
Towards an Open, Collaborative REST API
for Recommender Systems

Iván García
Universidad Autónoma de Madrid
ivan.garciar@estudiante.uam.es

Alejandro Bellogín
Universidad Autónoma de Madrid

alejandro.bellogin@uam.es

ABSTRACT
Recommender Systems aim to suggest relevant items to users, how-
ever, for this they need to properly obtain/serve different types of
data from/to the users of such systems. In this work, we propose
and show an example implementation for a common REST API
focused on Recommender Systems. This API meets the most typical
requirements faced by Recommender Systems practitioners while,
at the same time, is open and flexible to be extended, based on the
feedback from the community. We also present a Web client that
demonstrates the functionalities of the proposed API.

CCS CONCEPTS
• Information systems→Users and interactive retrieval;Rec-
ommender systems;

1 INTRODUCTION
Nowadays, Recommender Systems (RS) are an important compo-
nent in the interactive internet world. The goal of these systems
is to offer a comfortable and intuitive experience, being able to
suggest useful recommendations and, at the same time, avoiding
being lost in the Web. However, the services provided by these
systems have increased exponentially in recent years; therefore, it
is important to understand how to build the different layers of an
RS in an efficient, useful way for the target users.

In this work, we focus on the definition of a common REST API
that could be exploited in many different environments, similar to
previous works that also provide REST endpoints to RS [3]. Our
inspiration starts from the proposal made some time ago in [4], that,
to the best of our knowledge, was never implemented or tested in
any public library. We propose an adaptation of that REST API and,
based on that, we present a system that instantiates such proposal,
considering only open source libraries for its development. We also
include a Web client that demonstrates how such a REST API could
be used by the end users.

By making this (rather simple but very generic) API public, our
main contribution is to open up discussions about how to improve it,
while, at the same time, we provide a working implementation that
supports such definition and makes easier to test any modification
proposed by the community.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 SYSTEM FRAMEWORK
2.1 Backend
The model stored in the backend of our system is based on three
main entities: users, items, and events – these entities are at the core
of any recommendation system [5], which allows us to provide a
very generic API. The users, items, and events contain an identifier;
besides, the users include some demographic information (age,
gender, location, email) in case the system supports this type of
data, items contain a name and other features so that content-based
recommenders could be used [1], and each event stores the (user,
item) pair that generated such event, together with the timestamp
when it was created and two optional fields: value and type, to
generalise common events such as ratings, clicks, or purchases,
depending on the domain of the recommender system being used.
At the moment, this information is stored in memory, but it can
be easily transferred into a relational database or to a document-
oriented database such as MongoDB (since, as described in the next
sections, most of the data is converted from/to JSON format).

2.2 Open source libraries
We use open source libraries based on Java to develop the REST
backend, mostly Dropwizard1 and RankSys2. Dropwizard is a Java
framework composed of many libraries, most of them already ma-
ture, that encapsulates creating an HTTP server, parsing the re-
quests, transforming JSON data into objects, and other aspects
allowing to create Web services that are maintainable and easy to
configure very quickly.

Regarding the generation of recommendations, we used RankSys
because it is one of the most popular libraries nowadays. Nonethe-
less, the recommendation component in our system can be easily
modified so that other Java-based libraries such as Lenskit or Librec
could be used instead – even libraries in other languages (such
as MyMediaLite) could be plugged in via triggers or other Web
services if necessary.

2.3 API endpoints
Table 1 shows some of the most representative endpoints defined
in our proposed API for recommendation. Based on the proposal
from [4], we analysed each task that may be needed or used by an
end user in a recommendation system and defined a set of coherent
(from a semantic point of view of the endpoints) URLs, following
standard REST principles and patterns [2].

As we show in this table, we use the HTTP methods POST, GET,
and DELETE (DEL) to discriminate between similar endpoints. We
decided to provide some redundancy in the names of the URLs
1Available at https://www.dropwizard.io. Accessed June 2018.
2Available at http://ranksys.org. Accessed June 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://www.dropwizard.io
http://ranksys.org


RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada Iván García and Alejandro Bellogín

URL Method Description

user/add POST Add a user
user/get/{uid} GET Returns a user
user/get GET Returns all users
user/delete/{uid} DEL Removes a user
user/get/{uid}/events GET Returns the events of a user

item/add POST Add an item
item/get/{iid} GET Returns an item
item/get GET Returns all items
item/delete/{iid} DEL Removes an item
item/get/{iid}/events GET Returns the events of an item

event/add POST Add an event
event/get/user/{uid}/item/{iid} GET Returns an event

user/get/{uid}/recommendations GET Returns recommendations of a user
train GET Train the recommender
statistics/get GET Returns statistics about the system

Table 1: Selection of most representative API endpoints.

(for instance, most of the GET methods include get in the URL) to
make it more human-readable. In general, endpoints using the GET
method obtain information from the backend, sometimes based on
a parameter received in the URL; a JSON object is returned if a com-
plex data structure is required. On the other hand, those endpoints
using the POST method send information to the backend as JSON
data. Finally, the DELETE method allows to remove information
from the backend model.

It is worth noting that the endpoints can be grouped accord-
ing to the three entities described before: those related to users
(add, return, remove), items, and events. There is a fourth group of
requests related to the recommender system: by using the train
endpoint, we can setup a specific recommender with some parame-
ters and train it based on the data received up to that point. Then,
the recommendations generated for a particular user will be based
on such technique. Additionally, we provide a REST method that
returns the statistics of the system, such as the number of users,
items, average number of events per user/item, etc.

Other endpoints not presented here but implemented in the pro-
posed REST API are related to the different types of events (so that
we can return the ratings or clicks of a particular user or item) and re-
dundant methods included to provide completeness in terms of the
three entities – namely, there is a method event/get/user/{uid}
that is completely equivalent to user/get/{uid}/events.

2.4 Web client
When building a REST service, it is important for the end user to
obtain an easy-to-use, intuitive system. Because of this, we provide
a Web page where most of the API functionalities can be tested.

More specifically, the implemented Web client allows to add
users, items, and events into the system, while, at the same time, it
shows the existing data in the server regarding users, items, and
events. It also lets the user to load a Movielens-like dataset. For this,
we used the FreeMarker3 templates from DropWizard, an extension
of classical Java JSPs that use the FreeMarker Template Language
(FTL) to interact with the data.

3Available at https://freemarker.apache.org/index.html. Accessed June 2018.

3 DEMONSTRATION
In the demonstration, we will be showing how to instantiate the
proposed REST API, emphasising that several APIs can coexist in
the same server by using different ports. The Web client will then
be used to illustrate how the data is added to the backend model. At
any moment, we can show the current status of the model, which,
in particular, allows us to check how the model is modified once
users, items, or events have been added or removed. Additionally,
we will show the techniques supported to generate recommenda-
tions according to different parameters, comparing the obtained
outputs and analysing aspects such as coverage (nearest neighbours
algorithms suffer more from coverage than matrix factorisation) or
personalisation capabilities (a random recommender looks more
personalised than a popularity-based technique).

One of the goals of the demonstration is to evidence how easy
our system can be configured to satisfy any requirement from the
end users, e.g., creating new API endpoints or changing how the
parameters are received (from POST to GET or as URL parameters).

The source code for our demo can be found in the following
GitHub repository: abellogin/REST4RecSys.

4 FUTUREWORK
In this work, we present our view of a REST API for Recommender
Systems, however, we would like to offer the community the possi-
bility of agreeing on a common API useful in different scenarios.
Because of this, we expect the repository where this API is defined
could be used as a forum to discuss other features to be added or
any modifications the community may find interesting.

Besides this, our implementation is just a proof-of-concept of
how it can be implemented. As mentioned before, other recommen-
dation libraries could be integrated or an actual database could be
used to make the events persistent every time the server is restarted,
just to name a few straightforward modifications. Additionally, the
Web client presented could be further extended to provide more
functionality, and even other types of clients could be implemented,
such as mobile apps or wrappers in any programming language, so
that the API would be easier to use by end users.

ACKNOWLEDGMENTS
Thisworkwas supported by the project TIN2016-80630-P (MINECO).

REFERENCES
[1] Marco de Gemmis, Pasquale Lops, Cataldo Musto, Fedelucio Narducci, and Gio-

vanni Semeraro. 2015. Semantics-Aware Content-Based Recommender Systems.
In Recommender Systems Handbook, Francesco Ricci, Lior Rokach, and Bracha
Shapira (Eds.). Springer, 119–159. https://doi.org/10.1007/978-1-4899-7637-6_4

[2] Thomas Erl, Benjamin Carlyle, Cesare Pautasso, and Raj Balasubramanian. 2013.
SOAwith REST - Principles, Patterns and Constraints for Building Enterprise Solutions
with REST. Pearson Education. http://vig.pearsoned.com/store/product/1,1207,
store-12521_isbn-0137012519,00.html

[3] Emanuel Lacic, Matthias Traub, Dominik Kowald, and Elisabeth Lex. 2015. ScaR:
Towards a Real-Time Recommender Framework Following the Microservices
Architecture. In Proceedings of the Workshop on Large Scale Recommender Systems
(LSRS2015) at RecSys 2015.

[4] RecSysWiki. [n. d.]. Common Recommender REST API. https:
//web.archive.org/web/20160324042313/http://www.recsyswiki.com:
80/wiki/Common_Recommender_REST_API. Accessed April 2018.

[5] Francesco Ricci, Lior Rokach, and Bracha Shapira (Eds.). 2015. Recommender
Systems Handbook. Springer.

https://freemarker.apache.org/index.html
https://github.com/abellogin/REST4RecSys
https://doi.org/10.1007/978-1-4899-7637-6_4
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0137012519,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0137012519,00.html
https://web.archive.org/web/20160324042313/http://www.recsyswiki.com:80/wiki/Common_Recommender_REST_API
https://web.archive.org/web/20160324042313/http://www.recsyswiki.com:80/wiki/Common_Recommender_REST_API
https://web.archive.org/web/20160324042313/http://www.recsyswiki.com:80/wiki/Common_Recommender_REST_API

	Abstract
	1 Introduction
	2 System framework
	2.1 Backend
	2.2 Open source libraries
	2.3 API endpoints
	2.4 Web client

	3 Demonstration
	4 Future Work
	Acknowledgments
	References

