

Analysis of co-movement pattern mining methods for recommendation (extended abstract)

Sergio Torrijos, Alejandro Bellogín Universidad Autónoma de Madrid Spain

CIRCLE, July 2020

Recommender Systems

You already know about them (from previous talks)

- Just in case:
 - Users interact (rate, purchase, click) with items

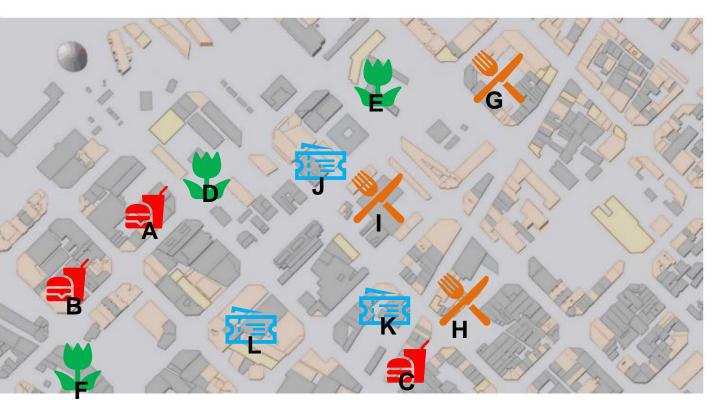
- Which items will (another) user like?
 - Based on content of items, experiences of other users, etc.

Escuela Politécnica

Superior

Recommender Systems for tourism

- We need to consider some particularities of this domain
 - Types of venues
 - Proximity
 - Order



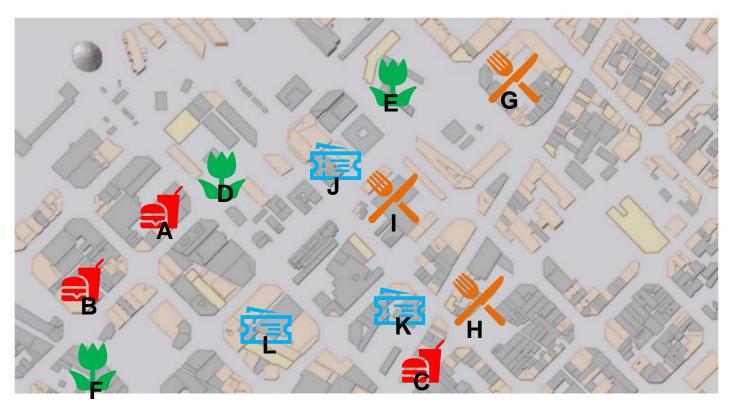
Recommender Systems for tourism

- We need to consider some particularities of this domain
 - Types of venues

categories

- Proximity geographical coordinates
- Order

sequences \rightarrow trajectories



Trajectory pattern mining

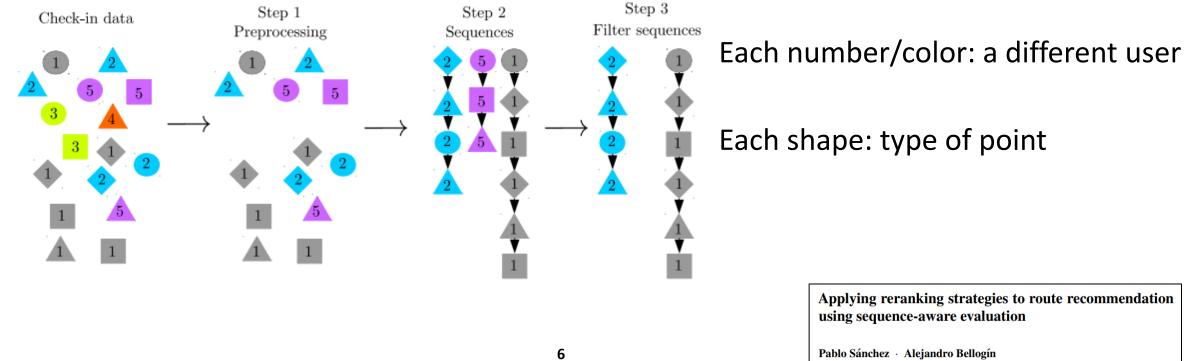
A very broad area

Traj. Pattern Mining Uncertainty Trajectory Graph Privacy Moving Freq. Seq. Classification Mining Together Preserving Patterns Patterns Trajectory Periodic Reducing Routing Outlier/Anomaly Clustering Patterns Uncertainty Detection Trajectory Indexing and Retrieval Matrix Analysis Managing Recent Distance of Query Historical Trajectory Trajectories Trajectories TD MF **Trajectory Preprocessing** Map-Matching Compression CFSegmentation Stay Point Detection Noise Filtering ר א Matrix Spatial Spatial Spatial Tensor Trajectories Trajectories Trajectories Graph

Trajectory Data Mining: An Overview

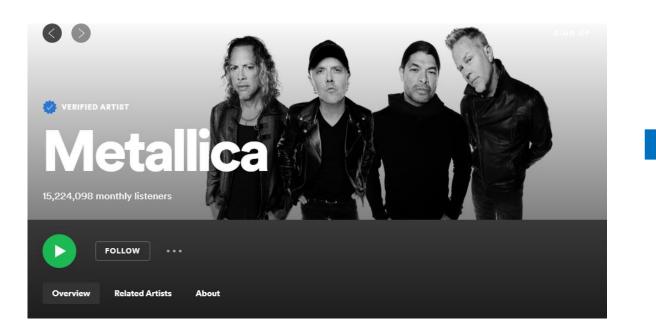
YU ZHENG, Microsoft Research

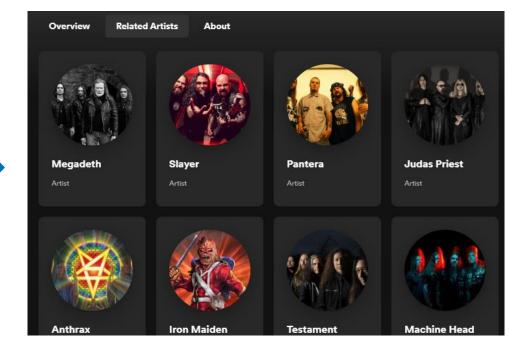
- First, what is a trajectory?
 - Data from Location-Based Social Networks (e.g., Foursquare) do not form dense trajectories
 - We need to process check-in information



For filtering

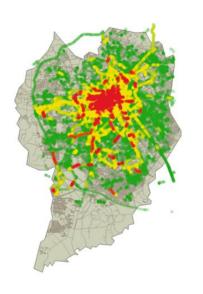
• Present the user the most similar trajectories





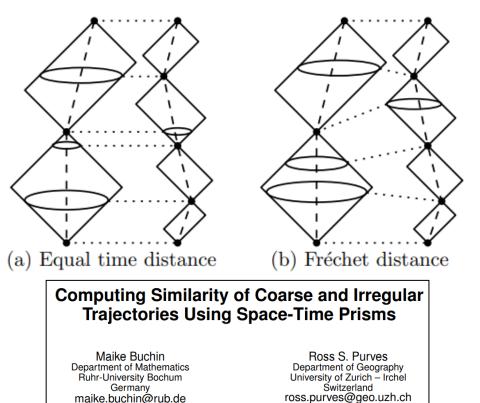
For filtering

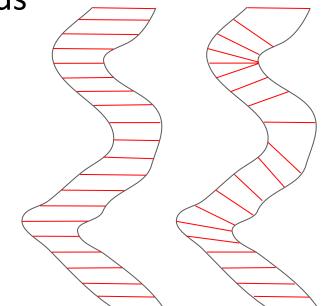
- Present the user the most similar trajectories
- Using trajectory indexing, clustering, or similarity methods



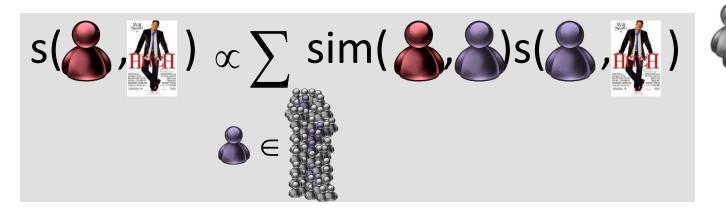
ST-DBSCAN: An algorithm for clustering spatial-temporal data

Derya Birant *, Alp Kut

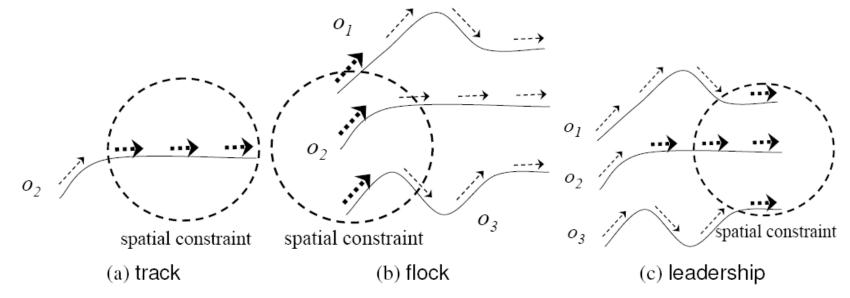




Euclidean vs DTW (dynamic time warping) similarity



- To obtain similar users/items
 - These similar users/items can be integrated in classical recommendation methods like nearest neighbours



- To obtain similar users/items
 - These similar users/items can be integrated in classical recommendation methods like nearest neighbours
 - Using trajectory similarities or co-movement patterns

Some results...

Escuela Politécnica

- Data: from Tokyo (Foursquare) and Rome (Tripbuilder)
 - Tokyo: 328K interactions, 8.6K users, 28.6K items \rightarrow 0.13%
 - Rome: 60K interactions, 8K users, 394 items \rightarrow 1.9%
- Methods
 - Trajectory similarity: based on DTW and Hausdorff distance
 - Clustering: ST-DBSCAN
 - Co-movement: Flock, Convoy

Efficiency (Rome)

Trajectory data mining methods are very expensive

Algorithm	1K	10K	20K	60K
Ad-Hoc	0m0.477s	0m1.952s	0m5.253s	0m35.758s
Sim. tray. Hausdorff	0m10.568s	22m32.164s	88m17.315s	1157m31.251s
Sim. tray. DTW	0m3.386s	6m16.519s	26m9.038s	232m25.592s
ST-DBSCAN	0m0.817s	0m3.173s	0m9.487s	1m29.065s
Convoy	0m5.786s	0m6.086s	0m6.266s	0m6.098s
Convoy partials	0m2.786s	0m3.086s	0m3.266s	0m4.098s
Flock	0m5.199s	24m23.087s	49m34.065s	+
Flock partials	0m5.500s	0m30.545s	0m14.880s	3m11.811s

• We developed an optimised version (partial) based on data subsets

- We observe different levels of performance (precision)
 - Flock obtains good results
 - Clustering depends on the parameters

Ad-Hoc	δ =3600	0.0361754
	δ =10800	0.0349337
Sim. tray.	Hausdorff	0.0175497
	DTW	0.0206126
ST-DBSCAN	ε =5000, th=6000, minEps=1	0.0369205
	ε =5000, th=6000, minEps=10	0.0316225
	ε =5000, th=6000, minEps=10	0.0369205
	ε =1000, <i>th</i> =2000, <i>minEps</i> =1	0.0336921
	ε =4000, th=2000, minEps=1	0.0277318
Convoy	min points=2, lifetime=10, dist max= 10^{-2}	0.0362583
	min points=20, lifetime=2, dist max= 10^{-2}	0.0332781
	min points=2, lifetime=2, dist max= 10^{-3}	0.0243377
	min points=2, lifetime=5, dist max= 10^{-2}	0.0352649
Convoy partials	min points=2, lifetime=2, dist max= 10^{-3}	0.0360927
	min points=2, lifetime=2, dist max= 10^{-1}	0.0368377
	min points=3, lifetime=5, dist max= 10^{-1}	0.0276490
Flock	ε=10, μ 2, δ=2	0.0369205
	ε =0.1, μ 2, δ =10	0.0369205
	ε =10, μ 2, δ =2	0.0369205
Flock partials	ε= 10 , μ 2 , δ= 2	0.0368377
	ε =0.1, μ 2, δ =10	0.0355132
	ε =0.1, μ 2, δ =2	0.0368377

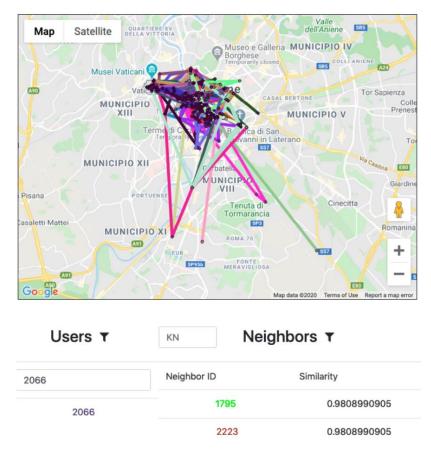
Escuela

Politécnica

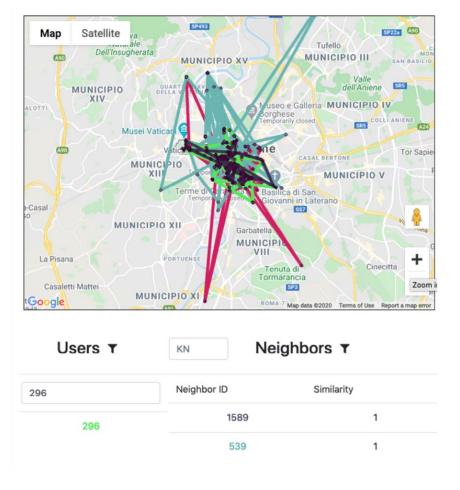
Superior

Visualisation

We plot in a map the neighbours these methods find



DTW



Convoy (2, 2, 0.01)

Alejandro Bellogín – CIRCLE, July 2020

Performance and social analysis (Tokyo)

Very good results when computing performance only for tourist users

16

• Tourist: if their interactions in the city span less than 21 days

Recommender	NDCG	FA	AD	EPC
Ad-hoc	0.071	†0.271	1,217	0.770
TS-DTW	0.069	0.246	320	0.847
TS-Haus	0.068	0.252	333	0.839
UB	0.095	0.245	1,133	0.710
IB	0.064	0.262	†3,208	†0.858
BPR	0.108	0.266	18	0.566
IRenMF	$^{+0.111}$	0.262	106	0.580

Overlap with explicit social connections

Neigh. Sel.	Method	Avg.	Total	T-NDCG	T-FA
Best	Ad-hoc	2	1,008	0.071	0.271
	TS-DTW	9	4,833	0.069	0.246
	TS-Haus	9	4,833	0.068	0.252
As UB	Ad-hoc	2	1,008	0.071	0.273
	TS-DTW	2	1,074	0.056	0.271
	TS-Haus	5	2,685	0.050	0.270
	UB	4	2,140	0.095	0.245

Discovering Related Users in Location-Based Social Networks

Sergio Torrijos Universidad Autónoma de Madrid Madrid, Spain sergio.torrijos@estudiante.uam.es Alejandro Bellogín Universidad Autónoma de Madrid Madrid, Spain alejandro.bellogin@uam.es Pablo Sánchez Universidad Autónoma de Madrid Madrid, Spain pablo.sanchezp@uam.es

Alejandro Bellogín – CIRCLE, July 2020

Discussion and future work

- Trajectory pattern mining methods can be useful for recommendation
 - There are computation problems that should be solved
 - Some inherent properties might alleviate these problems:
 - Data points are limited by actual venues, instead of fine-grained GPS coordinates
 - Popularity bias could guide the predictions
- Temporal and spatial information are very important
 - Using this information is not novel, but there are few works exploiting trajectories in a principled way
 - How can it be integrated in other tasks such as trip recommendation or successive recommendation?

Analysis of co-movement pattern mining methods for recommendation

Sergio Torrijos, Alejandro Bellogín Universidad Autónoma de Madrid Spain

CIRCLE, July 2020

Performance (Rome)

- We observe different levels of performance
 - Flock obtains good results
 - Clustering depends on the parameters

Ad-Hoc	δ =3600	0.0361754	0.3487827
	δ =10800	0.0349337	0.3637682
Sim. tray.	Hausdorff	0.0175497	0.5784518
	DTW	0.0206126	1.2903128
ST-DBSCAN	ε =5000, th=6000, minEps=1	0.0369205	0.4251326
	ε =5000, th=6000, minEps=10	0.0316225	0.3530357
	ε =5000, th=6000, minEps=10	0.0369205	0.4000756
	ε =1000, <i>th</i> =2000, <i>minEps</i> =1	0.0336921	0.3530357
	<i>ε</i> =4000, <i>th</i> =2000, <i>minEps</i> =1	0.0277318	0.3525041
Convoy	min points=2, lifetime=10, dist max= 10^{-2}	0.0362583	0.3566276
	min points=20, lifetime=2, dist max= 10^{-2}	0.0332781	1.0634231
	min points=2, lifetime=2, dist max= 10^{-3}	0.0243377	0.5973882
	min points=2, lifetime=5, dist max= 10^{-2}	0.0352649	0.4018430
Convoy partials	min points=2, lifetime=2, dist max= 10^{-3}	0.0360927	0.3925327
	min points=2, lifetime=2, dist max= 10^{-1}	0.0368377	0.3525041
	min points=3, lifetime=5, dist max= 10^{-1}	0.0276490	0.7646296
Flock	$arepsilon$ =10, μ 2, δ =2	0.0369205	0.3530357
	$arepsilon$ =0.1, μ 2, δ =10	0.0369205	0.3704636
	$arepsilon$ =10, μ 2, δ =2	0.0369205	0.3530357
Flock partials	ε= 10 , μ 2 , δ= 2	0.0368377	0.3525041
	ε =0.1, μ 2, δ =10	0.0355132	0.3530357
	ε =0.1, μ 2, δ =2	0.0368377	0.3670011

Precision MAE

Experiments

Escuela

- Foursquare data: Tokyo from global check-in dataset (33M) ~ 328K
- Temporal Split: 6 months for training, 1 month test
- Baselines
 - UB: neighbour recommender with classic user similarity
 - IB: neighbour recommender with classic item similarity
 - BPR: Bayesian Personalised Ranking using a matrix factorisation algorithm
 - IRenMF: matrix factorisation algorithm that exploits geographical influence
- Metrics
 - NDCG: accuracy of item recommendations
 - FA: feature agreement, or precision in terms of category matching (not items)
 - AD and EPC: diversity and novelty metrics

Alejandro Bellogín – CIRCLE, July 2020

Performance comparison

 Neighbours are not competitive against MF methods in terms of accuracy

Recommender	NDCG	FA	AD	EPC
Ad-hoc	0.054	0.206	3,314	0.741
TS-DTW	0.036	0.203	408	0.871
TS-Haus	0.036	0.215	442	0.870
UB	0.062	0.201	1,899	0.912
IB	0.046	†0.264	†13,685	†0.956
BPR	0.066	0.229	28	0.872
IRenMF	†0.069	0.225	1,475	0.888

Performance comparison

- Neighbours are not competitive against MF methods in terms of accuracy
- Much better results are found for beyond-accuracy dimensions:
 - Ad-hoc is the best one for diversity (AD)
 - Similarity with Hausdorff is the best one for category accuracy (FA)

Recommender	NDCG	FA	AD	EPC
Ad-hoc	0.054	0.206	3,314	0.741
TS-DTW	0.036	0.203	408	0.871
TS-Haus	0.036	0.215	442	0.870
UB	0.062	0.201	1,899	0.912
IB	0.046	†0.264	†13,685	†0.956
BPR	0.066	0.229	28	0.872
IRenMF	†0.069	0.225	1,475	0.888

Impact on local vs tourist users

- There are different types of users in LBSNs:
 - Locals (if their check-ins span more than 21 days) vs tourists
- IRenMF is still the best approach
- But neighbour recommenders improve their performance for tourists
 - In particular, for FA

Recommender	NDCG	FA	AD	EPC
Ad-hoc	0.050	0.181	2,829	0.735
TS-DTW	0.032	0.179	358	0.869
TS-Haus	0.032	0.191	405	0.869
UB	0.057	0.177	1,440	0.704
IB	0.042	†0.250	†11,929	†0.872
BPR	0.059	0.204	26	0.608
IRenMF	†0.063	0.200	1,199	0.647

Recommender	NDCG	FA	AD	EPC
Ad-hoc	0.071	† 0 .271	1,217	0.770
TS-DTW	0.069	0.246	320	0.847
TS-Haus	0.068	0.252	333	0.839
UB	0.095	0.245	1,133	0.710
IB	0.064	0.262	†3,208	†0.858
BPR	0.108	0.266	18	0.566
IRenMF	†0.111	0.262	106	0.580

Local users

Tourist users

Alejandro Bellogín – CIRCLE, July 2020

Social network analysis

• How similar are the found neighbours to explicit social connections?

Neigh. Sel.	Method	Avg.	Total	T-NDCG	T-FA
Best	Ad-hoc	2	1,008	0.071	0.271
	TS-DTW	9	4,833	0.069	0.246
	TS-Haus	9	4,833	0.068	0.252
As UB	Ad-hoc	2	1,008	0.071	0.273
	TS-DTW	2	1,074	0.056	0.271
	TS-Haus	5	2,685	0.050	0.270
	UB	4	2,140	0.095	0.245

- TS-Haus always obtains more social connections than the baseline UB
- Performance accuracy on tourist users is competitive (T-NDCG)
- Feature agreement is always better than baseline (T-FA)