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Preliminaries

▪ Classical nearest neighbourhood-based approach

• Rating aggregation from the k most similar users:

• A similarity function is used to weight the rating and to 
select the closest users

• Different rating normalisations can be applied
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Main idea

▪ How can we incorporate time in kNN 
recommenders?

▪ Several options in the literature:

• Contextual filtering: pre and post [Baltrunas & Amatriain 2009] 

[Adomavicius & Tuzhilin 2015]

• Adaptive heuristics: using a function to penalise older 
preferences
– For rating prediction [Ding & Li 2005]

– For similarity computation [Hermann 2010]

• Selecting k dynamically [Lathia et al 2009]
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Proposal

▪ Reformulate the kNN problem so the temporal 
dimension can be exploited intuitively

• Each neighbour provides a list of suggestions for each 
user

• These suggestions are later combined considering rank 
aggregation techniques from Information Retrieval

• The temporal aspect can be considered at different 
stages

▪ This approach provides an intuitive rationale about 
what is being recommended and why
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Background: Rank aggregation

▪ Each algorithm (judge, e.g., a search engine in IR) 
generates a document ranking

▪ A final ranking has to be returned

▪ The process is usually divided in

• Normalisation: scores or ranks from each judge to a 
document are normalised in a common scale

• Combination: a fused score is computed for every 
document
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kNN as rank aggregation

▪ The kNN problem can be seen as “ask each 
neighbour to provide a list of candidate items”
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Incorporating time in kNN

▪ Each neighbour will only provide items around the 
last item interacted with the target user (in yellow)
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Incorporating time in kNN

▪ Each neighbour will only provide items around the 
last item interacted with the target user

• Most recent m items after the interaction: Forward (F)

• Most recent m items before the interaction: Backward (B)

• A combination: Backward-Forward (BF)

▪ Time is considered twice:

• Involving the target user (last common interaction)

• Exploiting how the neighbour interacted with the items 
(temporal order)
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Experiments

▪ Dataset: Epinions (from [He & McAuley 2016]), very sparse 
(0.004%), unbiased sample

▪ Evaluation methodologies (temporal split)

• CC: same timestamp for everyone (more realistic), 80% 
of data as training

• Fix: last 2 actions of each user (with at least 4 actions) 
are included in the test split
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Experiments

▪ Baselines
• ItemPop
• KNN: kNN for ranking (no normalisation) using Jaccard 

coefficient
• TD: exponential time decay weight
• FMC: factorised Markov chains
• FPMC: factorised personalised Markov chains
• Fossil: factorised sequential prediction with item 

similarity models

▪ The first 3 baselines were implemented in RankSys
▪ We use the implementation provided by the 

authors for the rest
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Results: CC split – Baselines

▪ KNN is one of the best baselines

▪ TD does not improve unless many items are 
considered

▪ Fossil is the best performing one among the 
sequential-based baselines
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Results: CC split – Backward-Forward

▪ BF performs better than F or B alone (not shown)

▪ BF coverage is the same as KNN (same similarity)

▪ Better performance than KNN in all metrics

▪ In this split, BFwCF (where each neighbour is 
weighted by the similarity) outperforms BFuCF
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Conclusions

▪ A new formulation for neighbourhood-based 
recommenders is presented

• Bitbucket repo: PabloSanchezP/bfrecommendation

▪ This formulation allows to integrate the temporal 
information in different parts of the algorithm

▪ Large performance improvements are obtained 
with respect to classical kNN methods and 
sequential-based baselines

• These results depend on the splitting strategy

• Results are more positive for the more realistic strategy 
(CC)

https://bitbucket.org/PabloSanchezP/bfrecommendation
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Future work

▪ Explore more aggregation (normalisation and 
combination) functions

▪ Analyse effect in other datasets

▪ Compare against other baselines (SVD++, BPR, …)

▪ Study sensitivity to the number m of items each 
neighbour includes in the ranking

▪ Explore sequence-aware similarity metrics

• The temporal dimension could be also considered when 
selecting the neigbours

• We are working on applying Longest Common 
Subsequence to recommendation [Bellogín & Sánchez 2017]
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Results: Fix split – Baselines

▪ KNN is one of the best baselines

▪ TD does not improve the performance

▪ ItemPop is the best one when several items are 
considered

▪ Fossil is not the best performing one among the 
sequential-based baselines
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Results: Fix split – Backward-Forward

▪ BF performs better than F or B alone (not shown)

▪ BF coverage is the same as KNN (same similarity)

▪ Better performance than KNN in most metrics for 
BFuCF

▪ In this split, BFuCF outperforms BFwCF (the 
opposite of what we observed in CC)


