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Venue Recommendation: Traditional Evaluation

e Two common approaches: consider each city as an independent dataset (a) or every check-in of many cities as one dataset (b) [1, 2].

a)

e Option a: it allows to isolate behavior on one city, but no external information can be exploited.

e Option b: by training once, many different cities can be evaluated, but no control about dominant cities is possible.

Venue Recommendation as Cross-Domain

e We propose to consider each city as an independent domain, using one target domain (test) and many source domains (training).

e Best options to learn and transfer knowledge? Our proposals: use most popular cities (more data) or closest cities (more overlap).
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Conclusions and Future Work

e Using Cross-Domain techniques in
venue recommendation improves the
performance of many recommenders.

Experiments and Results

e Dataset: 33M Foursquare check-ins. Temporal split: 6 months
for training, 1 month for test.

THIS 15 YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LIRONG? J
JUST STR THE PILE UNTIL

e Recommenders: closest venues (AvgDis), hybrid (PGN), UB,
IB, HKV, MF with geographical information (IRenMF).

o Selecting the cities by proximity is a
good strategy to improve the results,
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e Performance improvement for P-CD usually negligible.

e N-CD usually produces larger improvements with less data involved.

e UB and HKYV exploit more successfully the information coming from
source domains.

Source code available at:
https://bitbucket.org/PabloSanchezP/TempCDSegEval

e Cross-domain techniques tend to deteriorate performance of tech-
niques based on geographical distances.
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