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Recommender Systems
...

...

...

...

Suggest new items to users based on their tastes and needs

Measure the quality of recommendations. How?

Several evaluation dimensions:
Error, Ranking, Novelty / Diversity

We will focus on Freshness and Correctness (from Sánchez
and Belloǵın (2018); Mesas and Belloǵın (2017))
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7 / 62



Different notions of quality

Coverage
0

50

100

Coverage
0

50

100

Coverage
0

50

100

8 / 62

Best in Relevance?

R2 > R1 > R3
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Preliminaries

Framework proposed in Vargas and Castells (2011)

m(Ru | θ) = C
∑
in∈Ru

disc(n)p(rel | in, u)nov(in | θ) (1)
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Where:
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θ contextual variable (e.g., the user profile)
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Time-Aware Novelty Metrics

Classic metrics do not provide any information about the
evolution of the items: we can recommend relevant but
well-known (old) items

Every item in the system can be modeled with a temporal
representation:

θt = {θt(i)} = {(i , 〈t1(i), · · · , tn(i)〉)} (2)

Two different sources for the timestamps:

Metadata information: release date (movies or songs), creation
time, etc.
Rating history of the items
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Time-Aware Novelty Metrics

...

...
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Modeling time profiles for items

How can we aggregate the temporal representation?

We explored four possibilities:

Take the first interaction (FIN)
Take the last interaction (LIN)
Take the average of the ratings times (AIN)
Take the median of the ratings times (MIN)

Each case defines a function f (θt(i))
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Modeling time profiles for items: an example

Which model represents better the freshness of the items?

...

...
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i2 > i10 > i9 > i1

LIN?

i9 > i1 > i10 > i2

MIN?

i10 > i2 > i9 > i1

AIN?

i9 > i10 > i2 > i1
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Motivation

Goal: balancing coverage and precision

Some researchers (Herlocker et al. (2004) Gunawardana
and Shani (2015)) alerted this is still an open problem in
Recommender Systems evaluation

Typical situation: recommendations with low confidence should
not be presented to the user (coverage is reduced at the expense
of (potentially) more relevant recommendations)
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Our proposal: Correctness metrics

Adapted from Question Answering (Peñas and Rodrigo
(2011))

Each question has several options but only one answer is correct

If an answer is not given, it should not be considered as incorrect
(the algorithm decided not to recommend)

Applied to recommenders: if two systems have the same number
of relevant items but one has retrieved less items, it should be
better than the other one
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Our proposal: Correctness metrics

Based on users:

User Correctness =
1

N

(
TP(u) + TP(u)

NR(u)

N

)
(3)

Recall User Correctness =
1

N

(
TP(u) +

TP(u)

|T (u)|
NR(u)

)
(4)

where

TP(u): number of relevant items that we are recommending to
the user
FP(u): number of non-relevant items that we are
recommending to the user
N: cutoff
NR(u) : N − (TP + FP)
|T (u)|: number of relevant items in the test of user u
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Freshness results

Are the recommendations obtained by
different algorithms temporally novel (fresh)?

Do the different novelty models produce
similar results?
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Freshness results: MovieLens (temporal split)

Algorithm P NDCG USC
No relevance

FIN LIN AIN MIN

Rnd 0.0009 0.0010 100.0 0.5573† 0.9834 0.6993† 0.6711†
IdAsc 0.0099 0.0162 100.0‡ 0.0716 0.9991 0.3550 0.2437
IdDec 0.0000 0.0000 100.0† 0.9995 0.9995 0.9995 0.9995
Pop 0.1027 0.1110 100.0 0.0781 0.9999‡ 0.4361 0.3772
UB 0.0498‡ 0.0618‡ 17.8 0.2431 0.9999† 0.5835 0.5594
TD 0.0420 0.0520 17.8 0.6108‡ 0.9999 0.7838‡ 0.7710‡

HKV 0.0498† 0.0611† 17.8 0.3068 0.9998 0.6122 0.5885

Relevance metrics (P and NDCG), User Coverage (USC) and
Freshness without relevance component (FIN, LIN, AIN, MIN)

Very low coverage for personalized recommenders (due to
temporal split)

Data bias: the higher the id, the fresher the item (and the lower
the id, the older the item)

Popularity bias

Temporal recommenders less competitive in this dataset (no
completely realistic timestamps)

LIN not very useful

AIN and MIN are the best metrics to analyze the behavior in
terms of temporal novelty
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Freshness results: Popularity bias
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Figure: Top 10 most popular items in the training set of each dataset:
MovieTweetings (left) and MovieLens (right).
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Correctness results

Can we find a coverage-relevance tradeoff?

How do correctness metrics compare against
other aggregation metrics (F, G)?
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Correctness results: MovieLens

στ P USC ISC F1 F2 F0.5 G1,1 G1,2 G2,1 UC RUC IC RIC

− 0.093 100.0 22.7 0.170 0.338 0.113 0.304 0.453 0.205 0.093 0.093 0.001 0.009
0.82 0.326 28.2 9.1 0.303 0.290 0.316 0.303 0.296 0.311 0.100 0.094 0.001 0.006
0.84 0.283 59.0 15.1 0.382 0.484 0.316 0.408 0.462 0.361 0.174 0.170 0.002 0.011
0.86 0.214 80.9 19.6 0.338 0.520 0.251 0.416 0.519 0.333 0.177 0.176 0.002 0.012
0.88 0.181 95.6 22.2 0.304 0.514 0.216 0.415 0.548 0.315 0.176 0.176 0.002 0.013
0.90 0.165 99.5 24.8 0.283 0.495 0.198 0.405 0.546 0.300 0.165 0.165 0.002 0.013
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Conclusions

Freshness

We introduced the temporal dimensions in the definition of a
family of novelty models
The proposed metric works as expected although it can be
affected by biases in the data
For more information, see Sánchez and Belloǵın (2018).

Correctness

We have proposed a set of metrics on the assumption that it is
better to avoid a recommendation rather than providing a bad
recommendation
We have shown that it is not easy to balance precision,
coverage, and novelty and diversity
For more information, see Mesas and Belloǵın (2017)
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Future work

Freshness

Freshness analysis could favor new possibilities to produce
time-aware recommendation whenever relevance is not the only
important dimension
These temporal models could also be applied in online
recommender systems, such as news recommendation.

Correctness

Extend correctness to combine other evaluation dimensions
(freshness, novelty, and diversity)
Analyze the bad recommendations that we may provide to the
user from a more formal point of view
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Escuela Politécnica Superior

Departamento de Ingenieŕıa Informática
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Recuperación de Información (CERI 2018)

Thank you

62 / 62



Freshness: Datasets

Dataset Users Items Ratings Density Scale Date range

Ep (2-core) 22, 556 15, 196 75, 533 0.022% [1, 5] Jan 2001 - Nov 2013
ML 138, 493 26, 744 20, 000, 263 0.540% [0.5, 5] Jan 1995 - Mar 2015
MT (5-core) 15, 411 8, 443 518, 558 0.398% [0, 10] Feb 2013 - Apr 2017

MovieTweetings and Movielens20M are from the movie domain

Epinions dataset contains purchases of different products

All datasets contain timestamps

All metrics @5

Relevance thresholds of 5 for Ep and ML and 9 for MT

63 / 62



Freshness: Datasets

Dataset Users Items Ratings Density Scale Date range

Ep (2-core) 22, 556 15, 196 75, 533 0.022% [1, 5] Jan 2001 - Nov 2013
ML 138, 493 26, 744 20, 000, 263 0.540% [0.5, 5] Jan 1995 - Mar 2015
MT (5-core) 15, 411 8, 443 518, 558 0.398% [0, 10] Feb 2013 - Apr 2017

MovieTweetings and Movielens20M are from the movie domain

Epinions dataset contains purchases of different products

All datasets contain timestamps

All metrics @5

Relevance thresholds of 5 for Ep and ML and 9 for MT

64 / 62



Freshness: Datasets

Dataset Users Items Ratings Density Scale Date range

Ep (2-core) 22, 556 15, 196 75, 533 0.022% [1, 5] Jan 2001 - Nov 2013
ML 138, 493 26, 744 20, 000, 263 0.540% [0.5, 5] Jan 1995 - Mar 2015
MT (5-core) 15, 411 8, 443 518, 558 0.398% [0, 10] Feb 2013 - Apr 2017

MovieTweetings and Movielens20M are from the movie domain

Epinions dataset contains purchases of different products

All datasets contain timestamps

All metrics @5

Relevance thresholds of 5 for Ep and ML and 9 for MT

65 / 62



Freshness: Datasets

Dataset Users Items Ratings Density Scale Date range

Ep (2-core) 22, 556 15, 196 75, 533 0.022% [1, 5] Jan 2001 - Nov 2013
ML 138, 493 26, 744 20, 000, 263 0.540% [0.5, 5] Jan 1995 - Mar 2015
MT (5-core) 15, 411 8, 443 518, 558 0.398% [0, 10] Feb 2013 - Apr 2017

MovieTweetings and Movielens20M are from the movie domain

Epinions dataset contains purchases of different products

All datasets contain timestamps

All metrics @5

Relevance thresholds of 5 for Ep and ML and 9 for MT

66 / 62



Freshness: Datasets

Dataset Users Items Ratings Density Scale Date range

Ep (2-core) 22, 556 15, 196 75, 533 0.022% [1, 5] Jan 2001 - Nov 2013
ML 138, 493 26, 744 20, 000, 263 0.540% [0.5, 5] Jan 1995 - Mar 2015
MT (5-core) 15, 411 8, 443 518, 558 0.398% [0, 10] Feb 2013 - Apr 2017

MovieTweetings and Movielens20M are from the movie domain

Epinions dataset contains purchases of different products

All datasets contain timestamps

All metrics @5

Relevance thresholds of 5 for Ep and ML and 9 for MT

67 / 62



Freshness: Recommenders

Non-personalized: Rnd, Pop, IdAsc, IdDec

Personalized: UB, HKV (MF)

Personalized and time/sequence aware: TD (UB)

Skylines (perfect recommenders):

SkyPerf: returns the test set
SkyFresh: optimizes one of the freshness models (LIN)
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Freshness: Recommenders

Non-personalized: Rnd, Pop, IdAsc, IdDec

Personalized: UB, HKV (MF)

Personalized and time/sequence aware: TD (UB)1

Skylines (perfect recommenders):

SkyPerf: returns the test set
SkyFresh: optimizes one of the freshness models (LIN)

1Based on Ding and Li (2005)
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Results: MovieTweetings

Algorithm P NDCG USC
No relevance

FIN LIN AIN MIN

Rnd 0.0002 0.0003 100.0 0.1693 0.8473 0.4435 0.4086
IdAsc 0.0004 0.0003 100.0‡ 0.1729 0.8873 0.5485 0.5938†
IdDec 0.0005 0.0004 100.0† 0.9628 0.9800 0.9688 0.9669
Pop 0.0028 0.0023 100.0 0.1499 0.9921 0.2534 0.2074
UB 0.0104† 0.0120† 78.5 0.4902† 0.9951‡ 0.5937† 0.5657
TD 0.0264 0.0337 78.5 0.8487‡ 0.9988 0.9298‡ 0.9282‡

HKV 0.0150‡ 0.0190‡ 78.5 0.4131 0.9939† 0.5935 0.5621

Higher coverage in personalized recommenders than before
(shorter time-range)

Item ordering bias (items with higher id are more fresh)

Temporal recommender competitive when using more realistic
timestamps
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Correctness: Datasets

Dataset Users Items Ratings Density Scale

Movielens100K 943 1681 100, 000 6.3% [1, 5]
Jester 59, 132 150 1, 710, 677 19.28% [0, 20]
Movielens1M 6, 040 3, 883 1, 000, 209 4.26% [1, 5]

Movielens100K and Movielens1M are from the movie domain

Jester is a jokes dataset

All metrics @5
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