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Recommender Systems

@ Suggest new items to users based on their tastes and needs

e Different methods to make recommendations (content-based,
collaborative filtering, hybrids)
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@ Suggest new items to users based on their tastes and needs

e Different methods to make recommendations (content-based,
collaborative filtering, hybrids)

@ We will focus on neighborhood based collaborative filtering
algorithms






u - - 5 3
up 4 - 4 -
us 5 5 - -
Uy - 2 1 -
us 2 - - 5
Ug - 1 - 1

@ Normally the User x Item matrix is very sparse
(90%-99% of empty values)
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Collaborative filtering

Lo |k
uq - - 5 3
) 4 - 4 -
us 5 5 - -
Ug - 2 1 -
us 2 - -
Ug - - 1

@ Normally the User x Item matrix is very sparse
(90%-99% of empty values)

@ Collaborative filtering try to fill the matrix either with latent
factor models or neighborhood approaches
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@ g; and p, are the latent vectors of the user u and the item |
@ R denotes all the training samples
@ )\ is the regularization parameter
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Collaborative filtering

Matrix factorization techniques

min >~ (r = & pu)” + Mllaill” + llpull?) ®

u,i€ER

@ g; and p, are the latent vectors of the user u and the item /
@ R denotes all the training samples
@ \ is the regularization parameter

Neighborhood approaches
Sy,i X Z Wuv Fvi (2)

VEN,'(U)

@ r,; is the rating of the neighbour v
@ w,, is the similarity between user v and v
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Collaborative filtering

Matrix factorization techniques

min > (ri — a7 pu)? + A(llaill? + [1pull?) (1)

pP*,q*x
’ u,i€ER

@ g; and p, are the latent vectors of the user u and the item /
@ R denotes all the training samples
@ )\ is the regularization parameter

Neighborhood approaches
Suj X Z | Way |rvi (2)

ve N,'(U)

@ r,; is the rating of the neighbour v
@ w,, is the similarity between user v and v
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PC(u,v) = 2 iez, (Fui —

Fu)(rvi - Tv)
\/Ziezw(rui — 1), Zieluv(rVi P

- — (3)
Cosine similarity
cos(u,v) =

Y iez,, Muilvi

\/ dier, o Zjelv

: 4)

Jaccard(u,v) = ol
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Longest Common Subsequence (LCS)

@ Find the longest common subsequence (list of elements not
necessary consecutive but maintaining the order) between 2
strings X and Y

@ Used in DNA sequencing and file comparison

@ Can be resolved applying dynamic programming filling a matrix
of size (|X|+1) x (]Y]+1)
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Longest Common Subsequence (LCS)

@ Find the longest common subsequence (list of elements not
necessary consecutive but maintaining the order) between 2
strings X and Y

@ Used in DNA sequencing and file comparison

@ Can be resolved applying dynamic programming filling a matrix
of size (|X|+1) x (]Y]+1)

Longest Common Subsequence
0 if i=0 or j=0

Lijl=3Li—1,j—1]+1 if i,j>0and X; = Y; (6)
max(L[i,j — 1], L[i —1,j]) ifi,j > 0and X; #Y;

@ The last position in the matrix contains the length of the longest

common su bseq uence
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0 if i=0 or j=0
Lli—1,j—-1]+1 |f/j>OandX:YJ
max(L[i,j — 1], L[i —1,/]) ifi,j >0and X; #Y;

(7)
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0 if i=0 or j=0
Lli,jl=qL[i—1,j—1]+1 ifi,j>0and X; =Y, (7)
max(L[i,j — 1], L[i = 1,j]) ifi,j >0and X; # Y]
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0 if i=0 or j=0
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0 if i=0 or j=0
Liijl=<¢L[i—1,;—-1+1 |f/j>OandX:YJ (7)

max(L[i,j — 1], L[i —1,j]) ifi,j >0 and X; # Y

P AG G T AC

00 0 0 0 OO

0 01 1 1 11

001 11 1 2
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Longest Common Subsequence (LCS)

Longest Common Subsequence

0 if i=0 or j=0
Llij)=qLli—1j-1]+1 if i,j > 0 and X;
max(L[i,j — 1], L[i — 1,4]) ifi,j > 0and X;
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0 if i=0 or j=0
Lli,jl=<L[i—1,j—1]+1 |f/j>OandX:YJ (7)
max(L[i,j — 1], L[i —1,j]) ifi,j >0 and X; # Y
0 A JGHGHT A K
00 0 0 0 0 O
/o o0 1 1 1 11
C00 11 1 12
00 1 2 2 2
.0 0 1’-3 3
G 0O 1 2 3 3 3
@o o0 1 2 3 3 4
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@ Users interactions can be interpreted as sequences of interactions
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@ Users interactions can be interpreted as sequences of interactions
e Different transformation functions on the user ratings /(u):
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Adapting LCS to Recommender Systems

@ Users interactions can be interpreted as sequences of interactions
e Different transformation functions on the user ratings /(u):
o Using the item, i.e., f;i : I(u) = X =T, fi(x) = x(i).

e Using the value of the interaction, i.e.,
fr: I(u) = R, fr(x) = x(r).

e Using a combination of the item and the interaction value, i.e.,
fir : l(u) = Z x R, fiy(x) = (x(i),x(r)).
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Adapting LCS to Recommender Systems

@ Users interactions can be interpreted as sequences of interactions
e Different transformation functions on the user ratings /(u):
o Using the item, i.e., f;i : I(u) = X =T, fi(x) = x(i).

e Using the value of the interaction, i.e.,
fr: I(u) = R, fr(x) = x(r).

e Using a combination of the item and the interaction value, i.e.,
fir : l(u) = Z x R, fiy(x) = (x(i),x(r)).
@ We used integers as symbols for the transformations

@ These transformations generate a pure collaborative filtering
approach but they are easily extensible to use content
information
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Toy example

X O A OO
ul 4 5 3 1
vH4 5 4 4

Table: Interaction (ratings) data between two users and five items.

f f(u) f(v)

f. (X, A 0, <) (X, O, 4 <)
f, (4,5,31) (4,5,4,4)

f, || (X4, As, 13, O1) (X4, Os, Lg, $a)

Table: Representation of the interactions for different transformation
functions
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o Different possible orderings for the users sequences. As a first
approach, we will order the items by id
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Adapting LCS to Recommender Systems
o Different possible orderings for the users sequences. As a first

approach, we will order the items by id

@ Allow differences in users rating by a threshold (0)
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Adapting LCS to Recommender Systems

o Different possible orderings for the users sequences. As a first
approach, we will order the items by id

@ Allow differences in users rating by a threshold (0)
@ Normalize the value LCS in the [0, 1] interval

sim!® = LCS_CF(u, v, f,0) (8)
simy® = (simp®)?/(|f ()] - [F(v)]) (9)
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Adapting LCS to Recommender Systems

o Different possible orderings for the users sequences. As a first
approach, we will order the items by id

@ Allow differences in users rating by a threshold (0)
@ Normalize the value LCS in the [0, 1] interval

sim!® = LCS_CF(u, v, f,0) (8)
simy® = (simp®)?/(|f ()] - [F(v)]) (9)

@ Using the pure item transformation (f;) and a global ordering,
we obtain an equivalence with the binary cosine:

cosy(u, v) = [(u, v)|/v/(If(u)] - [£(v)]) (10)
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Adapting LCS to Recommender Systems

o Different possible orderings for the users sequences. As a first
approach, we will order the items by id

@ Allow differences in users rating by a threshold (0)

@ Normalize the value LCS in the [0, 1] interval
sim!® = LCS_CF(u, v, f,0) (8)

simy* = (simp®)?/(|f (u)| - | (v)]) (9)

@ Using the pure item transformation (f;) and a global ordering,
we obtain an equivalence with the binary cosine:

cosy(u, v) = [(u, v)|/v/(If(u)] - [£(v)]) (10)

@ For more information, see Bellogin and Sanchez (2017)
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Toy example

Movie (id) Director (id) Genres (ids) U w
. . Western (G1)

The Wild Bunch (M1) Sam Peckinpah (D1) Robbery (G2)} 5
Action (G3)

Seven Samurais (M2) Akira Kurosawa (D2)  Drama (G4) 4 5
Adventure (G5)

The Iron Cross (M3) Sam Peckinpah (D1)  War (G6)} 3
Action (G3)

Gladiator (M4) Riddley Scott (D3) Drama (G4) 4 2
Adventure (G5)

. . Sci-Fi (G7)
Alien (M5) Riddley Scott (D3) Terror (G8)} 5
The Magnificent Seven (M8)  John Sturges (D4) Western (G1) 4

Adventure (G5)

)

] f; | :(1,2,3,4),U2 = (2,4,5,8)

o f, :uy = (15,24,33,44), u, = (25, 42,55, 84)
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Toy example

Movie (id) Director (id) Genres (ids) U w
. . Western (G1)

The Wild Bunch (M1) Sam Peckinpah (D1) Robbery (G2)} 5
Action (G3)

Seven Samurais (M2) Akira Kurosawa (D2)  Drama (G4) 4 5
Adventure (G5)

The Iron Cross (M3) Sam Peckinpah (D1)  War (G6)} 3
Action (G3)

Gladiator (M4) Riddley Scott (D3) Drama (G4) 4 2
Adventure (G5)

. . Sci-Fi (G7)
Alien (M5) Riddley Scott (D3) Terror (G8)} 5
The Magnificent Seven (M8)  John Sturges (D4) 4

Western (G1)
Adventure (G5)

] f; U= (1,2,3,4),U2 = (2,4,5,8)
e sim = 2,simp = 0.25

o f, :uy = (15,24,33,44), u, = (25, 42,55, 84)
e d=1,sim =1,sim =1/16
e 0 =0,sim =0,sim =0
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Experiments

Table: Statistics about the datasets used in the experiments.

Dataset users items ratings Density

Lastfm HetRec 1,892 17,632 92,834 0.28%
MovieLens HetRec 2,113 10,197 855,598 3.97%

@ 5-fold cross-validation

@ Analyze both relevance (Precision, MAP, nDCG and Recall) and
novelty and diversity, cutoff @5

@ Reported results from RankSys and Mahout frameworks

e Different baselines analyzed: Popularity, UB (different
similarities, including JMSD from Bobadilla et al. (2010)), IB
(different similarities), MF (HKV version from Hu et al.
(2008))
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@ In general, applying the normalization in LCS brings better
results in terms of relevance
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Experiments

@ In general, applying the normalization in LCS brings better
results in terms of relevance

@ Usually better than other UB approaches (actual baselines to
beat)

@ Good tradeoff between novelty, diversity, and relevance

@ Our approach is highly competitive in the Lastfm dataset, being
able to beat all recommenders except for the HKV in terms of
relevance

@ In Movielens, LCS is better than most baselines, except for the
HKV and two UB approaches

Very different performance between RankSys and Mahout
frameworks
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@ We have defined a new UB similarity based on the LCS algorithm
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Conclusions

@ We have defined a new UB similarity based on the LCS algorithm

@ We have shown that the basic approach is equivalent to the
binary cosine similarity metric

@ Our approach is competitive in two datasets with respect to
other state-of-the-art algorithms in relevance, novelty, and
diversity metrics
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Conclusions

@ We have defined a new UB similarity based on the LCS algorithm

@ We have shown that the basic approach is equivalent to the
binary cosine similarity metric

@ Our approach is competitive in two datasets with respect to
other state-of-the-art algorithms in relevance, novelty, and
diversity metrics

@ Our LCS-based similarity can be easily extended to use
content-based and temporal information allowing us to model
the user profiles better
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@ The LCS-based similarity may incorporate repetitions in a
natural way
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@ The LCS-based similarity may incorporate repetitions in a
natural way

@ Perform experiments considering both content-based and
temporal information
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Future work

@ The LCS-based similarity may incorporate repetitions in a
natural way

@ Perform experiments considering both content-based and
temporal information

@ The LCS algorithm can be also used in evaluation, to assess the
quality of the recommendations when considering the ordering of
the user interactions in the test set
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Experiments. Lastfm: RankSys

RankSys RankSys
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Figure: Performance results in the Lastfm dataset for RankSys framework.
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Experiments. Lastfm:

Mahout

Mahout
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Figure: Performance results in the Lastfm dataset for Mahout framework.
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Experiments. Movielens: RankSys

RankSys RankSys
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Figure: Performance results in the Movielens dataset for RankSys

framework.
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Experiments. Movielens: Mahout

Mahout Mahout
0.10 L L 1.00 |
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Figure: Performance results in the MovielLens dataset for RankSys

framework.
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