# Time-Aware Novelty Metrics for Recommender Systems

#### Pablo Sánchez Alejandro Bellogín

Universidad Autónoma de Madrid Escuela Politécnica Superior Departamento de Ingeniería Informática

European Conference on Information Retrieval, 2018

- Recommender Systems
- 2 Time-Aware Novelty Metrics for Recommender Systems
- 3 Experiments
- 4 Conclusions and future work

#### 2 Time-Aware Novelty Metrics for Recommender Systems

### 3 Experiments

4 Conclusions and future work



• Suggest new items to users based on their tastes and needs



- Suggest new items to users based on their tastes and needs
- Measure the quality of recommendations. How?



- Suggest new items to users based on their tastes and needs
- Measure the quality of recommendations. How?
  - Several evaluation dimensions: Error, Ranking, Novelty / Diversity



- Suggest new items to users based on their tastes and needs
- Measure the quality of recommendations. How?
  - Several evaluation dimensions: Error, Ranking, Novelty / Diversity
  - We will focus on the temporal dimension



(2018)

(2017)

(2016)

 $R_1$ 

 $R_2$ 

 $R_3$ 





◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの 8 / 83



#### • Best in Relevance?

 $R_1$ 

 $R_3$ 

(2018)

(2017)

(2016)

9 / 83

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの



# Best in Relevance? R<sub>2</sub> > R<sub>1</sub> > R<sub>3</sub>

< □ > < @ > < 클 > < 클 > · 클 > · 클 = · 즷 < ♡ < ♡ 10/83



- Best in Relevance?
  R<sub>2</sub> > R<sub>1</sub> > R<sub>3</sub>
- Best in Novelty?

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの



- Best in Relevance?
  R<sub>2</sub> > R<sub>1</sub> > R<sub>3</sub>
- Best in Novelty? *R*<sub>1</sub> > *R*<sub>3</sub> > *R*<sub>2</sub>

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの



- Best in Relevance?
  R<sub>2</sub> > R<sub>1</sub> > R<sub>3</sub>
- Best in Novelty? *R*<sub>1</sub> > *R*<sub>3</sub> > *R*<sub>2</sub>
- Best in Freshness?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()



- Best in Relevance?
  R<sub>2</sub> > R<sub>1</sub> > R<sub>3</sub>
- Best in Novelty? *R*<sub>1</sub> > *R*<sub>3</sub> > *R*<sub>2</sub>
- Best in Freshness?
   R<sub>3</sub> > R<sub>1</sub> > R<sub>2</sub>

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()



Random split

Temporal split

・ロ ・ ・ 一部 ・ ・ 注 ト ・ 注 ト ・ 三 ト ・ 三 ト ・ ・ ・ ・ ・ 15 / 83



• Random splitting has been the most extended way to test recommender systems



- Random splitting has been the most extended way to test recommender systems
- Temporal splitting is becoming more important



- Random splitting has been the most extended way to test recommender systems
- Temporal splitting is becoming more important
  - Hence, time should also be incorporated in evaluation metrics

#### 2 Time-Aware Novelty Metrics for Recommender Systems

### 3 Experiments

4 Conclusions and future work

< □ > < 큔 > < 클 > < 클 > < 클 > 클 ≥ 의 ⊇ ○ Q (\* 19/83

$$m(R_u \mid \theta) = C \sum_{i_n \in R_u} \operatorname{disc}(n) p(\operatorname{rel} \mid i_n, u) \operatorname{nov}(i_n \mid \theta)$$
(1)

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$m(R_u \mid \theta) = C \sum_{i_n \in R_u} \operatorname{disc}(n) p(\operatorname{rel} \mid i_n, u) \operatorname{nov}(i_n \mid \theta)$$
(1)

- Where:
  - $R_u$  items recommended to user u
  - $\theta$  contextual variable (e.g., the user profile)
  - disc(n) is a discount model (e.g. NDCG)
  - $p(rel | i_n, u)$  relevance component
  - $nov(i_n \mid \theta)$  novelty model

$$m(R_u \mid \theta) = C \sum_{i_n \in R_u} \operatorname{disc}(n) p(\operatorname{rel} \mid i_n, u) \operatorname{nov}(i_n \mid \theta)$$
(1)

 When using nov(i<sub>n</sub> | θ) = (1 - p(seen|i)) we obtain the expected popularity complement (EPC) metric

$$m(R_u \mid \theta) = C \sum_{i_n \in R_u} \operatorname{disc}(n) p(\operatorname{rel} \mid i_n, u) \operatorname{nov}(i_n \mid \theta)$$
(1)

- When using nov(i<sub>n</sub> | θ) = (1 p(seen|i)) we obtain the expected popularity complement (EPC) metric
- However, all the metrics derived from this framework are *time-agnostic*

$$m(R_u \mid \theta_t) = C \sum_{i_n \in R_u} \operatorname{disc}(n) p(\operatorname{rel} \mid i_n, u) \underbrace{\operatorname{nov}(i_n \mid \theta_t)} (1)$$

- When using nov(i<sub>n</sub> | θ) = (1 p(seen|i)) we obtain the expected popularity complement (EPC) metric
- However, all the metrics derived from this framework are *time-agnostic*
- We propose to replace the novelty component defining new time-aware novelty models

• Classic metrics do not provide any information about the evolution of the items: we can recommend relevant but well-known (old) items

- Classic metrics do not provide any information about the evolution of the items: we can recommend relevant but well-known (old) items
- Every item in the system can be modeled with a temporal representation:

$$\theta_t = \{\theta_t(i)\} = \{(i, \langle t_1(i), \cdots, t_n(i) \rangle)\}$$
(2)

- Classic metrics do not provide any information about the evolution of the items: we can recommend relevant but well-known (old) items
- Every item in the system can be modeled with a temporal representation:

$$\theta_t = \{\theta_t(i)\} = \{(i, \langle t_1(i), \cdots, t_n(i) \rangle)\}$$
(2)

• Two different sources for the timestamps:

- Classic metrics do not provide any information about the evolution of the items: we can recommend relevant but well-known (old) items
- Every item in the system can be modeled with a temporal representation:

$$\theta_t = \{\theta_t(i)\} = \{(i, \langle t_1(i), \cdots, t_n(i) \rangle)\}$$
(2)

- Two different sources for the timestamps:
  - Metadata information: release date (movies or songs), creation time, etc.

- Classic metrics do not provide any information about the evolution of the items: we can recommend relevant but well-known (old) items
- Every item in the system can be modeled with a temporal representation:

$$\theta_t = \{\theta_t(i)\} = \{(i, \langle t_1(i), \cdots, t_n(i) \rangle)\}$$
(2)

- Two different sources for the timestamps:
  - Metadata information: release date (movies or songs), creation time, etc.
  - Rating history of the items





<ロ><日><日><日><日><日><日><日><日><日><日><日><日><日</td>30/83

• How can we aggregate the temporal representation?

- How can we aggregate the temporal representation?
- We explored four possibilities:

- How can we aggregate the temporal representation?
- We explored four possibilities:
  - Take the first interaction (FIN)

- How can we aggregate the temporal representation?
- We explored four possibilities:
  - Take the first interaction (FIN)
  - Take the last interaction (LIN)

- How can we aggregate the temporal representation?
- We explored four possibilities:
  - Take the first interaction (FIN)
  - Take the last interaction (LIN)
  - Take the average of the ratings times (AIN)

- How can we aggregate the temporal representation?
- We explored four possibilities:
  - Take the first interaction (FIN)
  - Take the last interaction (LIN)
  - Take the average of the ratings times (AIN)
  - Take the median of the ratings times (MIN)
### Modeling time profiles for items

- How can we aggregate the temporal representation?
- We explored four possibilities:
  - Take the first interaction (FIN)
  - Take the last interaction (LIN)
  - Take the average of the ratings times (AIN)
  - Take the median of the ratings times (MIN)
- Each case defines a function  $f(\theta_t(i))$



▶ < 트 > < 트 > 트 = ∽ Q (~ 38/83









• Which model represents better the freshness of the items?



• Which model represents better the freshness of the items?



▶ 《 트 ▷ 《 트 ▷ 三 = 의 Q (° 44 / 83

• Which model represents better the freshness of the items?



▶ 《 토 ▶ 《 토 ▶ 토 | 도 ∽ Q ペ 45 / 83

• Which model represents better the freshness of the items?



▶ < 토 > < 토 > 토 | = ∽ Q (~ 46 / 83

### Integration in the framework

• The proposed models are not suitable for the probabilistic framework:

$$m(R_u \mid \theta_t) = C \sum_{i_n \in R_u} \operatorname{disc}(n) p(\operatorname{rel} \mid i_n, u) \underbrace{\operatorname{nov}(i_n \mid \theta_t)}$$
(3)

### Integration in the framework

• The proposed models are not suitable for the probabilistic framework:

$$m(R_u \mid \theta_t) = C \sum_{i_n \in R_u} \operatorname{disc}(n) p(\operatorname{rel} \mid i_n, u) \operatorname{nov}(i_n \mid \theta_t)$$
(3)

• We apply a normalization step: either min-max normalization or dividing by the largest timestamp

### Integration in the framework

• The proposed models are not suitable for the probabilistic framework:

$$m(R_u \mid \theta_t) = C \sum_{i_n \in R_u} \operatorname{disc}(n) p(\operatorname{rel} \mid i_n, u) \boxed{\operatorname{nov}(i_n \mid \theta_t)}$$
(3)

• We apply a normalization step: either min-max normalization or dividing by the largest timestamp

$$\mathsf{nov}^{f,n}(i \mid \theta_t) = n(f(\theta_t(i)), \theta_t)$$
(4)



#### Recommender Systems

2 Time-Aware Novelty Metrics for Recommender Systems

### 3 Experiments

4 Conclusions and future work

<ロ > < 回 > < 回 > < 臣 > < 臣 > 王目目 のへの 50/83

| Dataset     | Users   | Items   | Ratings      | Density | Scale    | Date range          |
|-------------|---------|---------|--------------|---------|----------|---------------------|
| Ep (2-core) | 22,556  | 15, 196 | 75, 533      | 0.022%  | [1, 5]   | Jan 2001 - Nov 2013 |
| ML          | 138,493 | 26, 744 | 20, 000, 263 | 0.540%  | [0.5, 5] | Jan 1995 - Mar 2015 |
| MT (5-core) | 15,411  | 8, 443  | 518, 558     | 0.398%  | [0, 10]  | Feb 2013 - Apr 2017 |

• MovieTweetings and Movielens20M are from the movie domain

| Dataset     | Users    | Items   | Ratings      | Density | Scale    | Date range          |
|-------------|----------|---------|--------------|---------|----------|---------------------|
| Ep (2-core) | 22, 556  | 15, 196 | 75, 533      | 0.022%  | [1, 5]   | Jan 2001 - Nov 2013 |
| ML          | 138, 493 | 26, 744 | 20, 000, 263 | 0.540%  | [0.5, 5] | Jan 1995 - Mar 2015 |
| MT (5-core) | 15, 411  | 8, 443  | 518, 558     | 0.398%  | [0, 10]  | Feb 2013 - Apr 2017 |

- MovieTweetings and Movielens20M are from the movie domain
- Epinions dataset contains purchases of different products

| Dataset     | Users    | Items   | Ratings      | Density | Scale    | Date range          |
|-------------|----------|---------|--------------|---------|----------|---------------------|
| Ep (2-core) | 22, 556  | 15, 196 | 75, 533      | 0.022%  | [1, 5]   | Jan 2001 - Nov 2013 |
| ML          | 138, 493 | 26, 744 | 20, 000, 263 | 0.540%  | [0.5, 5] | Jan 1995 - Mar 2015 |
| MT (5-core) | 15, 411  | 8, 443  | 518, 558     | 0.398%  | [0, 10]  | Feb 2013 - Apr 2017 |

- MovieTweetings and Movielens20M are from the movie domain
- Epinions dataset contains purchases of different products
- All datasets contain timestamps

| Dataset     | Users   | Items   | Ratings      | Density | Scale    | Date range          |
|-------------|---------|---------|--------------|---------|----------|---------------------|
| Ep (2-core) | 22,556  | 15, 196 | 75, 533      | 0.022%  | [1, 5]   | Jan 2001 - Nov 2013 |
| ML          | 138,493 | 26, 744 | 20, 000, 263 | 0.540%  | [0.5, 5] | Jan 1995 - Mar 2015 |
| MT (5-core) | 15,411  | 8, 443  | 518, 558     | 0.398%  | [0, 10]  | Feb 2013 - Apr 2017 |

- MovieTweetings and Movielens20M are from the movie domain
- Epinions dataset contains purchases of different products
- All datasets contain timestamps
- All metrics @5

| Dataset     | Users   | Items   | Ratings      | Density | Scale    | Date range          |
|-------------|---------|---------|--------------|---------|----------|---------------------|
| Ep (2-core) | 22,556  | 15, 196 | 75, 533      | 0.022%  | [1, 5]   | Jan 2001 - Nov 2013 |
| ML          | 138,493 | 26, 744 | 20, 000, 263 | 0.540%  | [0.5, 5] | Jan 1995 - Mar 2015 |
| MT (5-core) | 15,411  | 8, 443  | 518, 558     | 0.398%  | [0, 10]  | Feb 2013 - Apr 2017 |

- MovieTweetings and Movielens20M are from the movie domain
- Epinions dataset contains purchases of different products
- All datasets contain timestamps
- All metrics @5
- Relevance thresholds of 5 for Ep and ML and 9 for MT

### Datasets: rating temporal activity



Figure: Rating histogram evolution in MovieTweetings (left) and Movielens20M (right). Temporal split with 80% of older ratings to train the recommenders

#### • Non-personalized: Rnd, Pop, IdAsc, IdDec

- Non-personalized: Rnd, Pop, IdAsc, IdDec
- Personalized: UB, HKV (MF)<sup>1</sup>

- Non-personalized: Rnd, Pop, IdAsc, IdDec
- Personalized: UB, HKV (MF)
- Personalized and time/sequence aware: TD  $(UB)^1$

<sup>&</sup>lt;sup>1</sup>Based on Ding and Li (2005)

- Non-personalized: Rnd, Pop, IdAsc, IdDec
- Personalized: UB, HKV (MF)
- Personalized and time/sequence aware: TD (UB)
- Skylines (perfect recommenders):

- Non-personalized: Rnd, Pop, IdAsc, IdDec
- Personalized: UB, HKV (MF)
- Personalized and time/sequence aware: TD (UB)
- Skylines (perfect recommenders):
  - SkyPerf: returns the test set

- Non-personalized: Rnd, Pop, IdAsc, IdDec
- Personalized: UB, HKV (MF)
- Personalized and time/sequence aware: TD (UB)
- Skylines (perfect recommenders):
  - SkyPerf: returns the test set
  - SkyFresh: optimizes one of the freshness models (LIN)

| Algorithm | Р       | NDCG    | USC    | No relevance |         |         |         |  |
|-----------|---------|---------|--------|--------------|---------|---------|---------|--|
| 5         |         |         |        | FIN          | LIN     | AIN     | IVITIN  |  |
| Rnd       | 0.0009  | 0.0010  | 100.0  | 0.5573       | 0.9834  | 0.6993  | 0.6711  |  |
| IdAsc     | 0.0099  | 0.0162  | 100.0  | 0.0716       | 0.9991  | 0.3550  | 0.2437  |  |
| IdDec     | 0.0000  | 0.0000  | 100.0† | 0.9995       | 0.9995  | 0.9995  | 0.9995  |  |
| Рор       | 0.1027‡ | 0.1110‡ | 100.0  | 0.0781       | 0.9999† | 0.4361  | 0.3772  |  |
| UB        | 0.0498† | 0.0618† | 17.8   | 0.2431       | 0.9999  | 0.5835  | 0.5594  |  |
| TD        | 0.0420  | 0.0520  | 17.8   | 0.6108       | 0.9999‡ | 0.7838‡ | 0.7710‡ |  |
| HKV       | 0.0498  | 0.0611  | 17.8   | 0.3068       | 0.9998  | 0.6122  | 0.5885  |  |
| SkyPerf   | 0.7094  | 0.8396  | 99.7   | 0.6069†      | 0.9993  | 0.7764† | 0.7618† |  |
| SkyFresh  | 0.0027  | 0.0027  | 100.0  | 0.4999       | 1.0000  | 0.7236  | 0.7026  |  |

| Algorithm | D       | NDCC    |        | No relevance |         |         |         |  |
|-----------|---------|---------|--------|--------------|---------|---------|---------|--|
| Algorithm | Г       | NDCG    | 030    | FIN          | LIN     | AIN     | MIN     |  |
| Rnd       | 0.0009  | 0.0010  | 100.0  | 0.5573       | 0.9834  | 0.6993  | 0.6711  |  |
| IdAsc     | 0.0099  | 0.0162  | 100.0  | 0.0716       | 0.9991  | 0.3550  | 0.2437  |  |
| IdDec     | 0.0000  | 0.0000  | 100.0† | 0.9995       | 0.9995  | 0.9995  | 0.9995  |  |
| Pop       | 0.1027‡ | 0.1110  | 100.0  | 0.0781       | 0.9999† | 0.4361  | 0.3772  |  |
| UB        | 0.0498† | 0.0618† | 17.8   | 0.2431       | 0.9999  | 0.5835  | 0.5594  |  |
| TD        | 0.0420  | 0.0520  | 17.8   | 0.6108‡      | 0.9999‡ | 0.7838‡ | 0.7710‡ |  |
| HKV       | 0.0498  | 0.0611  | 17.8   | 0.3068       | 0.9998  | 0.6122  | 0.5885  |  |
| SkyPerf   | 0.7094  | 0.8396  | 99.7   | 0.6069†      | 0.9993  | 0.7764† | 0.7618† |  |
| SkyFresh  | 0.0027  | 0.0027  | 100.0  | 0.4999       | 1.0000  | 0.7236  | 0.7026  |  |

 Relevance metrics (Precision and NDCG), User Coverage (USC) and Freshness without relevance component (FIN, LIN, AIN, MIN)

| Algorithm | D       | NDCC              |        | No relevance |         |         |         |  |
|-----------|---------|-------------------|--------|--------------|---------|---------|---------|--|
| Algorithm | Г       | NDCG              | 030    | FIN          | LIN     | AIN     | MIN     |  |
| Rnd       | 0.0009  | 0.0010            | 100.0  | 0.5573       | 0.9834  | 0.6993  | 0.6711  |  |
| IdAsc     | 0.0099  | 0.0162            | 100.0‡ | 0.0716       | 0.9991  | 0.3550  | 0.2437  |  |
| IdDec     | 0.0000  | 0.0000            | 100.0† | 0.9995       | 0.9995  | 0.9995  | 0.9995  |  |
| Pop       | 0.1027‡ | $0.1110 \ddagger$ | 100.0  | 0.0781       | 0.9999† | 0.4361  | 0.3772  |  |
| UB        | 0.0498† | 0.0618†           | 17.8   | 0.2431       | 0.9999  | 0.5835  | 0.5594  |  |
| TD        | 0.0420  | 0.0520            | 17.8   | 0.6108‡      | 0.9999‡ | 0.7838‡ | 0.7710‡ |  |
| HKV       | 0.0498  | 0.0611            | 17.8   | 0.3068       | 0.9998  | 0.6122  | 0.5885  |  |
| SkyPerf   | 0.7094  | 0.8396            | 99.7   | 0.6069†      | 0.9993  | 0.7764† | 0.7618† |  |
| SkyFresh  | 0.0027  | 0.0027            | 100.0  | 0.4999       | 1.0000  | 0.7236  | 0.7026  |  |

- Relevance metrics (Precision and NDCG), User Coverage (USC) and Freshness without relevance component (FIN, LIN, AIN, MIN)
- Very low coverage for personalized recommenders (due to temporal split)

| Algorithm | Ρ       | NDCG    | USC         | FIN     | No rel<br>LIN | evance<br>AIN | MIN     |
|-----------|---------|---------|-------------|---------|---------------|---------------|---------|
| Rnd       | 0.0009  | 0.0010  | 100.0       | 0.5573  | 0.9834        | 0.6993        | 0.6711  |
| IdAsc     | 0.0099  | 0.0162  | 100.0‡      | 0.0716  | 0.9991        | 0.3550        | 0.2437  |
| IdDec     | 0.0000  | 0.0000  | $100.0^{+}$ | 0.9995  | 0.9995        | 0.9995        | 0.9995  |
| Pop       | 0.1027‡ | 0.1110‡ | 100.0       | 0.0781  | 0.9999†       | 0.4361        | 0.3772  |
| UB        | 0.0498† | 0.0618† | 17.8        | 0.2431  | 0.9999        | 0.5835        | 0.5594  |
| TD        | 0.0420  | 0.0520  | 17.8        | 0.6108‡ | 0.9999‡       | 0.7838‡       | 0.7710‡ |
| HKV       | 0.0498  | 0.0611  | 17.8        | 0.3068  | 0.9998        | 0.6122        | 0.5885  |
| SkyPerf   | 0.7094  | 0.8396  | 99.7        | 0.6069† | 0.9993        | 0.7764†       | 0.7618† |
| SkyFresh  | 0.0027  | 0.0027  | 100.0       | 0.4999  | 1.0000        | 0.7236        | 0.7026  |

- Relevance metrics (Precision and NDCG), User Coverage (USC) and Freshness without relevance component (FIN, LIN, AIN, MIN)
- Very low coverage for personalized recommenders (due to temporal split)
- Data bias: the higher the id, the fresher the item (and the lower the id, the older the item)

| Algorithm  | D       | NDCC              |        | No relevance |         |         |         |  |
|------------|---------|-------------------|--------|--------------|---------|---------|---------|--|
| Aigontiini | F       | NDCG              | 030    | FIN          | LIN     | AIN     | MIN     |  |
| Rnd        | 0.0009  | 0.0010            | 100.0  | 0.5573       | 0.9834  | 0.6993  | 0.6711  |  |
| IdAsc      | 0.0099  | 0.0162            | 100.0‡ | 0.0716       | 0.9991  | 0.3550  | 0.2437  |  |
| IdDec      | 0.0000  | 0.0000            | 100.0† | 0.9995       | 0.9995  | 0.9995  | 0.9995  |  |
| Pop        | 0.1027‡ | $0.1110 \ddagger$ | 100.0  | 0.0781       | 0.9999† | 0.4361  | 0.3772  |  |
| UB         | 0.0498† | 0.0618†           | 17.8   | 0.2431       | 0.9999  | 0.5835  | 0.5594  |  |
| TD         | 0.0420  | 0.0520            | 17.8   | 0.6108‡      | 0.9999‡ | 0.7838‡ | 0.7710‡ |  |
| HKV        | 0.0498  | 0.0611            | 17.8   | 0.3068       | 0.9998  | 0.6122  | 0.5885  |  |
| SkyPerf    | 0.7094  | 0.8396            | 99.7   | 0.6069†      | 0.9993  | 0.7764† | 0.7618† |  |
| SkyFresh   | 0.0027  | 0.0027            | 100.0  | 0.4999       | 1.0000  | 0.7236  | 0.7026  |  |

- Relevance metrics (Precision and NDCG), User Coverage (USC) and Freshness without relevance component (FIN, LIN, AIN, MIN)
- Very low coverage for personalized recommenders (due to temporal split)
- Data bias: the higher the id, the fresher the item (and the lower the id, the older the item)
- Popularity bias

### Results: Popularity bias



Figure: Top 10 most popular items in the training set of each dataset: MovieTweetings (left) and MovieLens (right).

| Algorithm | Р       | NDCG    | USC    | FIN     | No rel<br>LIN | evance<br>AIN | MIN     |
|-----------|---------|---------|--------|---------|---------------|---------------|---------|
|           |         |         |        |         |               |               |         |
| Rnd       | 0.0009  | 0.0010  | 100.0  | 0.5573  | 0.9834        | 0.6993        | 0.6711  |
| IdAsc     | 0.0099  | 0.0162  | 100.0‡ | 0.0716  | 0.9991        | 0.3550        | 0.2437  |
| IdDec     | 0.0000  | 0.0000  | 100.0† | 0.9995  | 0.9995        | 0.9995        | 0.9995  |
| Pop       | 0.1027‡ | 0.1110‡ | 100.0  | 0.0781  | 0.9999†       | 0.4361        | 0.3772  |
| UB        | 0.0498† | 0.0618† | 17.8   | 0.2431  | 0.9999        | 0.5835        | 0.5594  |
| TD        | 0.0420  | 0.0520  | 17.8   | 0.6108‡ | 0.9999‡       | 0.7838‡       | 0.7710‡ |
| HKV       | 0.0498  | 0.0611  | 17.8   | 0.3068  | 0.9998        | 0.6122        | 0.5885  |
| SkyPerf   | 0.7094  | 0.8396  | 99.7   | 0.6069† | 0.9993        | 0.7764†       | 0.7618† |
| SkyFresh  | 0.0027  | 0.0027  | 100.0  | 0.4999  | 1.0000        | 0.7236        | 0.7026  |

• Temporal recommenders less competitive in this dataset (no completely realistic timestamps)

| Algorithm | D       | NDCC              | USC    | No relevance |         |         |         |  |
|-----------|---------|-------------------|--------|--------------|---------|---------|---------|--|
| Algorithm | Р       | NDCG              |        | FIN          | LIN     | AIN     | MIN     |  |
| Rnd       | 0.0009  | 0.0010            | 100.0  | 0.5573       | 0.9834  | 0.6993  | 0.6711  |  |
| IdAsc     | 0.0099  | 0.0162            | 100.0  | 0.0716       | 0.9991  | 0.3550  | 0.2437  |  |
| IdDec     | 0.0000  | 0.0000            | 100.0† | 0.9995       | 0.9995  | 0.9995  | 0.9995  |  |
| Pop       | 0.1027‡ | $0.1110 \ddagger$ | 100.0  | 0.0781       | 0.9999† | 0.4361  | 0.3772  |  |
| UB        | 0.0498† | 0.0618†           | 17.8   | 0.2431       | 0.9999  | 0.5835  | 0.5594  |  |
| TD        | 0.0420  | 0.0520            | 17.8   | 0.6108‡      | 0.9999‡ | 0.7838‡ | 0.7710‡ |  |
| HKV       | 0.0498  | 0.0611            | 17.8   | 0.3068       | 0.9998  | 0.6122  | 0.5885  |  |
| SkyPerf   | 0.7094  | 0.8396            | 99.7   | 0.6069†      | 0.9993  | 0.7764† | 0.7618† |  |
| SkyFresh  | 0.0027  | 0.0027            | 100.0  | 0.4999       | 1.0000  | 0.7236  | 0.7026  |  |

- Temporal recommenders less competitive in this dataset (no completely realistic timestamps)
- Skyline does not achieve maximum performance results (due to evaluation methodology)

| Algorithm                                                       | Р                                                                                               | NDCG                                                                                            | USC                                                                      | FIN                                                                                             | LIN                                                                                    | evance<br>AIN                                                                                   | MIN                                                                                      |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Rnd<br>IdAsc<br>IdDec<br>UB<br>TD<br>HKV<br>SkyPerf<br>SkyFresh | 0.0009<br>0.0099<br>0.0000<br>0.1027‡<br>0.0498†<br>0.0420<br>0.0498<br><b>0.7094</b><br>0.0027 | 0.0010<br>0.0162<br>0.0000<br>0.1110‡<br>0.0618†<br>0.0520<br>0.0611<br><b>0.8396</b><br>0.0027 | 100.0<br>100.0<br>100.0<br>17.8<br>17.8<br>17.8<br>17.8<br>99.7<br>100.0 | 0.5573<br>0.0716<br><b>0.9995</b><br>0.0781<br>0.2431<br>0.6108‡<br>0.3068<br>0.6069†<br>0.4999 | 0.9834<br>0.9991<br>0.9995<br>0.9999<br>0.9999<br>0.9999<br>0.9998<br>0.9993<br>1.0000 | 0.6993<br>0.3550<br><b>0.9995</b><br>0.4361<br>0.5835<br>0.7838‡<br>0.6122<br>0.7764†<br>0.7236 | 0.6711<br>0.2437<br>0.9995<br>0.3772<br>0.5594<br>0.7710‡<br>0.5885<br>0.7618†<br>0.7026 |

- Temporal recommenders less competitive in this dataset (no completely realistic timestamps)
- Skyline does not achieve maximum performance results (due to evaluation methodology)
- LIN not very useful

| Algorithm | Р       | NDCG    | USC    | No relevance |         |         |         |
|-----------|---------|---------|--------|--------------|---------|---------|---------|
|           |         |         |        | FIN          | LIN     | AIN     | MIN     |
| Rnd       | 0.0009  | 0.0010  | 100.0  | 0.5573       | 0.9834  | 0.6993  | 0.6711  |
| IdAsc     | 0.0099  | 0.0162  | 100.0‡ | 0.0716       | 0.9991  | 0.3550  | 0.2437  |
| IdDec     | 0.0000  | 0.0000  | 100.0† | 0.9995       | 0.9995  | 0.9995  | 0.9995  |
| Pop       | 0.1027‡ | 0.1110‡ | 100.0  | 0.0781       | 0.9999† | 0.4361  | 0.3772  |
| UB        | 0.0498† | 0.0618† | 17.8   | 0.2431       | 0.9999  | 0.5835  | 0.5594  |
| TD        | 0.0420  | 0.0520  | 17.8   | 0.6108‡      | 0.9999‡ | 0.7838‡ | 0.7710‡ |
| HKV       | 0.0498  | 0.0611  | 17.8   | 0.3068       | 0.9998  | 0.6122  | 0.5885  |
| SkyPerf   | 0.7094  | 0.8396  | 99.7   | 0.6069†      | 0.9993  | 0.7764† | 0.7618† |
| SkyFresh  | 0.0027  | 0.0027  | 100.0  | 0.4999       | 1.0000  | 0.7236  | 0.7026  |
|           |         |         |        |              |         |         |         |

- Temporal recommenders less competitive in this dataset (no completely realistic timestamps)
- Skyline does not achieve maximum performance results (due to evaluation methodology)
- LIN not very useful
- AIN and MIN are the best metrics to analyze the behavior in terms of temporal novelty
| Almenithms | D       | NDCC    |             |         | No re   | evance  |         |
|------------|---------|---------|-------------|---------|---------|---------|---------|
| Algorithm  | r       | NDCG    | 030         | FIN     | LIN     | AIN     | MIN     |
| Rnd        | 0.0002  | 0.0003  | 100.0       | 0.1693  | 0.8473  | 0.4435  | 0.4086  |
| IdAsc      | 0.0004  | 0.0003  | 100.0       | 0.1729  | 0.8873  | 0.5485  | 0.5938  |
| IdDec      | 0.0005  | 0.0004  | $100.0^{+}$ | 0.9628  | 0.9800  | 0.9688  | 0.9669  |
| Pop        | 0.0028  | 0.0023  | 100.0       | 0.1499  | 0.9921  | 0.2534  | 0.2074  |
| UB         | 0.0104  | 0.0120  | 78.5        | 0.4902  | 0.9951† | 0.5937  | 0.5657  |
| TD         | 0.0264‡ | 0.0337‡ | 78.5        | 0.8487‡ | 0.9988‡ | 0.9298‡ | 0.9282‡ |
| HKV        | 0.0150† | 0.0190† | 78.5        | 0.4131  | 0.9939  | 0.5935  | 0.5621  |
| SkyPerf    | 0.3468  | 0.5374  | 81.6        | 0.4262  | 0.9686  | 0.6514  | 0.6289  |
| SkyFresh   | 0.0037  | 0.0041  | 100.0       | 0.6715† | 1.0000  | 0.8072† | 0.7924† |

| Algorithm | D       | NDCC    |        |         | No rel  | evance  |         |
|-----------|---------|---------|--------|---------|---------|---------|---------|
| Algorithm | Г       | NDCG    | 030    | FIN     | LIN     | AIN     | MIN     |
| Rnd       | 0.0002  | 0.0003  | 100.0  | 0.1693  | 0.8473  | 0.4435  | 0.4086  |
| IdAsc     | 0.0004  | 0.0003  | 100.0‡ | 0.1729  | 0.8873  | 0.5485  | 0.5938  |
| IdDec     | 0.0005  | 0.0004  | 100.0† | 0.9628  | 0.9800  | 0.9688  | 0.9669  |
| Pop       | 0.0028  | 0.0023  | 100.0  | 0.1499  | 0.9921  | 0.2534  | 0.2074  |
| UB        | 0.0104  | 0.0120  | 78.5   | 0.4902  | 0.9951† | 0.5937  | 0.5657  |
| TD        | 0.0264‡ | 0.0337‡ | 78.5   | 0.8487‡ | 0.9988‡ | 0.9298‡ | 0.9282‡ |
| HKV       | 0.0150† | 0.0190† | 78.5   | 0.4131  | 0.9939  | 0.5935  | 0.5621  |
| SkyPerf   | 0.3468  | 0.5374  | 81.6   | 0.4262  | 0.9686  | 0.6514  | 0.6289  |
| SkyFresh  | 0.0037  | 0.0041  | 100.0  | 0.6715† | 1.0000  | 0.8072† | 0.7924† |

• Higher coverage in personalized recommenders than before (shorter time-range)

| Algorithm | Р       | NDCG    | USC    | FIN     | No rel<br>LIN | evance<br>AIN | MIN     |
|-----------|---------|---------|--------|---------|---------------|---------------|---------|
| Rnd       | 0.0002  | 0.0003  | 100.0  | 0.1693  | 0.8473        | 0.4435        | 0.4086  |
| IdAsc     | 0.0004  | 0.0003  | 100.0‡ | 0.1729  | 0.8873        | 0.5485        | 0.5938  |
| IdDec     | 0.0005  | 0.0004  | 100.0† | 0.9628  | 0.9800        | 0.9688        | 0.9669  |
| Pop       | 0.0028  | 0.0023  | 100.0  | 0.1499  | 0.9921        | 0.2534        | 0.2074  |
| UB        | 0.0104  | 0.0120  | 78.5   | 0.4902  | 0.9951†       | 0.5937        | 0.5657  |
| TD        | 0.0264‡ | 0.0337‡ | 78.5   | 0.8487‡ | 0.9988‡       | 0.9298‡       | 0.9282‡ |
| HKV       | 0.0150† | 0.0190† | 78.5   | 0.4131  | 0.9939        | 0.5935        | 0.5621  |
| SkyPerf   | 0.3468  | 0.5374  | 81.6   | 0.4262  | 0.9686        | 0.6514        | 0.6289  |
| SkyFresh  | 0.0037  | 0.0041  | 100.0  | 0.6715† | 1.0000        | 0.8072†       | 0.7924† |

- Higher coverage in personalized recommenders than before (shorter time-range)
- Item ordering bias (items with higher id are more fresh)

| Algorithm             | Р                          | NDCG                       | USC                              | FIN                               | No rel<br>LIN              | evance<br>AIN                     | MIN                               |
|-----------------------|----------------------------|----------------------------|----------------------------------|-----------------------------------|----------------------------|-----------------------------------|-----------------------------------|
| Rnd<br>IdAsc<br>IdDec | 0.0002<br>0.0004<br>0.0005 | 0.0003<br>0.0003<br>0.0004 | <b>100.0</b><br>100.0‡<br>100.0† | 0.1693<br>0.1729<br><b>0.9628</b> | 0.8473<br>0.8873<br>0.9800 | 0.4435<br>0.5485<br><b>0.9688</b> | 0.4086<br>0.5938<br><b>0.9669</b> |
| Pop                   | 0.0028                     | 0.0023                     | 100.0                            | 0.1499                            | 0.9921                     | 0.2534                            | 0.2074                            |
| UB                    | 0.0104                     | 0.0120                     | 78.5                             | 0.4902                            | 0.9951†                    | 0.5937                            | 0.5657                            |
| TD                    | 0.0264‡                    | 0.0337‡                    | 78.5                             | 0.8487‡                           | 0.9988‡                    | 0.9298‡                           | 0.9282‡                           |
| HKV                   | 0.0150†                    | 0.0190†                    | 78.5                             | 0.4131                            | 0.9939                     | 0.5935                            | 0.5621                            |
| SkyPerf<br>SkyFresh   | <b>0.3468</b><br>0.0037    | <b>0.5374</b><br>0.0041    | 81.6<br>100.0                    | 0.4262<br>0.6715†                 | 0.9686<br><b>1.0000</b>    | 0.6514<br>0.8072†                 | 0.6289<br>0.7924†                 |

- Higher coverage in personalized recommenders than before (shorter time-range)
- Item ordering bias (items with higher id are more fresh)
- Temporal recommender competitive when using more realistic timestamps

- Recommender Systems
- 2 Time-Aware Novelty Metrics for Recommender Systems
- 3 Experiments
- 4 Conclusions and future work

• We introduced the temporal dimensions in the definition of a family of novelty models

- We introduced the temporal dimensions in the definition of a family of novelty models
- The proposed metric works as expected although it can be affected by biases in the data

- We introduced the temporal dimensions in the definition of a family of novelty models
- The proposed metric works as expected although it can be affected by biases in the data
- This approach could favor new possibilities to produce time-aware recommendation whenever relevance is not the only important dimension

- We introduced the temporal dimensions in the definition of a family of novelty models
- The proposed metric works as expected although it can be affected by biases in the data
- This approach could favor new possibilities to produce time-aware recommendation whenever relevance is not the only important dimension
- These temporal models could also be applied in online recommender systems, such as news recommendation

- We introduced the temporal dimensions in the definition of a family of novelty models
- The proposed metric works as expected although it can be affected by biases in the data
- This approach could favor new possibilities to produce time-aware recommendation whenever relevance is not the only important dimension
- These temporal models could also be applied in online recommender systems, such as news recommendation
- Source code and more details to reproduce the experiments in https://bitbucket.org/PabloSanchezP/timeawarenoveltymetrics

# Time-Aware Novelty Metrics for Recommender Systems

#### Pablo Sánchez Alejandro Bellogín

Universidad Autónoma de Madrid Escuela Politécnica Superior Departamento de Ingeniería Informática

#### European Conference on Information Retrieval, 2018

# Thank you

https://bitbucket.org/PabloSanchezP/timeawarenoveltymetrics

# Other approximations related to our freshness metric

- Forgotten Curve in Hu and Ogihara (2011)
  - Exponential function taking into account the number of times the song was played and the distance from the present time to the last time the song was played

# Other approximations related to our freshness metric

- Forgotten Curve in Hu and Ogihara (2011)
  - Exponential function taking into account the number of times the song was played and the distance from the present time to the last time the song was played
- Overlap between previous recommendation lists in Lathia et al. (2010):
  - Difference between the items that we are recommending and the ones we have previously recommended to the user

# Other approximations related to our freshness metric

- Forgotten Curve in Hu and Ogihara (2011)
  - Exponential function taking into account the number of times the song was played and the distance from the present time to the last time the song was played
- Overlap between previous recommendation lists in Lathia et al. (2010):
  - Difference between the items that we are recommending and the ones we have previously recommended to the user
- Similar approach with metadata: Chou et al. (2015)
  - Taking the average of the release dates of the songs

• The score of every item for a UB is:

$$\hat{s}_{ui} = \sum_{v \in N_u} sim(u, v) \cdot r_{vi}$$
(5)

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

87 / 83

• The score of every item of the TD is:

$$\hat{s}_{ui} = \sum_{v \in N_u} sim(u, v) \cdot r_{vi} \cdot e^{-\lambda(days(t, t(v, i)))}$$
(6)

# HKV and BPR

#### • HKV

$$\min_{x*,y*} \sum_{u,i} c_{ui} (p_{ui} - x_u^T y_i)^2 + \lambda (\sum_u ||x_u||^2 + \sum_i ||y_i||^2)$$
(7)

• where  $x_u$  and  $y_i$  are the item factors.

#### BPRMF

- It works with triplets  $D_s: U \times I \times I$
- Optimization of  $\sum_{(u,i,j)} \log(\sigma(S(i; u) S(j; u)))$  (BPR-OPT)
- in BPR-MF  $S(i; u) = \sum_{f} p_{uf} q_{if}$
- Θ (model parameters) optimization is done by stochastic gradient descent (choosing the triplets randomly)

#### Metrics

• MAE and RMSE

$$MAE = \frac{1}{|\mathcal{R}_{test}|} \sum_{r_{ui} \in \mathcal{R}_{test}} |g(u, i) - r_{ui}|$$
(8)  
$$RMSE = \sqrt{\frac{1}{|\mathcal{R}_{test}|}} \sum_{r_{ui} \in \mathcal{R}_{test}} (g(u, i) - r_{ui})^2$$
(9)

Precision

$$Precision = \frac{\text{Relevant items} \cap \text{Retrieved items}}{\text{Retrieved items}}$$
(10)

NDCG

$$NDCG_{p} = \frac{DCG_{p}}{IDCG_{p}}$$
(11)  
$$DCG_{p} = rel_{1} + \sum_{i=2}^{p} \frac{rel_{i}}{\log_{2} i}$$
(12)  
$$(12)$$

# Epinions results

| Algorithm           | Ρ                       | NDCG                    | USC           | FIN              | No re<br>LIN            | levance<br>AIN     | MIN                | FIN                     | Relev<br>LIN     | vance<br>AIN            | MIN                     |
|---------------------|-------------------------|-------------------------|---------------|------------------|-------------------------|--------------------|--------------------|-------------------------|------------------|-------------------------|-------------------------|
| Rnd                 | 0.0000                  | 0.0001                  | 100.0         | 0.3812           | 0.6391                  | 0.4901             | 0.4753             | 0.0000                  | 0.0000           | 0.0000                  | 0.0000                  |
| IdAsc               | 0.0000                  | 0.0000                  | 100.0‡        | 0.2357           | 0.5083                  | 0.3599             | 0.3401             | 0.0000                  | 0.0000           | 0.0000                  | 0.0000                  |
| IdDec               | 0.0000                  | 0.0001                  | 100.0†        | 0.3851           | 0.5790                  | 0.4766             | 0.4728             | 0.0000                  | 0.0000           | 0.0000                  | 0.0000                  |
| Pop                 | 0.0009‡                 | 0.0012†                 | 100.0         | 0.0788           | 0.7936                  | 0.2670             | 0.2152             | 0.0003                  | 0.0009‡          | 0.0006‡                 | 0.0005‡                 |
| IB                  | 0.0002                  | 0.0005                  | 49.7          | 0.4567†          | 0.6705                  | 0.5505             | 0.5411             | 0.0001                  | 0.0001           | 0.0001                  | 0.0001                  |
| UB                  | 0.0004                  | 0.0007                  | 49.7          | 0.3325           | 0.7625                  | 0.4871             | 0.4601             | 0.0001                  | 0.0004           | 0.0003                  | 0.0003                  |
| TD                  | 0.0004                  | 0.0008                  | 49.7          | 0.6000‡          | 0.9150‡                 | 0.7365             | 0.7238             | 0.0003†                 | 0.0004           | 0.0003                  | 0.0003                  |
| HKV                 | 0.0006                  | 0.0018‡                 | 50.6          | 0.2445           | 0.8808†                 | 0.4366             | 0.3977             | 0.0002                  | 0.0006           | 0.0004                  | 0.0004                  |
| BPR                 | 0.0007†                 | 0.0011                  | 50.6          | 0.1964           | 0.7917                  | 0.3705             | 0.3362             | 0.0004‡                 | 0.0007†          | 0.0005†                 | 0.0005†                 |
| Fossil              | 0.0002                  | 0.0004                  | 31.1          | 0.2821           | 0.7806                  | 0.4527             | 0.4200             | 0.0001                  | 0.0001           | 0.0001                  | 0.0001                  |
| SkyPerf<br>SkyFresh | <b>0.1337</b><br>0.0000 | <b>0.4441</b><br>0.0000 | 66.5<br>100.0 | 0.6170<br>0.4557 | 0.8695<br><b>0.9999</b> | 0.7286‡<br>0.6588† | 0.7197‡<br>0.5976† | <b>0.2397</b><br>0.0000 | 0.3416<br>0.0000 | <b>0.2845</b><br>0.0000 | <b>0.2807</b><br>0.0000 |

| Algorithm | No relev<br>Y-*IN | ance ML<br>R-FIN |
|-----------|-------------------|------------------|
| Rnd       | 0.7707            | 0.5573           |
| IdAsc     | 0.8387†           | 0.0716           |
| IdDec     | 0.7581            | 0.9995           |
| Рор       | 0.8227            | 0.0781           |
| UB        | 0.8164            | 0.2431           |
| TD        | 0.8822            | 0.6108‡          |
| HKV       | 0.8102            | 0.3068           |
| SkyPerf   | 0.8602‡           | 0.6069†          |
| SkyFresh  | 0.6305            | 0.4999           |

| Algorithm | No relev<br>Y-*IN | ance MT<br>R-FIN |
|-----------|-------------------|------------------|
| Rnd       | 0.8764            | 0.1693           |
| IdAsc     | 0.2264            | 0.1729           |
| IdDec     | 0.9907            | 0.9628           |
| Рор       | 0.9693            | 0.1499           |
| UB        | 0.9745†           | 0.4902           |
| TD        | 0.9817‡           | 0.8487‡          |
| HKV       | 0.9494            | 0.4131           |
| SkyPerf   | 0.9184            | 0.4262           |
| SkyFresh  | 0.9689            | 0.6715†          |

### Results with meta-data information

| Algorithm | No relev<br>Y-*IN | ance ML<br>R-FIN | Algorit | hm No relev<br>Y-*IN | /ance M<br>R-FI |
|-----------|-------------------|------------------|---------|----------------------|-----------------|
| Rnd       | 0.7707            | 0.5573           | Rnd     | 0.8764               | 0.169           |
| IdAsc     | 0.8387†           | 0.0716           | IdAso   | 0.2264               | 0.172           |
| IdDec     | 0.7581            | 0.9995           | IdDee   | c 0.9907             | 0.962           |
| Pop       | 0.8227            | 0.0781           | Pop     | 0.9693               | 0.149           |
| UB        | 0.8164            | 0.2431           | UB      | 0.9745†              | 0.490           |
| TD        | 0.8822            | 0.6108‡          | TD      | 0.9817‡              | 0.848           |
| HKV       | 0.8102            | 0.3068           | HKV     | 0.9494               | 0.413           |
| SkyPerf   | 0.8602‡           | 0.6069†          | SkyPe   | erf 0.9184           | 0.426           |
| SkyFresh  | 0.6305            | 0.4999           | SkyFre  | sh 0.9689            | 0.671           |

• TD also retrieving fresh items when using metadata

| Algorithm | No relev<br>Y-*IN | ance ML<br>R-FIN | Algorithm | No relev<br>Y-*IN | ance MT<br>R-FIN |
|-----------|-------------------|------------------|-----------|-------------------|------------------|
| Rnd       | 0.7707            | 0.5573           | Rnd       | 0.8764            | 0.1693           |
| IdAsc     | 0.8387†           | 0.0716           | IdAsc     | 0.2264            | 0.1729           |
| IdDec     | 0.7581            | 0.9995           | IdDec     | 0.9907            | 0.9628           |
| Pop       | 0.8227            | 0.0781           | Рор       | 0.9693            | 0.1499           |
| UB        | 0.8164            | 0.2431           | UB        | 0.9745†           | 0.4902           |
| TD        | 0.8822            | 0.6108‡          | TD        | 0.9817‡           | 0.8487‡          |
| HKV       | 0.8102            | 0.3068           | HKV       | 0.9494            | 0.4131           |
| SkyPerf   | 0.8602‡           | 0.6069†          | SkyPerf   | 0.9184            | 0.4262           |
| SkyFresh  | 0.6305            | 0.4999           | SkyFresh  | 0.9689            | 0.6715†          |

- TD also retrieving fresh items when using metadata
- Different behavior between old items (by release date) and items with a high lifespan in both datasets

- Chou, S., Yang, Y., and Lin, Y. (2015). Evaluating music recommendation in a real-world setting: On data splitting and evaluation metrics. In *ICME*, pages 1–6. IEEE Computer Society.
- Ding, Y. and Li, X. (2005). Time weight collaborative filtering. In *CIKM*, pages 485–492. ACM.
- Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets. In *ICDM*, pages 263–272. IEEE Computer Society.
- Hu, Y. and Ogihara, M. (2011). Nextone player: A music recommendation system based on user behavior. In *ISMIR*, pages 103–108. University of Miami.
- Lathia, N., Hailes, S., Capra, L., and Amatriain, X. (2010). Temporal diversity in recommender systems. In *SIGIR*, pages 210–217. ACM.

Vargas, S. and Castells, P. (2011). Rank and relevance in novelty and diversity metrics for recommender systems. In *RecSys*, pages 109–116. ACM.