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ABSTRACT
Recommender systems are widely used tools in a large number of
online applications due to their ability to learn the tastes and needs
of the users. Venue recommendation approaches have recently be-
come particularly useful, and even though these techniques have
certain characteristics that differ from traditional recommendation,
they deserve special attention from the research community due to
the increase on the number of applications using tourism informa-
tion to perform venue suggestions. In particular, how to properly
evaluate (in an offline setting) this type of recommenders needs
to be better analyzed, as they are normally evaluated using stan-
dard evaluation methodologies, neglecting their unique features. In
this paper, we discuss and propose some solutions to two specific
aspects around this problem: how to deal with already interacted
venues in the test set and how to incorporate the sequence of vis-
ited venues by the user when measuring the performance of an
algorithm (i.e., in an evaluation metric).

1 INTRODUCTION
The large development of location-based social networks (LBSNs)
in recent years has encouraged research on the problem of Point-of-
Interest (POI) or venue recommendation, i.e., suggesting new places
for users to visit by analysing different contexts such as interaction
patterns, friendship relationships, or geographical influence [13, 14].
Foursquare, Gowalla, or GeoLife, and many more, are examples
of this kind of social networks, where users record check-ins they
make to certain POIs (restaurants, cinemas, hotels, etc.) and share
their opinions about them in the application [19, 20]. Because of this,
many recommendation techniques have been proposed that exploit
these information sources, see for example [7, 11, 12, 14, 19, 21];
however, a critical step to decide whether these algorithms are
valuable or could be usable in the real world is the evaluation
process, which should be realistic and performed with great care.

With this idea in mind, in this work we analyze some impor-
tant aspects we have detected related to how POI recommendation
tends to be evaluated in offline settings. Our driving hypothesis is
that a recommender system should be evaluated in a situation as
close as that where it would be used. Because of this, we consider
that offline evaluation should be performed by running a tempo-
ral split, where the recommender should predict the present (or
future) user interactions based on her past interactions [5]. How-
ever, independently of whether a temporal split was used, we have
detected two challenges that shall be the focus of this paper: first,
how should we deal with those venues the user already visited in
the past?, and second, can we incorporate the actual order followed
by the user (in the test set) to assess the accuracy of the provided
recommendations?

In the next sections we motivate and present these two chal-
lenges in more detail, and present later some preliminary experi-
ments we have obtained, together with some conclusions and future
ideas related to these issues.

2 EVALUATION METHODOLOGIES:
KNOWN VS NEW VENUES

In classical recommender systems, no repetitions are typically al-
lowed or considered in the datasets, probably inherited by the
domains of the first available datasets (movies) [8, 9]; however,
in the venue recommendation context users often visit the same
place more than once, and hence, it may make sense to consider
how these repetitions should be incorporated in the models and
in the evaluation process. This behavior is not limited to venue
recommendation, it also happens in music or e-commerce recom-
mendation, and tasks such as session-based recommendation or
automatic playlist continuation [16]. Nonetheless, to the best of
our knowledge, there is no thorough research about the effects
of this paradigm shift, especially regarding the evaluation of the
recommendation techniques.

Some papers explicitly state that they separate venues, instead
of check-ins, hence, in those cases it is clear that there are no
known or visited items in the test set by that user (see [12–14]).
However, in other situations it is not obvious how the test set
is created, for instance, when temporal splits are created, where
repetitions may naturally occur and it is not clear if already known
venues were removed from the test set of the user [20]. As we shall
see in our experiments, these experimental settings may have a
profound impact on the performance of the recommenders and on
the observed trends, not only from a reproducibility perspective;
hence, the community would benefit from a careful analysis about
this issue.

We argue that, by evaluating with items already interacted by
the user we are aiming at a different kind of algorithm than when
those items are removed. In other terms, a recommender system
that performs very well in the first scenario (with known items) is
expected to distinguish well which of the previously visited venues
the user will visit next. In this context, its final goal is to generate
recommendations already known by the user, probably the opposite
of a recommender evaluatedwith only new items in the test set, thus
aiming at recommending new, novel venues for each particular user
– in fact, some authors define explicitly such a task as recommending
new places [4].

Our assumption – that we would like to study in the future,
since it is out of the scope of this position paper – is that those
recommenders that better predict in the case of known venues,
would probably generate less novel recommendations in general.



Table 1: Description of the temporal partition evaluated cre-
ated based on the Foursquare dataset, where U , I , and C de-
note the number of users, items, and check-ins.

Check-in period U I C Density C/U C/I

Apr’12-Sep’13 267k 3.6M 33M 0.0034% 123.596 9.16

Training: May-Oct ’12 202k 1.1M 4.7M 0.0021% 23.267 4.278
Test: Nov ’12 150k 352k 831k 0.0017% 5.540 2.361

We believe it would be interesting to understand this effect, in part,
to improve current recommendation algorithms that perform well
in either of these tasks by creating a hybrid algorithm useful in a
real use-case scenario, in such a way that it would detect if new
or already visited recommendations should be returned to a user,
based on her previous interactions.

3 INTEGRATING SEQUENCES IN
EVALUATION

Another specific feature of venue recommendation that differs from
the more traditional recommendation problem is that the order in
which users visit the venues provides a lot of information. Recently,
some methods have been proposed that provide recommendations
based on temporal or sequential aspects, such as [6, 21]. However,
this information has been neglected, so far, when evaluating these
algorithms. Except for the work presented in [6], where the au-
thors propose a metric based on F1 that takes into account the
pairwise order between POIs, we have not found other approaches
where the evaluation metrics explicitly compare the order of the
recommendations against the visited venues.

Furthermore, and related to the discussion presented in the pre-
vious section, classical ranking metrics fit the scenario with no
repeated items, however, they cannot be adapted to the case where
repetitions exist (at least, not to the case where there are repetitions
in the test set). Because of this, we believe sequences should be
formally integrated and considered when evaluating recommender
systems in the venue recommendation context.

With this idea in mind, herein we propose an evaluation metric
based on the Longest Common Subsequence (LCS) algorithm, a
technique used to find a subsequence of elements (no necessary
consecutive) whose length is the maximum possible between two
sequences [1]. In our context, one of the sequences will be the
recommendation list (Ru ) and the other the actual visited venues
that appear in the test set of the user (Tu , ordered by ascending
timestamp); in this way, the LCS algorithm will measure how many
items were recommended in the same order as the user visited
them. For instance, if the sequence of items ABCDE is found in the
test set of a user, and one recommender suggests ABXCD, whereas
another provides ABDXC, the LCS algorithm will score higher the
first one, since the subsequence found (exploiting not consecutive
items) is larger in that case (4 against 3).

Finally, since the LCS between two sequences is not bounded,
we need to normalize this value (lcs). We propose the following
three variations when measuring rankings at cutoff N of both
recommended and test sequences: LCSP(Ru ,Tu ) = lcs(Ru ,Tu )/N
(based on precision), LCSR(Ru ,Tu ) = lcs(Ru ,Tu )/|Tu | (based on
recall), and LCS(Ru ,Tu ) = lcs(Ru ,Tu )2/(N · |Ru |).

4 PRELIMINARY EXPERIMENTS
The experiments have been performed using the global-scale check-
in dataset of Foursquare1 made public by the authors of [17, 18].
Starting from more than 33M check-ins, we created one temporal
split containing 6months of data in its training split and one month
for testing (more statistics are shown in Table 1). As a pre-processing
step, we performed a 2-core before splitting the data into training
and test, so that we force that every user and item has at least 2
check-ins.

We report results obtained by the following recommenders:

• Random (Rnd): random recommender.
• Popularity (Pop): recommender that suggests the most pop-
ular items, i.e., items with more check-ins.

• AvgDis: baseline that recommends the closest POIs to the
user’s average location. The average is computed by calcu-
lating the midpoint of the coordinates of the POIs visited by
the user.

• PGN: a hybrid approach similar to the USG model proposed
in [19] that combines a user-based method (UB), Pop, and
AvgDis recommenders. It basically aggregates the scores
of every item provided by each of the recommenders, af-
ter normalizing each score by the maximum score of each
method.

• UB: a k-NN recommender with a user-based approach [15].
• IB: a k-NN recommender with an item-based approach [15].
• HKV: a matrix factorization (MF) approach as described in
[10] that uses Alternate Least Squares in the minimization
formula.

• IRenMF: weighted MF method proposed by [14]. We selected
this approach because, according to the comparison pre-
sented in [13], IRenMF was very competitive with a lower
execution time with respect to other models, such as GeoMF,
Rank-GeoFM, or LFBCA, which agrees with some prelimi-
nary experiments we performed in our dataset.

Based on the temporal split presented in Table 1, we decided to
focus on the 2 largest cities in terms of number of check-ins (Jakarta
and Istanbul) and create 2 independent training-test datasets. Fur-
thermore, in order to make a fair comparison among all the evalu-
ated baselines, we removed repetitions in a user basis for the classi-
cal collaborative filtering algorithms; we kept two versions of the
training set (with and without check-in frequencies) so that some
POI recommendation algorithms, in our case AvgDis and IRenMF,
could exploit the frequency of users when visiting a specific venue
(denoted as AvgDisFreq and IRenMFFreq). Additionally, to test the
experimental conditions discussed in Section 2, we created two test
sets: one where those venues the user already interacted in the past
(training set) are removed (with new venues) and another where
they are kept (with known venues).

To evaluate the recommenders under the with known venues
strategy we selected as candidates for each user all the venues that
appear in the complete training set of each target city, while when
working with new venues we remove the ones already rated by that
user.

1https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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We use different ranking metrics to measure accuracy of the
recommenders: precision (P), recall (R), mean average precision
(MAP), and normalized discounted cumulative gain (NDCG) [2].
We also report the proposed metrics based on LCS, as presented
in Section 3. The parameters of the recommenders have been se-
lected by maximizing P@5. Unless stated otherwise, the reported
values are computed at a cutoff of 10. Source code to replicate these
experiments can be found in the following Bitbucket repository:
PabloSanchezP/TempCDSeqEval.

4.1 Comparison of evaluation methodologies
Table 2 shows the results for the cities mentioned before evaluated
under the two methodologies presented in Section 2: where only
new items for a user appear in her test set (with new venues) and
where venues already interacted by the user are allowed in the test
set (with known venues). Nevertheless, for the test set, we always
removed the duplicated check-ins (i.e., the users only made one
check-in in a POI). As a simple baseline, we have included a method
that returns the venues observed in training for each user (Training),
ordered by their score and popularity. This baseline, as expected,
does not obtain any relevant result in the first scenario, however,
when known items are allowed, it is a strong baseline to beat, and
some of themore complex algorithms such as IRenMF tend to obtain
performance values very close to the ones from this method.

We also notice that in the with new venues scenario, the well
performing methods tend to be very close to each other (see PGN,
UB, IRenMF, and IRenMFFreq in Jakarta), however, in the other
scenario the differences increase and some methods take more
advantage than others of the different experimental condition.

Another interesting observation is that, as already happens in
classical recommendation [3], a popularity bias is found when eval-
uating in thewith new venues scenario; however, this bias is strongly
reduced in the with known venues scenario, favoring the Training
baseline, evidencing that in such scenario well-known, popular
venues are not as important as previously visited venues by each
user, confirming that these two scenarios are actually modeling
two different recommendation situations and hypotheses.

4.2 Sequence-aware evaluation metric
To test the evaluation metric proposed in Section 3 based on the LCS
algorithm, in Table 2 we have included two methods as skylines
(named like this as opposed to the baselines, since their performance
is almost impossible to achieve because they look into the test set):
TestOrder, that returns the test set in the (ideal) observed order
visited by the user (from lowest to highest timestamp), and Test-
InvOrder, that also returns the test but in the reverse order (from
highest to lowest timestamp). The use of these recommenders will
serve to justify the LCS-based metric, since besides taking into
account the relevance, it also considers the order of visits (note that
none of the other recommenders explicitly generates sequences of
items, we aim to address this issue in the future). We observe that
the LCS-based metrics (LCS, LCSP, LCSR) produce lower values for
TestInvOrder than for TestOrder, as TestInvOrder only finds one
item in the correct sequence when using these metrics; however,
since TestInvOrder obtains much better results than traditional rec-
ommenders, we conclude that, for many users, the other algorithms

are not able to obtain a single relevant item. At the same time, the
skylines obtain the same values by any of the other ranking-based
metrics (P, R, MAP, NDCG) since they do not consider the visiting
order of the recommended list.

Based on these results, we can provide additional insights about
how the different recommendation algorithms behave. For instance,
in the with known venues scenario, the Training baseline seems to
provide recommendations more often in the same order as the one
observed in the test set, since the values for the LCSmetric is always
higher than for any of the sequence-agnostic evaluation metrics. In
the other scenario, on the other hand, we do not observe too many
variations on how the recommenders are being ranked by each
evaluation metric, hence, further analysis and experiments should
be performed to better understand this effect. One possible reason
for this lack of variability in the performance could be related to
the very small number of relevant items returned by the algorithms,
in the future we would like to study this problem in more detail.

5 CONCLUSIONS AND FUTUREWORK
In this work, we discuss two aspects regarding how the commu-
nity should address the evaluation of venue recommendation ap-
proaches. First, we analyze whether repeated interactions should
be included in the test splits, observing how state-of-the-art recom-
mendation algorithms change under these different experimental
conditions. Considering this type of behavior is common in the
tourism domain – and inherent to some type of tourists – the
presented observations could open up for discussion about how
this issue should be addressed in the community, especially, which
scenario is more interesting from an offline point-of-view of the
evaluation process, without forgetting that some recommendations
might be obvious (hence, less useful) for the users [4], as evidenced
by the good performance achieved when returning those venues
already visited by the user. We aim to continue investigating about
this problem in the future, especially about the connection between
(lack of) novelty and observed accuracy under experimental condi-
tions with known items. An important issue we aim to address is
the best way to exploit check-in datasets such as the one used here,
since there is no difference between tourists and locals (which may
check-in in nearby places or visit locations as part of their daily
life) and, hence, we want (and need) to understand if the derived
conclusions concern to locals, tourists, or both.

The second aspect we have presented here is related to the use
of sequences in the evaluation of POI recommendation approaches.
We have defined an evaluation metric based on the Longest Com-
mon Subsequence that takes into account how similar the recom-
mended list is with respect to the order the user checked in the
venues. In the future, we would like to explore how this metric be-
haves on different tasks related to tourism recommendation, such
as next-POI recommendation and tour recommendation, where
the recommendation order plays an important role. Furthermore,
we aim to incorporate in our analysis algorithms that explicitly
recommend sequences of items [16].
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Table 2: Performance comparison on 2 different cities including already interacted items by the user in the test set (with known
venues) and excluding such items (with new venues). Our proposal for a sequence-aware evaluationmetric is also included (LCS,
LCSP, LCSR). Best results are denoted in bold: with † when TestInvOrder and TestOrder are not considered, without † when
also the baselines (Rnd, Pop, Training) are not considered.

(a) Istanbul

Recommender

Rnd
Pop

Training

AvgDis
AvgDisFreq

PGN
UB
IB

HKV
IRenMF

IRenMFFreq

TestInvOrder
TestOrder

Test with new venues
P R NDCG MAP LCS LCSP LCSR

0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.039 0.076 0.063 0.030 0.008 0.034 0.071
0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.001 0.001 0.001 0.001 0.000 0.001 0.001
0.001 0.002 0.001 0.001 0.000 0.001 0.001
0.041 0.082 0.073 0.036 0.009 0.037 0.077
0.045 0.088 0.078 0.039 0.009 0.039 0.081
0.036 0.069 0.063 0.032 0.008 0.032 0.064
0.043 0.087 0.076 0.039 0.009 0.038 0.080
0.044 0.089 0.077 0.039 0.010 0.039 0.083

†0.047 †0.094 †0.082 †0.042 †0.010 †0.041 †0.087

0.468 0.932 0.978 0.967 0.225 0.100 0.356
0.468 0.932 0.978 0.967 0.932 0.468 0.932

Test with known venues
P R NDCG MAP LCS LCSP LCSR

0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.054 0.082 0.079 0.036 0.009 0.046 0.075

†0.120 †0.190 0.186 0.100 †0.034 0.090 †0.157

0.003 0.006 0.007 0.005 0.001 0.002 0.006
0.003 0.007 0.008 0.005 0.001 0.003 0.006
0.070 0.112 0.124 0.065 0.013 0.059 0.101
0.110 0.167 0.178 0.098 0.021 0.086 0.142
0.108 0.156 0.175 0.098 0.019 0.082 0.130
0.105 0.158 0.170 0.093 0.019 0.082 0.135
0.100 0.151 0.164 0.090 0.018 0.079 0.130
0.117 0.181 †0.194 †0.109 0.023 †0.092 0.154

0.569 0.910 0.985 0.978 0.162 0.100 0.287
0.569 0.910 0.985 0.978 0.910 0.569 0.910

(b) Jakarta

Recommender

Rnd
Pop

Training

AvgDis
AvgDisFreq

PGN
UB
IB

HKV
IRenMF

IRenMFFreq

TestInvOrder
TestOrder

Test with new venues
P R NDCG MAP LCS LCSP LCSR

0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.029 0.076 0.070 0.044 0.008 0.026 0.073
0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.001 0.002 0.002 0.001 0.000 0.001 0.002
0.001 0.002 0.001 0.001 0.000 0.001 0.002
0.030 0.078 0.072 †0.045 0.008 0.027 0.075
0.036 0.085 0.075 0.043 0.009 0.032 0.081
0.019 0.045 0.038 0.021 0.005 0.017 0.043
0.035 0.084 0.071 0.039 0.009 0.032 0.080
0.033 0.081 0.071 0.041 0.009 0.030 0.078

†0.036 †0.092 †0.077 0.044 †0.010 †0.033 †0.088

0.387 0.923 0.963 0.947 0.299 0.100 0.427
0.387 0.923 0.963 0.947 0.923 0.387 0.923

Test with known venues
P R NDCG MAP LCS LCSP LCSR

0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.044 0.087 0.091 0.056 0.009 0.038 0.082
0.102 0.196 0.171 0.096 †0.034 0.078 0.165

0.003 0.008 0.007 0.005 0.001 0.002 0.007
0.004 0.010 0.009 0.006 0.001 0.003 0.009
0.056 0.108 0.114 0.069 0.012 0.047 0.100
0.081 0.141 0.146 0.083 0.019 0.065 0.124

†0.120 †0.212 †0.222 †0.141 0.026 †0.088 †0.172
0.078 0.137 0.138 0.078 0.016 0.063 0.121
0.076 0.135 0.136 0.078 0.016 0.062 0.121
0.110 0.199 0.193 0.115 0.024 0.084 0.170

0.492 0.912 0.977 0.966 0.223 0.100 0.348
0.492 0.912 0.977 0.966 0.912 0.492 0.912
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