
Applying Subsequence Matching to

Collaborative Filtering

Alejandro Belloǵın Pablo Sánchez

Universidad Autónoma de Madrid
Escuela Politécnica Superior

Departamento de Ingenieŕıa Informática

V Congreso Español de
Recuperación de Información (CERI 2018)

1 / 59

Outline

1 Recommender Systems

2 Sequential similarities

3 Experiments

4 Conclusions and future work

2 / 59

Outline

1 Recommender Systems

2 Sequential similarities

3 Experiments

4 Conclusions and future work

3 / 59

Recommender Systems

...

...

...

...

Suggest new items to users based on their tastes and needs

Different methods to make recommendations (content-based,
collaborative filtering, hybrids)

We will focus on neighborhood based collaborative filtering
algorithms

4 / 59

Recommender Systems

...

...

...

...

Suggest new items to users based on their tastes and needs

Different methods to make recommendations (content-based,
collaborative filtering, hybrids)

We will focus on neighborhood based collaborative filtering
algorithms

5 / 59

Recommender Systems

...

...

...

...

Suggest new items to users based on their tastes and needs

Different methods to make recommendations (content-based,
collaborative filtering, hybrids)

We will focus on neighborhood based collaborative filtering
algorithms

6 / 59

Collaborative filtering

i1 i2 i3 i4 · · ·
u1 - - 5 3 · · ·
u2 4 - 4 - · · ·
u3 5 5 - - · · ·
u4 - 2 1 - · · ·
u5 2 - - 5 · · ·
u6 - 1 - 1 · · ·
· · · · · · · · · · · · · · · · · ·

Normally the User × Item matrix is very sparse
(90%-99% of empty values)

Collaborative filtering try to fill the matrix either with latent
factor models or neighborhood approaches

7 / 59

Collaborative filtering

i1 i2 i3 i4 · · ·
u1 - - 5 3 · · ·
u2 4 - 4 - · · ·
u3 5 5 - - · · ·
u4 - 2 1 - · · ·
u5 2 - - 5 · · ·
u6 - 1 - 1 · · ·
· · · · · · · · · · · · · · · · · ·

Normally the User × Item matrix is very sparse
(90%-99% of empty values)

Collaborative filtering try to fill the matrix either with latent
factor models or neighborhood approaches

8 / 59

Collaborative filtering

i1 i2 i3 i4 · · ·
u1 - - 5 3 · · ·
u2 4 - 4 - · · ·
u3 5 5 - - · · ·
u4 - 2 1 - · · ·
u5 2 - - 5 · · ·
u6 - 1 - 1 · · ·
· · · · · · · · · · · · · · · · · ·

Normally the User × Item matrix is very sparse
(90%-99% of empty values)

Collaborative filtering try to fill the matrix either with latent
factor models or neighborhood approaches

9 / 59

Collaborative filtering

Matrix factorization techniques

min
p∗,q∗

∑
u,i∈R

(rui − qT
i pu)2 + λ(||qi ||2 + ||pu||2) (1)

qi and pu are the latent vectors of the user u and the item i

R denotes all the training samples

λ is the regularization parameter

rvi is the rating of the neighbour v

wuv is the similarity between user u and v

10 / 59

Collaborative filtering

Matrix factorization techniques

min
p∗,q∗

∑
u,i∈R

(rui − qT
i pu)2 + λ(||qi ||2 + ||pu||2) (1)

qi and pu are the latent vectors of the user u and the item i

R denotes all the training samples

λ is the regularization parameter

Neighborhood approaches

su,i ∝
∑

v∈Ni (u)

wuv rvi (2)

rvi is the rating of the neighbour v

wuv is the similarity between user u and v
11 / 59

Collaborative filtering

Matrix factorization techniques

min
p∗,q∗

∑
u,i∈R

(rui − qT
i pu)2 + λ(||qi ||2 + ||pu||2) (1)

qi and pu are the latent vectors of the user u and the item i
R denotes all the training samples
λ is the regularization parameter

Neighborhood approaches

su,i ∝
∑

v∈ Ni(u)

wuv rvi (2)

rvi is the rating of the neighbour v
wuv is the similarity between user u and v

12 / 59

Classic similarities

Pearson correlation

PC(u, v) =

∑
i∈Iuv (rui − ru)(rvi − r v)√∑

i∈Iuv (rui − ru)2
∑

i∈Iuv (rvi − r v)2
(3)

Cosine similarity

cos(u, v) =

∑
i∈Iuv rui rvi√∑

i∈Iu r
2
ui

∑
j∈Iv r

2
vj

(4)

Jaccard index

Jaccard(u,v) =
|Iu ∩ Iv |
|Iu ∪ Iu|

(5)

13 / 59

Outline

1 Recommender Systems

2 Sequential similarities

3 Experiments

4 Conclusions and future work

14 / 59

Longest Common Subsequence (LCS)

Find the longest common subsequence (list of elements not
necessary consecutive but maintaining the order) between 2
strings X and Y
Used in DNA sequencing and file comparison
Can be resolved applying dynamic programming filling a matrix
of size (|X |+ 1)× (|Y |+ 1)

Longest Common Subsequence

L[i , j] =


0 if i=0 or j=0

L[i − 1, j − 1] + 1 if i , j > 0 and Xi = Yj

max(L[i , j − 1], L[i − 1, j]) if i , j > 0 and Xi 6= Yj

(6)

The last position in the matrix contains the length of the longest
common subsequence

15 / 59

Longest Common Subsequence (LCS)

Find the longest common subsequence (list of elements not
necessary consecutive but maintaining the order) between 2
strings X and Y
Used in DNA sequencing and file comparison
Can be resolved applying dynamic programming filling a matrix
of size (|X |+ 1)× (|Y |+ 1)

Longest Common Subsequence

L[i , j] =


0 if i=0 or j=0

L[i − 1, j − 1] + 1 if i , j > 0 and Xi = Yj

max(L[i , j − 1], L[i − 1, j]) if i , j > 0 and Xi 6= Yj

(6)

The last position in the matrix contains the length of the longest
common subsequence

16 / 59

Longest Common Subsequence (LCS)

Longest Common Subsequence

L[i , j] =


0 if i=0 or j=0

L[i − 1, j − 1] + 1 if i , j > 0 and Xi = Yj

max(L[i , j − 1], L[i − 1, j]) if i , j > 0 and Xi 6= Yj

(7)

∅ A G G T A C
∅

0 0 0 0 0 0 0

G

0 0 1 1 1 1 1

C

0 0 1 1 1 1 2

G

0 0 1 2 2 2 2

T

0 0 1 2 3 3 3

G

0 0 1 2 3 3 3

C

0 0 1 2 3 3 4

17 / 59

Longest Common Subsequence (LCS)

Longest Common Subsequence

L[i , j] =


0 if i=0 or j=0

L[i − 1, j − 1] + 1 if i , j > 0 and Xi = Yj

max(L[i , j − 1], L[i − 1, j]) if i , j > 0 and Xi 6= Yj

(7)

∅ A G G T A C
∅ 0 0 0 0 0 0 0
G

0 0 1 1 1 1 1

C

0 0 1 1 1 1 2

G

0 0 1 2 2 2 2

T

0 0 1 2 3 3 3

G

0 0 1 2 3 3 3

C

0 0 1 2 3 3 4

18 / 59

Longest Common Subsequence (LCS)

Longest Common Subsequence

L[i , j] =


0 if i=0 or j=0

L[i − 1, j − 1] + 1 if i , j > 0 and Xi = Yj

max(L[i , j − 1], L[i − 1, j]) if i , j > 0 and Xi 6= Yj

(7)

∅ A G G T A C
∅ 0 0 0 0 0 0 0
G 0 0 1 1 1 1 1
C

0 0 1 1 1 1 2

G

0 0 1 2 2 2 2

T

0 0 1 2 3 3 3

G

0 0 1 2 3 3 3

C

0 0 1 2 3 3 4

19 / 59

Longest Common Subsequence (LCS)

Longest Common Subsequence

L[i , j] =


0 if i=0 or j=0

L[i − 1, j − 1] + 1 if i , j > 0 and Xi = Yj

max(L[i , j − 1], L[i − 1, j]) if i , j > 0 and Xi 6= Yj

(7)

∅ A G G T A C
∅ 0 0 0 0 0 0 0
G 0 0 1 1 1 1 1
C 0 0 1 1 1 1 2
G

0 0 1 2 2 2 2

T

0 0 1 2 3 3 3

G

0 0 1 2 3 3 3

C

0 0 1 2 3 3 4

20 / 59

Longest Common Subsequence (LCS)

Longest Common Subsequence

L[i , j] =


0 if i=0 or j=0

L[i − 1, j − 1] + 1 if i , j > 0 and Xi = Yj

max(L[i , j − 1], L[i − 1, j]) if i , j > 0 and Xi 6= Yj

(7)

∅ A G G T A C
∅ 0 0 0 0 0 0 0
G 0 0 1 1 1 1 1
C 0 0 1 1 1 1 2
G 0 0 1 2 2 2 2
T

0 0 1 2 3 3 3

G

0 0 1 2 3 3 3

C

0 0 1 2 3 3 4

21 / 59

Longest Common Subsequence (LCS)

Longest Common Subsequence

L[i , j] =


0 if i=0 or j=0

L[i − 1, j − 1] + 1 if i , j > 0 and Xi = Yj

max(L[i , j − 1], L[i − 1, j]) if i , j > 0 and Xi 6= Yj

(7)

∅ A G G T A C
∅ 0 0 0 0 0 0 0
G 0 0 1 1 1 1 1
C 0 0 1 1 1 1 2
G 0 0 1 2 2 2 2
T 0 0 1 2 3 3 3
G

0 0 1 2 3 3 3

C

0 0 1 2 3 3 4

22 / 59

Longest Common Subsequence (LCS)

Longest Common Subsequence

L[i , j] =


0 if i=0 or j=0

L[i − 1, j − 1] + 1 if i , j > 0 and Xi = Yj

max(L[i , j − 1], L[i − 1, j]) if i , j > 0 and Xi 6= Yj

(7)

∅ A G G T A C
∅ 0 0 0 0 0 0 0
G 0 0 1 1 1 1 1
C 0 0 1 1 1 1 2
G 0 0 1 2 2 2 2
T 0 0 1 2 3 3 3
G 0 0 1 2 3 3 3
C

0 0 1 2 3 3 4

23 / 59

Longest Common Subsequence (LCS)

Longest Common Subsequence

L[i , j] =


0 if i=0 or j=0

L[i − 1, j − 1] + 1 if i , j > 0 and Xi = Yj

max(L[i , j − 1], L[i − 1, j]) if i , j > 0 and Xi 6= Yj

(7)

∅ A G G T A C
∅ 0 0 0 0 0 0 0
G 0 0 1 1 1 1 1
C 0 0 1 1 1 1 2
G 0 0 1 2 2 2 2
T 0 0 1 2 3 3 3
G 0 0 1 2 3 3 3
C 0 0 1 2 3 3 4

24 / 59

Longest Common Subsequence (LCS)

Longest Common Subsequence

L[i , j] =


0 if i=0 or j=0

L[i − 1, j − 1] + 1 if i , j > 0 and Xi = Yj

max(L[i , j − 1], L[i − 1, j]) if i , j > 0 and Xi 6= Yj

(7)

∅ A G G T A C
∅ 0 0 0 0 0 0 0
G 0 0 1 1 1 1 1
C 0 0 1 1 1 1 2
G 0 0 1 2 2 2 2
T 0 0 1 2 3 3 3
G 0 0 1 2 3 3 3
C 0 0 1 2 3 3 4

25 / 59

Longest Common Subsequence (LCS)

Longest Common Subsequence

L[i , j] =


0 if i=0 or j=0

L[i − 1, j − 1] + 1 if i , j > 0 and Xi = Yj

max(L[i , j − 1], L[i − 1, j]) if i , j > 0 and Xi 6= Yj

(7)

∅ A G G T A C
∅ 0 0 0 0 0 0 0
G 0 0 1 1 1 1 1
C 0 0 1 1 1 1 2
G 0 0 1 2 2 2 2
T 0 0 1 2 3 3 3
G 0 0 1 2 3 3 3
C 0 0 1 2 3 3 4

26 / 59

Longest Common Subsequence (LCS)

Longest Common Subsequence

L[i , j] =


0 if i=0 or j=0

L[i − 1, j − 1] + 1 if i , j > 0 and Xi = Yj

max(L[i , j − 1], L[i − 1, j]) if i , j > 0 and Xi 6= Yj

(7)

∅ A G G T A C
∅ 0 0 0 0 0 0 0
G 0 0 1 1 1 1 1
C 0 0 1 1 1 1 2
G 0 0 1 2 2 2 2
T 0 0 1 2 3 3 3
G 0 0 1 2 3 3 3
C 0 0 1 2 3 3 4

27 / 59

Longest Common Subsequence (LCS)

Longest Common Subsequence

L[i , j] =


0 if i=0 or j=0

L[i − 1, j − 1] + 1 if i , j > 0 and Xi = Yj

max(L[i , j − 1], L[i − 1, j]) if i , j > 0 and Xi 6= Yj

(7)

∅ A G G T A C
∅ 0 0 0 0 0 0 0
G 0 0 1 1 1 1 1
C 0 0 1 1 1 1 2
G 0 0 1 2 2 2 2
T 0 0 1 2 3 3 3
G 0 0 1 2 3 3 3
C 0 0 1 2 3 3 4

28 / 59

Longest Common Subsequence (LCS)

Longest Common Subsequence

L[i , j] =


0 if i=0 or j=0

L[i − 1, j − 1] + 1 if i , j > 0 and Xi = Yj

max(L[i , j − 1], L[i − 1, j]) if i , j > 0 and Xi 6= Yj

(7)

∅ A G G T A C
∅ 0 0 0 0 0 0 0
G 0 0 1 1 1 1 1
C 0 0 1 1 1 1 2
G 0 0 1 2 2 2 2
T 0 0 1 2 3 3 3
G 0 0 1 2 3 3 3
C 0 0 1 2 3 3 4

29 / 59

Adapting LCS to Recommender Systems

Users interactions can be interpreted as sequences of interactions

Different transformation functions on the user ratings I (u):

Using the item, i.e., fi : I (u)→ Σ = I, fi (x) = x(i).

Using the value of the interaction, i.e.,
fr : I (u)→ R, fr (x) = x(r).

Using a combination of the item and the interaction value, i.e.,
fir : I (u)→ I ×R, fir (x) = (x(i), x(r)).

We used integers as symbols for the transformations

These transformations generate a pure collaborative filtering
approach but they are easily extensible to use content
information

30 / 59

Adapting LCS to Recommender Systems

Users interactions can be interpreted as sequences of interactions

Different transformation functions on the user ratings I (u):

Using the item, i.e., fi : I (u)→ Σ = I, fi (x) = x(i).

Using the value of the interaction, i.e.,
fr : I (u)→ R, fr (x) = x(r).

Using a combination of the item and the interaction value, i.e.,
fir : I (u)→ I ×R, fir (x) = (x(i), x(r)).

We used integers as symbols for the transformations

These transformations generate a pure collaborative filtering
approach but they are easily extensible to use content
information

31 / 59

Adapting LCS to Recommender Systems

Users interactions can be interpreted as sequences of interactions

Different transformation functions on the user ratings I (u):

Using the item, i.e., fi : I (u)→ Σ = I, fi (x) = x(i).

Using the value of the interaction, i.e.,
fr : I (u)→ R, fr (x) = x(r).

Using a combination of the item and the interaction value, i.e.,
fir : I (u)→ I ×R, fir (x) = (x(i), x(r)).

We used integers as symbols for the transformations

These transformations generate a pure collaborative filtering
approach but they are easily extensible to use content
information

32 / 59

Adapting LCS to Recommender Systems

Users interactions can be interpreted as sequences of interactions

Different transformation functions on the user ratings I (u):

Using the item, i.e., fi : I (u)→ Σ = I, fi (x) = x(i).

Using the value of the interaction, i.e.,
fr : I (u)→ R, fr (x) = x(r).

Using a combination of the item and the interaction value, i.e.,
fir : I (u)→ I ×R, fir (x) = (x(i), x(r)).

We used integers as symbols for the transformations

These transformations generate a pure collaborative filtering
approach but they are easily extensible to use content
information

33 / 59

Adapting LCS to Recommender Systems

Users interactions can be interpreted as sequences of interactions

Different transformation functions on the user ratings I (u):

Using the item, i.e., fi : I (u)→ Σ = I, fi (x) = x(i).

Using the value of the interaction, i.e.,
fr : I (u)→ R, fr (x) = x(r).

Using a combination of the item and the interaction value, i.e.,
fir : I (u)→ I ×R, fir (x) = (x(i), x(r)).

We used integers as symbols for the transformations

These transformations generate a pure collaborative filtering
approach but they are easily extensible to use content
information

34 / 59

Toy example

 % ! &
u 4 5 3 1
v 4 5 4 4

Table: Interaction (ratings) data between two users and five items.

f f (u) f (v)

fi (�, 1, 0, 6) (�, 5, 0, 6)
fr (4,5,3,1) (4,5,4,4)

fir (�4, 15, 03, 61) (�4, 55, 04, 64)

Table: Representation of the interactions for different transformation
functions

35 / 59

Adapting LCS to Recommender Systems

Different possible orderings for the users sequences. As a first
approach, we will order the items by id

Allow differences in users rating by a threshold (δ)

Normalize the value LCS in the [0, 1] interval

simf ,δ
1 = LCS CF(u, v , f , δ) (8)

simf ,δ
2 = (simf ,δ

1)2/(|f (u)| · |f (v)|) (9)

Using the pure item transformation (fi) and a global ordering,
we obtain an equivalence with the binary cosine:

cosb(u, v) = |I (u, v)|/
√

(|f (u)| · |f (v)|) (10)

For more information, see Belloǵın and Sánchez (2017)

36 / 59

Adapting LCS to Recommender Systems

Different possible orderings for the users sequences. As a first
approach, we will order the items by id

Allow differences in users rating by a threshold (δ)

Normalize the value LCS in the [0, 1] interval

simf ,δ
1 = LCS CF(u, v , f , δ) (8)

simf ,δ
2 = (simf ,δ

1)2/(|f (u)| · |f (v)|) (9)

Using the pure item transformation (fi) and a global ordering,
we obtain an equivalence with the binary cosine:

cosb(u, v) = |I (u, v)|/
√

(|f (u)| · |f (v)|) (10)

For more information, see Belloǵın and Sánchez (2017)

37 / 59

Adapting LCS to Recommender Systems

Different possible orderings for the users sequences. As a first
approach, we will order the items by id

Allow differences in users rating by a threshold (δ)

Normalize the value LCS in the [0, 1] interval

simf ,δ
1 = LCS CF(u, v , f , δ) (8)

simf ,δ
2 = (simf ,δ

1)2/(|f (u)| · |f (v)|) (9)

Using the pure item transformation (fi) and a global ordering,
we obtain an equivalence with the binary cosine:

cosb(u, v) = |I (u, v)|/
√

(|f (u)| · |f (v)|) (10)

For more information, see Belloǵın and Sánchez (2017)

38 / 59

Adapting LCS to Recommender Systems

Different possible orderings for the users sequences. As a first
approach, we will order the items by id

Allow differences in users rating by a threshold (δ)

Normalize the value LCS in the [0, 1] interval

simf ,δ
1 = LCS CF(u, v , f , δ) (8)

simf ,δ
2 = (simf ,δ

1)2/(|f (u)| · |f (v)|) (9)

Using the pure item transformation (fi) and a global ordering,
we obtain an equivalence with the binary cosine:

cosb(u, v) = |I (u, v)|/
√

(|f (u)| · |f (v)|) (10)

For more information, see Belloǵın and Sánchez (2017)

39 / 59

Adapting LCS to Recommender Systems

Different possible orderings for the users sequences. As a first
approach, we will order the items by id

Allow differences in users rating by a threshold (δ)

Normalize the value LCS in the [0, 1] interval

simf ,δ
1 = LCS CF(u, v , f , δ) (8)

simf ,δ
2 = (simf ,δ

1)2/(|f (u)| · |f (v)|) (9)

Using the pure item transformation (fi) and a global ordering,
we obtain an equivalence with the binary cosine:

cosb(u, v) = |I (u, v)|/
√

(|f (u)| · |f (v)|) (10)

For more information, see Belloǵın and Sánchez (2017)

40 / 59

Toy example

Movie (id) Director (id) Genres (ids) u1 u2

The Wild Bunch (M1) Sam Peckinpah (D1)
Western (G1)
Robbery (G2)

}
5

Seven Samurais (M2) Akira Kurosawa (D2)
Action (G3)
Drama (G4)
Adventure (G5)

 4 5

The Iron Cross (M3) Sam Peckinpah (D1) War (G6)} 3

Gladiator (M4) Riddley Scott (D3)
Action (G3)
Drama (G4)
Adventure (G5)

 4 2

Alien (M5) Riddley Scott (D3)
Sci-Fi (G7)
Terror (G8)

}
5

The Magnificent Seven (M8) John Sturges (D4)
Western (G1)
Adventure (G5)

}
4

fi : u1 = (1, 2, 3, 4), u2 = (2, 4, 5, 8)

sim1 = 2, sim2 = 0.25

fir : u1 = (15, 24, 33, 44), u2 = (25, 42, 55, 84)

δ = 1, sim1 = 1, sim2 = 1/16
δ = 0, sim1 = 0, sim2 = 0

41 / 59

Toy example

Movie (id) Director (id) Genres (ids) u1 u2

The Wild Bunch (M1) Sam Peckinpah (D1)
Western (G1)
Robbery (G2)

}
5

Seven Samurais (M2) Akira Kurosawa (D2)
Action (G3)
Drama (G4)
Adventure (G5)

 4 5

The Iron Cross (M3) Sam Peckinpah (D1) War (G6)} 3

Gladiator (M4) Riddley Scott (D3)
Action (G3)
Drama (G4)
Adventure (G5)

 4 2

Alien (M5) Riddley Scott (D3)
Sci-Fi (G7)
Terror (G8)

}
5

The Magnificent Seven (M8) John Sturges (D4)
Western (G1)
Adventure (G5)

}
4

fi : u1 = (1, 2, 3, 4), u2 = (2, 4, 5, 8)
sim1 = 2, sim2 = 0.25

fir : u1 = (15, 24, 33, 44), u2 = (25, 42, 55, 84)
δ = 1, sim1 = 1, sim2 = 1/16
δ = 0, sim1 = 0, sim2 = 0

42 / 59

Outline

1 Recommender Systems

2 Sequential similarities

3 Experiments

4 Conclusions and future work

43 / 59

Experiments

Table: Statistics about the datasets used in the experiments.

Dataset users items ratings Density

Lastfm HetRec 1, 892 17, 632 92, 834 0.28%
MovieLens HetRec 2, 113 10, 197 855, 598 3.97%

5-fold cross-validation

Analyze both relevance (Precision, MAP, nDCG and Recall) and
novelty and diversity, cutoff @5

Reported results from RankSys and Mahout frameworks

Different baselines analyzed: Popularity, UB (different
similarities, including JMSD from Bobadilla et al. (2010)), IB
(different similarities), MF (HKV version from Hu et al.
(2008))

44 / 59

Experiments

In general, applying the normalization in LCS brings better
results in terms of relevance

Usually better than other UB approaches (actual baselines to
beat)

Good tradeoff between novelty, diversity, and relevance

Our approach is highly competitive in the Lastfm dataset, being
able to beat all recommenders except for the HKV in terms of
relevance

In Movielens, LCS is better than most baselines, except for the
HKV and two UB approaches

Very different performance between RankSys and Mahout
frameworks

45 / 59

Experiments

In general, applying the normalization in LCS brings better
results in terms of relevance

Usually better than other UB approaches (actual baselines to
beat)

Good tradeoff between novelty, diversity, and relevance

Our approach is highly competitive in the Lastfm dataset, being
able to beat all recommenders except for the HKV in terms of
relevance

In Movielens, LCS is better than most baselines, except for the
HKV and two UB approaches

Very different performance between RankSys and Mahout
frameworks

46 / 59

Experiments

In general, applying the normalization in LCS brings better
results in terms of relevance

Usually better than other UB approaches (actual baselines to
beat)

Good tradeoff between novelty, diversity, and relevance

Our approach is highly competitive in the Lastfm dataset, being
able to beat all recommenders except for the HKV in terms of
relevance

In Movielens, LCS is better than most baselines, except for the
HKV and two UB approaches

Very different performance between RankSys and Mahout
frameworks

47 / 59

Experiments

In general, applying the normalization in LCS brings better
results in terms of relevance

Usually better than other UB approaches (actual baselines to
beat)

Good tradeoff between novelty, diversity, and relevance

Our approach is highly competitive in the Lastfm dataset, being
able to beat all recommenders except for the HKV in terms of
relevance

In Movielens, LCS is better than most baselines, except for the
HKV and two UB approaches

Very different performance between RankSys and Mahout
frameworks

48 / 59

Experiments

In general, applying the normalization in LCS brings better
results in terms of relevance

Usually better than other UB approaches (actual baselines to
beat)

Good tradeoff between novelty, diversity, and relevance

Our approach is highly competitive in the Lastfm dataset, being
able to beat all recommenders except for the HKV in terms of
relevance

In Movielens, LCS is better than most baselines, except for the
HKV and two UB approaches

Very different performance between RankSys and Mahout
frameworks

49 / 59

Experiments

In general, applying the normalization in LCS brings better
results in terms of relevance

Usually better than other UB approaches (actual baselines to
beat)

Good tradeoff between novelty, diversity, and relevance

Our approach is highly competitive in the Lastfm dataset, being
able to beat all recommenders except for the HKV in terms of
relevance

In Movielens, LCS is better than most baselines, except for the
HKV and two UB approaches

Very different performance between RankSys and Mahout
frameworks

50 / 59

Outline

1 Recommender Systems

2 Sequential similarities

3 Experiments

4 Conclusions and future work

51 / 59

Conclusions

We have defined a new UB similarity based on the LCS algorithm

We have shown that the basic approach is equivalent to the
binary cosine similarity metric

Our approach is competitive in two datasets with respect to
other state-of-the-art algorithms in relevance, novelty, and
diversity metrics

Our LCS-based similarity can be easily extended to use
content-based and temporal information allowing us to model
the user profiles better

52 / 59

Conclusions

We have defined a new UB similarity based on the LCS algorithm

We have shown that the basic approach is equivalent to the
binary cosine similarity metric

Our approach is competitive in two datasets with respect to
other state-of-the-art algorithms in relevance, novelty, and
diversity metrics

Our LCS-based similarity can be easily extended to use
content-based and temporal information allowing us to model
the user profiles better

53 / 59

Conclusions

We have defined a new UB similarity based on the LCS algorithm

We have shown that the basic approach is equivalent to the
binary cosine similarity metric

Our approach is competitive in two datasets with respect to
other state-of-the-art algorithms in relevance, novelty, and
diversity metrics

Our LCS-based similarity can be easily extended to use
content-based and temporal information allowing us to model
the user profiles better

54 / 59

Conclusions

We have defined a new UB similarity based on the LCS algorithm

We have shown that the basic approach is equivalent to the
binary cosine similarity metric

Our approach is competitive in two datasets with respect to
other state-of-the-art algorithms in relevance, novelty, and
diversity metrics

Our LCS-based similarity can be easily extended to use
content-based and temporal information allowing us to model
the user profiles better

55 / 59

Future work

The LCS-based similarity may incorporate repetitions in a
natural way

Perform experiments considering both content-based and
temporal information

The LCS algorithm can be also used in evaluation, to assess the
quality of the recommendations when considering the ordering of
the user interactions in the test set

56 / 59

Future work

The LCS-based similarity may incorporate repetitions in a
natural way

Perform experiments considering both content-based and
temporal information

The LCS algorithm can be also used in evaluation, to assess the
quality of the recommendations when considering the ordering of
the user interactions in the test set

57 / 59

Future work

The LCS-based similarity may incorporate repetitions in a
natural way

Perform experiments considering both content-based and
temporal information

The LCS algorithm can be also used in evaluation, to assess the
quality of the recommendations when considering the ordering of
the user interactions in the test set

58 / 59

Applying Subsequence Matching to

Collaborative Filtering

Alejandro Belloǵın Pablo Sánchez

Universidad Autónoma de Madrid
Escuela Politécnica Superior

Departamento de Ingenieŕıa Informática

V Congreso Español de
Recuperación de Información (CERI 2018)

Thank you

59 / 59

Experiments. Lastfm: RankSys

P@5 R@5 MAP@5 nDCG@5

0.00

0.10

0.20

0.30

Performance metrics

M
et

ri
c

va
lu

e

RankSys

EPC EPD ADα-nDCGEILD10*Gini

0.00

0.50

1.00

Non-performance metrics
M

et
ri

c
va

lu
e

RankSys

MF Pop UB1 UB2 UB3 IB1 IB2 LCS1

Figure: Performance results in the Lastfm dataset for RankSys framework.

60 / 59

Experiments. Lastfm: Mahout

P@5 R@5 MAP@5 nDCG@5

0.00

0.05

0.10

0.15

0.20

Performance metrics

Mahout

EPC EPD ADα-nDCGEILD10*Gini

0.00

0.50

1.00

Non-performance metrics

Mahout

MF Pop UB1 UB2 UB3 IB1 IB2 LCS1

Figure: Performance results in the Lastfm dataset for Mahout framework.

61 / 59

Experiments. Movielens: RankSys

P@5 R@5 MAP@5 nDCG@5

0.00

0.10

0.20

0.30

Performance metrics

M
et

ri
c

va
lu

e

RankSys

EPC EPD ADα-nDCGEILD10*Gini

0.00

0.50

1.00

Non-performance metrics
M

et
ri

c
va

lu
e

RankSys

MF Pop UB1 UB2 UB3 IB1 IB2 LCS2

Figure: Performance results in the MovieLens dataset for RankSys
framework.

62 / 59

Experiments. Movielens: Mahout

P@5 R@5 MAP@5 nDCG@5

0.00

0.05

0.10

Performance metrics

Mahout

EPC EPD ADα-nDCGEILD10*Gini

0.00

0.50

1.00

Non-performance metrics

Mahout

Figure: Performance results in the MovieLens dataset for RankSys
framework.

63 / 59

References I

Belloǵın, A. and Sánchez, P. (2017). Collaborative filtering based on
subsequence matching: A new approach. Inf. Sci., 418:432–446.

Bobadilla, J., Serradilla, F., and Bernal, J. (2010). A new
collaborative filtering metric that improves the behavior of
recommender systems. Knowl.-Based Syst., 23(6):520–528.

Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative filtering for
implicit feedback datasets. In Proceedings of the 8th IEEE
International Conference on Data Mining (ICDM 2008), December
15-19, 2008, Pisa, Italy, pages 263–272. IEEE Computer Society.

64 / 59

	Recommender Systems
	Sequential similarities
	Experiments
	Conclusions and future work
	Appendix

