Estudio de métodos de detección de patrones de movimiento para sistemas de recomendación turísticos.


Sergio Torrijos López de la Manzanara

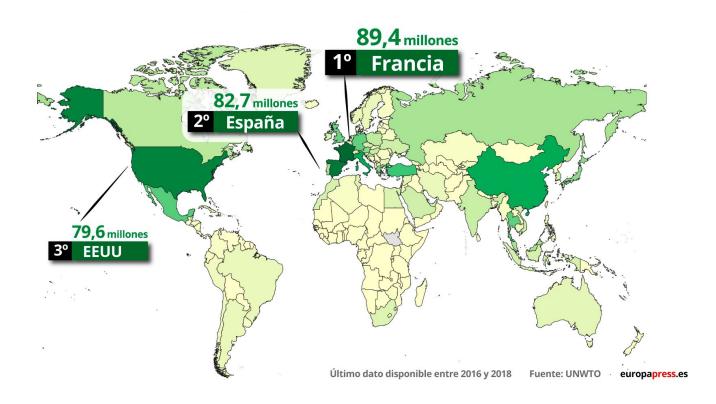
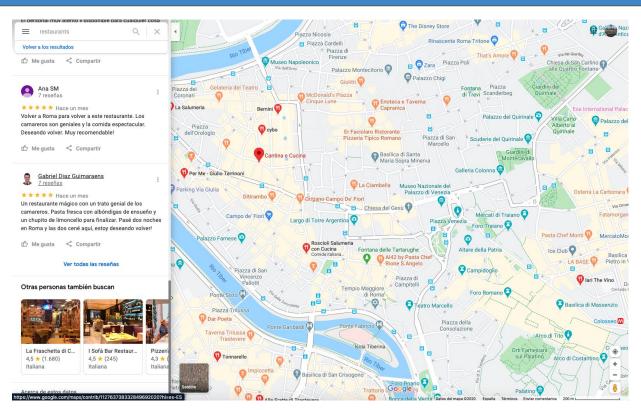
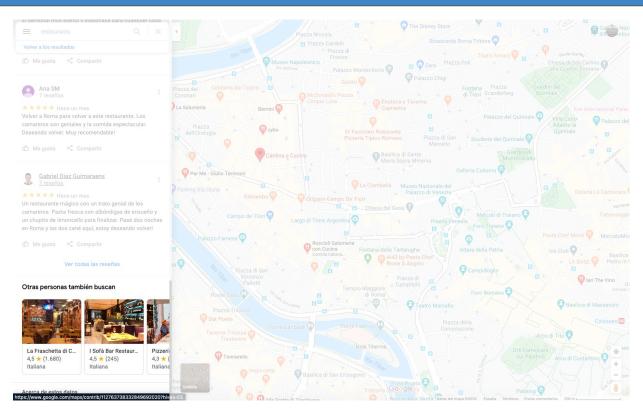
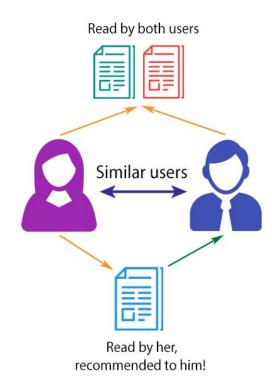


TABLA DE CONTENIDOS



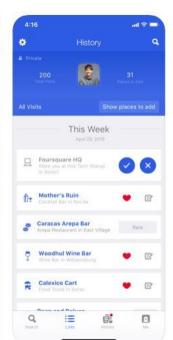

Datos turismo mundial

Sistemas de recomendación turísticos

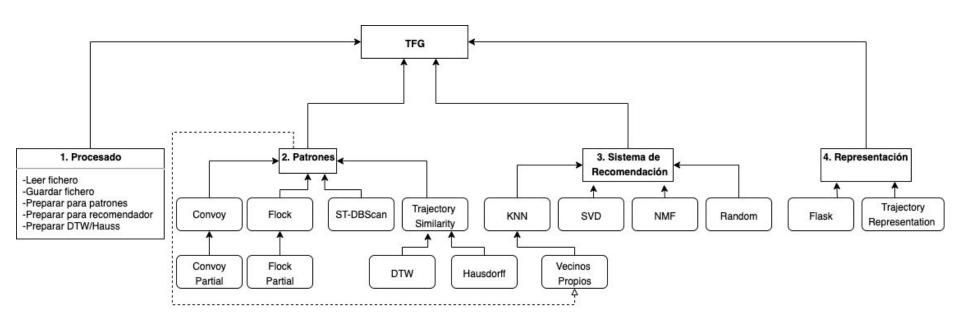


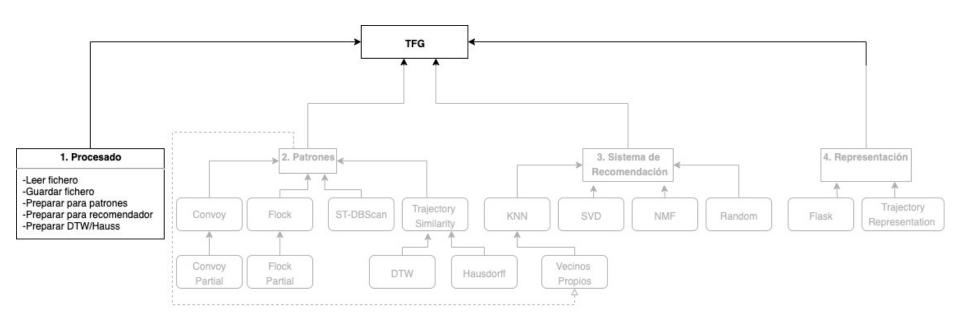
Sistemas de recomendación turísticos

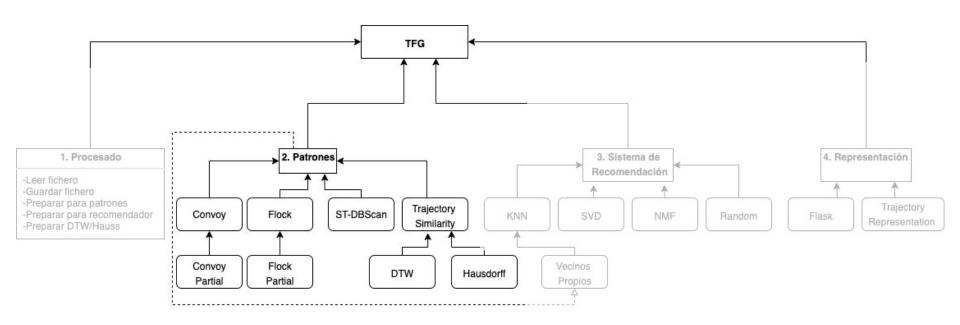
Sistemas de recomendación

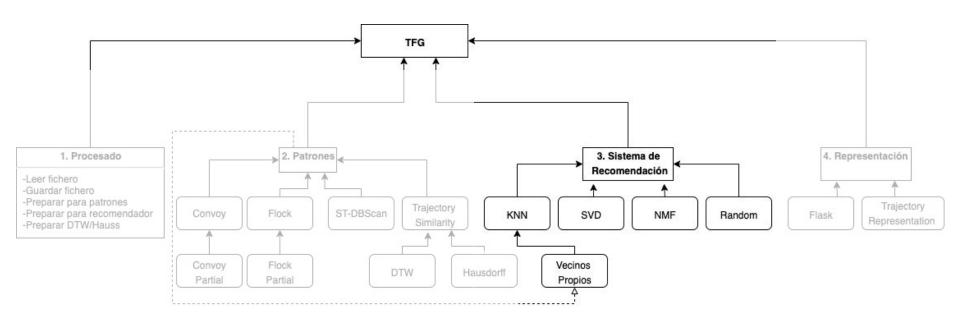

COLLABORATIVE FILTERING

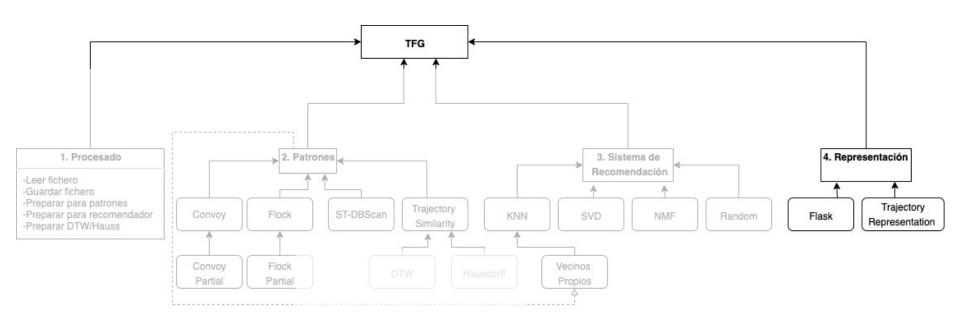
Sistemas de recomendación turísticos

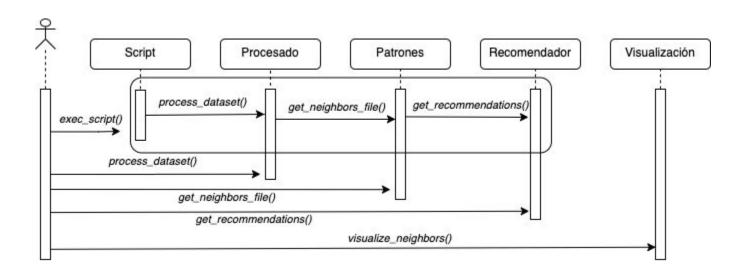

¿Bandada de pájaros = Patrones de movimiento?

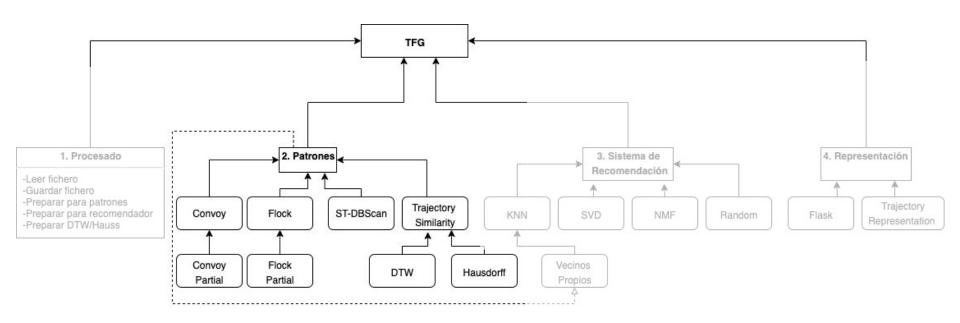


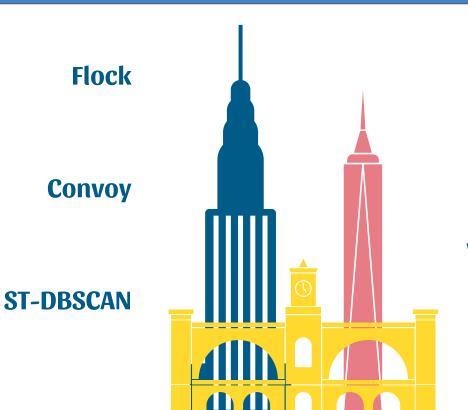

Tema de estudio


Estudiar, aplicar y adaptar los patrones de movimiento para los sistemas de recomendación.



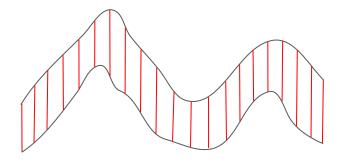




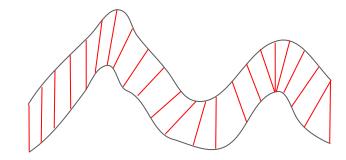


Diseño - Diagrama de secuencia

Patrones de movimiento

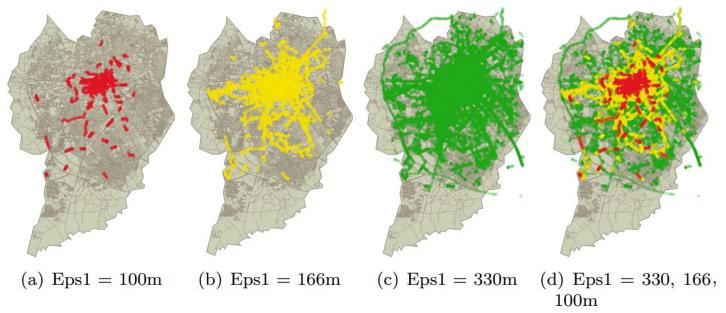


Hausdorff

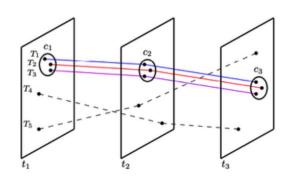

Dynamic Time Warping

Patrones de movimiento - Dynamic Time Warping

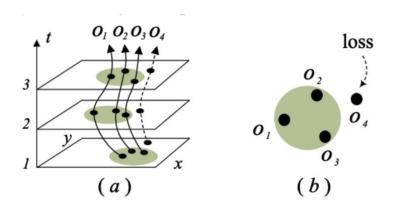
(a) Distancia euclídea



(b) Dynamic Time Warping

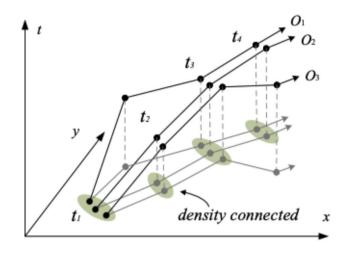

Figura 2.5: Comparación entre dos secuencias: (a) mientras la distancia euclídea es rígida en el tiempo, (b) Dynamic Time Warping (DTW) es flexible en el tiempo para tratar la posible distorsión de tiempo entre las secuencias [10].

Implementación - ST-DBSCAN



Birant, D. and Kut, A. (2007). St-dbscan: An algorithm for clustering spatial–temporal data. Data & Knowledge Engineering, 60(1):208 –221. Intelligent Data Mining.

Patrones de movimiento - Flock



(a) Trayectoria Flock [7] donde se muestran cómo se escogen los puntos para la trayectoria en función de si cumplen el criterio del radio del disco.

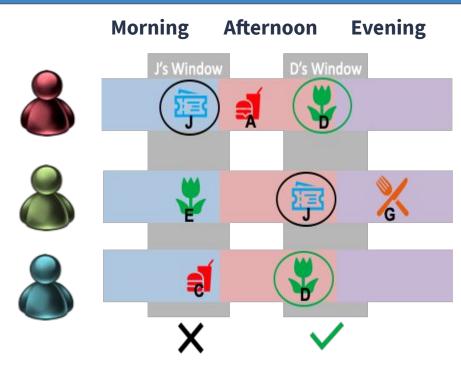
(b) Demostración de la pérdida de elementos ocasionada por Flock [13], donde se aprecia que el punto *O4* no entra en las restricciones de Flock pese a seguir una trayectoria similar.

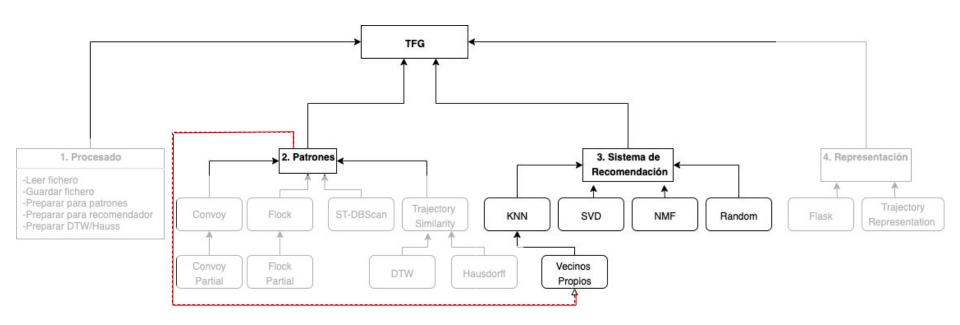
Patrones de movimiento - Convoy

Figura 2.2: Ejemplo de Trayectoria Convoy [13], marcando en verde los discos que agrupan los puntos y las líneas marcando la trayectoria.

Patrones de movimiento - Librerías utilizadas

Patrones de movimiento - Librerías utilizadas

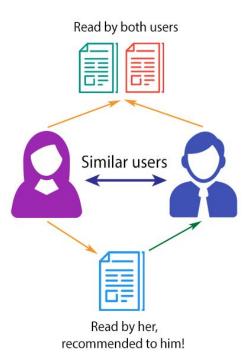

Librerías implementadas y adaptadas a la caracterización de recomendación turística.

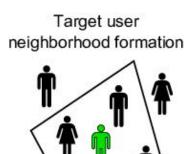

Implementación optimizada de Flock: Partials

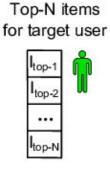
Ejecución en 2 fases:

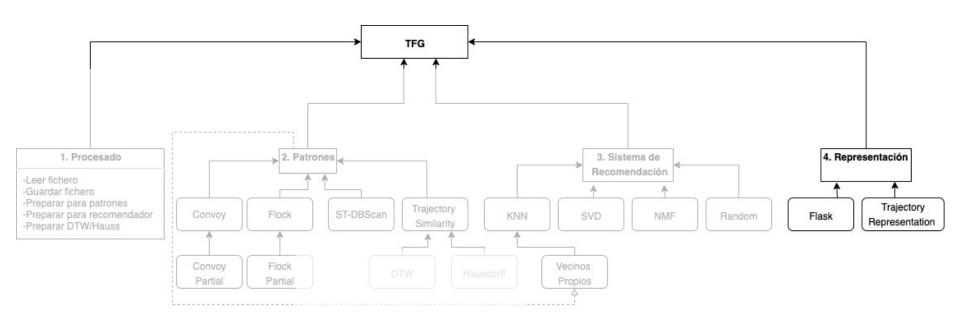
- 1. Calcular la similitud de todos los usuarios mediante un método rápido (DTW o ST-DBSCAN).
- 2.– Sobre los resultados obtenidos, coger los k usuarios más similares a nuestro usuario, y ejecutar Flock iterativamente la lista reducida.

Nuevo patrón de movimiento: Ad-Hoc

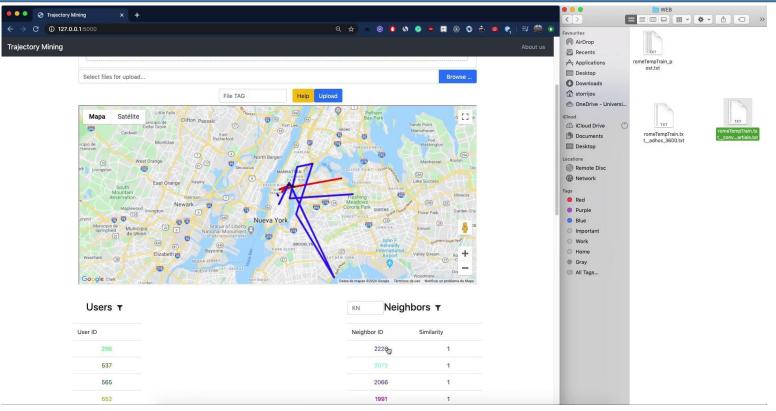


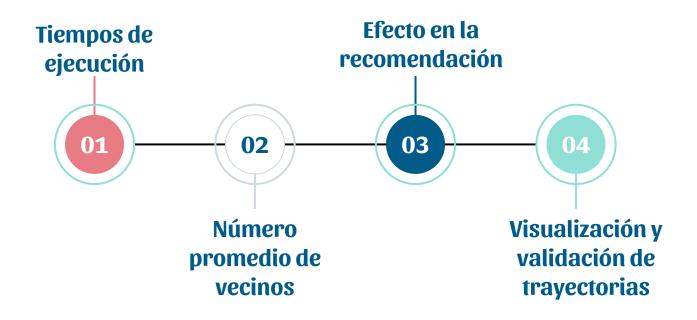



Implementación - Entrada al Sistema de Recomendación

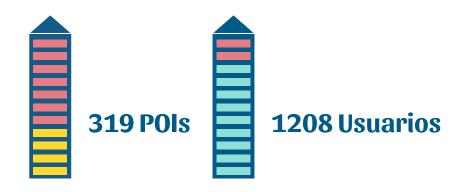

Implementación - Sistema de Recomendación

COLLABORATIVE FILTERING





Implementación - Visualización



Esquema de pruebas realizadas

Dataset: Roma

user_id item_id latitude longitude timestamp
15 14627 40.757564 -73.989238 1354881399

1. Tiempos de ejecución

Algorithm	1K	10K	20K	60K
Ad-Hoc	0m0.477s	0m1.952s	0m5.253s	0m35.758s
Sim. tray. Hausdorff	0m10.568s	22m32.164s	88m17.315s	1157m31.251s
Sim. tray. DTW	0m3.386s	6m16.519s	26m9.038s	232m25.592s
ST-DBSCAN	0m0.817s	0m3.173s	0m9.487s	1m29.065s
Convoy	0m5.786s	0m6.086s	0m6.266s	0m6.098s
Convoy partials	0m2.786s	0m3.086s	0m3.266s	0m4.098s
Flock	0m5.199s	24m23.087s	49m34.065s	†
Flock partials	0m5.500s	0m30.545s	0m14.880s	3m11.811s

Dataset	1K	10K	20K	60K
Número POIs	163	319	346	394
Número usuarios	129	1208	2618	7954

Algoritmo	Parámetros	Número vecinos promedio
Ad-Hoc	δ =3600	1.3
	δ =10800	1.8
Sim. tray.	Hausdorff	1206
	DTW	1206
ST-DBSCAN	ε =5000, th=6000, minEps=1	1.7
	ε =5000, th=6000, minEps=5	3.1
	ε =4000, th=2000, minEps=1	2.2
	ε =1000, th=2000, minEps=1	1.5
Convoy	min points=20, lifetime=2, dist $max=10^{-2}$	22.8
	min points=2, lifetime=2, dist $max=10^{-3}$	2.1
	min points=2, lifetime=5, dist $max=10^{-2}$	1.23
	min points=5, lifetime=2, dist $max=10^{-2}$	5.92
	min points=5, lifetime=2, dist $max=10^{-15}$	6
	min points=3, lifetime=5, dist max=10 ²	0
Convoy partials	min points=2, lifetime=2, dist $max=10^{-4}$	1.4
	min points=2, lifetime=2, dist $max=10^{-3}$	1.7
Flock	ε =10, μ =2, δ =2	4
	ε =0.1, μ =2, δ =10	2
	ε =10, μ =2, δ =10 ²	0
	ε =0.1, μ =2, δ =2	4
Flock partials	ε =10, μ =2, δ =2	5.2
	ε =0.1, μ =2, δ =10	5.09
	ε =0.1, μ =2, δ =2	8.04

Algoritmo	Parámetros	Número vecinos promedio
Ad-Hoc	δ=3600	1.3
	δ=10800	1.8
Sim. tray.	Hausdorff	1206
	DTW	1206
ST-DBSCAN	ε =5000, th=6000, minEps=1	1.7
	ε =5000, th=6000, minEps=5	3.1
	ε =4000, th=2000, minEps=1	2.2
	ε =1000, th=2000, minEps=1	1.5
Convoy	min points=20, lifetime=2, dist $max=10^{-2}$	22.8
	min points=2, lifetime=2, dist $max=10^{-3}$	2.1
	min points=2, lifetime=5, dist $max=10^{-2}$	1.23
	min points=5, lifetime=2, dist $max=10^{-2}$	5.92
	min points=5, lifetime=2, dist $max=10^{-15}$	6
	min points=3, lifetime=5, dist max=10 ²	0
Convoy partials	min points=2, lifetime=2, dist $max=10^{-4}$	1.4
	min points=2, lifetime=2, dist $max=10^{-3}$	1.7
Flock	ε =10, μ =2, δ =2	4
	ε =0.1, μ =2, δ =10	2
	ε =10, μ =2, δ =10 ²	0
	ε =0.1, μ =2, δ =2	4
Flock partials	ε =10, μ =2, δ =2	5.2
	ε =0.1, μ =2, δ =10	5.09
	ε =0.1, μ =2, δ =2	8.04

Algoritmo	Parámetros	Número vecinos promedio		
Ad-Hoc	δ =3600	1.3		
	δ=10800	1.8		
Sim. tray.	Hausdorff	1206		
	DTW	1206		
ST-DBSCAN	ε =5000, th=6000, minEps=1	1.7		
	ε =5000, th=6000, minEps=5	3.1		
	ε =4000, th=2000, minEps=1	2.2		
	ε =1000, th=2000, minEps=1	1.5		
Convoy	min points=20, lifetime=2, dist $max=10^{-2}$	22.8		
	min points=2, lifetime=2, dist $max=10^{-3}$	2.1		
	min points=2, lifetime=5, dist $max=10^{-2}$	1.23		
	min points=5, lifetime=2, dist $max=10^{-2}$	5.92		
	min points=5, lifetime=2, dist $max=10^{-15}$	6		
	min points=3, lifetime=5, dist $max=10^2$	0		
Convoy partials	min points=2, lifetime=2, dist $max=10^{-4}$	1.4		
	min points=2, lifetime=2, dist max= 10^{-3}	1.7		
Flock	ε =10, μ =2, δ =2	4		
	ε =0.1, μ =2, δ =10	2		
	ε =10, μ =2, δ =10 ²	0		
	ε =0.1, μ =2, δ =2	4		
Flock partials	ε =10, μ =2, δ =2	5.2		
	ε =0.1, μ =2, δ =10	5.09		
	ε =0.1, μ =2, δ =2	8.04		

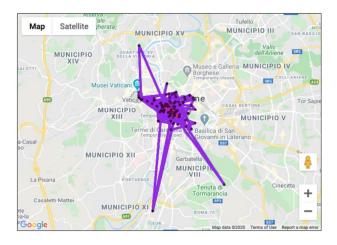
Algoritmo	Parámetros	Número vecinos promedio		
Ad-Hoc	δ =3600	1.3		
	δ=10800	1.8		
Sim. tray.	Hausdorff	1206		
	DTW	1206		
ST-DBSCAN	ε =5000, th=6000, minEps=1	1.7		
	ε =5000, th=6000, minEps=5	3.1		
	ε =4000, th=2000, minEps=1	2.2		
	ε =1000, th=2000, minEps=1	1.5		
Convoy	min points=20, lifetime=2, dist max= 10^{-2}	22.8		
	min points=2, lifetime=2, dist max= 10^{-3}	2.1		
	min points=2, lifetime=5, dist $max=10^{-2}$	1.23		
	min points=5, lifetime=2, dist $max=10^{-2}$	5.92		
	min points=5, lifetime=2, dist max= 10^{-15}	6		
	min points=3, lifetime=5, dist $max=10^2$	0		
Convoy partials	min points=2, lifetime=2, dist $max=10^{-4}$	1.4		
	min points=2, lifetime=2, dist $max=10^{-3}$	1.7		
Flock	ε =10, μ =2, δ =2	4		
	ε =0.1, μ =2, δ =10	2		
	ε =10, μ =2, δ =10 ²	0		
	ε =0.1, μ =2, δ =2	4		
Flock partials	ε =10, μ =2, δ =2	5.2		
	ε =0.1, μ =2, δ =10	5.09		
	ε =0.1, μ =2, δ =2	8.04		

Algoritmo	Parámetros	Número vecinos promedio		
Ad-Hoc	δ=3600	1.3		
	δ=10800	1.8		
Sim. tray.	Hausdorff	1206		
	DTW	1206		
ST-DBSCAN	ε =5000, th=6000, minEps=1	1.7		
	ε =5000, th=6000, minEps=5	3.1		
	ε =4000, th=2000, minEps=1	2.2		
	ε =1000, th=2000, minEps=1	1.5		
Convoy	min points=20, lifetime=2, dist max= 10^{-2}	22.8		
	min points=2, lifetime=2, dist $max=10^{-3}$	2.1		
	min points=2, lifetime=5, dist $max=10^{-2}$	1.23		
	min points=5, lifetime=2, dist $max=10^{-2}$	5.92		
	min points=5, lifetime=2, dist $max=10^{-15}$	6		
	min points=3, lifetime=5, dist max=10 ²	0		
Convoy partials	min points=2, lifetime=2, dist max= 10^{-4}	1.4		
	min points=2, lifetime=2, dist max= 10^{-3}	1.7		
Flock	ε =10, μ =2, δ =2	4		
	ε =0.1, μ =2, δ =10	2		
	ε =10, μ =2, δ =10 ²	0		
	ε =0.1, μ =2, δ =2	4		
Flock partials	ε =10, μ =2, δ =2	5.2		
	ε =0.1, μ =2, δ =10	5.09		
	ε =0.1, μ =2, δ =2	8.04		

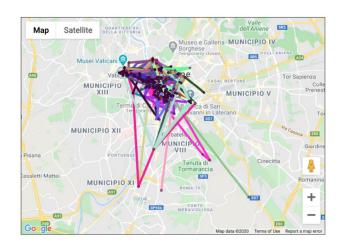
Algoritmo	Parámetros	Número vecinos promedio
Ad-Hoc	δ =3600	1.3
	δ =10800	1.8
Sim. tray.	Hausdorff	1206
	DTW	1206
ST-DBSCAN	ε =5000, th=6000, minEps=1	1.7
	ε =5000, th=6000, minEps=5	3.1
	ε =4000, th=2000, minEps=1	2.2
	ε =1000, th=2000, minEps=1	1.5
Convoy	min points=20, lifetime=2, dist $max=10^{-2}$	22.8
	min points=2, lifetime=2, dist $max=10^{-3}$	2.1
	min points=2, lifetime=5, dist $max=10^{-2}$	1.23
	min points=5, lifetime=2, dist $max=10^{-2}$	5.92
	min points=5, lifetime=2, dist $max=10^{-15}$	6
	min points=3, lifetime=5, dist max=10 ²	0
Convoy partials	min points=2, lifetime=2, dist $max=10^{-4}$	1.4
	min points=2, lifetime=2, dist $max=10^{-3}$	1.7
Flock	ε =10, μ =2, δ =2	4
	ε =0.1, μ =2, δ =10	2
	ε =10, μ =2, δ =10 2	0
	ε =0.1, μ =2, δ =2	4
Flock partials	ε =10, μ =2, δ =2	5.2
	ε =0.1, μ =2, δ =10	5.09
	ε =0.1, μ =2, δ =2	8.04

Algoritmo	Parámetros	Número vecinos promedio
Ad-Hoc	δ=3600	1.3
	δ =10800	1.8
Sim. tray.	Hausdorff	1206
	DTW	1206
ST-DBSCAN	ε =5000, th=6000, minEps=1	1.7
	ε =5000, th=6000, minEps=5	3.1
	ε =4000, th=2000, minEps=1	2.2
	ε =1000, th=2000, minEps=1	1.5
Convoy	min points=20, lifetime=2, dist $max=10^{-2}$	22.8
	min points=2, lifetime=2, dist $max=10^{-3}$	2.1
	min points=2, lifetime=5, dist $max=10^{-2}$	1.23
	min points=5, lifetime=2, dist $max=10^{-2}$	5.92
	min points=5, lifetime=2, dist $max=10^{-15}$	6
	min points=3, lifetime=5, dist max=10 ²	0
Convoy partials	min points=2, lifetime=2, dist $max=10^{-4}$	1.4
	min points=2, lifetime=2, dist $max=10^{-3}$	1.7
Flock	ε =10, μ =2, δ =2	4
	ε =0.1, μ =2, δ =10	2
	ε =10, μ =2, δ =10 ²	0
	ε =0.1, μ =2, δ =2	4
Flock partials	ε =10, μ =2, δ =2	5.2
	ε =0.1, μ =2, δ =10	5.09
	ε =0.1, μ =2, δ =2	8.04

Algoritmo	Parámetros	Precisión	MAE
Ad-Hoc	<i>δ</i> =3600	0.0361754	0.3487827
	δ =10800	0.0349337	0.3637682
Sim. tray.	Hausdorff	0.0175497	0.5784518
	DTW	0.0206126	1.2903128
ST-DBSCAN	ε =5000, th=6000, minEps=1	0.0369205	0.4251326
	ε =5000, th=6000, minEps=10	0.0316225	0.3530357
	ε =5000, th=6000, minEps=10	0.0369205	0.4000756
	ε =1000, th=2000, minEps=1	0.0336921	0.3530357
	ε =4000, th=2000, minEps=1	0.0277318	0.3525041
Convoy	min points=2, lifetime=10, dist $max=10^{-2}$	0.0362583	0.3566276
	min points=20, lifetime=2, dist $max=10^{-2}$	0.0332781	1.0634231
	min points=2, lifetime=2, dist $max=10^{-3}$	0.0243377	0.5973882
	min points=2, lifetime=5, dist $max=10^{-2}$	0.0352649	0.4018430
Convoy partials	min points=2, lifetime=2, dist max= 10^{-3}	0.0360927	0.3925327
	min points=2, lifetime=2, dist $max=10^{-1}$	0.0368377	0.3525041
	min points=3, lifetime=5, dist $max=10^{-1}$	0.0276490	0.7646296
Flock	ε =10, μ 2, δ =2	0.0369205	0.3530357
	ε =0.1, μ 2, δ =10	0.0369205	0.3704636
	ε =10, μ 2, δ =2	0.0369205	0.3530357
Flock partials	ε =10, μ 2, δ =2	0.0368377	0.3525041
	ε =0.1, μ 2, δ =10	0.0355132	0.3530357
	ε =0.1, μ 2, δ =2	0.0368377	0.3670011


Algoritmo	Parámetros	Precisión	MAE
Ad-Hoc	δ =3600	0.0361754	0.3487827
	δ =10800	0.0349337	0.3637682
Sim. tray.	Hausdorff	0.0175497	0.5784518
	DTW	0.0206126	1.2903128
ST-DBSCAN	ε =5000, th=6000, minEps=1	0.0369205	0.4251326
	ε =5000, th=6000, minEps=10	0.0316225	0.3530357
	ε =5000, th=6000, minEps=10	0.0369205	0.4000756
	ε =1000, th=2000, minEps=1	0.0336921	0.3530357
	ε =4000, th=2000, minEps=1	0.0277318	0.3525041
Convoy	min points=2, lifetime=10, dist $max=10^{-2}$	0.0362583	0.3566276
	min points=20, lifetime=2, dist $max=10^{-2}$	0.0332781	1.0634231
	min points=2, lifetime=2, dist max= 10^{-3}	0.0243377	0.5973882
	min points=2, lifetime=5, dist $max=10^{-2}$	0.0352649	0.4018430
Convoy partials	min points=2, lifetime=2, dist max= 10^{-3}	0.0360927	0.3925327
	min points=2, lifetime=2, dist $max=10^{-1}$	0.0368377	0.3525041
	min points=3, lifetime=5, dist $max=10^{-1}$	0.0276490	0.7646296
Flock	ε =10, μ 2, δ =2	0.0369205	0.3530357
	ε =0.1, μ 2, δ =10	0.0369205	0.3704636
	ε =10, μ 2, δ =2	0.0369205	0.3530357
Flock partials	ε =10, μ 2, δ =2	0.0368377	0.3525041
	ε =0.1, μ 2, δ =10	0.0355132	0.3530357
	ε =0.1, μ 2, δ =2	0.0368377	0.3670011

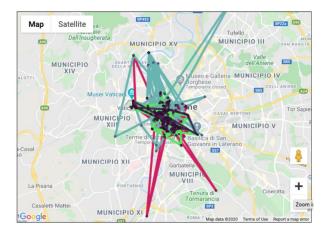
Algoritmo	Parámetros	Precisión	MAE
Ad-Hoc	δ=3600	0.0361754	0.3487827
	$\delta = 10800$	0.0349337	0.3637682
Sim. tray.	Hausdorff	0.0175497	0.5784518
	DTW	0.0206126	1.2903128
ST-DBSCAN	ε =5000, th=6000, minEps=1	0.0369205	0.4251326
	ε =5000, th=6000, minEps=10	0.0316225	0.3530357
	ε =5000, th=6000, minEps=10	0.0369205	0.4000756
	ε =1000, th=2000, minEps=1	0.0336921	0.3530357
	ε =4000, th=2000, minEps=1	0.0277318	0.3525041
Convoy	min points=2, lifetime=10, dist $max=10^{-2}$	0.0362583	0.3566276
	min points=20, lifetime=2, dist $max=10^{-2}$	0.0332781	1.0634231
	min points=2, lifetime=2, dist $max=10^{-3}$	0.0243377	0.5973882
	min points=2, lifetime=5, dist $max=10^{-2}$	0.0352649	0.4018430
Convoy partials	min points=2, lifetime=2, dist max= 10^{-3}	0.0360927	0.3925327
	min points=2, lifetime=2, dist $max=10^{-1}$	0.0368377	0.3525041
	min points=3, lifetime=5, dist $max=10^{-1}$	0.0276490	0.7646296
Flock	ε =10, μ 2, δ =2	0.0369205	0.3530357
	ε =0.1, μ 2, δ =10	0.0369205	0.3704636
	ε =10, μ 2, δ =2	0.0369205	0.3530357
Flock partials	ε =10, μ 2, δ =2	0.0368377	0.3525041
	ε =0.1, μ 2, δ =10	0.0355132	0.3530357
	ε =0.1, μ 2, δ =2	0.0368377	0.3670011


Algoritmo	Parámetros	Precisión	MAE
Ad-Hoc	δ=3600	0.0361754	0.3487827
	δ =10800	0.0349337	0.3637682
Sim. tray.	Hausdorff	0.0175497	0.5784518
	DTW	0.0206126	1.2903128
ST-DBSCAN	ε =5000, th=6000, minEps=1	0.0369205	0.4251326
	ε =5000, th=6000, minEps=10	0.0316225	0.3530357
	ε =5000, th=6000, minEps=10	0.0369205	0.4000756
	ε =1000, th=2000, minEps=1	0.0336921	0.3530357
	ε =4000, th=2000, minEps=1	0.0277318	0.3525041
Convoy	min points=2, lifetime=10, dist max= 10^{-2}	0.0362583	0.3566276
	min points=20, lifetime=2, dist max= 10^{-2}	0.0332781	1.0634231
	min points=2, lifetime=2, dist max= 10^{-3}	0.0243377	0.5973882
	min points=2, lifetime=5, dist $max=10^{-2}$	0.0352649	0.4018430
Convoy partials	min points=2, lifetime=2, dist max= 10^{-3}	0.0360927	0.3925327
	min points=2, lifetime=2, dist $max=10^{-1}$	0.0368377	0.3525041
	min points=3, lifetime=5, dist $max=10^{-1}$	0.0276490	0.7646296
Flock	ε =10, μ 2, δ =2	0.0369205	0.3530357
	ε =0.1, μ 2, δ =10	0.0369205	0.3704636
	ε =10, μ 2, δ =2	0.0369205	0.3530357
Flock partials	ε =10, μ 2, δ =2	0.0368377	0.3525041
	ε =0.1, μ 2, δ =10	0.0355132	0.3530357
	ε =0.1, μ 2, δ =2	0.0368377	0.3670011

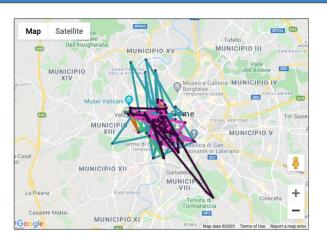
Algoritmo	Parámetros	Precisión	MAE
Ad-Hoc	δ=3600	0.0361754	0.3487827
	$\delta = 10800$	0.0349337	0.3637682
Sim. tray.	Hausdorff	0.0175497	0.5784518
	DTW	0.0206126	1.2903128
ST-DBSCAN	ε =5000, th=6000, minEps=1	0.0369205	0.4251326
	ε =5000, th=6000, minEps=10	0.0316225	0.3530357
	ε =5000, th=6000, minEps=10	0.0369205	0.4000756
	ε =1000, th=2000, minEps=1	0.0336921	0.3530357
	ε =4000, th=2000, minEps=1	0.0277318	0.3525041
Convoy	min points=2, lifetime=10, dist max= 10^{-2}	0.0362583	0.3566276
	min points=20, lifetime=2, dist $max=10^{-2}$	0.0332781	1.0634231
	min points=2, lifetime=2, dist $max=10^{-3}$	0.0243377	0.5973882
	min points=2, lifetime=5, dist $max=10^{-2}$	0.0352649	0.4018430
Convoy partials	min points=2, lifetime=2, dist max= 10^{-3}	0.0360927	0.3925327
	min points=2, lifetime=2, dist $max=10^{-1}$	0.0368377	0.3525041
	min points=3, lifetime=5, dist $max=10^{-1}$	0.0276490	0.7646296
Flock	ε =10, μ 2, δ =2	0.0369205	0.3530357
	$arepsilon$ =0.1, μ 2, δ =10	0.0369205	0.3704636
	ε =10, μ 2, δ =2	0.0369205	0.3530357
Flock partials	ε =10, μ 2, δ =2	0.0368377	0.3525041
	$arepsilon$ =0.1, μ 2, δ =10	0.0355132	0.3530357
	ε =0.1, μ 2, δ =2	0.0368377	0.3670011

4. Visualización y validación de trayectorias

Users ▼	KN	Neighbors ▼
206	Neighbor ID	Similarity
2066	926	1
	257	1

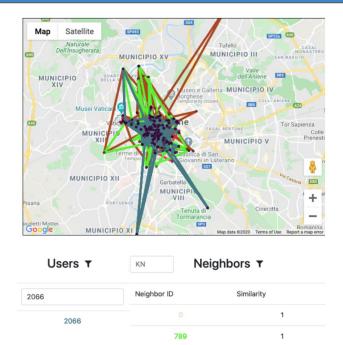


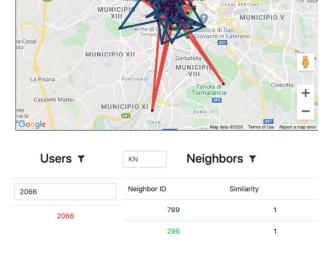
Users ▼	KN Ne	eighbors T
2066	Neighbor ID	Similarity
2066	1795	0.9808990905
	2223	0.9808990905


(c) Trayectoria Ad-Hoc δ =3600.

(d) Trayectoria DTW.

4. Visualización y validación de trayectorias - Convoy


Users ▼	KN	Neighbors ▼
296	Neighbor ID	Similarity
296	1589	1
	539	1



Users ▼	KN N	eighbors T
296	Neighbor ID	Similarity
296	1685	1
	1310	1

- max = 0.01.
- (a) Trayectoria Convoy min points=2, lifetime=2, dist (b) Trayectoria Convoy min points=5, lifetime=2, dist max = 0.01.

4. Visualización y validación de trayectorias - Flock

MUNICIPIO XV

MUNICIPIO

MUNICIPIO III

(a) Trayectoria Flock ε =0.1, μ =2, δ =2.

(b) Trayectoria Flock ε =0.1, μ =2, δ =10.

Conclusiones

1. Ventajas e inconvenientes

3. Restricciones algoritmos

2. Utilidad estudios de trayectorias

4. Publicación artículos

Conclusiones - Publicaciones

Discovering Related Users in Location-Based Social Networks

Sergio Torrijos Universidad Autónoma de Madrid Madrid, Spain sergio.torrijos@estudiante.uam.es Alejandro Bellogín Universidad Autónoma de Madrid Madrid, Spain alejandro.bellogin@uam.es Pablo Sánchez Universidad Autónoma de Madrid Madrid, Spain pablo.sanchezp@uam.es

ABSTRACT

Users from Location-Based Social Networks can be characterised by how and where they move. However, most of the works that exploit this type of information neglect either its sequential or its geographical properties. In this article, we focus on a specific family of recommender systems, those based on nearst neighbours; we define related users based on common check-ins and similar trajectories and analyse their effects on the recommendations. For this purpose, we use a real-world dataset and compare the performance on different dimensions against several state-of-the-art algorithms. The results show that better neighbours could be discovered with these approaches if we want to promote novel and diverse recommendations.

they visit, establish connections with other users, and check venue properties, such as their opening times, opinions, and pictures.

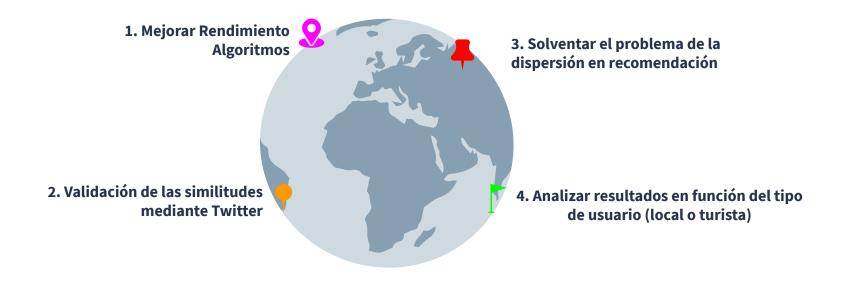
Because of the increasing number of users registered in LBSNs and similar systems, POI recommendation approaches have become particularly useful and several specific models have been proposed in recent years. In particular, such approaches tend to incorporate inherent properties of these systems, such as social, geographical, or temporal information [20, 21]. However, nearest neighbour techniques have been, in general, neglected in most of these studies, in favour of martirs factorisation or neural networks models [21, 24]. Nonetheless, we believe that algorithms based on similarities have a huge potential, since they may proide efficient computation, easy implementation, and explainable recommendations [23], but also because it has been demonstrated recently that these techniques

S. Torrijos, A. Bellogín, and P. Sánchez, "Discovering related users in location-based social networks," in User Modeling, Adaptation, and Personalization - 28th International Conference, UMAP 2020, Genoa, Italy, July 12-18, 2020. Proceedings, Lecture Notes in Computer Science, Springer, 2020.

Analysis of co-movement pattern mining methods for recommendation

Extended Abstract

Sergio Torrijos Universidad Autónoma de Madrid Madrid, Spain sergio.torrijos@estudiante.uam.es


ABSTRACT

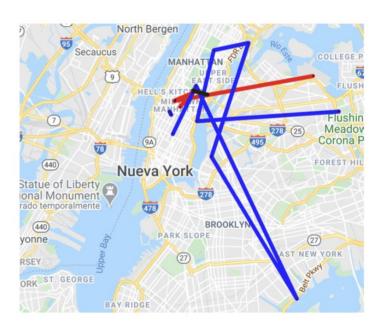
Location-Based Social Networks allow users to share the Pointsof-Interest they wish, thence rearing trajectories throughout their usual lives – even though they are also used by tourists to explore a city. There exist several algorithms in the trajectory pattern mining area able to discover and exploit interesting patterns from trajectory data, such as which objects tend to move together (co-movement), however, to the best of our knowledge, they have not been used with data coming from that type of systems. In this work, we analyse the extent to which these techniques can be applied to that type of data and under which circumstances they might be useful. Alejandro Bellogín Universidad Autónoma de Madrid Madrid, Spain alejandro.bellogin@uam.es

S. Torrijos and A. Bellogín, "Analysis of trajectory pattern mining methods for recommendation: Extended abstract," in Proceedings of the Joint Conference of the Information Retrieval Communities in Europe, CIRCLE 2020, Samatan, France, July 6-9, 2020, 2020.

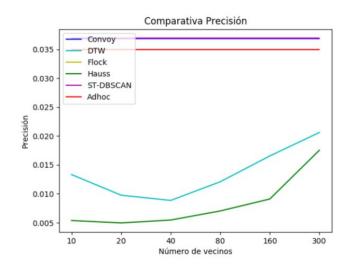
Trabajo futuro

Estudio de métodos de detección de patrones de movimiento para sistemas de recomendación turísticos.

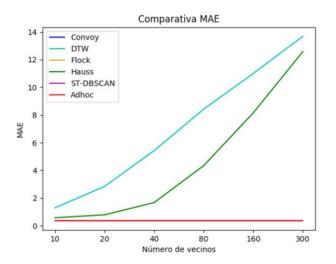
Sergio Torrijos López de la Manzanara


Implementación - Dynamic Time Warping y Hausdorff

Fórmula similitud:


$$sim(u,v) = \frac{1}{n \cdot m} \sum_{j=1}^{n} \sum_{k=1}^{m} tsim(x_j^u, x_k^v)$$

Pseudocódigo:


Implementación - Dynamic Time Warping y Hausdorff

Validación del Recomendador

(a) Evolución precisión recomendador.

(b) Evolución MAE recomendador.

Comparativa entre recomendadores con similitud de trayectorias vs estándar

Recomendador	KNN Ad-Hoc	KNN Convoy	KNN DTW	KNN Flock	KNN Hausdorff	KNN ST-DBSCAN	SVD	Random	KNN Baseline	NMF
MAE	0.363768	0.352504	1.290313	0.352504	0.578452	0.353036	0.333831	0.475569	0.343762	0.272056
		A		A						

Implementación - Recomendación

Formato fichero salida:

1	user_id	item_id 7	rating
3	8	64	1.2289
4	110	7	1.2235

Obtención de Trayectorias - Cluster de K-Cores

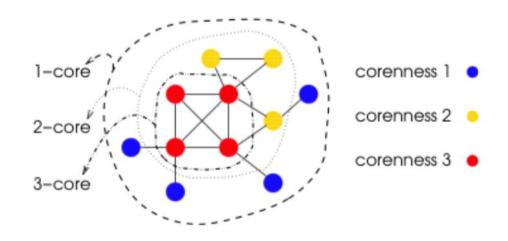


Figura 2.7: Procesado de K-Cores sobre un grafo [22].

Relación entre tamaño del dataset y número de POIs/usuarios

Dataset	1K	10K	20K	60K
Número POIs	163	319	346	394
Número usuarios	129	1208	2618	7954

Implementación - Ad-Hoc

Fórmula similitud:

$$sim_{\delta}(u, v) = ||i \in I : |t(u, i) - t(v, i)| < \delta)||$$

Implementación - Visualización

Ficheros necesarios:

- El fichero del dataset procesado con las columnas (user_id, item_id, lat, long, timestamp).
- El fichero de similitudes con las columnas (user1_id, user2_id, similitud).
- Opcional: El fichero de trayectorias con el formato ('user_id': ['traj_counter': [...]]).

Entorno de pruebas

Recursos	Características
Versión Python	2.7
S.O.	macOS Mojave 10.14.6 (18G103)
CPU	2,7 GHz Intel Core i7 (I7-8559U)
GPU	Intel Iris Plus Graphics 655 1536 MB graphics
RAM	16 GB 2133 MHz LPDDR3

Implementación - Salida común ejecución patrones de movimiento

Patrones de movimiento - Flock

Parámetros:

3

Distancia entre los elementos móviles (radio). Ц

Número mínimo de objetos móviles δ

Intervalo de tiempo definido mínimo entre elementos.

Implementación - Ejecución Flock

Ejecución en 2 fases:

- 1. Determinar los objetos móviles que se encuentran cerca según ε.
- 2. Combinación y agrupación de patrones que ocurran durante el parámetro δ.

```
KeyFlock: 30 Begin: 238 End 239 [0, 1025, 2437, 3720]
KeyFlock: 32 Begin: 231 End 239 [0, 1025, 2437]
KeyFlock: 34 Begin: 238 End 240 [0, 1025, 2437, 3720]
```

1	id	item_id	latitude	longitude	timestamp	
2	796	140514	40.758328	- 73.985457	0	
3	1024	788744	40.730084	-73.989256	0	
4	1024	788734	40.730085	- 73.989257	1	
5	1024	788784	40.730086	-73.989258	2	

Implementación - Preparación del dataset

1. Selección atributos

1. 1. Selección atributos Hausdorff / DTW

```
{"user_id": [{"0": [[lat elements], [long_elements]], "1": ...}]}

{"15": [{"0": [[40.77383804321289, 40.757564544677734, 40.75837326049805,
40.76288986206055], [-73.87122344970703, -73.9892349243164, -73.98849487304688,
-73.97402954101562]], "1": [[40.753875732421875], [-73.98442840576172]],
"2": [[40.76355743408203], [-73.97286987304688]]}]}
```

Implementación - Flujo de la aplicación

- 1. python3 src/Processing/pre_process.py --input_file entradas/Rome10K/romeTempTrain.txt -coords_file entradas/POIS_rome__Coords.txt --output_file romePOISCompleto.txt
- 2. python3 src/Patterns/Convoy/ConvoyTrajectory.py --filename romePOISCompleto.txt --output similarity_output_convoy.txt --minpoints 3 --lifetime 2 --distance_max 0.1 --partials False
- 3. python3 src/Recommender/knn.py --train_file entradas/Rome10K/romeTempTrain.txt -test_file entradas/Rome10K/romeTest.txt --k 1 --neighbors_classified
 similarity_output_convoy.txt --output_file salida_knn_custom_rome.txt
- 4. python3 app.py

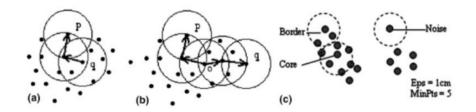
Implementación - Flujo de la aplicación

Patrones de movimiento - ST-DBSCAN

Parámetros:

3

Radio espacial que delimita los puntos


minEps

Número mínimo de puntos para definir el cluster

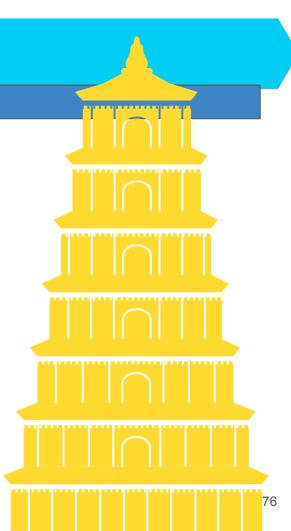
temporal_threshold (th)

Ventana temporal que delimita los instantes de tiempo

Patrones de movimiento - ST-DBSCAN

Figura 2.3: Ejemplo de cluster de puntos ST-DBSCAN [14], donde se aprecian los círculos delimitando el radio a buscar y cada uno de los puntos para definir cuáles entran en el criterio.

Patrones de movimiento - Librerías utilizadas


LCM

FPFlock

Pygmaps

py-st-dbscan

Coherent Moving Cluster Algorithm

Obtención de Trayectorias - Partición de trayectorias por instantes de tiempo

Timestamp:

Convert epoch to human-readable date and vice versa

1591653145 Timestamp to Human date [batch convert]

Supports Unix timestamps in seconds, milliseconds, microseconds and nanoseconds.

Assuming that this timestamp is in seconds:

GMT: Monday, 8 June 2020 21:52:25

Your time zone: lunes, 8 de junio de 2020 23:52:25 GMT+02:00 DST

Relative: A few seconds ago

Sistemas de recomendación

Filtrado Colaborativo:

Métodos basados en modelos

1. Factorización de matrices

Métodos basados en memoria

- 1. Rating y Similitud basado en usuario
- 2. Rating y similitud basado en ítem

Sistemas de recomendación - Métodos basados en modelos

Factorización de matrices

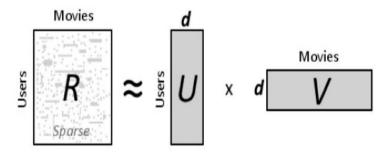


Figura 2.8: Representación de la factorización de matrices [24].

$$\hat{r}(u,i) = x_u^T \cdot y_i$$

Sistemas de recomendación - Métodos basados en memoria

Predicción de rating y similitud entre usuarios Predicción de rating y similitud entre ítems

$$\hat{r}(u,i) = C \times \sum_{v \in N_k(u), r(v,i) \neq \varnothing} sim(u,v)r(v,i)$$

$$C = rac{1}{\sum_{v \in N_k(u), r(v,i)
eq arnothing} |sim(u,v)|}$$

$$\hat{r}(u,i) = C imes \sum_{r(u,j)
eq arnothing} sim(i,j)r(u,j)$$

$$C = \frac{1}{\sum_{r(u,j) \neq \varnothing} |sim(i,j)|}$$

Sistemas de recomendación - Funciones de similitud

Similitud Coseno

$$sim(u,v) = \frac{\sum_{v \in i: r(u,i) \neq \varnothing, r(v,i) \neq \varnothing} r(u,i) r(v,i)}{\sqrt{\sum_{i: r(u,i) \neq \varnothing} r(u,i)^2 \sum_{i: r(v,i) \neq \varnothing} r(v,i)^2}} \epsilon[0,1]$$

Correlación de Pearson

$$sim(u,v) = \frac{\sum_{v \in i: r(u,i) \neq \varnothing, r(v,i) \neq \varnothing} (r(u,i) - \bar{r}_u) (r(v,i) - \bar{r}_v)}{\sqrt{\sum_{i: r(u,i) \neq \varnothing, r(v,i) \neq \varnothing} (r(u,i) - \bar{r}_u)^2 \sum_{i: r(u,i) \neq \varnothing, r(v,i) \neq \varnothing} (r(v,i) - \bar{r}_v)^2}} \epsilon[0,1]$$

Sistemas de recomendación - Métricas de evaluación

MAE

$$MAE = rac{1}{|test|} \sum_{(u,i) \in test} |\hat{r}(u,i) - r(u,i)|$$

RMSE

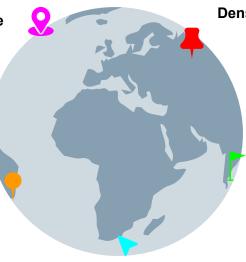
$$RMSE = \sqrt{\frac{1}{|test|} \sum_{(u,i) \in test} (\hat{r}(u,i) - r(u,i))^2}$$

Precisión

$$P = \frac{TP}{TP + FP}$$

Recall

$$R = \frac{TP}{TP + FN}$$


Patrones de movimiento - Convoy

Density-reachable

Un punto p es alcanzable desde un punto q si el punto p está a una distancia ε del punto q, y q tiene un número suficiente de puntos en sus vecinos a una distancia ε .

Core object

Un punto en cual sus vecinos conectados deben satisfacer la condición de contener al menos minPts.

Density-Connected

Un punto $p \in S$ está densamente conectado a un punto $q \in S$ con respecto a e y m si existe un punto $x \in S$ tal que ambos p y q son alcanzables desde x.

Border-object

Un objeto p es un border-object si no es un core-object pero es density-reachable desde otro core-object.

Búsqueda Convoy

Convoy devuelve todos los grupos de objetos posibles tal que cada grupo consista en un grupo máximo de puntos densamente conectados con respecto a e y m durante al menos k puntos.