Time-Aware Novelty Metrics for Recommender Systems

Pablo Sánchez Alejandro Bellogín

Universidad Autónoma de Madrid
Escuela Politécnica Superior
Departamento de Ingeniería Informática

European Conference on Information Retrieval, 2018

Outline

(1) Recommender Systems
(2) Time-Aware Novelty Metrics for Recommender Systems
(3) Experiments

4 Conclusions and future work

Outline

(1) Recommender Systems
(2) Time-Aware Novelty Metrics for Recommender Systems
(3) Experiments

4 Conclusions and future work

Recommender Systems

- Suggest new items to users based on their tastes and needs

Recommender Systems

- Suggest new items to users based on their tastes and needs
- Measure the quality of recommendations. How?

Recommender Systems

- Suggest new items to users based on their tastes and needs
- Measure the quality of recommendations. How?
- Several evaluation dimensions:

Error, Ranking, Novelty / Diversity

Recommender Systems

- Suggest new items to users based on their tastes and needs
- Measure the quality of recommendations. How?
- Several evaluation dimensions:

Error, Ranking, Novelty / Diversity

- We will focus on the temporal dimension

Different notions of quality

Different notions of quality

$$
9 / 83
$$

Different notions of quality

- Best in Relevance?
- $R_{2}>R_{1}>R_{3}$

Different notions of quality

(2001)

(1972)

(2018)

(1994)

(1997)

(2017)

(1994)

(1993)

(2016)

- Best in Relevance?

$$
\text { - } R_{2}>R_{1}>R_{3}
$$

- Best in Novelty?

Different notions of quality

- Best in Relevance?

$$
\text { - } R_{2}>R_{1}>R_{3}
$$

- Best in Novelty?
- $R_{1}>R_{3}>R_{2}$

Different notions of quality

- Best in Relevance?

$$
\text { - } R_{2}>R_{1}>R_{3}
$$

- Best in Novelty?

$$
\text { - } R_{1}>R_{3}>R_{2}
$$

- Best in Freshness?

Different notions of quality

Types of data splitting

Random split
time

Temporal split

Types of data splitting

Random split
time

Temporal split

- Random splitting has been the most extended way to test recommender systems

Types of data splitting

Random split
time

Temporal split

- Random splitting has been the most extended way to test recommender systems
- Temporal splitting is becoming more important

Types of data splitting

Random split
time

Temporal split

- Random splitting has been the most extended way to test recommender systems
- Temporal splitting is becoming more important
- Hence, time should also be incorporated in evaluation metrics

Outline

(1) Recommender Systems

(2) Time-Aware Novelty Metrics for Recommender Systems
(3) Experiments

4 Conclusions and future work

Preliminaries

- Framework proposed in Vargas and Castells (2011)

$$
\begin{equation*}
m\left(R_{u} \mid \theta\right)=C \sum_{i_{n} \in R_{u}} \operatorname{disc}(n) p\left(r e l \mid i_{n}, u\right) \operatorname{nov}\left(i_{n} \mid \theta\right) \tag{1}
\end{equation*}
$$

Preliminaries

- Framework proposed in Vargas and Castells (2011)

$$
\begin{equation*}
m\left(R_{u} \mid \theta\right)=C \sum_{i_{n} \in R_{u}} \operatorname{disc}(n) p\left(r e l \mid i_{n}, u\right) \operatorname{nov}\left(i_{n} \mid \theta\right) \tag{1}
\end{equation*}
$$

- Where:
- R_{u} items recommended to user u
- θ contextual variable (e.g., the user profile)
- $\operatorname{disc}(n)$ is a discount model (e.g. NDCG)
- $p\left(r e l \mid i_{n}, u\right)$ relevance component
- $\operatorname{nov}\left(i_{n} \mid \theta\right)$ novelty model

Preliminaries

- Framework proposed in Vargas and Castells (2011)

$$
\begin{equation*}
m\left(R_{u} \mid \theta\right)=C \sum_{i_{n} \in R_{u}} \operatorname{disc}(n) p\left(r e l \mid i_{n}, u\right) \operatorname{nov}\left(i_{n} \mid \theta\right) \tag{1}
\end{equation*}
$$

- When using $\operatorname{nov}\left(i_{n} \mid \theta\right)=(1-p($ seen $\mid i))$ we obtain the expected popularity complement (EPC) metric

Preliminaries

- Framework proposed in Vargas and Castells (2011)

$$
\begin{equation*}
m\left(R_{u} \mid \theta\right)=C \sum_{i_{n} \in R_{u}} \operatorname{disc}(n) p\left(r e l \mid i_{n}, u\right) \operatorname{nov}\left(i_{n} \mid \theta\right) \tag{1}
\end{equation*}
$$

- When using $\operatorname{nov}\left(i_{n} \mid \theta\right)=(1-p(\operatorname{seen} \mid i))$ we obtain the expected popularity complement (EPC) metric
- However, all the metrics derived from this framework are time-agnostic

Preliminaries

- Framework proposed in Vargas and Castells (2011)

$$
\begin{equation*}
m\left(R_{u} \mid \theta_{t}\right)=C \sum_{i_{n} \in R_{u}} \operatorname{disc}(n) p\left(r e l \mid i_{n}, u\right) \operatorname{nov}\left(i_{n} \mid \theta_{t}\right) \tag{1}
\end{equation*}
$$

- When using $\operatorname{nov}\left(i_{n} \mid \theta\right)=(1-p($ seen $\mid i))$ we obtain the expected popularity complement (EPC) metric
- However, all the metrics derived from this framework are time-agnostic
- We propose to replace the novelty component defining new time-aware novelty models

Time-Aware Novelty Metrics

- Classic metrics do not provide any information about the evolution of the items: we can recommend relevant but well-known (old) items

Time-Aware Novelty Metrics

- Classic metrics do not provide any information about the evolution of the items: we can recommend relevant but well-known (old) items
- Every item in the system can be modeled with a temporal representation:

$$
\begin{equation*}
\theta_{t}=\left\{\theta_{t}(i)\right\}=\left\{\left(i,\left\langle t_{1}(i), \cdots, t_{n}(i)\right\rangle\right)\right\} \tag{2}
\end{equation*}
$$

Time-Aware Novelty Metrics

- Classic metrics do not provide any information about the evolution of the items: we can recommend relevant but well-known (old) items
- Every item in the system can be modeled with a temporal representation:

$$
\begin{equation*}
\theta_{t}=\left\{\theta_{t}(i)\right\}=\left\{\left(i,\left\langle t_{1}(i), \cdots, t_{n}(i)\right\rangle\right)\right\} \tag{2}
\end{equation*}
$$

- Two different sources for the timestamps:

Time-Aware Novelty Metrics

- Classic metrics do not provide any information about the evolution of the items: we can recommend relevant but well-known (old) items
- Every item in the system can be modeled with a temporal representation:

$$
\begin{equation*}
\theta_{t}=\left\{\theta_{t}(i)\right\}=\left\{\left(i,\left\langle t_{1}(i), \cdots, t_{n}(i)\right\rangle\right)\right\} \tag{2}
\end{equation*}
$$

- Two different sources for the timestamps:
- Metadata information: release date (movies or songs), creation time, etc.

Time-Aware Novelty Metrics

- Classic metrics do not provide any information about the evolution of the items: we can recommend relevant but well-known (old) items
- Every item in the system can be modeled with a temporal representation:

$$
\begin{equation*}
\theta_{t}=\left\{\theta_{t}(i)\right\}=\left\{\left(i,\left\langle t_{1}(i), \cdots, t_{n}(i)\right\rangle\right)\right\} \tag{2}
\end{equation*}
$$

- Two different sources for the timestamps:
- Metadata information: release date (movies or songs), creation time, etc.
- Rating history of the items

Time-Aware Novelty Metrics

Modeling time profiles for items

- How can we aggregate the temporal representation?

Modeling time profiles for items

- How can we aggregate the temporal representation?
- We explored four possibilities:

Modeling time profiles for items

- How can we aggregate the temporal representation?
- We explored four possibilities:
- Take the first interaction (FIN)

Modeling time profiles for items

- How can we aggregate the temporal representation?
- We explored four possibilities:
- Take the first interaction (FIN)
- Take the last interaction (LIN)

Modeling time profiles for items

- How can we aggregate the temporal representation?
- We explored four possibilities:
- Take the first interaction (FIN)
- Take the last interaction (LIN)
- Take the average of the ratings times (AIN)

Modeling time profiles for items

- How can we aggregate the temporal representation?
- We explored four possibilities:
- Take the first interaction (FIN)
- Take the last interaction (LIN)
- Take the average of the ratings times (AIN)
- Take the median of the ratings times (MIN)

Modeling time profiles for items

- How can we aggregate the temporal representation?
- We explored four possibilities:
- Take the first interaction (FIN)
- Take the last interaction (LIN)
- Take the average of the ratings times (AIN)
- Take the median of the ratings times (MIN)
- Each case defines a function $f\left(\theta_{t}(i)\right)$

Modeling time profiles for items: an example

Modeling time profiles for items: an example

- Which model represents better the freshness of the items?

Modeling time profiles for items: an example

- Which model represents better the freshness of the items?

Modeling time profiles for items: an example

- Which model represents better the freshness of the items?

Modeling time profiles for items: an example

- Which model represents better the freshness of the items?

Modeling time profiles for items: an example

- Which model represents better the freshness of the items?

Modeling time profiles for items: an example

- Which model represents better the freshness of the items?

Modeling time profiles for items: an example

- Which model represents better the freshness of the items?

Modeling time profiles for items: an example

- Which model represents better the freshness of the items?

Integration in the framework

- The proposed models are not suitable for the probabilistic framework:

$$
\begin{equation*}
m\left(R_{u} \mid \theta_{t}\right)=C \sum_{i_{n} \in R_{u}} \operatorname{disc}(n) p\left(r e l \mid i_{n}, u\right) \operatorname{nov}\left(i_{n} \mid \theta_{t}\right) \tag{3}
\end{equation*}
$$

Integration in the framework

- The proposed models are not suitable for the probabilistic framework:

$$
\begin{equation*}
m\left(R_{u} \mid \theta_{t}\right)=C \sum_{i_{n} \in R_{u}} \operatorname{disc}(n) p\left(r e l \mid i_{n}, u\right) \operatorname{nov}\left(i_{n} \mid \theta_{t}\right) \tag{3}
\end{equation*}
$$

- We apply a normalization step: either min-max normalization or dividing by the largest timestamp

Integration in the framework

- The proposed models are not suitable for the probabilistic framework:

$$
\begin{equation*}
m\left(R_{u} \mid \theta_{t}\right)=C \sum_{i_{n} \in R_{u}} \operatorname{disc}(n) p\left(r e l \mid i_{n}, u\right) \operatorname{nov}\left(i_{n} \mid \theta_{t}\right) \tag{3}
\end{equation*}
$$

- We apply a normalization step: either min-max normalization or dividing by the largest timestamp

$$
\begin{equation*}
\operatorname{nov}^{f, n}\left(i \mid \theta_{t}\right)=n\left(f\left(\theta_{t}(i)\right), \theta_{t}\right) \tag{4}
\end{equation*}
$$

Experiments

(1) Recommender Systems

(2) Time-Aware Novelty Metrics for Recommender Systems
(3) Experiments

4 Conclusions and future work

Datasets

Dataset	Users	Items	Ratings	Density	Scale	Date range
Ep (2-core)	22,556	15,196	75,533	0.022%	$[1,5]$	Jan 2001-Nov 2013
ML	138,493	26,744	$20,000,263$	0.540%	$[0.5,5]$	Jan 1995-Mar 2015
MT (5-core)	15,411	8,443	518,558	0.398%	$[0,10]$	Feb 2013-Apr 2017

- MovieTweetings and Movielens20M are from the movie domain

Datasets

Dataset	Users	Items	Ratings	Density	Scale	Date range
Ep (2-core)	22,556	15,196	75,533	0.022%	$[1,5]$	Jan 2001-Nov 2013
ML	138,493	26,744	$20,000,263$	0.540%	$[0.5,5]$	Jan 1995-Mar 2015
MT (5-core)	15,411	8,443	518,558	0.398%	$[0,10]$	Feb 2013-Apr 2017

- MovieTweetings and Movielens20M are from the movie domain
- Epinions dataset contains purchases of different products

Datasets

Dataset	Users	Items	Ratings	Density	Scale	Date range
Ep (2-core)	22,556	15,196	75,533	0.022%	$[1,5]$	Jan 2001-Nov 2013
ML	138,493	26,744	$20,000,263$	0.540%	$[0.5,5]$	Jan 1995-Mar 2015
MT (5-core)	15,411	8,443	518,558	0.398%	$[0,10]$	Feb 2013-Apr 2017

- MovieTweetings and Movielens20M are from the movie domain
- Epinions dataset contains purchases of different products
- All datasets contain timestamps

Datasets

Dataset	Users	Items	Ratings	Density	Scale	Date range
Ep (2-core)	22,556	15,196	75,533	0.022%	$[1,5]$	Jan 2001-Nov 2013
ML	138,493	26,744	$20,000,263$	0.540%	$[0.5,5]$	Jan 1995-Mar 2015
MT (5-core)	15,411	8,443	518,558	0.398%	$[0,10]$	Feb 2013-Apr 2017

- MovieTweetings and Movielens20M are from the movie domain
- Epinions dataset contains purchases of different products
- All datasets contain timestamps
- All metrics @5

Datasets

Dataset	Users	Items	Ratings	Density	Scale	Date range
Ep (2-core)	22,556	15,196	75,533	0.022%	$[1,5]$	Jan 2001-Nov 2013
ML	138,493	26,744	$20,000,263$	0.540%	$[0.5,5]$	Jan 1995-Mar 2015
MT (5-core)	15,411	8,443	518,558	0.398%	$[0,10]$	Feb 2013-Apr 2017

- MovieTweetings and Movielens20M are from the movie domain
- Epinions dataset contains purchases of different products
- All datasets contain timestamps
- All metrics @5
- Relevance thresholds of 5 for Ep and ML and 9 for MT

Datasets: rating temporal activity

MovieTweetings

Movielens20M

Figure: Rating histogram evolution in MovieTweetings (left) and Movielens20M (right). Temporal split with 80% of older ratings to train the recommenders

Recommenders

- Non-personalized: Rnd, Pop, IdAsc, IdDec

Recommenders

- Non-personalized: Rnd, Pop, IdAsc, IdDec
- Personalized: UB, HKV (MF) ${ }^{1}$

Recommenders

- Non-personalized: Rnd, Pop, IdAsc, IdDec
- Personalized: UB, HKV (MF)
- Personalized and time/sequence aware: TD (UB) ${ }^{1}$

Recommenders

- Non-personalized: Rnd, Pop, IdAsc, IdDec
- Personalized: UB, HKV (MF)
- Personalized and time/sequence aware: TD (UB)
- Skylines (perfect recommenders):

Recommenders

- Non-personalized: Rnd, Pop, IdAsc, IdDec
- Personalized: UB, HKV (MF)
- Personalized and time/sequence aware: TD (UB)
- Skylines (perfect recommenders):
- SkyPerf: returns the test set

Recommenders

- Non-personalized: Rnd, Pop, IdAsc, IdDec
- Personalized: UB, HKV (MF)
- Personalized and time/sequence aware: TD (UB)
- Skylines (perfect recommenders):
- SkyPerf: returns the test set
- SkyFresh: optimizes one of the freshness models (LIN)

Results: MovieLens

Algorithm	P	NDCG	USC	FIN	LIN	No relevance	
				AIN	MIN		
Rnd	0.0009		$\mathbf{1 0 0 . 0}$	0.5573	0.9834	0.6993	0.6711
IdAsc	0.0099		$100.0 \ddagger$	0.0716	0.9991	0.3550	0.2437
IdDec	0.0000		$100.0 \dagger$	$\mathbf{0 . 9 9 9 5}$	0.9995	$\mathbf{0 . 9 9 9 5}$	$\mathbf{0 . 9 9 9 5}$
Pop	$0.1027 \ddagger$	$0.1110 \ddagger$	100.0	0.0781	$0.9999 \dagger$	0.4361	0.3772
UB	$0.0498 \dagger$	$0.0618 \dagger$	17.8	0.2431	0.9999	0.5835	0.5594
TD	0.0420	0.0520	17.8	$0.6108 \ddagger$	$0.9999 \ddagger$	$0.7838 \ddagger$	$0.7710 \ddagger$
HKV	0.0498	0.0611	17.8	0.3068	0.9998	0.6122	0.5885
SkyPerf	$\mathbf{0 . 7 0 9 4}$	$\mathbf{0 . 8 3 9 6}$	99.7	$0.6069 \dagger$	0.9993	$0.7764 \dagger$	$0.7618 \dagger$
SkyFresh	0.0027	0.0027	100.0	0.4999	$\mathbf{1 . 0 0 0 0}$	0.7236	0.7026

Results: MovieLens

Algorithm	P	NDCG	USC	No relevance			
				FIN	LIN	AIN	MIN
Rnd	0.0009		$\mathbf{1 0 0 . 0}$	0.5573	0.9834	0.6993	0.6711
IdAsc	0.0099		$100.0 \ddagger$	0.0716	0.9991	0.3550	0.2437
IdDec	0.0000		$100.0 \dagger$	$\mathbf{0 . 9 9 9 5}$	0.9995	$\mathbf{0 . 9 9 9 5}$	$\mathbf{0 . 9 9 9 5}$
Pop	$0.1027 \ddagger$		100.0	0.0781	$0.9999 \dagger$	0.4361	0.3772
UB	$0.0498 \dagger$	$0.0618 \dagger$	17.8	0.2431	0.9999	0.5835	0.5594
TD	0.0420	0.0520	17.8	$0.6108 \ddagger$	$0.9999 \ddagger$	$0.7838 \ddagger$	$0.7710 \ddagger$
HKV	0.0498	0.0611	17.8	0.3068	0.9998	0.6122	0.5885
SkyPerf	$\mathbf{0 . 7 0 9 4}$	$\mathbf{0 . 8 3 9 6}$	99.7	$0.6069 \dagger$	0.9993	$0.7764 \dagger$	$0.7618 \dagger$
SkyFresh	0.0027	0.0027	100.0	0.4999	$\mathbf{1 . 0 0 0 0}$	0.7236	0.7026

- Relevance metrics (Precision and NDCG), User Coverage (USC) and Freshness without relevance component (FIN, LIN, AIN, MIN)

Results: MovieLens

Algorithm	P	NDCG	USC	No relevance			
				FIN	LIN	AIN	MIN
Rnd	0.0009		$\mathbf{1 0 0 . 0}$	0.5573	0.9834	0.6993	0.6711
IdAsc	0.0099		$100.0 \ddagger$	0.0716	0.9991	0.3550	0.2437
IdDec	0.0000		$100.0 \dagger$	$\mathbf{0 . 9 9 9 5}$	0.9995	$\mathbf{0 . 9 9 9 5}$	$\mathbf{0 . 9 9 9 5}$
Pop	$0.1027 \ddagger$	$0.1110 \ddagger$	100.0	0.0781	$0.9999 \dagger$	0.4361	0.3772
UB	$0.0498 \dagger$	$0.0618 \dagger$	17.8	0.2431	0.9999	0.5835	0.5594
TD	0.0420	0.0520	17.8	$0.6108 \ddagger$	$0.9999 \ddagger$	$0.7838 \ddagger$	$0.7710 \ddagger$
HKV	0.0498	0.0611	17.8	0.3068	0.9998	0.6122	0.5885
SkyPerf	$\mathbf{0 . 7 0 9 4}$	$\mathbf{0 . 8 3 9 6}$	99.7	$0.6069 \dagger$	0.9993	$0.7764 \dagger$	$0.7618 \dagger$
SkyFresh	0.0027	0.0027	100.0	0.4999	$\mathbf{1 . 0 0 0 0}$	0.7236	0.7026

- Relevance metrics (Precision and NDCG), User Coverage (USC) and Freshness without relevance component (FIN, LIN, AIN, MIN)
- Very low coverage for personalized recommenders (due to temporal split)

Results: MovieLens

Algorithm	P	NDCG	USC	No relevance				
				FIN	LIN	AIN	MIN	
Rnd	0.0009		$\mathbf{1 0 0 . 0}$	0.5573	0.9834	0.6993	0.6711	
IdAsc	0.0099		$100.0 \ddagger$	0.0716	0.9991	0.3550	0.2437	
IdDec	0.0000		$100.0 \dagger$	$\mathbf{0 . 9 9 9 5}$	0.9995	$\mathbf{0 . 9 9 9 5}$	$\mathbf{0 . 9 9 9 5}$	
Pop	$0.1027 \ddagger$		100.0	0.0781	$0.9999 \dagger$	0.4361	0.3772	
UB	$0.0498 \dagger$	$0.0618 \dagger$	17.8	0.2431	0.9999	0.5835	0.5594	
TD	0.0420	0.0520	17.8	$0.6108 \ddagger$	$0.9999 \ddagger$	$0.7838 \ddagger$	$0.7710 \ddagger$	
HKV	0.0498	0.0611	17.8	0.3068	0.9998	0.6122	0.5885	
SkyPerf	$\mathbf{0 . 7 0 9 4}$	$\mathbf{0 . 8 3 9 6}$	99.7	$0.6069 \dagger$	0.9993	$0.7764 \dagger$	$0.7618 \dagger$	
SkyFresh	0.0027	0.0027	100.0	0.4999	$\mathbf{1 . 0 0 0 0}$	0.7236	0.7026	

- Relevance metrics (Precision and NDCG), User Coverage (USC) and Freshness without relevance component (FIN, LIN, AIN, MIN)
- Very low coverage for personalized recommenders (due to temporal split)
- Data bias: the higher the id, the fresher the item (and the lower the id, the older the item)

Results: MovieLens

Algorithm	P	NDCG	USC	No relevance			
				FIN	LIN	AIN	MIN
Rnd	0.0009		$\mathbf{1 0 0 . 0}$	0.5573	0.9834	0.6993	0.6711
IdAsc	0.0099		$100.0 \ddagger$	0.0716	0.9991	0.3550	0.2437
IdDec	0.0000		$100.0 \dagger$	$\mathbf{0 . 9 9 9 5}$	0.9995	$\mathbf{0 . 9 9 9 5}$	$\mathbf{0 . 9 9 9 5}$
Pop	$0.1027 \ddagger$		100.0	0.0781	$0.9999 \dagger$	0.4361	0.3772
UB	$0.0498 \dagger$	$0.0618 \dagger$	17.8	0.2431	0.9999	0.5835	0.5594
TD	0.0420	0.0520	17.8	$0.6108 \ddagger$	$0.9999 \ddagger$	$0.7838 \ddagger$	$0.7710 \ddagger$
HKV	0.0498	0.0611	17.8	0.3068	0.9998	0.6122	0.5885
SkyPerf	$\mathbf{0 . 7 0 9 4}$	$\mathbf{0 . 8 3 9 6}$	99.7	$0.6069 \dagger$	0.9993	$0.7764 \dagger$	$0.7618 \dagger$
SkyFresh	0.0027	0.0027	100.0	0.4999	$\mathbf{1 . 0 0 0 0}$	0.7236	0.7026

- Relevance metrics (Precision and NDCG), User Coverage (USC) and Freshness without relevance component (FIN, LIN, AIN, MIN)
- Very low coverage for personalized recommenders (due to temporal split)
- Data bias: the higher the id, the fresher the item (and the lower the id, the older the item)
- Popularity bias

Results: Popularity bias

Figure: Top 10 most popular items in the training set of each dataset: MovieTweetings (left) and MovieLens (right).

Results: MovieLens

Algorithm	P	NDCG	USC	No relevance			
				FIN	LIN	AIN	MIN
Rnd	0.0009		$\mathbf{1 0 0 . 0}$	0.5573	0.9834	0.6993	0.6711
IdAsc	0.0099		$100.0 \ddagger$	0.0716	0.9991	0.3550	0.2437
IdDec	0.0000		$100.0 \dagger$	$\mathbf{0 . 9 9 9 5}$	0.9995	$\mathbf{0 . 9 9 9 5}$	$\mathbf{0 . 9 9 9 5}$
Pop	$0.1027 \ddagger$	$0.1110 \ddagger$	100.0	0.0781	$0.9999 \dagger$	0.4361	0.3772
UB	$0.0498 \dagger$	$0.0618 \dagger$	17.8	0.2431	0.9999	0.5835	0.5594
TD	0.0420	0.0520	17.8	$0.6108 \ddagger$	$0.9999 \ddagger$	$0.7838 \ddagger$	$0.7710 \ddagger$
HKV	0.0498	0.0611	17.8	0.3068	0.9998	0.6122	0.5885
SkyPerf	$\mathbf{0 . 7 0 9 4}$	$\mathbf{0 . 8 3 9 6}$	99.7	$0.6069 \dagger$	0.9993	$0.7764 \dagger$	$0.7618 \dagger$
SkyFresh	0.0027	0.0027	100.0	0.4999	$\mathbf{1 . 0 0 0 0}$	0.7236	0.7026

- Temporal recommenders less competitive in this dataset (no completely realistic timestamps)

Results: MovieLens

Algorithm	P	NDCG	USC	FIN			
			LIN	AIN	MIN		
Rnd	0.0009		$\mathbf{1 0 0 . 0}$	0.5573	0.9834	0.6993	0.6711
IdAsc	0.0099		$100.0 \ddagger$	0.0716	0.9991	0.3550	0.2437
IdDec	0.0000		$100.0 \dagger$	$\mathbf{0 . 9 9 9 5}$	0.9995	$\mathbf{0 . 9 9 9 5}$	$\mathbf{0 . 9 9 9 5}$
Pop	$0.1027 \ddagger$		100.0	0.0781	$0.9999 \dagger$	0.4361	0.3772
UB	$0.0498 \dagger$	$0.0618 \dagger$	17.8	0.2431	0.9999	0.5835	0.5594
TD	0.0420	0.0520	17.8	$0.6108 \ddagger$	$0.9999 \ddagger$	$0.7838 \ddagger$	$0.7710 \ddagger$
HKV	0.0498	0.0611	17.8	0.3068	0.9998	0.6122	0.5885
SkyPerf	$\mathbf{0 . 7 0 9 4}$	$\mathbf{0 . 8 3 9 6}$	99.7	$0.6069 \dagger$	0.9993	$0.7764 \dagger$	$0.7618 \dagger$
SkyFresh	0.0027	0.0027	100.0	0.4999	$\mathbf{1 . 0 0 0 0}$	0.7236	0.7026

- Temporal recommenders less competitive in this dataset (no completely realistic timestamps)
- Skyline does not achieve maximum performance results (due to evaluation methodology)

Results: MovieLens

| Algorithm | P | NDCG | USC | FIN | | No relevance | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | LIN | AIN | MIN | |
| Rnd | 0.0009 | 0.0010 | $\mathbf{1 0 0 . 0}$ | 0.5573 | 0.9834 | 0.6993 | 0.6711 |
| IdAsc | 0.0099 | 0.0162 | $100.0 \ddagger$ | 0.0716 | 0.9991 | 0.3550 | 0.2437 |
| IdDec | 0.0000 | 0.0000 | $100.0 \dagger$ | $\mathbf{0 . 9 9 9 5}$ | 0.9995 | $\mathbf{0 . 9 9 9 5}$ | $\mathbf{0 . 9 9 9 5}$ |
| Pop | $0.1027 \ddagger$ | $0.1110 \ddagger$ | 100.0 | 0.0781 | $0.9999 \dagger$ | 0.4361 | 0.3772 |
| UB | $0.0498 \dagger$ | $0.0618 \dagger$ | 17.8 | 0.2431 | 0.9999 | 0.5835 | 0.5594 |
| TD | 0.0420 | 0.0520 | 17.8 | $0.6108 \ddagger$ | $0.9999 \ddagger$ | $0.7838 \ddagger$ | $0.7710 \ddagger$ |
| HKV | 0.0498 | 0.0611 | 17.8 | 0.3068 | 0.9998 | 0.6122 | 0.5885 |
| SkyPerf | $\mathbf{0 . 7 0 9 4}$ | $\mathbf{0 . 8 3 9 6}$ | 99.7 | $0.6069 \dagger$ | 0.9993 | $0.7764 \dagger$ | $0.7618 \dagger$ |
| SkyFresh | 0.0027 | 0.0027 | 100.0 | 0.4999 | $\mathbf{1 . 0 0 0 0}$ | 0.7236 | 0.7026 |

- Temporal recommenders less competitive in this dataset (no completely realistic timestamps)
- Skyline does not achieve maximum performance results (due to evaluation methodology)
- LIN not very useful

Results: MovieLens

Algorithm	P	NDCG	USC	No relevance			
				FIN	LIN	AIN	MIN
Rnd	0.0009	0.0010	100.0	0.5573	0.9834	0.6993	0.6711
IdAsc	0.0099	0.0162	$100.0 \ddagger$	0.0716	0.9991	0.3550	0.2437
IdDec	0.0000	0.0000	$100.0 \dagger$	0.9995	0.9995	0.9995	0.9995
Pop	$0.1027 \ddagger$	$0.1110 \ddagger$	100.0	0.0781	$0.9999 \dagger$	0.4361	0.3772
UB	$0.0498 \dagger$	$0.0618 \dagger$	17.8	0.2431	0.9999	0.5835	0.5594
TD	0.0420	0.0520	17.8	0.6108 \ddagger	$0.9999 \ddagger$	$0.7838 \ddagger$	$0.7710 \ddagger$
HKV	0.0498	0.0611	17.8	0.3068	0.9998	0.6122	0.5885
SkyPerf	0.7094	0.8396	99.7	$0.6069 \dagger$	0.9993	$0.7764 \dagger$	$0.7618 \dagger$
SkyFresh	0.0027	0.0027	100.0	0.4999	1.0000	0.7236	0.7026

- Temporal recommenders less competitive in this dataset (no completely realistic timestamps)
- Skyline does not achieve maximum performance results (due to evaluation methodology)
- LIN not very useful
- AIN and MIN are the best metrics to analyze the behavior in terms of temporal novelty

Results: MovieTweetings

Algorithm	P	NDCG	USC	FIN					LIN relevance	AIN	MIN
Rnd	0.0002	0.0003	$\mathbf{1 0 0 . 0}$	0.1693	0.8473	0.4435	0.4086				
IdAsc	0.0004	0.0003	$100.0 \ddagger$	0.1729	0.8873	0.5485	0.5938				
IdDec	0.0005	0.0004	$100.0 \dagger$	$\mathbf{0 . 9 6 2 8}$	0.9800	$\mathbf{0 . 9 6 8 8}$	$\mathbf{0 . 9 6 6 9}$				
Pop	0.0028	0.0023	100.0	0.1499	0.9921	0.2534	0.2074				
UB	0.0104	0.0120	78.5	0.4902	$0.9951 \dagger$	0.5937	0.5657				
TD	$0.0264 \ddagger$	$0.0337 \ddagger$	78.5	$0.8487 \ddagger$	$0.9988 \ddagger$	$0.9298 \ddagger$	$0.9282 \ddagger$				
HKV	$0.0150 \dagger$	$0.0190 \dagger$	78.5	0.4131	0.9939	0.5935	0.5621				
SkyPerf	$\mathbf{0 . 3 4 6 8}$	$\mathbf{0 . 5 3 7 4}$	81.6	0.4262	0.9686	0.6514	0.6289				
SkyFresh	0.0037	0.0041	100.0	$0.6715 \dagger$	$\mathbf{1 . 0 0 0 0}$	$0.8072 \dagger$	$0.7924 \dagger$				

Results: MovieTweetings

Algorithm	P	NDCG	USC	No relevance			
				FIN	LIN	AIN	MIN
Rnd	0.0002	0.0003	100.0	0.1693	0.8473	0.4435	0.4086
IdAsc	0.0004	0.0003	$100.0 \ddagger$	0.1729	0.8873	0.5485	0.5938
IdDec	0.0005	0.0004	$100.0 \dagger$	0.9628	0.9800	0.9688	0.9669
Pop	0.0028	0.0023	100.0	0.1499	0.9921	0.2534	0.2074
UB	0.0104	0.0120	78.5	0.4902	$0.9951 \dagger$	0.5937	0.5657
TD	$0.0264 \ddagger$	$0.0337 \ddagger$	78.5	0.8487 \ddagger	$0.9988 \ddagger$	$0.9298 \ddagger$	$0.9282 \ddagger$
HKV	$0.0150 \dagger$	$0.0190 \dagger$	78.5	0.4131	0.9939	0.5935	0.5621
SkyPerf	0.3468	0.5374	81.6	0.4262	0.9686	0.6514	0.6289
SkyFresh	0.0037	0.0041	100.0	$0.6715 \dagger$	1.0000	$0.8072 \dagger$	$0.7924 \dagger$

- Higher coverage in personalized recommenders than before (shorter time-range)

Results: MovieTweetings

Algorithm	P	NDCG	USC	No relevance			
				FIN	LIN	AIN	MIN
Rnd	0.0002	0.0003	100.0	0.1693	0.8473	0.4435	0.4086
IdAsc	0.0004	0.0003	$100.0 \ddagger$	0.1729	0.8873	0.5485	0.5938
IdDec	0.0005	0.0004	$100.0 \dagger$	0.9628	0.9800	0.9688	0.9669
Pop	0.0028	0.0023	100.0	0.1499	0.9921	0.2534	0.2074
UB	0.0104	0.0120	78.5	0.4902	$0.9951 \dagger$	0.5937	0.5657
TD	$0.0264 \ddagger$	$0.0337 \ddagger$	78.5	0.8487 \ddagger	$0.9988 \ddagger$	$0.9298 \ddagger$	$0.9282 \ddagger$
HKV	$0.0150 \dagger$	$0.0190 \dagger$	78.5	0.4131	0.9939	0.5935	0.5621
SkyPerf	0.3468	0.5374	81.6	0.4262	0.9686	0.6514	0.6289
SkyFresh	0.0037	0.0041	100.0	$0.6715 \dagger$	1.0000	$0.8072 \dagger$	$0.7924 \dagger$

- Higher coverage in personalized recommenders than before (shorter time-range)
- Item ordering bias (items with higher id are more fresh)

Results: MovieTweetings

Algorithm	P	NDCG	USC	No relevance			
				FIN	LIN	AIN	MIN
Rnd	0.0002		$\mathbf{1 0 0 . 0}$	0.1693	0.8473	0.4435	0.4086
IdAsc	0.0004		$100.0 \ddagger$	0.1729	0.8873	0.5485	0.5938
IdDec	0.0005		$100.0 \dagger$	$\mathbf{0 . 9 6 2 8}$	0.9800	$\mathbf{0 . 9 6 8 8}$	$\mathbf{0 . 9 6 6 9}$
Pop	0.0028		100.0	0.1499	0.9921	0.2534	0.2074
UB	0.0104		78.5	0.4902	$0.9951 \dagger$	0.5937	0.5657
TD	$0.0264 \ddagger$	$0.0337 \ddagger$	78.5	$0.8487 \ddagger$	$0.9988 \ddagger$	$0.9298 \ddagger$	$0.9282 \ddagger$
HKV	$0.0150 \dagger$	$0.0190 \dagger$	78.5	0.4131	0.9939	0.5935	0.5621
SkyPerf	$\mathbf{0 . 3 4 6 8}$	$\mathbf{0 . 5 3 7 4}$	81.6	0.4262	0.9686	0.6514	0.6289
SkyFresh	0.0037	0.0041	100.0	$0.6715 \dagger$	$\mathbf{1 . 0 0 0 0}$	$0.8072 \dagger$	$0.7924 \dagger$

- Higher coverage in personalized recommenders than before (shorter time-range)
- Item ordering bias (items with higher id are more fresh)
- Temporal recommender competitive when using more realistic timestamps

Outline

(1) Recommender Systems

(2) Time-Aware Novelty Metrics for Recommender Systems

(3) Experiments

4 Conclusions and future work

Conclusions and future work

- We introduced the temporal dimensions in the definition of a family of novelty models

Conclusions and future work

- We introduced the temporal dimensions in the definition of a family of novelty models
- The proposed metric works as expected although it can be affected by biases in the data

Conclusions and future work

- We introduced the temporal dimensions in the definition of a family of novelty models
- The proposed metric works as expected although it can be affected by biases in the data
- This approach could favor new possibilities to produce time-aware recommendation whenever relevance is not the only important dimension

Conclusions and future work

- We introduced the temporal dimensions in the definition of a family of novelty models
- The proposed metric works as expected although it can be affected by biases in the data
- This approach could favor new possibilities to produce time-aware recommendation whenever relevance is not the only important dimension
- These temporal models could also be applied in online recommender systems, such as news recommendation

Conclusions and future work

- We introduced the temporal dimensions in the definition of a family of novelty models
- The proposed metric works as expected although it can be affected by biases in the data
- This approach could favor new possibilities to produce time-aware recommendation whenever relevance is not the only important dimension
- These temporal models could also be applied in online recommender systems, such as news recommendation
- Source code and more details to reproduce the experiments in https://bitbucket.org/PabloSanchezP/timeawarenoveltymetrics

Time-Aware Novelty Metrics for Recommender Systems

Pablo Sánchez Alejandro Bellogín

Universidad Autónoma de Madrid
Escuela Politécnica Superior
Departamento de Ingeniería Informática

European Conference on Information Retrieval, 2018

Thank you

https://bitbucket.org/PabloSanchezP/timeawarenoveltymetrics

Other approximations related to our freshness metric

- Forgotten Curve in Hu and Ogihara (2011)
- Exponential function taking into account the number of times the song was played and the distance from the present time to the last time the song was played

Other approximations related to our freshness metric

- Forgotten Curve in Hu and Ogihara (2011)
- Exponential function taking into account the number of times the song was played and the distance from the present time to the last time the song was played
- Overlap between previous recommendation lists in Lathia et al. (2010):
- Difference between the items that we are recommending and the ones we have previously recommended to the user

Other approximations related to our freshness metric

- Forgotten Curve in Hu and Ogihara (2011)
- Exponential function taking into account the number of times the song was played and the distance from the present time to the last time the song was played
- Overlap between previous recommendation lists in Lathia et al. (2010):
- Difference between the items that we are recommending and the ones we have previously recommended to the user
- Similar approach with metadata: Chou et al. (2015)
- Taking the average of the release dates of the songs

UB vs TD

- The score of every item for a UB is:

$$
\begin{equation*}
\hat{s}_{u i}=\sum_{v \in N_{u}} \operatorname{sim}(u, v) \cdot r_{v i} \tag{5}
\end{equation*}
$$

- The score of every item of the TD is:

$$
\begin{equation*}
\hat{s}_{u i}=\sum_{v \in N_{u}} \operatorname{sim}(u, v) \cdot r_{v i} \cdot e^{-\lambda(\operatorname{days}(t, t(v, i)))} \tag{6}
\end{equation*}
$$

HKV and BPR

- HKV

$$
\begin{equation*}
\min _{x *, y *} \sum_{u, i} c_{u i}\left(p_{u i}-x_{u}^{T} y_{i}\right)^{2}+\lambda\left(\sum_{u}\left\|x_{u}\right\|^{2}+\sum_{i}\left\|y_{i}\right\|^{2}\right) \tag{7}
\end{equation*}
$$

- where x_{u} and y_{i} are the item factors.
- BPRMF
- It works with triplets $D_{s}: U \times I \times I$
- Optimization of $\sum_{(u, i, j)} \log (\sigma(S(i ; u)-S(j ; u)))$ (BPR-OPT)
- in BPR-MF $S(i ; u)=\sum_{f} p_{u f} q_{i f}$
- Θ (model parameters) optimization is done by stochastic gradient descent (choosing the triplets randomly)

Metrics

- MAE and RMSE

$$
\begin{align*}
\mathrm{MAE} & =\frac{1}{\left|\mathcal{R}_{\text {test }}\right|} \sum_{r_{u i} \in \mathcal{R}_{\text {test }}}\left|g(u, i)-r_{u i}\right| \tag{8}\\
\mathrm{RMSE} & =\sqrt{\frac{1}{\left|\mathcal{R}_{\text {test }}\right|} \sum_{r_{u i} \in \mathcal{R}_{\text {test }}}\left(g(u, i)-r_{u i}\right)^{2}} \tag{9}
\end{align*}
$$

- Precision

$$
\begin{equation*}
\text { Precision }=\frac{\text { Relevant items } \cap \text { Retrieved items }}{\text { Retrieved items }} \tag{10}
\end{equation*}
$$

- NDCG

$$
\begin{gather*}
N D C G_{p}=\frac{D C G_{p}}{I D C G_{p}} \tag{11}\\
D C G_{p}=r e l_{1}+\sum_{i=2}^{p} \frac{r e l_{i}}{\log _{2} i} \tag{12}
\end{gather*}
$$

Epinions results

Algorithm	P	NDCG	USC	No relevance				Relevance			
				FIN	LIN	AIN	MIN	FIN	LIN	AIN	MIN
Rnd	0.0000	0.0001	100.0	0.3812	0.6391	0.4901	0.4753	0.0000	0.0000	0.0000	0.0000
IdAsc	0.0000	0.0000	$100.0 \ddagger$	0.2357	0.5083	0.3599	0.3401	0.0000	0.0000	0.0000	0.0000
IdDec	0.0000	0.0001	$100.0 \dagger$	0.3851	0.5790	0.4766	0.4728	0.0000	0.0000	0.0000	0.0000
Pop	$0.0009 \ddagger$	$0.0012 \dagger$	100.0	0.0788	0.7936	0.2670	0.2152	0.0003	$0.0009 \ddagger$	$0.0006 \ddagger$	$0.0005 \ddagger$
IB	0.0002	0.0005	49.7	$0.4567 \dagger$	0.6705	0.5505	0.5411	0.0001	0.0001	0.0001	0.0001
UB	0.0004	0.0007	49.7	0.3325	0.7625	0.4871	0.4601	0.0001	0.0004	0.0003	0.0003
TD	0.0004	0.0008	49.7	$0.6000 \ddagger$	$0.9150 \ddagger$	0.7365	0.7238	$0.0003 \dagger$	0.0004	0.0003	0.0003
HKV	0.0006	$0.0018 \ddagger$	50.6	0.2445	$0.8808 \dagger$	0.4366	0.3977	0.0002	0.0006	0.0004	0.0004
BPR	$0.0007 \dagger$	0.0011	50.6	0.1964	0.7917	0.3705	0.3362	$0.0004 \ddagger$	$0.0007 \dagger$	$0.0005 \dagger$	$0.0005 \dagger$
Fossil	0.0002	0.0004	31.1	0.2821	0.7806	0.4527	0.4200	0.0001	0.0001	0.0001	0.0001
SkyPerf	0.1337	0.4441	66.5	0.6170	0.8695	$0.7286 \ddagger$	$0.7197 \ddagger$	0.2397	0.3416	0.2845	0.2807
SkyFresh	0.0000	0.0000	100.0	0.4557	0.9999	$0.6588 \dagger$	$0.5976 \dagger$	0.0000	0.0000	0.0000	0.0000

Results with meta-data information

Algorithm	No relevance ML	
	Y-*IN	R-FIN
Rnd	0.7707	0.5573
IdAsc	$0.8387 \dagger$	0.0716
IdDec	0.7581	$\mathbf{0 . 9 9 9 5}$
Pop	0.8227	0.0781
UB	0.8164	0.2431
TD	$\mathbf{0 . 8 8 2 2}$	$0.6108 \ddagger$
HKV	0.8102	0.3068
SkyPerf	$0.8602 \ddagger$	$0.6069 \dagger$
SkyFresh	0.6305	0.4999

Algorithm	No relevance MT	
	Y-*IN	R-FIN
Rnd	0.8764	0.1693
IdAsc	0.2264	0.1729
IdDec	$\mathbf{0 . 9 9 0 7}$	$\mathbf{0 . 9 6 2 8}$
Pop	0.9693	0.1499
UB	$0.9745 \dagger$	0.4902
TD	$0.9817 \ddagger$	$0.8487 \ddagger$
HKV	0.9494	0.4131
SkyPerf	0.9184	0.4262
SkyFresh	0.9689	$0.6715 \dagger$

Results with meta-data information

Algorithm	No relevance ML		Algorithm	No relevance MT	
	Y-*IN	R-FIN		Y-*IN	R-FIN
Rnd	0.7707	0.5573	Rnd	0.8764	0.1693
IdAsc	$0.8387 \dagger$	0.0716	IdAsc	0.2264	0.1729
IdDec	0.7581	0.9995	IdDec	0.9907	0.9628
Pop	0.8227	0.0781	Pop	0.9693	0.1499
UB	0.8164	0.2431	UB	$0.9745 \dagger$	0.4902
TD	0.8822	$0.6108 \ddagger$	TD	0.9817 \ddagger	0.8487 \ddagger
HKV	0.8102	0.3068	HKV	0.9494	0.4131
SkyPerf	$0.8602 \ddagger$	$0.6069 \dagger$	SkyPerf	0.9184	0.4262
SkyFresh	0.6305	0.4999	SkyFresh	0.9689	$0.6715 \dagger$

- TD also retrieving fresh items when using metadata

Results with meta-data information

Algorithm	No relevance ML		Algorithm	No relevance MT	
	Y-*IN	R-FIN		Y-*IN	R-FIN
Rnd	0.7707	0.5573	Rnd	0.8764	0.1693
IdAsc	$0.8387 \dagger$	0.0716	IdAsc	0.2264	0.1729
IdDec	0.7581	0.9995	IdDec	0.9907	0.9628
Pop	0.8227	0.0781	Pop	0.9693	0.1499
UB	0.8164	0.2431	UB	$0.9745 \dagger$	0.4902
TD	0.8822	$0.6108 \ddagger$	TD	$0.9817 \ddagger$	0.8487 \ddagger
HKV	0.8102	0.3068	HKV	0.9494	0.4131
SkyPerf	$0.8602 \ddagger$	$0.6069 \dagger$	SkyPerf	0.9184	0.4262
SkyFresh	0.6305	0.4999	SkyFresh	0.9689	$0.6715 \dagger$

- TD also retrieving fresh items when using metadata
- Different behavior between old items (by release date) and items with a high lifespan in both datasets

References I

Chou, S., Yang, Y., and Lin, Y. (2015). Evaluating music recommendation in a real-world setting: On data splitting and evaluation metrics. In ICME, pages 1-6. IEEE Computer Society.
Ding, Y. and Li, X. (2005). Time weight collaborative filtering. In CIKM, pages 485-492. ACM.
Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets. In ICDM, pages 263-272. IEEE Computer Society.
Hu, Y. and Ogihara, M. (2011). Nextone player: A music recommendation system based on user behavior. In ISMIR, pages 103-108. University of Miami.
Lathia, N., Hailes, S., Capra, L., and Amatriain, X. (2010). Temporal diversity in recommender systems. In SIGIR, pages 210-217. ACM.

References II

Vargas, S. and Castells, P. (2011). Rank and relevance in novelty and diversity metrics for recommender systems. In RecSys, pages 109-116. ACM.

