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Coherence and Inconsistencies in Rating Behavior –
Estimating the Magic Barrier of Recommender Systems

Alan Said · Alejandro Belloǵın

Abstract Recommender Systems have to deal with a wide variety of users
and user types that express their preferences in different ways. This difference
in user behavior can have a profound impact on the performance of the recom-
mender system. Users receive better (or worse) recommendations depending on
the quantity and the quality of the information the system knows about them.
Specifically, the inconsistencies in users’ preferences impose a lower bound on
the error the system may achieve when predicting ratings for one particular
user – this is referred to as the magic barrier.

In this work, we present a mathematical characterization of the magic
barrier based on the assumption that user ratings are afflicted with inconsis-
tencies – noise. Furthermore, we propose a measure of the consistency of user
ratings (rating coherence) that predicts the performance of recommendation
methods. More specifically, we show that user coherence is correlated with the
magic barrier; we exploit this correlation to discriminate between easy users
(those with a lower magic barrier) and difficult ones (those with a higher magic
barrier). We report experiments where the recommendation error for the more
coherent users is lower than that of the less coherent ones. We further validate
these results by using two public datasets, where the necessary data to iden-
tify the magic barrier is not available, in which we obtain similar performance
improvements.
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1 Introduction

Recommender systems play an important role in most top-ranked commercial
websites such as Amazon, Netflix, Last.fm or IMDb (Ricci et al, 2011). The
goal of these recommender systems is to increase revenue and present per-
sonalized user experiences by providing suggestions for previously unknown
items that are potentially interesting for a user. With the growing amount of
information available on the Internet, the importance of good recommender
systems increases even more as a means to guide users through the massive
amounts of available data.

The key role of recommender systems has resulted in a vast amount of
research in this field, which has yielded a plethora of different recommender
algorithms (Desrosiers and Karypis, 2011; Ricci et al, 2011; Adomavicius and
Tuzhilin, 2005; Lathia et al, 2010). An example of a popular and widely used
approach to recommendation is collaborative filtering. Collaborative filtering
computes user-specific recommendations based on historical user data, such
as ratings or other usage patterns (Desrosiers and Karypis, 2011; Koren and
Bell, 2011). Other approaches include content-based recommenders (suggest-
ing items based on properties and content of a specific item), social recom-
menders (suggesting items based on past behavior of similar users in a social
graph) or hybrid combinations of several different approaches.

To select an appropriate recommender algorithm and adapt it to a given
scenario or problem, the algorithms are usually examined by testing their per-
formance using either artificial or real test data reflecting the problem. The
best performing algorithm and parameters among a number of candidate al-
gorithms is chosen. To be able to compare performance, several measures and
metrics have been defined. Common measures are precision and recall, nor-
malized discounted cumulative gain (NDCG), receiver operating characteristic
(ROC) or the root-mean-squared error (RMSE). RMSE has perhaps been the
most popular metric used to evaluate the prediction accuracy of a recom-
mender algorithm (Shani and Gunawardana, 2011); as a matter of fact, it was
the central evaluation metric used in the Netflix Prize1. However, in recent
research RMSE is being phased out and replaced by ranking-based metrics
(like NDCG or precision), in part due to its inability of discriminating the er-
ror produced by the recommender between items with higher predicted values
(which would appear at the top if a ranking has to be produced) and items
with lower predicted values (McLaughlin and Herlocker, 2004; McNee et al,
2006). Moreover, other methods to rank potential items of interest to the user
can be exploited besides the highest predicted rating, such as majority vote or
others (Masthoff, 2015), which RMSE and related error-based metrics cannot
measure properly.

Nonetheless, it is important to understand what happens when the error in
rating prediction is being optimized, or, in other terms, when RMSE is used as
a performance measure in evaluation. In this situation, the recommendation

1 http://www.netflixprize.com

http://www.netflixprize.com
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task is typically posed as that of learning a rating function that minimizes
the RMSE on a given training set of user ratings. The generalized RMSE per-
formance of the learned rating function is then assessed on some independent
test set of ratings, which is disjoint from the training set. One major drawback
of measuring and comparing the performance using only static, previously
collected, test data is that user behavior in the data is not always reliable.
According to previously published studies, e.g., (Amatriain et al, 2009a; Hill
et al, 1995), user ratings can be inconsistent (noisy) in the sense that a user
may rate the same item differently at different points in time. Following these
findings, Herlocker et al (2004) coined the term the magic barrier. The magic
barrier marks the point at which the performance and accuracy of a recom-
mendation algorithm cannot be enhanced due to inherent noise in the data.
Every improvement in accuracy might denote overfitting on noise and other
inconsistencies, and not improved actual performance. Thus, comparing and
measuring the expected future performance of algorithms based on static data
may not work.

We propose a method to infer which users have a higher level of incon-
sistency a priori, that is, without any extra information or by studying the
quality of the recommendations received. In particular, we are interested in
relating this to the magic barrier, in such a way that one could predict which
users will have a low or high magic barrier. We present a measure of user
coherence which takes into consideration how the user assigns ratings within
an item’s feature space. By doing so, we associate highly coherent values to
users with a lower magic barrier, that is, those having a more consistent rating
behavior.

Once the magic barrier – or any other measure of users’ inconsistency –
is successfully predicted, it is possible to improve the recommender system’s
performance – either the accuracy or precision of the recommendations, but
also the computational effort of the adopted techniques – by exploiting the user
coherence, as long as rating information is available in the system. Although
implicit feedback datasets and systems where no ratings are provided by the
user are growing increasingly popular, there is still a substantial amount of
literature based on rating-based recommender systems, and several popular
sites (e.g., Amazon2, IMDb3, TripAdvisor4, Yelp5) still use them today. Hence,
we believe this research is relevant and could help improve the performance of
the algorithms being used in those, and in other, situations.

Our research aims to answer the following two research questions:

RQ1) how good of a predictor for the magic barrier is the rating coherence
of a user? and

2 https://www.amazon.com
3 http://www.imdb.com
4 https://www.tripadvisor.com
5 http://www.yelp.com

https://www.amazon.com
http://www.imdb.com
https://www.tripadvisor.com
http://www.yelp.com
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RQ2) is it possible to cluster the user community into easy and difficult
users – according to their coherence – so that the performance of the system
is improved, and if so, by how much?

We address the first question by measuring the correlation between our
definition of coherence and the magic barrier of each user. For the second
question, we create separate training models for a subset of the users accord-
ing to their predicted consistency: the user community is clustered into easy
and difficult users – according to their coherence –; these groups allow us to
study how the error of the recommender system changes depending on the
observed rating inconsistency. We would like to emphasize that, throughout
our study, there is only one single dataset (or system) for which the magic
barrier data is available. This is mostly because it is a difficult experiment to
run that requires multiple ratings from the same items over time. Thus, the
correlation validation is limited to this single instance; however, we develop
a general framework for the second question that can be applied to datasets
where the necessary data to identify the magic barrier is not available, allow-
ing us to exploit and validate the proposed rating coherence in more domains
and situations.

Our research, hence, provides a measure of the noise present in user behav-
ior, inferred from the ratings available in a recommender system. This measure
(user coherence) is shown to successfully predict the magic barrier of the sys-
tem, and when used to classify the users according to their performance, the
performance of the complete system is improved. We present in this paper
different instantiations of the user coherence, all of them using information
readily available in the recommender system; we also show – from an analyti-
cal point of view – under which conditions it would be equivalent to the magic
barrier.

Therefore, our main contributions include:
– A derivation of the so-called magic barrier from a statistical learning theory

point of view by posing the recommendation task as a risk minimization
problem, summarizing the main findings presented in (Said et al, 2012a).

– A general model for user coherence that fits into the magic barrier formu-
lation and can be computed using only information available at training
time by the recommendation algorithm, extending the formulation included
in (Belloǵın et al, 2014).

– We use this model in three datasets with different characteristics and show
how the overall error of the system is affected by the number of coherent
users involved.
The remainder of this paper is structured as follows: in Section 2 we present

the magic barrier as it will be used throughout the paper, Section 3 presents
our approaches to measure the coherence of a user, Section 4 validates the
proposed measure as an estimator of the magic barrier by using a correlation
analysis, Section 5 presents the datasets, experimental settings, and results
obtained, and Section 6 provides additional works dealing with the problem
of predicting the user’s difficulty or the performance of a system; finally, in
Section 7 we conclude the paper and present some lines of future work.
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2 A Statistical Model for Users’ Inconsistencies

2.1 Recommendation as Risk Minimization

We pose the recommendation task as that of a function regression problem
based on the empirical risk minimization principle from statistical learning
theory (Vapnik, 1995). This setting provides the theoretical foundation to
derive a lower bound on the root-mean-square error (henceforth referred to as
the magic barrier) that can be attained by an optimal recommender system.

We begin by describing the traditional setting of a recommendation task
as presented in (Desrosiers and Karypis, 2011). Suppose that R is a set of
ratings rui submitted by users u ∈ U for items i ∈ I. Ratings may take values
from some discrete set S ⊆ R of rating scores. Typically, ratings are known
only for few user-item pairs. The recommendation task consists of suggesting
new items that will be rated highly by users.

It is common practice to pose the recommendation task as that of learning
a rating function

f : U × I → S, (u, i) 7→ f(u, i)

on the basis of a set of training examples from R. Given a user u, the learned
rating function f is then used to recommend those items i that have the largest
scores f(u, i). The accuracy of a rating function f is evaluated on a test set,
which is a subset of R disjoint from the training set.

A popular and widely used measure for evaluating the accuracy of f on a
set R of ratings is the root-mean-square error criterion

E(f |R) =

√√√√ 1

|R|
∑

(u,i)∈R

(
f(u, i)− rui

)2
, (1)

where the sum runs over all user-item pairs (u, i) for which rui ∈ R.6

Learning a rating function by minimizing the RMSE criterion can be jus-
tified by the inductive principle of empirical risk minimization from statistical
learning theory (Vapnik, 1995). Within this setting we describe the problem
of learning a rating function as follows: we assume that

– user-item pairs (u, i) are drawn from an unknown probability distribution
p(u, i),

– rating scores r ∈ S are provided for each user-item pair (u, i) according to
an unknown conditional probability distribution p(r|u, i),

– F is a class of rating functions.

The probability p(u, i) describes how likely it is that user u rates item i.
The conditional probability p(r|u, i) describes the probability that a given user
u rates a given item i with rating score r. The class F of functions describes the
set from which we choose (learn) our rating function f for recommending items.

6 For the sake of brevity, we abuse notation and write (u, i) ∈ R for user-item pairs (u, i)
for which rui ∈ R.
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An example of F is the class of nearest neighbor-based methods (Desrosiers
and Karypis, 2011).

The goal of learning a rating function is to find a function f ∈ F that
minimizes the expected risk function

R(f) =
∑

(u,i,r)

p(u, i, r)
(
f(u, i)− r

)2
, (2)

where the sum runs over all possible triples (u, i, r) ∈ U×I×S and p(u, i, r) =
p(u, i)p(r|u, i) is the joint probability.

The problem of learning an optimal rating function is that the distribu-
tion p(u, i, r) is unknown. Therefore, we cannot compute the optimal rating
function

f∗ = arg min
f∈F

R(f)

directly. Instead, we approximate f∗ by minimizing the empirical risk

R̂(f |X ) =
1

|X |
∑
rui∈X

(
f(u, i)− rui

)2
,

where X ⊆ R is a training set consisting of ratings rui given by user u for item
i. Observe that minimizing the empirical risk is equivalent to minimizing the
RMSE criterion.

A theoretical justification of minimizing the RMSE criterion (or the empir-
ical risk) arises from the following result of statistical learning theory (Vapnik,
1995): under the assumption that the user ratings from R are independent
and identically distributed, the empirical risk is an unbiased estimate of the
expected risk.7

2.2 Deriving the Magic Barrier

It is possible to derive a lower bound on the RMSE that can be attained by an
optimal recommender system: the so-called magic barrier. We show that this
magic barrier is the standard deviation of the inconsistencies (noise) inherent
in user ratings. To this end, we first present a noise model and then derive the
magic barrier.

As shown in previous user studies (Amatriain et al, 2009a; Hill et al, 1995),
users’ ratings tend to be inconsistent. Inconsistencies in the ratings could be
due to, for example, change of taste over time, personal conditions, inconsistent
rating strategies, and/or social influences, just to mention a few. For the sake of
convenience, in this work we regard inconsistencies in user ratings as noise. The
following fictitious scenario illustrates the basic idea behind our noise model:
consider a movie recommender with n items and a rating scale from zero to

7 The set of users and items are both finite. In order to apply the law of large numbers,
we may think of R as being a set of ratings obtained by randomly selecting triples (u, i, r)
according to their joint distribution.
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five stars, where zero stars refers to a rating score reserved for previously un-
rated items only. Users are regularly asked to rate m randomly selected items.
After a sufficiently long period of time, each user has rated each item (movie)
several times. The ratings may vary over time due to several reasons (see for
instance (Lathia et al, 2010)) such as change of taste, current emotional state,
group-dynamic effects, and other external as well as internal influences.

Keeping the above scenario in mind, the expected rating of a user u ∈ U
on an item i ∈ I is defined by the expectation

E[Rui] = µui,

where Rui is a random variable on the user-item pair (u, i) and takes values
from some discrete set S ⊆ R of rating scores. Then, a rating rui ∈ R is
composed of the expected rating µui and some error term εui for the noise
incurred by user u when rating item i. We occasionally refer to the error εui
as user-item noise. Thus, user ratings arise from a statistical model of the form

rui = µui + εui, (3)

where the random error εui has expectation E[εui] = 0.
Suppose that f∗ is the true, unknown, rating function that knows all ex-

pected ratings µui of each user u on any item i, that is

f∗(u, i) = µui (4)

for all users u ∈ U and items i ∈ I. Then, the optimal rating function f∗
minimizes the expected risk function Eq. (2). Substituting Eq. (3) and Eq. (4)
into the expected risk function Eq. (2) and using p(u, i, r) = p(u, i)p(r|u, i)
gives

R(f∗) =
∑
(u,i)

p(u, i)E
[
ε2ui
]

=
∑
(u,i)

p(u, i)V [εui] , (5)

where the sum runs over all possible user-item pairs (u, i) ∈ U × I and V[εui]
denotes the variance of the user-item noise εui. Eq. (5) shows that the expected
risk of an optimal rating function f∗ is the mean variance of the user-item noise
terms.

Expressed in terms of the RMSE criterion, the magic barrier BU×I of a
recommender system with users U and items I is then defined by

BU×I =

√∑
(u,i)

p(u, i)V [εui].

To put it in other terms: the magic barrier is the RMSE of an optimal
rating function f∗. We note that even an optimal rating function has a non-
zero RMSE unless all users are continuously consistent in their ratings; this
value will be larger for any non-optimal function f ∈ F . Observe that an
optimal rating function needs not to be a member of our chosen function class
F from which we select (learn) our actual rating function f . Thus the RMSE
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Algorithm 1 Procedure for estimating the magic barrier.

Procedure: Let X ⊆ U × I be a randomly generated subset of user-item pairs.

1. For each user-item pair (u, i) ∈ X do
(a) Sample m ratings r1ui, . . . , r

m
ui on a regular basis

(b) Estimate the expectation µui by the sample mean

µ̂ui =
1

m

m∑
t=1

rtui

(c) Estimate the variance of the ratings

ε̂ 2
ui =

1

m

m∑
t=1

(
µ̂ui − rtui

)2
2. Estimate the magic barrier by taking the average

B̂X =

√√√√ 1

|X |
∑

(u,i)∈X
ε̂ 2
ui. (6)

of f can be decomposed into the magic barrier BU×I and an error Ef due to
model complexity of f giving

ERMSE(f) = BU×I + Ef > BU×I .

Finally, we estimate the magic barrier according to the procedure outlined
in Algorithm 1, since, as in the case of the expected risk, we are usually unable
to directly determine the magic barrier BU×I .

We postulate that all rating functions f ∈ F with an empirical risk of the
form

R̂(f |X ) ≤ B̂2
X

are likely to overfit on the set X and consider any further improvements on
the RMSE below B̂X to be meaningless, because they might denote overfitting
on noise, and not improving actual performance.

2.3 Capturing the Magic Barrier: an Experiment with Moviepilot

Moviepilot8 is a commercial movie recommender system which, at the time
of the experiment, had more than one million users, 55, 000 movies, and over
10 million ratings. Movies are rated on a 0 to 10 scale with step size 0.5 (0
corresponding to a rating score of 0, not an unknown rating). This dataset
contains several movie features such as emotion keywords, intended audience,
time keywords, etc. As described in (Said et al, 2012a), to estimate the magic
barrier a Web-based study was created for collecting users’ opinions on movies.

8 http://www.moviepilot.de/

http://www.moviepilot.de/
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An opinion is a score in the same rating scale as standard user ratings, however
they do not show up in users’ profiles and are only stored in the survey,
subsequently, not affecting the recommendations given to the users.

Whilst taking part in the study, users were presented with a number of
movies randomly drawn from the complete set of their rated movies. Each
user could submit at most one opinion on each movie. A user could skip any
number of movies without providing any opinion. After at least 20 opinions
had been given, the user could complete the study. The study ran from mid
April 2011 to early May 2011, where only users who provided opinions on at
least 20 movies were recorded. A total of 306 users provided 6, 299 opinions
about 2, 329 movies.

The magic barrier of the system (and the corresponding magic barrier of
each user) was estimated according to the procedure described in Algorithm 1.
For this, the ratings and opinions of those user-item pairs for the recorded
6, 299 opinions were used. This setup corresponds to sampling two ratings for
each of the 6, 299 user-item pairs, that is, m = 2 and r1ui corresponds to the
rating provided by user u to item i in the system before the survey, whereas
r2ui corresponds to the opinion collected during the survey. The estimate of
the magic barrier is the average of the squared sample noise over all 6, 299
user-item pairs.

3 A measure of user coherence for recommendation

Given a user u, her rated items I(u) ⊆ I, and the ratings r(u, i) assigned
to these items, i.e., i ∈ I(u), we aim to provide a score s(u) = s(I(u)) that
measures how coherent a user is, in terms of her assigned ratings. To compute
such score we propose to use an external information source, upon which we
measure the inconsistencies of the user’s ratings, by describing items in terms
of features such as genres. Furthermore, we aim to use only one item attribute.
This is because in several domains – or, at least, in typical public datasets –
there are usually no more than one or two features available for each item.
Thus, by using only one feature, our model could be applied to as many sce-
narios as possible. We show in the rest of the paper that this measure obtains
very good results, despite its seemingly simple nature. Nonetheless, it should
be noted that a combination of features may lead to a better solution than
using only one as we shall study here, but we leave this possibility as future
work, as it is out of the scope of the present work.

3.1 Example

Before presenting the actual definition of the rating coherence of a user (or
user coherence, for simplicity), let us first consider the examples presented
in Figure 1. Here we have two users, that have rated exactly the same set
of items, although their ratings are slightly different. Specifically, the user in
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Action Comedy

Horror

(a) Coherent user (s(u1) = Cσu1
= −1.28)

Action Comedy

Horror

(b) Not coherent user (s(u2) = Cσu2
= −5.95)

Fig. 1: Example of a coherent (u1) vs. not coherent (u2) user, using Equation 7
and taking the standard deviation function from Table 1 as γ.

Figure 1a exhibits a more consistent rating pattern to items sharing the same
features, which in this case corresponds to the movie’s genres. In the long term
we argue that such a user will have a more consistent (less noisy) behavior,
since her tastes for each item feature seem to be well defined.

3.2 User coherence

Following the rationale presented before, we define the user coherence based
on a set of item features or attributes A as:

Cγu = −
∑
a∈A

γu,a (7)

The user coherence Cγu , hence, provides a score that aims to measure how
coherent a user profile u is in terms of her assigned ratings. It should be noted
that we can use any arbitrary function γ defined upon the information known
for a user u and a specific attribute a. This information will generally be the
ratings given by u to the items associated with a, that is ua = {ru,i, a ∈ Ai},
where Ai denotes the subset of attributes in A for item i. Further notation
needed includes uA denoting the user’s ratings associated with any attribute
in the space A.

User coherence as measured by Cγu provides a generic formulation to incor-
porate any information available about the user – including external informa-
tion such as item attributes – which is readily available in any recommender
system. Although other measures could be available where no external infor-
mation is required, such as the entropy of the ratings or the Kullback-Leibler
divergence between the user’s preferences and the overall preferences (Bel-
loǵın et al, 2011), we believe that our formulation provides a measure which
is easily explainable and justifiable, allowing for further feedback from the
recommender system to the user.

Table 1 shows some possibilities for these functions applied over the vector
of ratings ua, considering the formulation already presented and the proba-
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Table 1: Possible functions γu,a to be used in Eq. (7), following the notation
described in the text.

Function γu,a Definition Function γu,a Definition

Entropy p(a|u) log p(a|u) KLD p(a|u) log
p(a|u)
p(a)

Mean µ(ua) Weighted Mean µ(ua)
‖ua‖
‖uA‖

Std. dev. σ(ua) Weighted Std. dev. σ(ua)
‖ua‖
‖uA‖

Size ‖ua‖

bilities p(a|u) and p(a), which are computed normalizing the rating values of
a user or of the whole community for a given attribute. Entropy, Kullback-
Leibler divergence (KLD), standard deviation, mean, and size are presented
in the table, along with two weighted versions of the standard deviation and
mean to consider for the actual number of items rated by the user in each
attribute, hence, accounting for the importance of each feature in the user
profile. To illustrate the impact of the weighted variations, we now show the
computations of the coherence function Cγu for the two users in Figure 1 when
using the standard deviation or its weighted counterpart as functions γ:

γ = σ(ua) =⇒
{
Cγu1

= − (σ(4, 4, 3) + σ(1, 2) + σ(3, 3)) = −1.28
Cγu2

= − (σ(5, 4, 3) + σ(1, 5) + σ(2, 5)) = −5.95

γ = σ(ua)
‖ua‖
‖uA‖

=⇒
{
Cγu1

= −
(
σ(4, 4, 3) 3

6 + σ(1, 2) 2
6 + σ(3, 3) 2

6

)
= −0.52

Cγu2
= −

(
σ(5, 4, 3) 3

6 + σ(1, 5) 2
6 + σ(2, 5) 2

6

)
= −2.15

We observe that, for both computations, coherence of user u2 is smaller
than that of user u1.

The key aspect of the user coherence, hence, is that we are accounting
for the rating deviation (or any other statistical measure on those ratings) of
the user with respect to a particular feature space. Besides, such a definition
allows for a more general case, where the spaceA could be – instead of (textual)
item features – any embedding of the items into an space A, such as an item
clustering or the latent factors of the items.

We have to emphasize that any of these variations of coherence can be
calculated using the same data available at training time by the recommender
system, and that no information from the test set is needed or required.

3.3 Linking magic barrier and user coherence

There exists a direct connection between the definition of the magic barrier
(Eq. (6)) and the proposed user coherence (Eq. (7)): by taking the following
function

γu,a =
∑
(u,i)

− (µ̂ui − raui)
2
, (8)
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Table 2: Spearman’s correlation between coherence and the user magic barrier.

Coherence Genres Intended Audience Plot keywords

Entropy 0.050 0.048 0.000
KLD 0.098 0.067 0.068
Mean 0.114 0.097 0.106
Weighted Mean 0.010 0.072 -0.028
Std. dev. -0.331 -0.383 -0.279
Weighted Std. dev. -0.398 -0.432 -0.394
Size 0.077 0.066 0.088

Random -0.015
Number of ratings -0.072
Average rating -0.104

we get Cγu ≈ B̂u, where the attribute space A corresponds to the timestamps

when an item has been rated, that is, A = {t : ∃i rtui ∈ R}, and B̂u is
computed as in Eq. (6) but restricting X to those pairs where user u is present.
This information is unknown in advance, and, in principle, it is not going to
be similar to the item embedding we are using in this work (textual item
attributes); nonetheless, it is relevant to note that a proper attribute space
may give more accurate predictions, due to its mathematical equivalence.

4 Validating the User Coherence

In this section, we assess the validity of the proposed coherence functions as
good estimators for the magic barrier. For this, we use the dataset described in
Section 2.3, where the magic barrier is available. As explained in that section,
the magic barrier was estimated by performing a user study to collect users’
opinions on items from the system. More specifically, we used the more than
10 million ratings available in that dataset to compute the rating coherence
(more statistics presented further on in Table 4), and compare those values
against the magic barrier estimates for each user, by considering the 6, 299
opinions obtained through the user study.

In order to check how well our approach estimates the magic barrier, we
used correlation coefficients. We show in Table 2 the Spearman’s correlation
values between the rating coherence and the magic barrier per user (Pearson’s
correlation values were similar).9

We observe in Table 2 that, among the different variations for the rating
coherence, the correlations for the weighted version of the coherence function
(that is, where the importance of each feature in the user profile is considered)
show more predictive power only when the standard deviation is used. Besides,

9 Note that Pearson’s correlation coefficient is designed to capture linear relationships be-
tween the two variables whereas Spearman’s captures non-linear dependencies. Both corre-
lation measures provide scores in the range of −1 to 1, where 1 denotes a perfect correlation,
−1 represents an inverse correlation, and the absolute value is the magnitude, or strength,
of the relationship.
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entropy and KLD do not perform very well, probably because the probabil-
ity model defined by p(a|u) is not powerful enough to capture the nuances
present in the feature space; in the future we would like to test more complex
models, e.g., based on Relevance Modeling (Parapar et al, 2013) or linked to
performance prediction (Belloǵın et al, 2011). Additionally, the Intended Au-
dience feature seems to be the best feature space for some of the coherence
formulations, and especially, for the cases where a strong correlation is ob-
tained. We have to note, however, that this feature space offers a low coverage
in terms of the items identified with this feature (Said et al, 2011), thus this
aspect should also be taken into account. In fact, other features available in
the system such as Emotion keywords or Time keywords are not included in
this analysis because of their very low coverage.

We have also included in the comparison a random magic barrier predictor
to check its neutral correlations (around zero), along with two other baseline
predictors based on the number of ratings each user has and her average rating.
These results show that the proposed coherence function is not trivial, and it
is actually capturing something that other transformations based on the same
information (mainly ratings) are not able to provide.

This experiment hence confirms that the proposed user coherence provides
good predictions of the magic barrier; as a consequence, we should be able to
exploit the ranking generated by sorting the users according to their coherence
value to lower the magic barrier for the more coherent (or easy) users. In the
next section, we show that this may be generalized when no information about
the magic barrier is available, and only the final RMSE of the system can be
measured.

5 Exploiting User Coherence to Improve Recommendation
Performance

In this section we exploit the user coherence as a signal to separate users
into different partitions. We assess the benefits of such partitions by creating
several training and test models according to these clusters (Section 5.1) and
analyze if the performance of a recommender system is improved depending on
how the rating information from each of the clusters is combined (Section 5.3).
Section 5.2 presents the experimental setup used in this analysis.

5.1 Coherence-Based User Clustering and Data Splitting

It was observed in Section 4 that user coherence obtains strong correlations
with the magic barrier. However, that type of validation is limited, since it re-
quires having a measure of user noise, which generally is not available. Hence,
we now propose to validate the user coherence by measuring the change in per-
formance of a recommender system where users are included in training/test
splits according to their coherence values. By doing so, we can confirm the
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Fig. 2: How the data set is split into training and test sets. p denotes the
percentage of users classified as difficult.

Table 3: Notation for the different training and test models considered, where
the name of each model represents [users in training set]-[users in test set].

Name Training Test
All-All Tre ∪ Trd Tee ∪ Ted
All-Easy Tre ∪ Trd Tee
All-Diff Tre ∪ Trd Ted
Easy-Easy Tre Tee
Diff-Diff Trd Ted

usefulness of our metric even in datasets where no measure of user noise is
available.

With this goal in mind, we separate the users into either those easy to
recommend to or difficult to recommend to. We do this by considering the
ranking obtained using their coherence score and taking a percentage of them
as easy (those with higher score) and difficult (those with lower score). More
specifically, for any given percentage p, p·|U| of the users are labeled as difficult,
and the rest – i.e., (1− p) · |U| – as easy. Then, we build four sets of ratings as
in Figure 2, two corresponding to the training and test splits for the easy users
(Tre and Tee) and two corresponding to the difficult users (Trd and Ted).

Once these four rating partitions are generated, we build five combinations
for training and test models as presented in Table 3. The rationale of these
models goes as follows: the All-All model simulates the standard evaluation
split where all the users are used to train and test a specific recommender
system; that is, the user clustering does not affect the users being evaluated
– although it may affect the number of ratings available for training or test,
as we shall show later. All-Easy and All-Diff consider the same training set –
more specifically, the same training used by the All-All model – and only the
test set changes: whereas All-Easy only evaluates on easy users, All-Diff does
the same but for difficult users. These models allow us to empirically check if
the clustering based on coherence values is actually separating the users into
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Table 4: Statistics on the datasets used in the experiments.

Dataset Movielens Moviepilot Yelp
Number of users 6,040 318,418 45,981
Number of items 3,900 31,948 11,537
Number of ratings 1,000,209 12,825,203 229,907
Density 4.24% 0.13% 0.04%
Range of ratings [1-5] [0-100] [1-5]

easy or difficult users, since the training set used by the recommender is the
same.

Finally, the Easy-Easy and Diff-Diff evaluation models focus only on one
user type, by training and testing on the ratings associated with the corre-
sponding type of users. Actually, we may try to evaluate these models on
the full test split, however, since no ratings exist in the training set for the
other type of users, most recommender systems – i.e., collaborative filtering
algorithms – will not be able to produce recommendations for those users,
which means that we can directly ignore them and propose a test set that
only contains users from the same type as those in the training set.

Any standard evaluation methodology can be used on top of these evalua-
tion models. In this paper, we compute the root-mean-squared error (RMSE)
of the recommendations produced for the test model; additionally, to reduce
the variability of the results, we perform a 5-fold cross validation on the set
of ratings corresponding to each user. Other evaluation metrics and random-
ization or rating partition approaches can be used instead of the ones used
here – such as time-aware evaluation strategies (Campos et al, 2014) –, this is
however not in the scope of this work.

5.2 Experimental Setup

We now empirically compare the RMSE of three standard collaborative filter-
ing methods under the different evaluation models presented in Table 3. We use
an item-based nearest-neighbor recommender (Desrosiers and Karypis, 2011)
or IB, a matrix factorization method (Koren and Bell, 2011) or MF, and a
user-based nearest-neighbor recommender (Desrosiers and Karypis, 2011) or
UB. The first two are well-known for their efficiency and do not rely on the
user dimension directly, which may provide further evidence that coherence is
a useful criterion to classify users, an overview of the algorithms and parame-
ters is shown in Table 5. Since we test different datasets we will not optimize
their parameters and use the typical ones from the literature: Pearson simi-
larity for IB and UB, 50 neighbors for UB, and 50 factors for MF. Because
of this, no validation split is used to optimize any of these parameters, even
though no tested method actually looks into the test split.

For the experiments, we have used the three datasets described in Table 4:
Movielens, Moviepilot, and Yelp. The first is one of the datasets provided
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Table 5: Recommendation algorithms and parameters used in the experiments.

Algorithm Short name Parameter Value
User-based Nearest Neighbor UB Neighborhood size 50
Item-based Nearest Neighbor IB Neighborhood size 50
Matrix Factorization MF Factors 50

by Movielens10, containing one million ratings, more than 6, 000 users and
almost 4, 000 items. The second dataset, Moviepilot, was already described in
Section 2.3, although we have to note that in these experiments the opinions
gathered through the user study will not be considered. Additionally, we have
to note that Moviepilot applies a linear transformation from its 0-10 rating
scale with step size 0.5 (as described in Section 2.3) to a 0-100 rating scale with
step size 5 (as seen in Table 4) in order to store ratings as integer values. In
our experiments, we use the 0-100 values. The third dataset, Yelp11, contains
user reviews of places of business along with almost 230, 000 ratings by more
than 45, 000 users on circa 11, 000 points of interest (restaurants, cafés, shops,
etc.).

In this experiment, the weighted standard deviation formulation will be
used for the coherence function presented in Eq. (7) since it obtained stronger
correlations with respect to the magic barrier (see Section 4). It might perhaps
be interesting to compare other, simpler, baselines for this user-based cluster-
ing in combination with other variations of rating coherence. However, we focus
on the evidence obtained before that the user coherence models achieved high
correlation values with respect to the magic barrier. We particularly focus on
the rating coherence based on weighted standard deviation, which obtained
the strongest correlation against the magic barrier, hence, it would be the
best candidate to use as a surrogate of the magic barrier. We plan to test,
in the future, how other baselines or rating coherence functions, with lower
correlations, perform in this type of experiment.

To compute the rating coherence (weighted standard deviation), we exploit
dataset-specific features in each of the three datasets: for Movielens, we use
the movie genres; for Moviepilot, we use three of the tagging features available
in the dataset with more item coverage (genres, plot keywords, and intended
audience (Said et al, 2013)); finally, for Yelp we use the business categories,
e.g., airports, tobacco shops, hospitals, etc. We should note that the nature of
these item features is very different in each of these datasets – for instance,
business categories are not as specific as item genres or plot keywords – and
hence they encode the items differently, producing different representations for
the user coherence and, possibly, they may perform better or worse depending
on the quality of these features.

10 http://www.grouplens.org/node/73
11 http://www.kaggle.com/c/yelp-recsys-2013/data

http://www.grouplens.org/node/73
http://www.kaggle.com/c/yelp-recsys-2013/data
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5.3 Effect in Performance of a User Clustering based on Rating Coherence

In this section we address the research question RQ2 (see Section 1), where we
investigate if we can improve the recommendation performance by clustering
the population of users according to their coherence. We do so by, first, per-
forming a thorough analysis on the Moviepilot dataset where different feature
spaces are compared using an item-based recommender system (Section 5.3.1);
and then, by testing three collaborative filtering algorithms on the Movielens
and Yelp datasets, where we analyze the extent to which rating coherence
affects CF algorithms in a different way (Section 5.3.2).

It is worth noting that the three datasets have different characteristics that
prevent performing exactly the same experiment in all of them; more specifi-
cally, the item features are different: the only two that might be comparable are
genres in Movielens and Moviepilot. Hence, since we cannot provide a cross-
dataset comparison, we prefer to exploit a different dimension in each dataset:
in Moviepilot we test the features that were previously compared against the
magic barrier in terms of correlations (Section 4), in Movielens we test different
algorithms because it is widely used and these results could be contextualized
in the literature, and, finally, in Yelp only one of the methods (MF) is tested
because all the alternatives have been previously analyzed, and this is one of
the most well-known and best performing methods in the area (Koren and
Bell, 2011). These three, alternative but compatible experimental conditions
do show that our method can be applied to different domains and the results
are, to a large extent, positive and consistent.

5.3.1 Sensitivity to the Feature Space

Figure 3 shows the performance of the five training and test models introduced
in Section 5.1 where three different attribute spaces are used in Moviepilot
with an item-based collaborative filtering algorithm (IB). Figure 3a shows the
results for Genres, Figure 3b for the Intended Audience space, and Figure 3c
for Plot Keywords. We also include the number of ratings corresponding to
each percentage of difficult users p and named it rating ratio (represented as
a solid line); it is computed as the ratio of the number of ratings assigned to
difficult users in a particular split, that is: |Trd|/|Tre ∪ Trd ∪ Ted ∪ Tee|.

As an additional visual clue, we included the weighted average error be-
tween All-Easy and All-Diff (line denoted as Avg), computed considering the
number of users (p or (1−p)) each model contains in its test set, in such a way
that the resulting error should be comparable to the one obtained for All-All.
This value aims to capture a weighted average that weights based on the per-
centage p, and thus, it would consider each test user with the same weight in
the final computation, leading to a comparable error as All-All, since in that
case every user appears at least once in the test set.

Note that, as explained before, the All-All split would simulate a scenario
where the user clustering does not affect the users being evaluated, however,
since the user clustering is always used, there might be some fluctuation in the
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error obtained in each case; in particular, the error obtained for the All-All split
does not necessarily remain constant for any value of p, and may depend (and
change) on the algorithm and the dataset. Because of this, we should use the
error value of the All-All model at each percentage point as the base error to
compare against. To further make this comparison easier to understand, from
now on we report the relative error of other training and test models with
respect to this split, which means that, if the error for Diff-Diff is 35.2 for
p = 0.3 using Genres, we report a relative error of (35.2−28.6)/28.6 = 23.08%,
since the base error of All-All is 28.6.

In these figures, we observe that the general trend remains the same in any
attribute space: more coherent users tend to have a better performance than
the overall system (All-Easy has always a negative improvement of RMSE
with respect to All-All, meaning that its RMSE is lower), which in turn per-
forms better than the less coherent users (All-All lower than All-Diff ). We
should also note that, even though the strongest correlation between the co-
herence function was obtained for the Intended Audience attribute space, it
seems the best performance now is found when Genres are used. However, the
differences in performance between these two attribute spaces is not very large
(the best RMSE is, in both situations, for All-Easy with p = 0.9, with a value
of 11.8 using Genres and 12.5 using Intended Audience), which matches their
correlations being too similar to each other (−0.398 vs. −0.432).

On the other hand, an aspect that is different in each attribute space is
the rating ratio. The figures show that, depending on the attribute, for a fixed
number of users, say p = 0.5, the number of ratings corresponding to those
users might be very different. For example, around 68% of the ratings corre-
spond to the difficult users using Genres, whereas this number goes down to
56% using Intended Audience or up to 80% using Plot Keywords. This indeed
affects how steep the lines are in each model, since this is related to the number
of ratings in training at each point, and hence, to the amount of information
available by the recommendation algorithm. Therefore, the feature space plays
an important role in the coverage of the recommendation algorithm, although
it does not affect their performance much (see above), it could produce splits
with very little information for a percentage of the users. The following section
highlights that this could be an issue in some datasets.

5.3.2 Analysis of Different Collaborative Filtering Algorithms

In this section we analyze the effect of user coherence under different rec-
ommendation algorithms. For this, we use first the Movielens dataset, and
later the Yelp dataset. Both datasets do not contain information regarding
the magic barrier of the users, but we are able to apply the same methodology
as in the previous section (by computing how performance changes when a
recommender is applied to different splits of the same data) to validate our
approach.

As before, we report the relative RMSE values for the different training and
test models presented in Table 3 with respect to the All-All model. Table 6
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Fig. 3: Comparison of RMSE improvement with respect to the All-All split
model for an item-based CF method, when different numbers of users are
considered as difficult (p) and three attribute spaces are considered (genres,
intended audience, and plot keywords) in the Moviepilot dataset.
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Table 6: Improvement on rating prediction performance on Movielens using
Genres as attribute space, for the different training and test models described
in Section 5.1, where the ratio of difficult users is p ∈ {0.1, 0.5, 0.9} and the
base error column denotes the error obtained by the All-All model. N and H
denote the best and worst values obtained for each configuration (the lower
the error, the better) respectively.

Rec p
Base

All-Diff All-Easy Diff-Diff Easy-Easy Avg
Rating

error Ratio

IB 0.1 0.99 31.41 −3.84N 70.40H −2.83 13.84 0.09
IB 0.5 0.99 10.60 −15.24N 14.13H −11.60 −2.32 0.54
IB 0.9 0.99 1.41 −31.58N 2.02H −19.88 −15.04 0.94

UB 0.1 1.08 26.16 −3.05 29.85H −4.25N 11.55 0.09
UB 0.5 1.09 9.82 −10.55 12.48H −14.40N −0.37 0.54
UB 0.9 1.08 1.38 −17.34 2.21H −25.18N −8.03 0.94

MF 0.1 0.89 31.54 −4.04N 54.32H −3.82 13.69 0.09
MF 0.5 0.89 9.53 −14.57N 13.90H −12.11 −2.47 0.54
MF 0.9 0.89 1.57 −28.51N 1.91H −22.67 −13.47 0.94

shows three sets of values for each algorithm being tested in Movielens: one
when the 10% least coherent users are classified as difficult users (p = 0.1),
another when the top 10% coherent users are classified as easy users (thus,
the remaining 90% are classified as difficult users, or p = 0.9), and one where
half of the users are classified as difficult and the remaining as easy (p = 0.5).

In this context, we observe that more coherent (easier) users tend to have a
better performance than the overall system (note that All-Easy improvements
are always negative in Table 6, meaning that the error is always lower than
All-All) for every recommender. For the same reason, the Diff-Diff model is
always the worst performing one. This is because the users belonging to this
model are the noisiest ones, and when the recommender only uses this type
of ratings, it would produce worse recommendations than when information
from the rest of the community is considered (compare the error values between
All-Diff and Diff-Diff ).

We also observe that difficult users need additional information – i.e., not
only from other difficult users – to reduce their error (see Diff-Diff vs. All-
Diff ), whereas easy users appear to be more stable (Easy-Easy vs. All-Easy).
This is clearer for p = 0.5, since the same number of users is used in both
groups, and thus, the computed errors are comparable.

The difference in performance is even more evident when we compare All-
Easy vs. All-Diff with p = 0.5, where there always is a performance improve-
ment; taking into account that the number of users is the same (which in this
case also correspond to very similar sizes of the test sets, see the Rating Ratio
column), these results show that, even when the recommender has the same
information to train with, its actual error only depends on the type of users
we use to evaluate it. In this case, more coherent (easy) users obtain more
accurate recommendations.
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Table 7: Improvement on rating prediction performance on Yelp using Cate-
gories as attribute space and MF as recommendation algorithm, using notation
from Table 6.

p
Base

All-Diff All-Easy Diff-Diff Easy-Easy Avg
Rating

error Ratio

0.1 1.26 8.60H −8.44N 7.64 −7.96 0.08 0.40
0.5 1.26 0.32H 0.00 −0.71N 0.08 0.16 0.87
0.9 1.26 0.16H −2.15 −0.08 −4.70N −1.04 0.97

It is important to emphasize that the effect of coherence-based user clus-
tering is evident in the three collaborative-filtering algorithms tested. Whereas
UB depends inherently on the users in the system by the similarity being used
and the neighborhood involved during the recommendation phase, both IB
and MF are well-known to not rely directly on other users (besides the tar-
get user) to generate a recommendation. Hence, this shows that the proposed
formulation is general enough to work on different types of recommendation
algorithms.

To further evidence the generality of our proposal, we include results for
the Yelp dataset in Table 7. Here we focus on the MF algorithm for a number
of reasons. First, because as presented in Table 6, this algorithm is the best
performing one, and according to the literature, it tends to perform very well in
many situations involving rating-based datasets and comparing against other
collaborative filtering algorithms (Koren and Bell, 2011). Second, and more
importantly in this situation, it is the only one that shows full recommendation
coverage in all the reported situations. In an exploratory study, we observed
that UB and IB were only able to produce recommendations for Yelp in certain
situations, i.e., for particular values of p. However, MF, has full coverage by
definition, since it is able to work as soon as a user or item has one rating in
the system.

This is a critical issue in this dataset, because the rating ratio is highly
skewed (the reader should note that it is already up to 87% for p = 0.5)
which produces splits with very few ratings when fewer and fewer users are
being considered as easy (larger p). One possible reason for this behavior is
that the only available item attribute in this dataset does not have the same
inherent meaning than the other attributes used in the previous datasets; more
specifically, in a movie or music domain, an attribute such as genre allows to
classify the same type of items into different categories, however in Yelp we
actually have very different types of items (hotels, restaurants, museums, etc.)
which end up, in this dataset, receiving ratings in a highly skewed, biased way
for both users and items.

Because of this, the results found in this dataset are slightly different to
those reported before. More specifically, when p = 0.5 the best performing
model is Diff-Diff. Note that, even in this situation, the performance of All-Diff
is much worse, and All-All and the models involving easier users (All-Easy and
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Easy-Easy) have a very similar performance, something that never occurred
in the previous examples, evidencing this atypical scenario produced by a
higher rating density for the difficult users. This highly skewed distribution, as
evidenced by the large amount of ratings assigned to difficult users, implies that
the easy users considered in the All-All and All-Diff splits do not contribute
with many ratings, and hence, they are not able to compensate the incoherent
behavior learnt by the model from the difficult users.

For the other cases presented in Table 7 (p = 0.1 or 0.9), either All-Easy or
Easy-Easy models perform the best. This is in line with the results presented
before for Movielens and Moviepilot, even though the rating distribution in
these three datasets is not comparable. We hence conclude that the proposed
user clustering based on rating coherence is also useful in the Yelp dataset,
however more attention should be paid to the rating distribution and the
nature of the item attributes, since these two factors affect the extent of the
improvements of the tested models. For instance, the largest improvement
was obtained for All-Easy with p = 0.1 (the RMSE was decreased by 8%),
however, in Movielens up to 30% improvement can be achieved by different
recommenders, a similar situation to the one obtained in Moviepilot.

5.4 Discussion

In summary, this experiment confirms that it is possible, in most cases, to
exploit the coherence values to build different training (and test) models in
such a way that the error decreases for the easy users, i.e., to increase the
accuracy of the recommender system. In particular, we have observed that it
is possible to improve the performance for 90% of the user population simply
by creating a separate training set for the 10% noisiest (least coherent) users
in Movielens and Yelp, so that the rest of the users can benefit from more
consistent ratings (Easy-Easy model with p = 0.1). We have also observed
that, for the 10% most coherent users, if trained separately, we will always
obtain an improvement in performance. This would reduce the amount of
resources needed for these users and could be used instead to finely tune the
algorithms for the less coherent part of the user population.

Additionally, it should be noted that no modification was made to any of
the algorithms reported, and that is why the proposed clustering – and specif-
ically, the user coherence measure that allows such clustering – is presented
as a good alternative to discriminate between easy and difficult users. Similar
improvements can be expected from other recommendation techniques, and
even larger improvements if specially tailored algorithms are introduced to
deal with the noisier characteristics of the more difficult users.

Furthermore, in contrast with other techniques presented in the past (such
as significance weighting or trust-based recommendation (Herlocker et al, 2002;
O’Donovan and Smyth, 2005)), the proposed technique (rating coherence) is
able to discriminate between easy and difficult users according to, and indepen-
dently from, different recommendation techniques. Effectively, this means that
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users with higher rating coherence (hence, labeled as easy) tend to receive bet-
ter recommendations than their counterpart users with low rating coherence.
This was shown for different datasets and three recommendation techniques
(user-based and item-based nearest neighbors and matrix factorization) that
use different information to base their recommendations.

6 Related Work

The idea of predicting the performance of recommender systems has attracted
a lot of attention in the field, as we show in the next sections, however, to
the best of our knowledge, no other work has been able to predict an actual
measure of users’ inconsistency – like the magic barrier – and successfully
apply it to improve the performance of the whole (or even of a subset) of the
users in the system, as we have presented in this work.

6.1 Measuring user uncertainty through ratings

Inconsistency in user behavior in the context of information and recommender
systems is a known concept and has been studied on several occasions previ-
ously. The first mention of inconsistencies in a scope similar to ours was made
in (Hill et al, 1995) in their study on virtual communities. The authors ques-
tioned how reliable the ratings were and found a rough estimate by calculating
the RMSE between two sets of ratings performed by 22 users on two occasions
6 weeks apart.

Similar reliability issues, e.g., the levels of noise in user ratings, were dis-
cussed in (Herlocker et al, 2004), coining the term magic barrier as an upper
level of recommender system optimization. More recently, in (Amatriain et al,
2009a) the authors performed a set of user trials on 118 users based on a sub-
set of the Netflix Prize dataset. They attempted to find answers to whether
users are inconsistent in their rating behavior, how large the inconsistencies
are, and what factors have an impact on the inconsistencies. They were able
to identify a lower bound – the magic barrier – for the dataset used in the
trials.

Following their user trials, in (Amatriain et al, 2009b) the authors suc-
cessfully increased the accuracy of a recommender system by implementing a
de-noising step based on re-ratings collected in a study. They presented two
re-rating strategies (user-based and data-based) in order to find the ground
truth values of ratings for the purpose of maximizing accuracy improvements
in a recommender system. They concluded that re-rating previously rated
items could, in some circumstances, be more beneficial than rating previously
unrated items. In a different work, Said et al (2012b) attempted to estimate
the magic barrier of a system using a user study within a real-world recom-
mendation system (as presented in Section 2.3). In (Jasberg and Sizov, 2017),
the authors extend these models and propose a probabilistic framework by
using methods from metrology and physics.
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Some of the inconsistencies in users’ rating behavior can be mitigated by
temporal aspects, as shown in (Lathia et al, 2010). This mitigation does how-
ever not compensate for all inconsistencies, which was shown by other authors
by having different time spans between re-ratings (Amatriain et al, 2009b).

In (Kluver et al, 2012) an information theoretic framework is proposed
for estimating the amount of correct information that is contained in ratings
and how much information is made up of noise and general user inconsisten-
cies. The authors conclude that even though fine-grained rating scales (i.e.
1-5 stars) contain more noise than coarser scale (thumbs up/thumbs down),
they contain more predictive power than the coarse-grained alternative. Other
works propose a framework for classification of users based on the quality of
their ratings, and then transfer learnt rating prediction models between user
groups with higher quality data to user groups with lower quality data (Yu
et al, 2016). Yet another approach to handle natural noise in user ratings, pre-
sented in (Toledo et al, 2016), proposes an adaptable fuzzy profiling method
for improving recommendation accuracy.

6.2 Other sources of user uncertainty

Additional sources besides ratings have been proposed to estimate the user
uncertainty. In (Nguyen et al, 2013) the authors explore various interfaces
that support users in their rating behavior in order to minimize potential noise
caused by rating inconsistencies. They conclude that it is possible to increase
the quality and consistency of data by utilizing supportive functionalities such
as tags and examples of previously rated items.

More recently, works like (Toledo et al, 2015) focus on detecting and cor-
recting the natural noise in user ratings by linking the noise to the users’
personality traits. The approach in (Saia et al, 2016) instead attempts to rid
the user profile of ratings that appear to have been given in an incoherent
manner in order to more accurately reflect the user’s true preference profile.

Jones et al (2011) propose a model where instead of ratings, recommen-
dations are created based on comparisons between items, i.e., users compare
pairs of items and state which one they prefer. This information is then used
instead of ratings. The authors report their model to be more stable over time
than systems only based on ratings.

Finally, from a psychological point of view, the inconsistency a person
might have towards a certain item (recommended or not) can be related to a
concept known as cognitive dissonance, which refers to the notion of a person
that simultaneously holds two or more contradictory beliefs about a certain
action or item. This concept has been discussed in the scope of information
systems previously, in, e.g., (Bajaj and Nidumolu, 1998) where the authors
attempt to build guidelines for information system production taking cognitive
dissonance into consideration.
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6.3 Linking recommender performance to user uncertainty

Apart from measuring the uncertainties, other authors have explored the prob-
lem of understanding how the recommenders fail for certain users, by attempt-
ing to characterize those users. In (Rashid et al, 2005), the authors propose a
measure of the effect of a user in the recommendations received by an algo-
rithm, named as influence. Their original definition is very expensive, since it
measures the effect a user has over the rest via the predictions they receive,
for which they need to compute predictions for items using a training model
where the target user has been removed.

In (Ekstrand and Riedl, 2012), the authors examine why some recom-
menders fail in the context of hybrid recommendation, with the goal of se-
lecting better components to build more efficient ensembles. They found that
recommenders fail for different users and items, and obtained specific user fea-
tures – such as the user’s rating count, the average rating, and their variance
– that allow to predict the performance of an algorithm.

(Kille, 2012) assigns a difficulty value reflecting the expected evaluation
outcome of the user. The work proposes to measure this difficulty in terms of
the diversity of the rating predictions and rankings when comparing the output
of several recommender systems. Some diversity metrics from (Kuncheva and
Whitaker, 2003) are proposed, but they are not tested nor implemented on
real world datasets.

By drawing from Information Retrieval related quantities, a family of per-
formance predictors for users is presented in (Belloǵın, 2011; Belloǵın et al,
2011). Correlations found between ranking-based metrics and such predictors
are strong, and the authors propose to exploit them in at least two applica-
tions: dynamic neighborhood building and dynamic ensemble recommenda-
tion, where the weights for the neigbors or the recommenders would dynami-
cally change depending on the predicted performance of each variable.

More recently, a similar approach was developed using a machine learning
method based on decision trees. In (Griffith et al, 2012) the authors aim to
predict the user’s performance in terms of the user’s average error by extract-
ing user’s rating information (such as the number of ratings, average rating,
standard deviation, number of neighbors, average similarity, etc.). The corre-
lations obtained are very strong (around 0.8) but no actual applications are
proposed in the work.

7 Conclusions and Future Work

The research presented here aims to provide a deeper understanding of what
user characteristics are related with the appropriateness and relevance of the
recommender’s suggestions for each user. We have observed that being statisti-
cally coherent – in terms of rating deviation – within an item’s attribute space
(e.g., genres) gives enough information to predict the user’s inconsistency as
measured by her magic barrier. This opens up the possibility for a (real world)
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recommender system to perform different actions on the users depending on
their predicted inconsistencies, such as proactively asking some specific users
(the ones predicted as most difficult) to rate more items – by means of prefer-
ence elicitation or active learning techniques (Rubens et al, 2011) – or training
separate models for the easy and difficult users.

Our work shows that a recommender system can be trained differently de-
pending on users’ inconsistencies predicted by their rating coherence, allowing,
for instance, cheaper recommendation cycles (in terms of computational effort,
time, and parameter tuning) for easier users – i.e., those with higher coher-
ence. In our experiments we observed that the rating prediction performance
can be improved by a factor between 10% and 40% (depending on the dataset
and the amount of users labeled as difficult) when only easy users are consid-
ered for training and testing the model. The remaining users (those labeled
as difficult) will receive worse recommendations in general if the same algo-
rithm is used as for the easier users, because of their lack of rating coherence;
hence, other strategies – such as eliciting more preferences from them or using
more complex algorithms for these users – should be exploited. This work has
studied and analyzed the non-trivial task of discriminating between easy and
difficult users. Testing the hypotheses that this work has arrived at is left for
the future, once a specific separation between the two types of users has been
properly defined.

Further, this work consolidates the concept of rating coherence and its
effect on collaborative filtering recommender systems. In particular, we have
obtained strong correlations between different variations of rating coherence
and the estimated magic barrier, evidencing a higher predictive power than
other, simpler baselines. When utilized correctly, this effect can be used to
improve the quality of rating prediction, and potentially lower the computa-
tional effort needed. It can be argued that measuring the instability of user
ratings over time would lead to a situation closer to the real world than what
we have presented here. However, it should be noted that, even though the
temporal dimension of the data is very important in recommendation, no real
inconsistency in terms of instability of user ratings over time can be found in
any public rating dataset because every user-item interaction is only presented
once in rating datasets, probably storing only the last rating the user decided
to give to an item. Furthermore, in some datasets (such as the well-known and
widely used Movielens dataset (Harper and Konstan, 2016)) the timestamps
associated to the ratings are meaningless or artificial, and hence, temporal
splits or temporal models on those datasets are not useful to capture the time
dimension.

Nonetheless, the main advantage of the method presented here is that it is
general enough to be applied to simple, realistic datasets, where such informa-
tion is not usually available. This allows for maintaining decent correlations
with respect to the measured magic barrier and decreasing the error for the
users predicted to be easier. In any case, it would be interesting and relevant
for the field to understand the users’ rating inconsistencies over time, for which
specific datasets with such information should become available. Once more
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datasets with these characteristics can be analyzed, it will be worthwhile to
investigate whether the proposed measure of user coherence matches such in-
consistency in user preferences. Our definition likely is a near approximation of
the actual user uncertainty or inconsistency, as evidenced in our previous work
on measuring the magic barrier by forcing repeated ratings over time (Said
et al, 2012a). Knowing the real relation would be useful when building more
accurate recommendation systems.

Moreover, the foci of this and earlier works on the magic barrier have
been strictly on rating prediction, given the recent developments in the rec-
ommender systems sphere, rating prediction does not play a role as significant
now as it once did. One line of future work we are currently studying is the
application of the magic barrier, and similar concepts, on ranking-based rec-
ommendation scenarios. More explicitly, we are interested in evaluation using
ranking metrics, e.g., precision, to analyze if the user’s inconsistencies are also
reflected in, or if they affect, their ranking performance; similarly, other per-
formance indicators like utility or user satisfaction could be explored in the
future and their relation with coherence analyzed.

The validation of our weighted standard deviation measure has only been
possible on the single data set (Moviepilot) for which repeated ratings are avail-
able. A more substantial evaluation of this and the other coherence measures
must wait until additional data sets containing such re-rating information be-
come available. However, as evidenced by our experiments, the weighted stan-
dard deviation measure, relative to item attributes, effectively discriminates
between more and less predictable users.

Additional lines of potential future work include the application of the
concept of the magic barrier on domains outside of recommender systems,
e.g., whether query-driven information retrieval suffers from similar problems,
in the context, for instance, of the objective relevance assessments obtained,
considering that it has already been observed that no complete inter-assessor
agreement is found in general (Voorhees, 1998; Webber et al, 2012). Similarly,
by drawing a user-as-a-query analogy, a query analysis could be performed to
investigate if some queries are systematically more difficult than others simply
because their relevance assessment is less coherent than other queries, in line
with other studies on hard topics and related TREC tracks (Voorhees, 2004).
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