Applying Subsequence Matching to Collaborative Filtering

Alejandro Bellogín Pablo Sánchez

Universidad Autónoma de Madrid Escuela Politécnica Superior Departamento de Ingeniería Informática

V Congreso Español de Recuperación de Información (CERI 2018)

- Recommender Systems
- 2 Sequential similarities

Outline

Recommender Systems

2 Sequential similarities

3 Experiments

< □ > < 큔 > < 클 > < 클 > < 클 > 클 = ∽ Q (~ 3/59

Recommender Systems

• Suggest new items to users based on their tastes and needs

Recommender Systems

- Suggest new items to users based on their tastes and needs
- Different methods to make recommendations (content-based, collaborative filtering, hybrids)

Recommender Systems

- Suggest new items to users based on their tastes and needs
- Different methods to make recommendations (content-based, collaborative filtering, hybrids)
- We will focus on neighborhood based collaborative filtering algorithms

	i_1	<i>i</i> 2	i ₃	i ₄	•••
u_1	-	-	5	3	
<i>u</i> ₂	4	-	4	-	
Из	5	5	-	-	
U ₄	-	2	1	-	
<i>и</i> 5	2	-	-	5	
и ₆	-	1	-	1	
			• • •	• • •	• • •

	i_1	i ₂	i ₃	i ₄	
<i>u</i> ₁	-	-	5	3	
<i>u</i> ₂	4	-	4	-	
Из	5	5	-	-	
U ₄	-	2	1	-	
<i>и</i> 5	2	-	-	5	
и ₆	-	1	-	1	

 Normally the User × Item matrix is very sparse (90%-99% of empty values)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ののの

	<i>i</i> 1	i ₂	i ₃	i ₄	•••
<i>u</i> ₁	-	-	5	3	
<i>u</i> ₂	4	-	4	-	
Из	5	5	-	-	
U ₄	-	2	1	-	
<i>и</i> 5	2	-	-	5	
<i>u</i> ₆	-	1	-	1	

- Normally the User × Item matrix is very sparse (90%-99% of empty values)
- Collaborative filtering try to fill the matrix either with latent factor models or neighborhood approaches

Matrix factorization techniques

$$\min_{p*,q*} \sum_{u,i\in R} (r_{ui} - q_i^T p_u)^2 + \lambda(||q_i||^2 + ||p_u||^2)$$

(1)

A E F A E F

- q_i and p_u are the latent vectors of the user u and the item i
- R denotes all the training samples
- λ is the regularization parameter

Matrix factorization techniques

$$\min_{p*,q*} \sum_{u,i\in R} (r_{ui} - q_i^T p_u)^2 + \lambda(||q_i||^2 + ||p_u||^2)$$

- q_i and p_u are the latent vectors of the user u and the item i
- R denotes all the training samples
- λ is the regularization parameter

Neighborhood approaches $s_{u,i} \propto \sum_{v \in N_i(u)} w_{uv} r_{vi}$ (2)

- r_{vi} is the rating of the neighbour v
- w_{uv} is the similarity between user u and v

(1)

Matrix factorization techniques

$$\min_{p*,q*} \sum_{u,i\in R} (r_{ui} - q_i^T p_u)^2 + \lambda(||q_i||^2 + ||p_u||^2)$$

- q_i and p_u are the latent vectors of the user u and the item i
- R denotes all the training samples
- $\bullet~\lambda$ is the regularization parameter

Neighborhood approaches

$$s_{u,i} \propto \sum_{v \in N_i(u)} w_{uv} r_{vi}$$
 (2)

- r_{vi} is the rating of the neighbour v
- w_{uv} is the similarity between user u and v_{uv}

(1)

Classic similarities

Pearson correlation

$$\mathsf{PC}(u,v) = \frac{\sum_{i \in \mathcal{I}_{uv}} (r_{ui} - \overline{r}_u)(r_{vi} - \overline{r}_v)}{\sqrt{\sum_{i \in \mathcal{I}_{uv}} (r_{ui} - \overline{r}_u)^2 \sum_{i \in \mathcal{I}_{uv}} (r_{vi} - \overline{r}_v)^2}}$$
(3)

Cosine similarity

$$\cos(u, v) = \frac{\sum_{i \in \mathcal{I}_{uv}} r_{ui} r_{vi}}{\sqrt{\sum_{i \in \mathcal{I}_u} r_{ui}^2 \sum_{j \in \mathcal{I}_v} r_{vj}^2}}$$
(4)

Jaccard index

$$\mathsf{Jaccard}(\mathsf{u},\mathsf{v}) = rac{|I_u \cap I_v|}{|I_u \cup I_u|}$$

うへで 13/59

(5)

비로 《로》《로》《팀》《曰》

Outline

Recommender Systems

2 Sequential similarities

3 Experiments

<ロ > < 部 > < 臣 > < 臣 > 王) 의 () 14/59

- Find the longest common subsequence (list of elements not necessary consecutive but maintaining the order) between 2 strings X and Y
- Used in DNA sequencing and file comparison
- Can be resolved applying dynamic programming filling a matrix of size $(|X|+1) \times (|Y|+1)$

- Find the longest common subsequence (list of elements not necessary consecutive but maintaining the order) between 2 strings X and Y
- Used in DNA sequencing and file comparison
- Can be resolved applying dynamic programming filling a matrix of size $(|X|+1) \times (|Y|+1)$

Longest Common Subsequence

$$\mathcal{L}[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ \mathcal{L}[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j \\ \max(\mathcal{L}[i,j-1],\mathcal{L}[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(6)

• The last position in the matrix contains the length of the longest common subsequence

$$\mathcal{L}[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ \mathcal{L}[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j \\ \max(\mathcal{L}[i,j-1],\mathcal{L}[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(7)

Longest Common Subsequence

$$\mathcal{L}[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ \mathcal{L}[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j \\ \max(\mathcal{L}[i,j-1],\mathcal{L}[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(7)

Longest Common Subsequence

$$\mathcal{L}[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ \mathcal{L}[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j \\ \max(\mathcal{L}[i,j-1],\mathcal{L}[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(7)

Longest Common Subsequence

$$\mathcal{L}[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ \mathcal{L}[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j \\ \max(\mathcal{L}[i,j-1],\mathcal{L}[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(7)

$$\mathcal{L}[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ \mathcal{L}[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j \\ \max(\mathcal{L}[i,j-1],\mathcal{L}[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(7)

$$\mathcal{L}[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ \mathcal{L}[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j \\ \max(\mathcal{L}[i,j-1],\mathcal{L}[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(7)

$$\mathcal{L}[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ \mathcal{L}[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j \\ \max(\mathcal{L}[i,j-1],\mathcal{L}[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(7)

$$\mathcal{L}[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ \mathcal{L}[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j \\ \max(\mathcal{L}[i,j-1],\mathcal{L}[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(7)

$$\mathcal{L}[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ \mathcal{L}[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j \\ \max(\mathcal{L}[i,j-1],\mathcal{L}[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(7)

$$\mathcal{L}[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ \mathcal{L}[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j \\ \max(\mathcal{L}[i,j-1],\mathcal{L}[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(7)

$$\mathcal{L}[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ \mathcal{L}[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j \\ \max(\mathcal{L}[i,j-1],\mathcal{L}[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(7)

$$\mathcal{L}[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ \mathcal{L}[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j \\ \max(\mathcal{L}[i,j-1],\mathcal{L}[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(7)

Longest Common Subsequence

$$\mathcal{L}[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ \mathcal{L}[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j \\ \max(\mathcal{L}[i,j-1],\mathcal{L}[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(7)

글 > 그리님

• Users interactions can be interpreted as sequences of interactions

- Users interactions can be interpreted as sequences of interactions
- Different transformation functions on the user ratings I(u):

- Users interactions can be interpreted as sequences of interactions
- Different transformation functions on the user ratings I(u):
 - Using the item, i.e., $f_i: I(u) \to \Sigma = \mathcal{I}, f_i(x) = x(i).$
 - Using the value of the interaction, i.e., $f_r: I(u) \to \mathcal{R}, f_r(x) = x(r).$
 - Using a combination of the item and the interaction value, i.e., $f_{ir}: I(u) \rightarrow \mathcal{I} \times \mathcal{R}, f_{ir}(x) = (x(i), x(r)).$

- Users interactions can be interpreted as sequences of interactions
- Different transformation functions on the user ratings I(u):
 - Using the item, i.e., $f_i: I(u) \to \Sigma = \mathcal{I}, f_i(x) = x(i).$
 - Using the value of the interaction, i.e., $f_r: I(u) \to \mathcal{R}, f_r(x) = x(r).$
 - Using a combination of the item and the interaction value, i.e., $f_{ir}: I(u) \rightarrow \mathcal{I} \times \mathcal{R}, f_{ir}(x) = (x(i), x(r)).$
- We used integers as symbols for the transformations

- Users interactions can be interpreted as sequences of interactions
- Different transformation functions on the user ratings I(u):
 - Using the item, i.e., $f_i: I(u) \to \Sigma = \mathcal{I}, f_i(x) = x(i).$
 - Using the value of the interaction, i.e., $f_r: I(u) \to \mathcal{R}, f_r(x) = x(r).$
 - Using a combination of the item and the interaction value, i.e., $f_{ir}: I(u) \rightarrow \mathcal{I} \times \mathcal{R}, f_{ir}(x) = (x(i), x(r)).$
- We used integers as symbols for the transformations
- These transformations generate a pure collaborative filtering approach but they are easily extensible to use content information

Table: Interaction (ratings) data between two users and five items.

Table: Representation of the interactions for different transformation functions

• Different possible orderings for the users sequences. As a first approach, we will order the items by id

- Different possible orderings for the users sequences. As a first approach, we will order the items by id
- Allow differences in users rating by a threshold (δ)

- Different possible orderings for the users sequences. As a first approach, we will order the items by id
- Allow differences in users rating by a threshold (δ)
- Normalize the value LCS in the [0, 1] interval

S

$$sim_1^{f,\delta} = LCS_CF(u, v, f, \delta)$$

$$sim_2^{f,\delta} = (sim_1^{f,\delta})^2 / (|f(u)| \cdot |f(v)|)$$
(8)
(9)

- Different possible orderings for the users sequences. As a first approach, we will order the items by id
- Allow differences in users rating by a threshold (δ)
- Normalize the value LCS in the [0, 1] interval

S

$$sim_1^{f,\delta} = LCS_CF(u, v, f, \delta)$$

$$sim_2^{f,\delta} = (sim_1^{f,\delta})^2 / (|f(u)| \cdot |f(v)|)$$
(8)
(9)

• Using the pure item transformation (*f_i*) and a global ordering, we obtain an equivalence with the binary cosine:

$$\cos_{b}(u,v) = |I(u,v)| / \sqrt{(|f(u)| \cdot |f(v)|)}$$
(10)

- Different possible orderings for the users sequences. As a first approach, we will order the items by id
- Allow differences in users rating by a threshold (δ)
- Normalize the value LCS in the [0, 1] interval

S

$$sim_1^{f,\delta} = LCS_CF(u, v, f, \delta)$$

$$sim_2^{f,\delta} = (sim_1^{f,\delta})^2 / (|f(u)| \cdot |f(v)|)$$
(8)
(9)

• Using the pure item transformation (*f_i*) and a global ordering, we obtain an equivalence with the binary cosine:

$$cos_b(u, v) = |I(u, v)| / \sqrt{(|f(u)| \cdot |f(v)|)}$$
 (1)

• For more information, see Bellogín and Sánchez (2017)

(日) (周) (日) (日) (日)

Toy example

Movie (id)	Director (id)	Genres (ids)	u_1	<i>u</i> ₂
The Wild Bunch (M1)	Sam Peckinpah (D1)	Western (G1) Robbery (G2)	5	
Seven Samurais (M2)	Akira Kurosawa (D2)	Drama (G4) Adventure (G5)	4	5
The Iron Cross (M3)	Sam Peckinpah (D1)	War (G6)}	3	
Gladiator (M4)	Riddley Scott (D3)	Action (G3) Drama (G4) Adventure (G5)	4	2
Alien (M5)	Riddley Scott (D3)	Sci-Fi (G7)		5
The Magnificent Seven (M8)	John Sturges (D4)	Western (G1) Adventure (G5)		4

• $f_i: u_1 = (1, 2, 3, 4), u_2 = (2, 4, 5, 8)$

• $f_{ir}: u_1 = (15, 24, 33, 44), u_2 = (25, 42, 55, 84)$

Toy example

Movie (id)	Director (id)	Genres (ids)	u_1	<i>u</i> ₂
The Wild Bunch (M1)	Sam Peckinpah (D1)	Western (G1) Robbery (G2)	5	
Seven Samurais (M2)	Akira Kurosawa (D2)	Drama (G4) Adventure (G5)	4	5
The Iron Cross (M3)	Sam Peckinpah (D1)	War (G6)}	3	
Gladiator (M4)	Riddley Scott (D3)	Action (G3) Drama (G4) Adventure (G5)	4	2
Alien (M5)	Riddley Scott (D3)	Sci-Fi (G7) Terror (G8)		5
The Magnificent Seven (M8)	John Sturges (D4)	Western (G1) Adventure (G5)		4

•
$$f_i: u_1 = (1, 2, 3, 4), u_2 = (2, 4, 5, 8)$$

• $sim_1 = 2, sim_2 = 0.25$
• $f_{ir}: u_1 = (15, 24, 33, 44), u_2 = (25, 42, 55, 84)$
• $\delta = 1, sim_1 = 1, sim_2 = 1/16$
• $\delta = 0, sim_1 = 0, sim_2 = 0$

Outline

- Recommender Systems
- 2 Sequential similarities

< □ > < 큔 > < 글 > < 글 > 로 = > 크 ♡ < ⊙ 43 / 59

Table: Statistics	about	the	datasets	used	in	the experiments.
-------------------	-------	-----	----------	------	----	------------------

Dataset	users	items	ratings	Density
Lastfm HetRec	1,892	17,632	92, 834	0.28%
MovieLens HetRec	2,113	10,197	855, 598	3.97%

- 5-fold cross-validation
- Analyze both relevance (Precision, MAP, nDCG and Recall) and novelty and diversity, cutoff @5
- Reported results from RankSys and Mahout frameworks
- Different baselines analyzed: Popularity, UB (different similarities, including JMSD from Bobadilla et al. (2010)), IB (different similarities), MF (HKV version from Hu et al. (2008))

• In general, applying the normalization in LCS brings better results in terms of relevance

Experiments

- In general, applying the normalization in LCS brings better results in terms of relevance
- Usually better than other UB approaches (actual baselines to beat)

Experiments

- In general, applying the normalization in LCS brings better results in terms of relevance
- Usually better than other UB approaches (actual baselines to beat)
- Good tradeoff between novelty, diversity, and relevance

- In general, applying the normalization in LCS brings better results in terms of relevance
- Usually better than other UB approaches (actual baselines to beat)
- Good tradeoff between novelty, diversity, and relevance
- Our approach is highly competitive in the Lastfm dataset, being able to beat all recommenders except for the HKV in terms of relevance

- In general, applying the normalization in LCS brings better results in terms of relevance
- Usually better than other UB approaches (actual baselines to beat)
- Good tradeoff between novelty, diversity, and relevance
- Our approach is highly competitive in the Lastfm dataset, being able to beat all recommenders except for the HKV in terms of relevance
- In Movielens, LCS is better than most baselines, except for the HKV and two UB approaches

- In general, applying the normalization in LCS brings better results in terms of relevance
- Usually better than other UB approaches (actual baselines to beat)
- Good tradeoff between novelty, diversity, and relevance
- Our approach is highly competitive in the Lastfm dataset, being able to beat all recommenders except for the HKV in terms of relevance
- In Movielens, LCS is better than most baselines, except for the HKV and two UB approaches
- Very different performance between RankSys and Mahout frameworks

Outline

- Recommender Systems
- 2 Sequential similarities
- 3 Experiments

Conclusions

• We have defined a new UB similarity based on the LCS algorithm

- We have defined a new UB similarity based on the LCS algorithm
- We have shown that the basic approach is equivalent to the binary cosine similarity metric

- We have defined a new UB similarity based on the LCS algorithm
- We have shown that the basic approach is equivalent to the binary cosine similarity metric
- Our approach is competitive in two datasets with respect to other state-of-the-art algorithms in relevance, novelty, and diversity metrics

- We have defined a new UB similarity based on the LCS algorithm
- We have shown that the basic approach is equivalent to the binary cosine similarity metric
- Our approach is competitive in two datasets with respect to other state-of-the-art algorithms in relevance, novelty, and diversity metrics
- Our LCS-based similarity can be easily extended to use content-based and temporal information allowing us to model the user profiles better

• The LCS-based similarity may incorporate repetitions in a natural way

- The LCS-based similarity may incorporate repetitions in a natural way
- Perform experiments considering both content-based and temporal information

- The LCS-based similarity may incorporate repetitions in a natural way
- Perform experiments considering both content-based and temporal information
- The LCS algorithm can be also used in evaluation, to assess the quality of the recommendations when considering the ordering of the user interactions in the test set

Applying Subsequence Matching to Collaborative Filtering

Alejandro Bellogín Pablo Sánchez

Universidad Autónoma de Madrid Escuela Politécnica Superior Departamento de Ingeniería Informática

V Congreso Español de Recuperación de Información (CERI 2018)

Thank you

(日) (周) (日) (日) (日)

Experiments. Lastfm: RankSys

Figure: Performance results in the Lastfm dataset for RankSys framework.

Experiments. Lastfm: Mahout

Figure: Performance results in the Lastfm dataset for Mahout framework.

Experiments. Movielens: RankSys

Figure: Performance results in the <u>MovieLens dataset</u> for RankSys framework.

Experiments. Movielens: Mahout

Figure: Performance results in the <u>MovieLens dataset</u> for RankSys framework.

- Bellogín, A. and Sánchez, P. (2017). Collaborative filtering based on subsequence matching: A new approach. *Inf. Sci.*, 418:432–446.
 Bobadilla, J., Serradilla, F., and Bernal, J. (2010). A new collaborative filtering metric that improves the behavior of recommender systems. *Knowl.-Based Syst.*, 23(6):520–528.
 Hu, X., Koren, X., and Volinsky, C. (2008). Collaborative filtering for
- Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets. In *Proceedings of the 8th IEEE International Conference on Data Mining (ICDM 2008), December* 15-19, 2008, Pisa, Italy, pages 263–272. IEEE Computer Society.