## New approaches for evaluation: correctness and freshness

#### Pablo Sánchez Rus M. Mesas Alejandro Bellogín

Universidad Autónoma de Madrid Escuela Politécnica Superior Departamento de Ingeniería Informática

V Congreso Español de Recuperación de Información (CERI 2018)

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ●□□ ◇◇◇



### 2 Freshness







< □ > < @ > < 필 > < 필 > < 필 > 관] = ∽ Q @ 2/62

### Outline

### Recommender Systems

### 2 Freshness

### 3 Correctness

### Experiments

### 5 Conclusions and future work



• Suggest new items to users based on their tastes and needs



- Suggest new items to users based on their tastes and needs
- Measure the quality of recommendations. How?



- Suggest new items to users based on their tastes and needs
- Measure the quality of recommendations. How?
- Several evaluation dimensions: Error, Ranking, Novelty / Diversity



- Suggest new items to users based on their tastes and needs
- Measure the quality of recommendations. How?
- Several evaluation dimensions: Error, Ranking, Novelty / Diversity
- We will focus on Freshness and Correctness (from Sánchez and Bellogín (2018); Mesas and Bellogín (2017))





•  $R_2 > R_1 > R_3$ 



- Best in Relevance? •  $R_2 > R_1 > R_3$
- Best in Novelty? •  $R_1 > R_3 > R_2$

11 9 9 C



- Best in Relevance? •  $R_2 > R_1 > R_3$
- Best in Novelty? •  $R_1 > R_3 > R_2$
- Best in **Freshness**? •  $R_3 > R_1 > R_2$



- Best in Relevance?
  R<sub>2</sub> > R<sub>1</sub> > R<sub>3</sub>
- Best in Novelty? *R*<sub>1</sub> > *R*<sub>3</sub> > *R*<sub>2</sub>
- Best in Freshness?
   R<sub>3</sub> > R<sub>1</sub> > R<sub>2</sub>
- Best in Cov-Rel Tradeoff?
  - $R_1 > R_3 > R_2$  ??
  - $R_1 > R_2 > R_3$  ??

<sup>12 / 62</sup> 

## Outline

#### 1 Recommender Systems

### 2 Freshness

3 Correctness

### 4 Experiments

5 Conclusions and future work

$$m(R_u \mid \theta) = C \sum_{i_n \in R_u} \operatorname{disc}(n) p(\operatorname{rel} \mid i_n, u) \operatorname{nov}(i_n \mid \theta)$$
(1)

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$m(R_u \mid \theta) = C \sum_{i_n \in R_u} \operatorname{disc}(n) p(\operatorname{rel} \mid i_n, u) \operatorname{nov}(i_n \mid \theta)$$
(1)

- Where:
  - $R_u$  items recommended to user u
  - $\theta$  contextual variable (e.g., the user profile)
  - disc(n) is a discount model (e.g. NDCG)
  - $p(rel \mid i_n, u)$  relevance component
  - $nov(i_n \mid \theta)$  novelty model

$$m(R_u \mid \theta) = C \sum_{i_n \in R_u} \operatorname{disc}(n) p(\operatorname{rel} \mid i_n, u) \operatorname{nov}(i_n \mid \theta)$$
(1)

• With this framework we can derive multiple metrics, however, all of them are *time-agnostic* 

$$m(R_u \mid \theta_t) = C \sum_{i_n \in R_u} \operatorname{disc}(n) p(\operatorname{rel} \mid i_n, u) \boxed{\operatorname{nov}(i_n \mid \theta_t)}$$
(1)

- With this framework we can derive multiple metrics, however, all of them are *time-agnostic*
- We propose to replace the novelty component defining new time-aware novelty models

• Classic metrics do not provide any information about the evolution of the items: we can recommend relevant but well-known (old) items

- Classic metrics do not provide any information about the evolution of the items: we can recommend relevant but well-known (old) items
- Every item in the system can be modeled with a temporal representation:

$$\theta_t = \{\theta_t(i)\} = \{(i, \langle t_1(i), \cdots, t_n(i) \rangle)\}$$
(2)

- Classic metrics do not provide any information about the evolution of the items: we can recommend relevant but well-known (old) items
- Every item in the system can be modeled with a temporal representation:

$$\theta_t = \{\theta_t(i)\} = \{(i, \langle t_1(i), \cdots, t_n(i) \rangle)\}$$
(2)

• Two different sources for the timestamps:

- Classic metrics do not provide any information about the evolution of the items: we can recommend relevant but well-known (old) items
- Every item in the system can be modeled with a temporal representation:

$$\theta_t = \{\theta_t(i)\} = \{(i, \langle t_1(i), \cdots, t_n(i) \rangle)\}$$
(2)

- Two different sources for the timestamps:
  - Metadata information: release date (movies or songs), creation time, etc.

- Classic metrics do not provide any information about the evolution of the items: we can recommend relevant but well-known (old) items
- Every item in the system can be modeled with a temporal representation:

$$\theta_t = \{\theta_t(i)\} = \{(i, \langle t_1(i), \cdots, t_n(i) \rangle)\}$$
(2)

- Two different sources for the timestamps:
  - Metadata information: release date (movies or songs), creation time, etc.
  - Rating history of the items





<ロ > < 部 > < 書 > < 書 > 毛目 = の Q () 23 / 62

• How can we aggregate the temporal representation?

- How can we aggregate the temporal representation?
- We explored four possibilities:

- How can we aggregate the temporal representation?
- We explored four possibilities:
  - Take the first interaction (FIN)
  - Take the last interaction (LIN)
  - Take the average of the ratings times (AIN)
  - Take the median of the ratings times (MIN)

- How can we aggregate the temporal representation?
- We explored four possibilities:
  - Take the first interaction (FIN)
  - Take the last interaction (LIN)
  - Take the average of the ratings times (AIN)
  - Take the median of the ratings times (MIN)
- Each case defines a function  $f(\theta_t(i))$

### Modeling time profiles for items: an example



## Modeling time profiles for items: an example

• Which model represents better the freshness of the items?



▶ < 분 ▶ < 분 ▶ 분 | = ∽ Q (~ 29 / 62

## Outline

1 Recommender Systems

### 2 Freshness







< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

### • Goal: balancing coverage and precision

- Goal: balancing coverage and precision
- Some researchers (Herlocker et al. (2004) Gunawardana and Shani (2015)) alerted this is still an open problem in Recommender Systems evaluation

- Goal: balancing coverage and precision
- Some researchers (Herlocker et al. (2004) Gunawardana and Shani (2015)) alerted this is still an open problem in Recommender Systems evaluation
- Typical situation: recommendations with low confidence should not be presented to the user (coverage is reduced at the expense of (potentially) more relevant recommendations)

### Our proposal: Correctness metrics

Adapted from Question Answering (Peñas and Rodrigo (2011))

### Our proposal: Correctness metrics

- Adapted from Question Answering (Peñas and Rodrigo (2011))
- Each question has several options but only one answer is correct

## Our proposal: Correctness metrics

- Adapted from Question Answering (Peñas and Rodrigo (2011))
- Each question has several options but only one answer is correct
- If an answer is not given, it should not be considered as incorrect (the algorithm *decided not to recommend*)
## Our proposal: Correctness metrics

- Adapted from Question Answering (Peñas and Rodrigo (2011))
- Each question has several options but only one answer is correct
- If an answer is not given, it should not be considered as incorrect (the algorithm *decided not to recommend*)
- Applied to recommenders: if two systems have the same number of relevant items but one has retrieved less items, it should be better than the other one

# Our proposal: Correctness metrics

• Based on users:

User Correctness 
$$= \frac{1}{N} \left( TP(u) + TP(u) \frac{NR(u)}{N} \right)$$
 (3)  
Recall User Correctness  $= \frac{1}{N} \left( TP(u) + \frac{TP(u)}{|T(u)|} NR(u) \right)$  (4)

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

38 / 62

### Our proposal: Correctness metrics

• Based on users:

User Correctness 
$$= \frac{1}{N} \left( TP(u) + TP(u) \frac{NR(u)}{N} \right)$$
 (3)  
Recall User Correctness  $= \frac{1}{N} \left( TP(u) + \frac{TP(u)}{|T(u)|} NR(u) \right)$  (4)

• where

R

- *TP*(*u*): number of relevant items that we are recommending to the user
- *FP*(*u*): number of non-relevant items that we are recommending to the user
- N: cutoff
- NR(u) : N (TP + FP)
- |T(u)|: number of relevant items in the test of user u

## Experiments

Recommender Systems

#### 2 Freshness

#### 3 Correctness





- Are the recommendations obtained by different algorithms temporally novel (fresh)?
- Do the different novelty models produce similar results?

| Algorithm | Ρ             | NDCG          | USC          | FIN           | No re<br>LIN  | levance<br>AIN | MIN           |  |
|-----------|---------------|---------------|--------------|---------------|---------------|----------------|---------------|--|
| Rnd       | 0.0009        | 0.0010        | <b>100.0</b> | 0.5573†       | 0.9834        | 0.6993†        | 0.6711†       |  |
| IdAsc     | 0.0099        | 0.0162        | 100.0‡       | 0.0716        | 0.9991        | 0.3550         | 0.2437        |  |
| IdDec     | 0.0000        | 0.0000        | 100.0†       | <b>0.9995</b> | 0.9995        | <b>0.9995</b>  | <b>0.9995</b> |  |
| Pop       | <b>0.1027</b> | <b>0.1110</b> | 100.0        | 0.0781        | 0.9999‡       | 0.4361         | 0.3772        |  |
| UB        | 0.0498‡       | 0.0618‡       | 17.8         | 0.2431        | 0.9999†       | 0.5835         | 0.5594        |  |
| TD        | 0.0420        | 0.0520        | 17.8         | 0.6108‡       | <b>0.9999</b> | 0.7838‡        | 0.7710‡       |  |
| HKV       | 0.0498†       | 0.0611†       | 17.8         | 0.3068        | 0.9998        | 0.6122         | 0.5885        |  |

| Algorithm | Ρ             | NDCG USC      |              | FIN           | No rel<br>LIN | No relevance<br>LIN AIN |         |  |
|-----------|---------------|---------------|--------------|---------------|---------------|-------------------------|---------|--|
| Rnd       | 0.0009        | 0.0010        | <b>100.0</b> | 0.5573†       | 0.9834        | 0.6993†                 | 0.6711† |  |
| IdAsc     | 0.0099        | 0.0162        | 100.0‡       | 0.0716        | 0.9991        | 0.3550                  | 0.2437  |  |
| IdDec     | 0.0000        | 0.0000        | 100.0†       | <b>0.9995</b> | 0.9995        | <b>0.9995</b>           | 0.9995  |  |
| Pop       | <b>0.1027</b> | <b>0.1110</b> | 100.0        | 0.0781        | 0.9999‡       | 0.4361                  | 0.3772  |  |
| UB        | 0.0498‡       | 0.0618‡       | 17.8         | 0.2431        | 0.9999†       | 0.5835                  | 0.5594  |  |
| TD        | 0.0420        | 0.0520        | 17.8         | 0.6108‡       | 0.9999        | 0.7838‡                 | 0.7710‡ |  |
| HKV       | 0.0498‡       | 0.0611‡       | 17.8         | 0.3068        | 0.9998        | 0.6122                  | 0.5885  |  |

 Relevance metrics (P and NDCG), User Coverage (USC) and Freshness without relevance component (FIN, LIN, AIN, MIN)

| Algorithm | lgorithm P |         | USC    | FIN     | No rel  | relevance<br>AIN MIN |         |  |
|-----------|------------|---------|--------|---------|---------|----------------------|---------|--|
|           |            |         |        | I IIN   |         |                      | IVIIIN  |  |
| Rnd       | 0.0009     | 0.0010  | 100.0  | 0.5573† | 0.9834  | 0.6993†              | 0.6711† |  |
| IdAsc     | 0.0099     | 0.0162  | 100.0‡ | 0.0716  | 0.9991  | 0.3550               | 0.2437  |  |
| IdDec     | 0.0000     | 0.0000  | 100.0† | 0.9995  | 0.9995  | 0.9995               | 0.9995  |  |
| Pop       | 0.1027     | 0.1110  | 100.0  | 0.0781  | 0.9999‡ | 0.4361               | 0.3772  |  |
| UB        | 0.0498‡    | 0.0618‡ | (17.8) | 0.2431  | 0.9999  | 0.5835               | 0.5594  |  |
| TD        | 0.0420     | 0.0520  | 17.8   | 0.6108‡ | 0.9999  | 0.7838‡              | 0.7710‡ |  |
| HKV       | 0.0498†    | 0.0611† | 17.8   | 0.3068  | 0.9998  | 0.6122               | 0.5885  |  |

- Relevance metrics (P and NDCG), User Coverage (USC) and Freshness without relevance component (FIN, LIN, AIN, MIN)
- Very low coverage for personalized recommenders (due to temporal split)

| Algorithm | Р       | NDCG    | USC    | FIN     | No rel<br>LIN | levance<br>AIN | MIN     |
|-----------|---------|---------|--------|---------|---------------|----------------|---------|
| Rnd       | 0.0009  | 0.0010  | 100.0  | 0.5573† | 0.9834        | 0.6993†        | 0.6711† |
| IdAsc     | 0.0099  | 0.0162  | 100.0‡ | 0.0716  | 0.9991        | 0.3550         | 0.2437  |
| IdDec     | 0.0000  | 0.0000  | 100.0+ | 0.9995  | 0.9995        | 0.9995         | 0.9995  |
| Pop       | 0.1027  | 0.1110  | 100.0  | 0.0781  | 0.9999‡       | 0.4361         | 0.3772  |
| UB        | 0.0498‡ | 0.0618‡ | 17.8   | 0.2431  | 0.9999        | 0.5835         | 0.5594  |
| TD        | 0.0420  | 0.0520  | 17.8   | 0.6108  | 0.9999        | 0.7838‡        | 0.7710‡ |
| HKV       | 0.0498† | 0.0611† | 17.8   | 0.3068  | 0.9998        | 0.6122         | 0.5885  |

- Relevance metrics (P and NDCG), User Coverage (USC) and Freshness without relevance component (FIN, LIN, AIN, MIN)
- Very low coverage for personalized recommenders (due to temporal split)
- Data bias: the higher the id, the fresher the item (and the lower the id, the older the item)

| Algorithm                                       | Р                                                                           | NDCG                                                                        | NDCG USC                                                                  |                                                                             | No re<br>LIN                                                         | levance<br>AIN                                                       | MIN                                                                         |
|-------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Rnd<br>IdAsc<br>IdDec<br>Pop<br>UB<br>TD<br>HKV | 0.0009<br>0.0099<br>0.0000<br><b>0.1027</b><br>0.0498‡<br>0.0420<br>0.0498† | 0.0010<br>0.0162<br>0.0000<br><b>0.1110</b><br>0.0618‡<br>0.0520<br>0.0611† | <b>100.0</b><br>100.0‡<br>100.0†<br>100.0<br>17.8<br>17.8<br>17.8<br>17.8 | 0.5573†<br>0.0716<br><b>0.9995</b><br>0.0781<br>0.2431<br>0.6108‡<br>0.3068 | 0.9834<br>0.9991<br>0.9995<br>0.9999‡<br>0.9999†<br>0.9999<br>0.9998 | 0.6993†<br>0.3550<br>0.9995<br>0.4361<br>0.5835<br>0.7838‡<br>0.6122 | 0.6711†<br>0.2437<br><b>0.9995</b><br>0.3772<br>0.5594<br>0.7710‡<br>0.5885 |

- Relevance metrics (P and NDCG), User Coverage (USC) and Freshness without relevance component (FIN, LIN, AIN, MIN)
- Very low coverage for personalized recommenders (due to temporal split)
- Data bias: the higher the id, the fresher the item (and the lower the id, the older the item)
- Popularity bias

## Freshness results: Popularity bias



Figure: Top 10 most popular items in the training set of each dataset: MovieTweetings (left) and MovieLens (right).

| Algorithm | P NE        | DCG USC                                                                    | FIN           | No re<br>LIN | No relevance<br>LIN AIN |         |  |
|-----------|-------------|----------------------------------------------------------------------------|---------------|--------------|-------------------------|---------|--|
| Rnd 0     | 0.0009 0.0  | 0010 100.0   0162 100.0‡   0000 100.0‡   110 100.0   618‡ 17.8   0520 17.8 | 0.5573†       | 0.9834       | 0.6993†                 | 0.6711† |  |
| IdAsc 0   | 0.0099 0.0  |                                                                            | 0.0716        | 0.9991       | 0.3550                  | 0.2437  |  |
| IdDec 0   | 0.0000 0.0  |                                                                            | <b>0.9995</b> | 0.9995       | <b>0.9995</b>           | 0.9995  |  |
| Pop 0     | 0.1027 0.1  |                                                                            | 0.0781        | 0.9999‡      | 0.4361                  | 0.3772  |  |
| UB 0.     | 0.0498‡ 0.0 |                                                                            | 0.2431        | 0.9999†      | 0.5835                  | 0.5594  |  |
| TD 0      | 0.0420 0.0  |                                                                            | 0.6108‡       | 0.9999       | 0.7838‡                 | 0.7710‡ |  |

• Temporal recommenders less competitive in this dataset (no completely realistic timestamps)

| Algorithm                                       | Ρ                                                                           | NDCG                                                                        | NDCG USC                                                          |                                                                             | LIN                                                                         | evance<br>AIN                                                               | MIN                                                                         |
|-------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Rnd<br>IdAsc<br>IdDec<br>Pop<br>UB<br>TD<br>HKV | 0.0009<br>0.0099<br>0.0000<br><b>0.1027</b><br>0.0498‡<br>0.0420<br>0.0498† | 0.0010<br>0.0162<br>0.0000<br><b>0.1110</b><br>0.0618‡<br>0.0520<br>0.0611† | <b>100.0</b><br>100.0‡<br>100.0†<br>100.0<br>17.8<br>17.8<br>17.8 | 0.5573†<br>0.0716<br><b>0.9995</b><br>0.0781<br>0.2431<br>0.6108‡<br>0.3068 | 0.9834<br>0.9991<br>0.9995<br>0.9999‡<br>0.9999†<br><b>0.9999</b><br>0.9998 | 0.6993†<br>0.3550<br><b>0.9995</b><br>0.4361<br>0.5835<br>0.7838‡<br>0.6122 | 0.6711†<br>0.2437<br><b>0.9995</b><br>0.3772<br>0.5594<br>0.7710‡<br>0.5885 |
|                                                 |                                                                             |                                                                             |                                                                   |                                                                             |                                                                             | )                                                                           |                                                                             |

- Temporal recommenders less competitive in this dataset (no completely realistic timestamps)
- LIN not very useful

| Algorithm | P       | NDCC    | 1100        | No rele <u>vance</u> |         |         |         |  |  |  |
|-----------|---------|---------|-------------|----------------------|---------|---------|---------|--|--|--|
| Algorithm | Р       | NDCG    | USC         | FIN                  | LIN     | AIN     | MIN     |  |  |  |
| Rnd       | 0.0009  | 0.0010  | 100.0       | 0.5573†              | 0.9834  | 0.6993† | 0.6711† |  |  |  |
| IdAsc     | 0.0099  | 0.0162  | 100.0       | 0.0716               | 0.9991  | 0.3550  | 0.2437  |  |  |  |
| IdDec     | 0.0000  | 0.0000  | $100.0^{+}$ | 0.9995               | 0.9995  | 0.9995  | 0.9995  |  |  |  |
| Pop       | 0.1027  | 0.1110  | 100.0       | 0.0781               | 0.9999‡ | 0.4361  | 0.3772  |  |  |  |
| UB        | 0.0498‡ | 0.0618‡ | 17.8        | 0.2431               | 0.9999† | 0.5835  | 0.5594  |  |  |  |
| TD        | 0.0420  | 0.0520  | 17.8        | 0.6108               | 0.9999  | 0.7838‡ | 0.7710‡ |  |  |  |
| HKV       | 0.0498† | 0.0611† | 17.8        | 0.3068               | 0.5885  |         |         |  |  |  |
|           |         |         |             |                      |         |         |         |  |  |  |

- Temporal recommenders less competitive in this dataset (no completely realistic timestamps)
- LIN not very useful
- AIN and MIN are the best metrics to analyze the behavior in terms of temporal novelty

# • Can we find a coverage-relevance tradeoff?

• How do correctness metrics compare against other aggregation metrics (F, G)?

| $\sigma_{\tau}$ | Ρ     | USC   | ISC  | $F_1$ | $F_2$ | F <sub>0.5</sub> | $G_{1,1}$ | G <sub>1,2</sub> | $G_{2,1}$ | UC    | RUC   | IC    | RIC   |
|-----------------|-------|-------|------|-------|-------|------------------|-----------|------------------|-----------|-------|-------|-------|-------|
| -               | 0.093 | 100.0 | 22.7 | 0.170 | 0.338 | 0.113            | 0.304     | 0.453            | 0.205     | 0.093 | 0.093 | 0.001 | 0.009 |
| 0.82            | 0.326 | 28.2  | 9.1  | 0.303 | 0.290 | 0.316            | 0.303     | 0.296            | 0.311     | 0.100 | 0.094 | 0.001 | 0.006 |
| 0.84            | 0.283 | 59.0  | 15.1 | 0.382 | 0.484 | 0.316            | 0.408     | 0.462            | 0.361     | 0.174 | 0.170 | 0.002 | 0.011 |
| 0.86            | 0.214 | 80.9  | 19.6 | 0.338 | 0.520 | 0.251            | 0.416     | 0.519            | 0.333     | 0.177 | 0.176 | 0.002 | 0.012 |
| 0.88            | 0.181 | 95.6  | 22.2 | 0.304 | 0.514 | 0.216            | 0.415     | 0.548            | 0.315     | 0.176 | 0.176 | 0.002 | 0.013 |
| 0.90            | 0.165 | 99.5  | 24.8 | 0.283 | 0.495 | 0.198            | 0.405     | 0.546            | 0.300     | 0.165 | 0.165 | 0.002 | 0.013 |
| 0.92            | 0.156 | 100.0 | 26.0 | 0.269 | 0.480 | 0.187            | 0.395     | 0.538            | 0.289     | 0.156 | 0.156 | 0.002 | 0.012 |
| 0.94            | 0.145 | 100.0 | 27.3 | 0.254 | 0.459 | 0.175            | 0.381     | 0.526            | 0.276     | 0.145 | 0.145 | 0.002 | 0.011 |
| 0.96            | 0.139 | 100.0 | 28.2 | 0.245 | 0.447 | 0.168            | 0.373     | 0.518            | 0.269     | 0.139 | 0.139 | 0.002 | 0.011 |
| 0.98            | 0.133 | 100.0 | 28.6 | 0.235 | 0.435 | 0.161            | 0.365     | 0.511            | 0.261     | 0.133 | 0.133 | 0.002 | 0.011 |

| $\sigma_{\tau}$ | Ρ     | USC   | ISC  | $F_1$ | $F_2$ | F <sub>0.5</sub> | $G_{1,1}$ | G <sub>1,2</sub> | $G_{2,1}$ | UC    | RUC   | IC    | RIC   |
|-----------------|-------|-------|------|-------|-------|------------------|-----------|------------------|-----------|-------|-------|-------|-------|
| - (             | 0.093 | 100.0 | 22.7 | 0.170 | 0.338 | 0.113            | 0.304     | 0.453            | 0.205     | 0.093 | 0.093 | 0.001 | 0.009 |
| 0.82            | 0.326 | 28.2  | 9.1  | 0.303 | 0.290 | 0.316            | 0.303     | 0.296            | 0.311     | 0.100 | 0.094 | 0.001 | 0.006 |
| 0.84            | 0.283 | 59.0  | 15.1 | 0.382 | 0.484 | 0.316            | 0.408     | 0.462            | 0.361     | 0.174 | 0.170 | 0.002 | 0.011 |
| 0.86            | 0.214 | 80.9  | 19.6 | 0.338 | 0.520 | 0.251            | 0.416     | 0.519            | 0.333     | 0.177 | 0.176 | 0.002 | 0.012 |
| 0.88            | 0.181 | 95.6  | 22.2 | 0.304 | 0.514 | 0.216            | 0.415     | 0.548            | 0.315     | 0.176 | 0.176 | 0.002 | 0.013 |
| 0.90            | 0.165 | 99.5  | 24.8 | 0.283 | 0.495 | 0.198            | 0.405     | 0.546            | 0.300     | 0.165 | 0.165 | 0.002 | 0.013 |
| 0.92            | 0.156 | 100.0 | 26.0 | 0.269 | 0.480 | 0.187            | 0.395     | 0.538            | 0.289     | 0.156 | 0.156 | 0.002 | 0.012 |
| 0.94            | 0.145 | 100.0 | 27.3 | 0.254 | 0.459 | 0.175            | 0.381     | 0.526            | 0.276     | 0.145 | 0.145 | 0.002 | 0.011 |
| 0.96            | 0.139 | 100.0 | 28.2 | 0.245 | 0.447 | 0.168            | 0.373     | 0.518            | 0.269     | 0.139 | 0.139 | 0.002 | 0.011 |
| 0.98            | 0.133 | 100.0 | 28.6 | 0.235 | 0.435 | 0.161            | 0.365     | 0.511            | 0.261     | 0.133 | 0.133 | 0.002 | 0.011 |

• Not obvious tradeoff between coverage (USC) and precision (P)

| $\sigma_{\tau}$ | Ρ     | USC   | ISC  | $F_1$ | $F_2$ | F <sub>0.5</sub> | $G_{1,1}$ | G <sub>1,2</sub> | G <sub>2,1</sub> | UC    | RUC   | IC    | RIC   |
|-----------------|-------|-------|------|-------|-------|------------------|-----------|------------------|------------------|-------|-------|-------|-------|
| _               | 0.093 | 100.0 | 22.7 | 0.170 | 0.338 | 0.113            | 0.304     | 0.453            | 0.205            | 0.093 | 0.093 | 0.001 | 0.009 |
| 0.82            | 0.326 | 28.2  | 9.1  | 0.303 | 0.290 | 0.316            | 0.303     | 0.296            | 0.311            | 0.100 | 0.094 | 0.001 | 0.006 |
| 0.84            | 0.283 | 59.0  | 15.1 | 0.382 | 0.484 | 0.316            | 0.408     | 0.462            | 0.361            | 0.174 | 0.170 | 0.002 | 0.011 |
| 0.86            | 0.214 | 80.9  | 19.6 | 0.338 | 0.520 | 0.251            | 0.416     | 0.519            | 0.333            | 0.177 | 0.176 | 0.002 | 0.012 |
| 0.88            | 0.181 | 95.6  | 22.2 | 0.304 | 0.514 | 0.216            | 0.415     | 0.548            | 0.315            | 0.176 | 0.176 | 0.002 | 0.013 |
| 0.90            | 0.165 | 99.5  | 24.8 | 0.283 | 0.495 | 0.198            | 0.405     | 0.546            | 0.300            | 0.165 | 0.165 | 0.002 | 0.013 |
| 0.92            | 0.156 | 100.0 | 26.0 | 0.269 | 0.480 | 0.187            | 0.395     | 0.538            | 0.289            | 0.156 | 0.156 | 0.002 | 0.012 |
| 0.94            | 0.145 | 100.0 | 27.3 | 0.254 | 0.459 | 0.175            | 0.381     | 0.526            | 0.276            | 0.145 | 0.145 | 0.002 | 0.011 |
| 0.96            | 0.139 | 100.0 | 28.2 | 0.245 | 0.447 | 0.168            | 0.373     | 0.518            | 0.269            | 0.139 | 0.139 | 0.002 | 0.011 |
| 0.98            | 0.133 | 100.0 | 28.6 | 0.235 | 0.435 | 0.161            | 0.365     | 0.511            | 0.261            | 0.133 | 0.133 | 0.002 | 0.011 |

- Not obvious tradeoff between coverage (USC) and precision (P)
- $F_1$  and  $G_{2,1}$  are too sensitive to the precision value ( $\sigma_{\tau} = 0.84$ )

|   | $\sigma_{\tau}$ | Ρ     | USC   | ISC  | $F_1$ | $F_2$ | F <sub>0.5</sub> | $G_{1,1}$ | G <sub>1,2</sub> | $G_{2,1}$ | UC    | RUC   | IC    | RIC   |
|---|-----------------|-------|-------|------|-------|-------|------------------|-----------|------------------|-----------|-------|-------|-------|-------|
| ſ | _               | 0.093 | 100.0 | 22.7 | 0.170 | 0.338 | 0.113            | 0.304     | 0.453            | 0.205     | 0.093 | 0.093 | 0.001 | 0.009 |
| l | 0.82            | 0.326 | 28.2  | 9.1  | 0.303 | 0.290 | 0.316            | 0.303     | 0.296            | 0.311     | 0.100 | 0.094 | 0.001 | 0.006 |
|   | 0.84            | 0.283 | 59.0  | 15.1 | 0.382 | 0.484 | 0.316            | 0.408     | 0.462            | 0.361     | 0.174 | 0.170 | 0.002 | 0.011 |
| C | 0.86            | 0.214 | 80.9  | 19.6 | 0.338 | 0.520 | 0.251            | 0.416     | 0.519            | 0.333     | 0.177 | 0.176 | 0.002 | 0.012 |
|   | 0.88            | 0.181 | 95.6  | 22.2 | 0.304 | 0.514 | 0.216            | 0.415     | 0.548            | 0.315     | 0.176 | 0.176 | 0.002 | 0.013 |
|   | 0.90            | 0.165 | 99.5  | 24.8 | 0.283 | 0.495 | 0.198            | 0.405     | 0.546            | 0.300     | 0.165 | 0.165 | 0.002 | 0.013 |
|   | 0.92            | 0.156 | 100.0 | 26.0 | 0.269 | 0.480 | 0.187            | 0.395     | 0.538            | 0.289     | 0.156 | 0.156 | 0.002 | 0.012 |
|   | 0.94            | 0.145 | 100.0 | 27.3 | 0.254 | 0.459 | 0.175            | 0.381     | 0.526            | 0.276     | 0.145 | 0.145 | 0.002 | 0.011 |
|   | 0.96            | 0.139 | 100.0 | 28.2 | 0.245 | 0.447 | 0.168            | 0.373     | 0.518            | 0.269     | 0.139 | 0.139 | 0.002 | 0.011 |
|   | 0.98            | 0.133 | 100.0 | 28.6 | 0.235 | 0.435 | 0.161            | 0.365     | 0.511            | 0.261     | 0.133 | 0.133 | 0.002 | 0.011 |

- Not obvious tradeoff between coverage (USC) and precision (P)
- $F_1$  and  $G_{2,1}$  are too sensitive to the precision value ( $\sigma_{\tau} = 0.84$ )
- Best one according to UC:  $\sigma_{\tau} = 0.86$

| $\sigma_{\tau}$ | Ρ     | USC   | ISC  | $F_1$ | $F_2$ | F <sub>0.5</sub> | $G_{1,1}$ | G <sub>1,2</sub> | $G_{2,1}$ | UC    | RUC   | IC    | RIC   |
|-----------------|-------|-------|------|-------|-------|------------------|-----------|------------------|-----------|-------|-------|-------|-------|
| _               | 0.093 | 100.0 | 22.7 | 0.170 | 0.338 | 0.113            | 0.304     | 0.453            | 0.205     | 0.093 | 0.093 | 0.001 | 0.009 |
| 0.82            | 0.326 | 28.2  | 9.1  | 0.303 | 0.290 | 0.316            | 0.303     | 0.296            | 0.311     | 0.100 | 0.094 | 0.001 | 0.006 |
| 0.84            | 0.283 | 59.0  | 15.1 | 0.382 | 0.484 | 0.316            | 0.408     | 0.462            | 0.361     | 0.174 | 0.170 | 0.002 | 0.011 |
| 0.86            | 0.214 | 80.9  | 19.6 | 0.338 | 0.520 | 0.251            | 0.416     | 0.519            | 0.333     | 0.177 | 0.176 | 0.002 | 0.012 |
| 0.88            | 0.181 | 95.6  | 22.2 | 0.304 | 0.514 | 0.216            | 0.415     | 0.548            | 0.315     | 0.176 | 0.176 | 0.002 | 0.013 |
| 0.90            | 0.165 | 99.5  | 24.8 | 0.283 | 0.495 | 0.198            | 0.405     | 0.546            | 0.300     | 0.165 | 0.165 | 0.002 | 0.013 |
| 0.92            | 0.156 | 100.0 | 26.0 | 0.269 | 0.480 | 0.187            | 0.395     | 0.538            | 0.289     | 0.156 | 0.156 | 0.002 | 0.012 |
| 0.94            | 0.145 | 100.0 | 27.3 | 0.254 | 0.459 | 0.175            | 0.381     | 0.526            | 0.276     | 0.145 | 0.145 | 0.002 | 0.011 |
| 0.96            | 0.139 | 100.0 | 28.2 | 0.245 | 0.447 | 0.168            | 0.373     | 0.518            | 0.269     | 0.139 | 0.139 | 0.002 | 0.011 |
| 0.98            | 0.133 | 100.0 | 28.6 | 0.235 | 0.435 | 0.161            | 0.365     | 0.511            | 0.261     | 0.133 | 0.133 | 0.002 | 0.011 |

- Not obvious tradeoff between coverage (USC) and precision (P)
- $F_1$  and  $G_{2,1}$  are too sensitive to the precision value ( $\sigma_{\tau} = 0.84$ )
- Best one according to UC:  $\sigma_{ au} = 0.86$
- However, these values decrease recommendation novelty and diversity

## Outline

- 1 Recommender Systems
- 2 Freshness
- 3 Correctness
- 4 Experiments
- **5** Conclusions and future work

## Conclusions

#### Freshness

- We introduced the temporal dimensions in the definition of a family of novelty models
- The proposed metric works as expected although it can be affected by biases in the data
- For more information, see Sánchez and Bellogín (2018).

## Conclusions

- Freshness
  - We introduced the temporal dimensions in the definition of a family of novelty models
  - The proposed metric works as expected although it can be affected by biases in the data
  - For more information, see Sánchez and Bellogín (2018).
- Correctness
  - We have proposed a set of metrics on the assumption that it is better to avoid a recommendation rather than providing a bad recommendation
  - We have shown that it is not easy to balance precision, coverage, and novelty and diversity
  - For more information, see Mesas and Bellogín (2017)

### Future work

#### Freshness

- Freshness analysis could favor new possibilities to produce time-aware recommendation whenever relevance is not the only important dimension
- These temporal models could also be applied in online recommender systems, such as news recommendation.

### Future work

#### Freshness

- Freshness analysis could favor new possibilities to produce time-aware recommendation whenever relevance is not the only important dimension
- These temporal models could also be applied in online recommender systems, such as news recommendation.

#### Correctness

- Extend correctness to combine other evaluation dimensions (freshness, novelty, and diversity)
- Analyze the bad recommendations that we may provide to the user from a more formal point of view

# New approaches for evaluation: correctness and freshness

#### Pablo Sánchez Rus M. Mesas Alejandro Bellogín

Universidad Autónoma de Madrid Escuela Politécnica Superior Departamento de Ingeniería Informática

V Congreso Español de Recuperación de Información (CERI 2018)

Thank you

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ●□□ ◇◇◇

62 / 62

| Dataset     | Users    | Items   | Ratings      | Density | Scale    | Date range          |
|-------------|----------|---------|--------------|---------|----------|---------------------|
| Ep (2-core) | 22, 556  | 15, 196 | 75, 533      | 0.022%  | [1, 5]   | Jan 2001 - Nov 2013 |
| ML          | 138, 493 | 26, 744 | 20, 000, 263 | 0.540%  | [0.5, 5] | Jan 1995 - Mar 2015 |
| MT (5-core) | 15, 411  | 8, 443  | 518, 558     | 0.398%  | [0, 10]  | Feb 2013 - Apr 2017 |

- MovieTweetings and Movielens20M are from the movie domain
- Epinions dataset contains purchases of different products

| Dataset     | Users    | Items   | Ratings      | Density | Scale    | Date range          |
|-------------|----------|---------|--------------|---------|----------|---------------------|
| Ep (2-core) | 22, 556  | 15, 196 | 75, 533      | 0.022%  | [1, 5]   | Jan 2001 - Nov 2013 |
| ML          | 138, 493 | 26, 744 | 20, 000, 263 | 0.540%  | [0.5, 5] | Jan 1995 - Mar 2015 |
| MT (5-core) | 15, 411  | 8, 443  | 518, 558     | 0.398%  | [0, 10]  | Feb 2013 - Apr 2017 |

- MovieTweetings and Movielens20M are from the movie domain
- Epinions dataset contains purchases of different products

| Dataset     | Users    | Items   | Ratings      | Density | Scale    | Date range          |
|-------------|----------|---------|--------------|---------|----------|---------------------|
| Ep (2-core) | 22, 556  | 15, 196 | 75, 533      | 0.022%  | [1, 5]   | Jan 2001 - Nov 2013 |
| ML          | 138, 493 | 26, 744 | 20, 000, 263 | 0.540%  | [0.5, 5] | Jan 1995 - Mar 2015 |
| MT (5-core) | 15, 411  | 8, 443  | 518, 558     | 0.398%  | [0, 10]  | Feb 2013 - Apr 2017 |

- MovieTweetings and Movielens20M are from the movie domain
- Epinions dataset contains purchases of different products
- All datasets contain timestamps

| Dataset     | Users    | Items   | Ratings      | Density | Scale    | Date range          |
|-------------|----------|---------|--------------|---------|----------|---------------------|
| Ep (2-core) | 22, 556  | 15, 196 | 75, 533      | 0.022%  | [1, 5]   | Jan 2001 - Nov 2013 |
| ML          | 138, 493 | 26, 744 | 20, 000, 263 | 0.540%  | [0.5, 5] | Jan 1995 - Mar 2015 |
| MT (5-core) | 15, 411  | 8, 443  | 518, 558     | 0.398%  | [0, 10]  | Feb 2013 - Apr 2017 |

- MovieTweetings and Movielens20M are from the movie domain
- Epinions dataset contains purchases of different products
- All datasets contain timestamps
- All metrics @5

| Dataset     | Users    | Items   | Ratings      | Density | Scale    | Date range          |
|-------------|----------|---------|--------------|---------|----------|---------------------|
| Ep (2-core) | 22, 556  | 15, 196 | 75, 533      | 0.022%  | [1, 5]   | Jan 2001 - Nov 2013 |
| ML          | 138, 493 | 26, 744 | 20, 000, 263 | 0.540%  | [0.5, 5] | Jan 1995 - Mar 2015 |
| MT (5-core) | 15, 411  | 8, 443  | 518, 558     | 0.398%  | [0, 10]  | Feb 2013 - Apr 2017 |

- MovieTweetings and Movielens20M are from the movie domain
- Epinions dataset contains purchases of different products
- All datasets contain timestamps
- All metrics @5
- Relevance thresholds of 5 for Ep and ML and 9 for MT

- Non-personalized: Rnd, Pop, IdAsc, IdDec
- Personalized: UB, HKV (MF)
- Personalized and time/sequence aware: TD (UB)
- Skylines (perfect recommenders):
  - SkyPerf: returns the test set
  - SkyFresh: optimizes one of the freshness models (LIN)

- Non-personalized: Rnd, Pop, IdAsc, IdDec
- Personalized: UB, HKV (MF)<sup>1</sup>
- Personalized and time/sequence aware: TD (UB)
- Skylines (perfect recommenders):
  - SkyPerf: returns the test set
  - SkyFresh: optimizes one of the freshness models (LIN)

- Non-personalized: Rnd, Pop, IdAsc, IdDec
- Personalized: UB, HKV (MF)
- Personalized and time/sequence aware: TD  $(UB)^1$
- Skylines (perfect recommenders):
  - SkyPerf: returns the test set
  - SkyFresh: optimizes one of the freshness models (LIN)

<sup>&</sup>lt;sup>1</sup>Based on Ding and Li (2005)

## Results: MovieTweetings

| Algorithm | Р       | NDCG    | USC         | No relevance |         |         |         |  |  |
|-----------|---------|---------|-------------|--------------|---------|---------|---------|--|--|
|           |         |         |             | FIIN         | LIN     | AIN     | IVITIN  |  |  |
| Rnd       | 0.0002  | 0.0003  | 100.0       | 0.1693       | 0.8473  | 0.4435  | 0.4086  |  |  |
| IdAsc     | 0.0004  | 0.0003  | 100.0‡      | 0.1729       | 0.8873  | 0.5485  | 0.5938† |  |  |
| IdDec     | 0.0005  | 0.0004  | $100.0^{+}$ | 0.9628       | 0.9800  | 0.9688  | 0.9669  |  |  |
| Рор       | 0.0028  | 0.0023  | 100.0       | 0.1499       | 0.9921  | 0.2534  | 0.2074  |  |  |
| UB        | 0.0104† | 0.0120† | 78.5        | 0.4902†      | 0.9951‡ | 0.5937† | 0.5657  |  |  |
| TD        | 0.0264  | 0.0337  | 78.5        | 0.8487‡      | 0.9988  | 0.9298‡ | 0.9282‡ |  |  |
| HKV       | 0.0150‡ | 0.0190‡ | 78.5        | 0.4131       | 0.9939† | 0.5935  | 0.5621  |  |  |

• Higher coverage in personalized recommenders than before (shorter time-range)

- Item ordering bias (items with higher id are more fresh)
- Temporal recommender competitive when using more realistic timestamps

| Dataset       | Users  | Items | Ratings   | Density | Scale  |
|---------------|--------|-------|-----------|---------|--------|
| Movielens100K | 943    | 1681  | 100,000   | 6.3%    | [1,5]  |
| Jester        | 59,132 | 150   | 1,710,677 | 19.28%  | [0,20] |
| Movielens1M   | 6,040  | 3,883 | 1,000,209 | 4.26%   | [1,5]  |

- Movielens100K and Movielens1M are from the movie domain
- Jester is a jokes dataset
- All metrics @5
Ding, Y. and Li, X. (2005). Time weight collaborative filtering. In *CIKM*, pages 485–492. ACM.

- Gunawardana, A. and Shani, G. (2015). Evaluating recommender systems. In *Recommender Systems Handbook*, pages 265–308. Springer.
- Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. (2004). Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst., 22(1):5–53.
- Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets. In *ICDM*, pages 263–272. IEEE Computer Society.

- Mesas, R. M. and Bellogín, A. (2017). Evaluating decision-aware recommender systems. In Cremonesi, P., Ricci, F., Berkovsky, S., and Tuzhilin, A., editors, *Proceedings of the Eleventh ACM Conference on Recommender Systems, RecSys 2017, Como, Italy, August 27-31, 2017*, pages 74–78. ACM.
- Peñas, A. and Rodrigo, Á. (2011). A simple measure to assess non-response. In Lin, D., Matsumoto, Y., and Mihalcea, R., editors, The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference, 19-24 June, 2011, Portland, Oregon, USA, pages 1415–1424. The Association for Computer Linguistics.

- Sánchez, P. and Bellogín, A. (2018). Time-aware novelty metrics for recommender systems. In Pasi, G., Piwowarski, B., Azzopardi, L., and Hanbury, A., editors, Advances in Information Retrieval - 40th European Conference on IR Research, ECIR 2018, Grenoble, France, March 26-29, 2018, Proceedings, volume 10772 of Lecture Notes in Computer Science, pages 357–370. Springer.
- Vargas, S. and Castells, P. (2011). Rank and relevance in novelty and diversity metrics for recommender systems. In *RecSys*, pages 109–116. ACM.