ}, k = {5, 10, 10. . ., 100}
UB sim = {SJ, VC, VJ}, k = {5, 10, 10. . ., 100}

sUB k = {5, 10, 10. . ., 100}, LCSn = {sim1, sim2, sim3} (sim = {LCS})
TDec sim = {SJ, VC, VJ}, k = {5, 10, 10. . ., 100}, λ = {0.1, 0.05, 0.02, 0.01} (c=2)
BFUB L−m = {2, 5, 10}, L+

m = {2, 5, 10}, k = {5, 10, 10. . ., 100}, sim = {SJ, VC, VJ}, Wgt = {W, U }, Nrm = {Def, Std, Rks }
BFsUB L−m = {2, 5, 10}, L+

m = {2, 5, 10}, k = {5, 10, 10. . ., 100}, LCSn = {sim1, sim2, sim3}, Wgt = {W, U }, Nrm = {Def, Std, Rks }

Table A.5: Optimal parameters found for the CC evaluation methodology. Notation as in Table A.4.

Rec Epinions Foursquare MovieTweetings

HKV: k, α, λ 50, 100, 1 10, 10, 0.1 10, 10, 0.1
BPRMF: k, λu=λi, λ0 10, 0.1, 0.5 100, 0.0005, 0 100, 0.005, 0.5

Caser: T, d, nh 2, 10, 4 2, 50, 4 1, 10, 16
MC: k, λ 2, 0.2 10, 0.1 5, 0.1
FPMC: k, λ 20, 0.2 5, 0.1 2, 0.1
Fossil: k, λ, L 20, 0.1, 3 5, 0.1, 1 10, 0.1, 2

IB: sim, k VJ, 100 VC, 70 VJ, 5
UB: sim, k VJ, 70 SJ, 100 VC, 70

sUB: k, LCSn 50, sim1 100, sim1 100, sim2
TDec: sim, k, λ SJ, 60, 0.05 SJ, 100, 0.01 SJ, 90, 0.02
BFUB: L−m, L+

m, k, sim, Wgt, Nrm 0, 2, 50, SJ, U, Def 10, 10, 100, SJ, U, Def 0, 10, 90, VJ, U, Def
BFsUB: L−m, L+

m, k, LCSn, Wgt, Nrm 0, 2, 50, sim3, U, Def 5, 5, 100, sim1, W, Def 0, 10, 80, sim3, U, Def

Table A.6: Optimal parameters found for the Fix evaluation methodology. Notation as in Table A.4.

Rec Epinions Foursquare MovieTweetings

HKV: k, α, λ 100, 1, 1 10, 10, 10 10, 0.1, 0.1
BPRMF: k, λu=λi, λ0 100, 0.005, 0 100, 0.001, 0 100, 0.0005, 1

Caser: T, d, nh 2, 50, 4 2, 50, 4 1, 50, 16
MC: k, λ 5, 0.1 20, 0.1 20, 0.1
FPMC: k, λ 20, 0.1 10, 0.1 2, 0.1
Fossil: k, λ, L 5, 0.1, 1 5, 0.2, 1 20, 0.1, 2

IB: sim, k VJ, 90 VC, 100 VC, 5
UB: sim, k SJ, 90 VC, 100 SJ, 100

sUB: k, LCSn 90, sim3 100, sim1 50, sim1
TDec: sim, k, λ SJ, 90, 0.1 VC, 100, 0.01 SJ, 100, 0.1
BFUB: L−m, L+

m, k, sim, Wgt, Nrm 10, 10, 100, SJ, U, Def 5, 5, 100, VC, W, Def 0, 10, 100, SJ, W, Def
BFsUB: L−m, L+

m, k, LCSn, Wgt, Nrm 10, 10, 100, sim3, U, Def 10, 10, 100, sim1, W, Rks 10, 10, 70, sim1, W, Def

31

References

[1] F. Ricci, L. Rokach, B. Shapira, Recommender systems: Introduction and chal-
lenges, in: F. Ricci, L. Rokach, B. Shapira (Eds.), Recommender Systems Hand-
book, Springer, 2015, pp. 1–34.1020

[2] R. D. Burke, Hybrid web recommender systems, in: P. Brusilovsky, A. Kobsa,
W. Nejdl (Eds.), The Adaptive Web, Methods and Strategies of Web Personal-
ization, Vol. 4321 of Lecture Notes in Computer Science, Springer, 2007, pp.
377–408.

[3] G. Adomavicius, A. Tuzhilin, Toward the next generation of recommender sys-1025

tems: A survey of the state-of-the-art and possible extensions, IEEE Trans.
Knowl. Data Eng. 17 (6) (2005) 734–749.

[4] M. de Gemmis, P. Lops, C. Musto, F. Narducci, G. Semeraro, Semantics-aware
content-based recommender systems, in: F. Ricci, L. Rokach, B. Shapira (Eds.),
Recommender Systems Handbook, Springer, 2015, pp. 119–159.1030

[5] G. Adomavicius, A. Tuzhilin, Context-aware recommender systems, in: F. Ricci,
L. Rokach, B. Shapira (Eds.), Recommender Systems Handbook, Springer, 2015,
pp. 191–226.

[6] Q. Liu, S. Wu, D. Wang, Z. Li, L. Wang, Context-aware sequential recommenda-
tion, in: F. Bonchi, J. Domingo-Ferrer, R. A. Baeza-Yates, Z. Zhou, X. Wu (Eds.),1035

IEEE 16th International Conference on Data Mining, ICDM 2016, December 12-
15, 2016, Barcelona, Spain, IEEE, 2016, pp. 1053–1058.

[7] P. G. Campos, F. Dı́ez, I. Cantador, Time-aware recommender systems: a compre-
hensive survey and analysis of existing evaluation protocols, User Model. User-
Adapt. Interact. 24 (1-2) (2014) 67–119.1040

[8] Y. Ding, X. Li, Time weight collaborative filtering, in: O. Herzog, H. Schek,
N. Fuhr, A. Chowdhury, W. Teiken (Eds.), Proceedings of the 2005 ACM CIKM
International Conference on Information and Knowledge Management, Bremen,
Germany, October 31 - November 5, 2005, ACM, 2005, pp. 485–492.

[9] G. Shani, D. Heckerman, R. I. Brafman, An mdp-based recommender system,1045

Journal of Machine Learning Research 6 (2005) 1265–1295.

[10] Y. Koren, R. M. Bell, Advances in collaborative filtering, in: F. Ricci, L. Rokach,
B. Shapira (Eds.), Recommender Systems Handbook, Springer, 2015, pp. 77–
118.

[11] S. Rendle, C. Freudenthaler, L. Schmidt-Thieme, Factorizing personalized1050

markov chains for next-basket recommendation, in: M. Rappa, P. Jones, J. Freire,
S. Chakrabarti (Eds.), Proceedings of the 19th International Conference on World
Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010,
ACM, 2010, pp. 811–820.

32

[12] R. He, J. McAuley, Fusing similarity models with markov chains for sparse se-1055

quential recommendation, in: F. Bonchi, J. Domingo-Ferrer, R. A. Baeza-Yates,
Z. Zhou, X. Wu (Eds.), IEEE 16th International Conference on Data Mining,
ICDM 2016, December 12-15, 2016, Barcelona, Spain, IEEE, 2016, pp. 191–
200.

[13] B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk, Session-based recommenda-1060

tions with recurrent neural networks, in: Y. Bengio, Y. LeCun (Eds.), 4th Inter-
national Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[14] J. Tang, K. Wang, Personalized top-n sequential recommendation via convolu-
tional sequence embedding, in: Y. Chang, C. Zhai, Y. Liu, Y. Maarek (Eds.), Pro-1065

ceedings of the Eleventh ACM International Conference on Web Search and Data
Mining, WSDM 2018, Marina Del Rey, CA, USA, February 5-9, 2018, ACM,
2018, pp. 565–573.

[15] M. Quadrana, P. Cremonesi, D. Jannach, Sequence-aware recommender systems,
in: T. Mitrovic, J. Zhang, L. Chen, D. Chin (Eds.), Proceedings of the 26th Con-1070

ference on User Modeling, Adaptation and Personalization, UMAP 2018, Singa-
pore, July 08-11, 2018, ACM, 2018, pp. 373–374.

[16] A. Said, A. Bellogı́n, Comparative recommender system evaluation: benchmark-
ing recommendation frameworks, in: A. Kobsa, M. X. Zhou, M. Ester, Y. Koren
(Eds.), Eighth ACM Conference on Recommender Systems, RecSys ’14, Foster1075

City, Silicon Valley, CA, USA - October 06 - 10, 2014, ACM, 2014, pp. 129–136.

[17] P. Sánchez, A. Bellogı́n, Time-aware novelty metrics for recommender systems,
in: G. Pasi, B. Piwowarski, L. Azzopardi, A. Hanbury (Eds.), Advances in In-
formation Retrieval - 40th European Conference on IR Research, ECIR 2018,
Grenoble, France, March 26-29, 2018, Proceedings, Vol. 10772 of Lecture Notes1080

in Computer Science, Springer, 2018, pp. 357–370.

[18] A. Apostolico, String editing and longest common subsequences, in: G. Rozen-
berg, A. Salomaa (Eds.), Handbook of Formal Languages: Volume 2. Linear
Modeling: Background and Application, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1997, pp. 361–398.1085

[19] A. Bellogı́n, P. Sánchez, Collaborative filtering based on subsequence matching:
A new approach, Inf. Sci. 418 (2017) 432–446.

[20] A. Bellogı́n, P. Sánchez, Revisiting neighbourhood-based recommenders for tem-
poral scenarios, in: M. Bieliková, V. Bogina, T. Kuflik, R. Sasson (Eds.), Pro-
ceedings of the 1st Workshop on Temporal Reasoning in Recommender Systems1090

co-located with 11th International Conference on Recommender Systems (Rec-
Sys 2017), Como, Italy, August 27-31, 2017., Vol. 1922 of CEUR Workshop
Proceedings, CEUR-WS.org, 2017, pp. 40–44.

[21] N. Tintarev, J. Masthoff, Explaining recommendations: Design and evaluation,
in: F. Ricci, L. Rokach, B. Shapira (Eds.), Recommender Systems Handbook,1095

Springer, 2015, pp. 353–382.

33

[22] F. Aiolli, Efficient top-n recommendation for very large scale binary rated
datasets, in: Q. Yang, I. King, Q. Li, P. Pu, G. Karypis (Eds.), Seventh ACM
Conference on Recommender Systems, RecSys ’13, Hong Kong, China, October
12-16, 2013, ACM, 2013, pp. 273–280.1100

[23] X. Ning, C. Desrosiers, G. Karypis, A comprehensive survey of neighborhood-
based recommendation methods, in: F. Ricci, L. Rokach, B. Shapira (Eds.), Rec-
ommender Systems Handbook, Springer, 2015, pp. 37–76.

[24] L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, J. Sun, Temporal
recommendation on graphs via long- and short-term preference fusion, in: B. Rao,1105

B. Krishnapuram, A. Tomkins, Q. Yang (Eds.), Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, July 25-28, 2010, ACM, 2010, pp. 723–732.

[25] M. Ludewig, D. Jannach, Evaluation of session-based recommendation algo-
rithms, User Model. User-Adapt. Interact. 28 (4-5) (2018) 331–390.1110

[26] D. Garg, P. Gupta, P. Malhotra, L. Vig, G. Shroff, Sequence and time aware
neighborhood for session-based recommendations: STAN, in: B. Piwowarski,
M. Chevalier, É. Gaussier, Y. Maarek, J. Nie, F. Scholer (Eds.), Proceedings of
the 42nd International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019, ACM, 2019,1115

pp. 1069–1072.

[27] H. Steck, Evaluation of recommendations: rating-prediction and ranking, in:
Q. Yang, I. King, Q. Li, P. Pu, G. Karypis (Eds.), Seventh ACM Conference on
Recommender Systems, RecSys ’13, Hong Kong, China, October 12-16, 2013,
ACM, 2013, pp. 213–220.1120

[28] S. M. McNee, J. Riedl, J. A. Konstan, Being accurate is not enough: how accu-
racy metrics have hurt recommender systems, in: G. M. Olson, R. Jeffries (Eds.),
Extended Abstracts Proceedings of the 2006 Conference on Human Factors in
Computing Systems, CHI 2006, Montréal, Québec, Canada, April 22-27, 2006,
ACM, 2006, pp. 1097–1101.1125

[29] P. Castells, N. J. Hurley, S. Vargas, Novelty and diversity in recommender sys-
tems, in: F. Ricci, L. Rokach, B. Shapira (Eds.), Recommender Systems Hand-
book, Springer, 2015, pp. 881–918.

[30] M. Karimi, D. Jannach, M. Jugovac, News recommender systems - survey and
roads ahead, Inf. Process. Manage. 54 (6) (2018) 1203–1227.1130

[31] N. Lathia, S. Hailes, L. Capra, X. Amatriain, Temporal diversity in recommender
systems, in: F. Crestani, S. Marchand-Maillet, H. Chen, E. N. Efthimiadis,
J. Savoy (Eds.), Proceeding of the 33rd International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 2010, Geneva,
Switzerland, July 19-23, 2010, ACM, 2010, pp. 210–217.1135

34

[32] S. Chou, Y. Yang, Y. Lin, Evaluating music recommendation in a real-world set-
ting: On data splitting and evaluation metrics, in: 2015 IEEE International Con-
ference on Multimedia and Expo, ICME 2015, Turin, Italy, June 29 - July 3, 2015,
IEEE Computer Society, 2015, pp. 1–6.

[33] H. Wang, A. Dong, L. Li, Y. Chang, E. Gabrilovich, Joint relevance and freshness1140

learning from clickthroughs for news search, in: A. Mille, F. L. Gandon, J. Mis-
selis, M. Rabinovich, S. Staab (Eds.), Proceedings of the 21st World Wide Web
Conference 2012, WWW 2012, Lyon, France, April 16-20, 2012, ACM, 2012,
pp. 579–588.

[34] S. Vargas, P. Castells, Rank and relevance in novelty and diversity metrics for rec-1145

ommender systems, in: B. Mobasher, R. D. Burke, D. Jannach, G. Adomavicius
(Eds.), Proceedings of the 2011 ACM Conference on Recommender Systems,
RecSys 2011, Chicago, IL, USA, October 23-27, 2011, ACM, 2011, pp. 109–
116.

[35] P. Yan, D. D. Zeng, Clustering customer shopping trips with network structure,1150

in: Proceedings of the International Conference on Information Systems, ICIS
2008, Paris, France, December 14-17, 2008, Association for Information Sys-
tems, 2008, p. 28.

[36] A. K. Elmagarmid, P. G. Ipeirotis, V. S. Verykios, Duplicate record detection: A
survey, IEEE Trans. Knowl. Data Eng. 19 (1) (2007) 1–16.1155

[37] F. T. de la Rosa, M. T. G. López, R. M. Gasca, Analysis and visualization of the
DX community with information extracted from the web, in: K. V. Andersen,
J. K. Debenham, R. R. Wagner (Eds.), Database and Expert Systems Applica-
tions, 16th International Conference, DEXA 2005, Copenhagen, Denmark, Au-
gust 22-26, 2005, Proceedings, Vol. 3588 of Lecture Notes in Computer Science,1160

Springer, 2005, pp. 726–735.

[38] C. Dwork, R. Kumar, M. Naor, D. Sivakumar, Rank aggregation methods for the
web, in: V. Y. Shen, N. Saito, M. R. Lyu, M. E. Zurko (Eds.), Proceedings of the
Tenth International World Wide Web Conference, WWW 10, Hong Kong, China,
May 1-5, 2001, ACM, 2001, pp. 613–622.1165

[39] M. E. Renda, U. Straccia, Web metasearch: Rank vs. score based rank aggrega-
tion methods, in: G. B. Lamont, H. Haddad, G. A. Papadopoulos, B. Panda (Eds.),
Proceedings of the 2003 ACM Symposium on Applied Computing (SAC), March
9-12, 2003, Melbourne, FL, USA, ACM, 2003, pp. 841–846.

[40] P. Sánchez, A. Bellogı́n, Building user profiles based on sequences for content1170

and collaborative filtering, Inf. Process. Manage. 56 (1) (2019) 192–211.

[41] S. Dooms, A. Bellogı́n, T. D. Pessemier, L. Martens, A framework for dataset
benchmarking and its application to a new movie rating dataset, ACM TIST 7 (3)
(2016) 41:1–41:28.

[42] F. M. Harper, J. A. Konstan, The movielens datasets: History and context, TiiS1175

5 (4) (2016) 19:1–19:19.

35

[43] A. Catalina, A. Torres-Barrán, J. R. Dorronsoro, Satellite based nowcasting of PV
energy over peninsular spain, in: I. Rojas, G. Joya, A. Català (Eds.), Advances
in Computational Intelligence - 14th International Work-Conference on Artificial
Neural Networks, IWANN 2017, Cadiz, Spain, June 14-16, 2017, Proceedings,1180

Part I, Vol. 10305 of Lecture Notes in Computer Science, Springer, 2017, pp.
685–697.

[44] Y. Hu, Y. Koren, C. Volinsky, Collaborative filtering for implicit feedback
datasets, in: Proceedings of the 8th IEEE International Conference on Data Min-
ing (ICDM 2008), December 15-19, 2008, Pisa, Italy, IEEE Computer Society,1185

2008, pp. 263–272.

[45] S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme, BPR: bayesian per-
sonalized ranking from implicit feedback, in: J. A. Bilmes, A. Y. Ng (Eds.), UAI
2009, Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, Montreal, QC, Canada, June 18-21, 2009, AUAI Press, 2009, pp.1190

452–461.

[46] D. Jannach, L. Lerche, I. Kamehkhosh, M. Jugovac, What recommenders recom-
mend: an analysis of recommendation biases and possible countermeasures, User
Model. User-Adapt. Interact. 25 (5) (2015) 427–491.

[47] A. Bellogı́n, P. Castells, I. Cantador, Statistical biases in information retrieval1195

metrics for recommender systems, Inf. Retr. Journal 20 (6) (2017) 606–634.

[48] R. Manmatha, T. M. Rath, F. Feng, Modeling score distributions for combining
the outputs of search engines, in: W. B. Croft, D. J. Harper, D. H. Kraft, J. Zobel
(Eds.), SIGIR 2001: Proceedings of the 24th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, September1200

9-13, 2001, New Orleans, Louisiana, USA, ACM, 2001, pp. 267–275.

[49] T. Donkers, B. Loepp, J. Ziegler, Sequential user-based recurrent neural network
recommendations, in: P. Cremonesi, F. Ricci, S. Berkovsky, A. Tuzhilin (Eds.),
Proceedings of the Eleventh ACM Conference on Recommender Systems, Rec-
Sys 2017, Como, Italy, August 27-31, 2017, ACM, 2017, pp. 152–160.1205

[50] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T. Chua, Neural collaborative filtering,
in: R. Barrett, R. Cummings, E. Agichtein, E. Gabrilovich (Eds.), Proceedings
of the 26th International Conference on World Wide Web, WWW 2017, Perth,
Australia, April 3-7, 2017, ACM, 2017, pp. 173–182.

[51] S. A. M. Falavarjani, F. Zarrinkalam, J. Jovanovic, E. Bagheri, A. A. Ghorbani,1210

The reflection of offline activities on users online social behavior: An observa-
tional study, Inf. Process. Manage. 56 (6) (2019) 1–20.

36

	Introduction
	Background
	Neighborhood-based approaches
	Time-aware and sequential recommendation
	Recommender systems evaluation

	Sequence-aware neighborhood-based recommenders
	Revisiting time-aware similarity metrics
	Sequence-aware similarity metrics
	Sequence-aware item selection in neighborhood approaches
	Complexity and scalability

	Experimental Settings
	Datasets
	Evaluation methodology
	Parameter tuning
	Evaluated recommenders

	Empirical evaluation
	Performance analysis: global temporal split
	Performance analysis: per user temporal split
	Sensitivity of backward-forward components

	Conclusions and future work
	Reproducibility

