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Abstract

Neighbourhood-based techniques, although very popular in recommendation sys-
tems, show different performance results depending on the specific parameters
being used; besides the neighbourhood size, a critical component of these rec-
ommenders is the similarity metric. Therefore, by considering more information
associated to the users – such as taking into account the ordering of the items as
they were consumed or the whole interaction pattern between users and items –
it should be possible to define more complete, and better performing, similarity
metrics for collaborative filtering. In this paper we propose a technique to com-
pare users – also extendable to items –, working with them as sequences instead
of vectors, hence enabling a new perspective to analyse the user behaviour by
finding other users who have similar sequential patterns instead of focusing only
on similar ratings in the items. We also compare our approach with other well-
known techniques, showing comparable or better performance in terms of rating
prediction, ranking evaluation, and novelty and diversity metrics. According to
the results obtained, we believe there is still a lot of room for improvement, due
to its generality and the good performance obtained by this technique.

Keywords: Collaborative Filtering, User Similarity, Longest Common
Subsequence, Interaction pattern

1. Introduction

With the exponential growth of the population that have access to the Internet
in the last years, the recommender systems need to adapt and innovate in the way
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they suggest items to the users. Neighbourhood-based systems continue being a
popular approach due to their simplicity and positive performance. Nevertheless,
most of these approximations work with users as vectors (obtained from the items
they have rated) applying correlations and distances between them such as Pearson
correlation and Cosine similarity; those users with higher correlation values or
lower distances will be used as neighbours during the recommendation process.

As an alternative, we can further analyse the user profiles, studying different
representation models so that novel and more nuanced concepts could be captured
by these representations. In this work, we treat the users as sequences of interac-
tions, allowing us to operate with more information about the user profiles, and
additionally observe the behaviour of the recommender algorithms using different
ways to sort the items and capture interaction patterns. We aim to do this by defin-
ing and testing new similarity measures on top of classical nearest-neighbourhood
recommenders. Then, as the goal is to compare how similar a sequence (a user
or item) is to another, we adapt a well-known algorithm that is typically used to
compute the longest common subsequence (LCS) between character strings.

Hence, in this paper, we present different ways to obtain these sequences from
the users’ interactions, either using their ratings, items and ratings, or only their
items. Besides, as the length of a subsequence between two users is not a bounded
value, we propose a normalisation technique to bound LCS results in [0, 1]. We
have also adapted the LCS algorithm so that not-exact matchings are required
between two user sequences. Therefore, the main contributions of this paper are:

• A new algorithm that can be used as a similarity metric to compare two
users (also applicable to items) of a recommender system, by transforming
them into interaction sequences.

• Different models to represent users as sequences, together with additional
configuration parameters that further generalise the LCS algorithm.

• A thorough comparison between popular algorithms used in collaborative
filtering approaches and our proposal using rating prediction metrics, rank-
ing evaluation techniques, and novelty and diversity metrics in two different
datasets.

This paper is organised as follows: in Section 2 we introduce a more detailed
explanation about neighbourhood-based recommender systems and the standard
LCS algorithm. Section 3 presents our proposal to integrate the computation of
LCS as a similarity metric in Collaborative Filtering. Then, in Section 4 we show
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the procedures followed to evaluate and compare the proposed metric with other
classical similarities used in the literature. Finally, Section 5 presents alternative
studies that work with LCS for recommendation, and in Section 6 we summarise
the main conclusions obtained in this paper and discuss about potential future
work.

2. Background

2.1. Recommender Systems
The aim of Recommender Systems (RS) is to assist users in finding their way

through huge databases and catalogues, by filtering and suggesting relevant items
taking into account the users’ preferences (i.e., tastes, interests, or priorities). Col-
laborative Filtering (CF) systems can be considered as the earliest and most widely
deployed recommendation approach [23], suggesting interesting items to users
based on the preferences from “similar” people [27]. Other types of recommenda-
tion algorithms include content-based systems – that suggest items similar to those
the user preferred or liked in the past and based on content features of the items
in the system [24] –, demographic systems – where users are categorised based
on their demographic attributes [2] –, social filtering systems – exploiting con-
tacts, interactions, and trust between users [18, 31] –, and hybrid recommenders –
where different techniques are combined [7, 13].

Techniques performing CF recommendation are typically classified into two
main categories: model-based and memory-based. Model-based approaches build
statistical models of user/item interaction patterns to provide automatic predic-
tions [23]; memory-based algorithms, on the other hand, make predictions based
on the entire collection of interactions, usually by computing similarities between
users or items and taking those similarities into account when producing the rec-
ommendations [27]. In this paper, we are going to focus on the second type of CF
algorithms, also known as nearest-neighbour recommender systems since they ex-
ploit those similarities to rank the users/items and use the closest ones to generate
recommendations.

More specifically, this is the standard definition for a user-based nearest neigh-
bour algorithm (UB):

r̂ui =

∑
v∈N(u) rviwuv∑
v∈N(u) |wuv|

(1)

where N(u) is the neighbourhood of user u (the most similar users according to
some similarity metric), rvi is the rating given by user v to item i, wuv denotes
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the similarity between u and v, and r̂ui is the predicted rating according to this
formulation. Alternatively, it is possible to predict ratings using an item-based
nearest neighbour formulation (IB):

r̂ui =

∑
j∈N(i) ru jwi j∑
j∈N(i) |wi j|

(2)

It is also possible to incorporate the user or item deviation in the formulation.
These techniques have usually obtained good results when error metrics are used,
however for ranking-based metrics (like precision) its performance decreases. Be-
cause of that, some authors have proposed variations tailored to ranking tasks that
can also be applied to implicit feedback datasets [12, 1], where the main difference
with respect to the previous formulation is that the summation is not normalised:

r̂ui =
∑
v∈U

1v∈NK (u)rviwuv (3)

Note that UB and IB algorithms have two critical parameters: the size of the
neighbourhood being considered and the similarity metric. Similarities are usu-
ally based on distance and correlation metrics [27]. We present here two of the
most popular ones when rating data is available – cosine and Pearson similarities,
although other formulations have also present competitive results [6]:

cos(u, v) =

∑
i∈I(u,v) ruirvi√∑

i∈I(u) r2
ui
∑

i∈I(v) r2
vi

(4)

Pearson(u, v) =

∑
i∈I(u,v) (rui − r̄u)(rvi − r̄v)√∑

i∈I(u,v) (rui − r̄u)2 ∑
i∈I(u,v) (rvi − r̄v)2

(5)

where r̄u denotes the user’s average rating, I(u) represents the items rated by user
u, and I(u, v) = I(u) ∩ I(v) those rated by both users.

2.2. Longest Common Subsequence
The Longest Common Subsequence (LCS) problem arises in a number of ap-

plications, from text editing to molecular sequence comparisons, and has been
extensively studied [3]. It is specifically defined as follows: given a string x over
an alphabet Σ = (σ1, · · · , σs), a subsequence of x is any string w that can be ob-
tained from x deleting zero or more (not necessarily consecutive) symbols. The
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Algorithm 1 Longest Common Subsequence
1: procedure LCS(x, y) . The LCS of x and y
2: L[0 · · ·m, 0 · · · n]← 0
3: for i← 1,m do
4: for j← 1, n do
5: if xi = y j then
6: L[i, j]← L[i − 1, j − 1] + 1 . There is a matching
7: else
8: L[i, j]← max(L[i, j − 1], L[i − 1, j])
9: end if

10: end for
11: end for
12: return L[m, n] . L[i, j] contains the length of an LCS between x1 . . . xi

and i1 . . . y j

13: end procedure

LCS problem for input strings x = x1 · · · xm and y = y1 · · · yn (assuming m ≤ n)
consists of finding a third string w = w1 · · ·wl such that w is a subsequence of x
and also a subsequence of y, and w is of maximum possible length. In general,
such w is not unique.

Computationally, lower bounds for this problem are time Ω(n log n) or linear
time, according to whether the size of Σ is unbounded or bounded [3]. Time Θ(mn)
is achieved by the dynamic programming algorithm described in Algorithm 1,
from [20]. If only the length of an LCS is needed, then this code can be adapted
to use only linear space. The basic observation for this is that the computation of
each row of matrix L only needs the preceding row. Otherwise, if the complete
LCS is required then the whole matrix will be used to produce the desired output
by backtracking.

3. An LCS-based similarity metric for Collaborative Filtering

In this paper, we propose an LCS-based similarity metric, where the compu-
tation of LCS – actually, its length – will be the same as in the literature for string
matching (as described in Section 2.2). Hence, in order to adapt it into the CF do-
main, we need to define how to represent the users or items properly as sequences
(Section 3.1) and, according to that representation, a corresponding function that
identifies when two characters are the same (Section 3.2). Finally, as explained
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in Section 2.1, some CF algorithms might be sensitive to the normalisation of the
similarity measures; hence, we present some alternatives in Section 3.3. In the
rest of the paper, we shall focus on the problem of user similarity, we leave as
future work the computation of item similarities using an analogous development.

3.1. Representing Users as Sequences
As introduced in Section 2.2, the LCS problem is defined upon two sequences

of symbols (strings). Therefore, in order to apply this problem to CF we first need
to define what a symbol is in our context, and how the ’strings’ will be generated.

Let us take users u, v ∈ U, the set of items rated/consumed/bought by one
particular user shall be defined as I(u) = {(i, r) : (u, i, r) | r , ∅} – that is,
those items (and their corresponding interaction values) for which any interaction
(rate, consume, buy, etc.) has been produced by the user u. Hence, to generate a
string/sequence representation of users it makes sense to use the set I(u) of rated
items; nonetheless, there are multiple alternatives to transform I(u) into symbols,
depending on the considered alphabet Σ. We propose the following transforma-
tions:

• Using the item, i.e., fi : I(u)→ Σ = I, fi(x) = x(i).

• Using the value of the interaction, i.e., fr : I(u)→ R, fr(x) = x(r).

• Using a combination of the item and the interaction value, i.e., fir : I(u) →
I × R, fir(x) = (x(i), x(r)).

In practice, if the range of the interactions is bounded (typically for ratings
R = {1, · · · , 5}) and there is a mapping between items and their ids, it is possible
to define these transformations so the output fits in an integer – for instance, in the
third case, we may use the following transformation: fir(x) = f̃ir(x) = x(i) · 10 +

x(r), assuming x(r) < 10.
Note these transformations can also be applied when unbounded interactions

are available in the system (document clicks, listening frequencies of an artist,
page views, etc.) provided a proper transformation reducing the infinity range of
such interactions to a discrete (bounded) domain [10, 28].

Once we have decided the alphabet that will be used when representing the
users, we need to specify the order in which the symbols will be arranged – this
is important since the LCS algorithm is aware of the order of both strings. In this
paper, and as a first approach, we sort each user sequence according to the natural
item ordering (i.e., ordered by item id); which actually corresponds to any other

6



Algorithm 2 Longest Common Subsequence with Rating Data
1: procedure LCS CF(u, v, f , δ) . The LCS of users u and v applying

transformation f
2: (x, y)← ( f (u), f (v)) . String x contains m symbols
3: L[0 · · ·m, 0 · · · n]← 0
4: for i← 1,m do
5: for j← 1, n do
6: if match(xi, y j, δ) then
7: L[i, j]← L[i − 1, j − 1] + 1 . There is a δ-matching
8: else
9: L[i, j]← max(L[i, j − 1], L[i − 1, j])

10: end if
11: end for
12: end for
13: return L[m, n]
14: end procedure

global ordering considered for the whole item collection at the same time, such as
sorting the items according to their popularity, their novelty, or any other permu-
tation (a comparison among these circumstances will be presented in Section 3.4).
Other alternatives we leave as future work include taking into account the times-
tamp when the item was interacted with (in a user basis); although it should be
noted that building time-based sequences of user preferences is not a trivial ques-
tion, mostly because most of the available datasets do not contain meaningful
timestamps (sometimes the timestamp is directly not available, or some of the
profiles are not complete, the users could have most of their ratings in the very
same second, or it could also happen that temporal splits of the datasets leave a
very unbalanced training-test configuration from which it is very difficult to learn
proper patterns [8]).

3.2. Sequence Matching with Rating Data
In the original LCS problem, an exact matching is sought between the two

strings, however, when dealing with user data some level of fuzziness is desired,
since it is assumed that two users do not have to show an identical behaviour to be
considered good predictors of each other. Classical similarity measures (Cosine,
Pearson correlation, etc.) address this issue by considering the distance between
the values provided by each user (see Equations 4 and 5). Because of this, we
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propose a variation on the LCS algorithm to relax the matching condition, in such
a way that a matching threshold δ is used to decide whether two symbols of the
sequence are equivalent – i.e., a matching is found. Algorithm 2 presents this
variation, including a boolean function match(a, b, δ) that outputs True if a and b
have the same value or their difference is lower than δ.

3.3. Similarity Normalisation
The last component of the similarity metric we propose herein deals with

its normalisation. As we described in Section 2.1, the classical formulation of
neighbourhood-based recommenders normalises the scores in such a way that the
range of the similarity metric does not affect the final result (see Equation 1).
However, non-normalised versions (see Equation 3) of these recommenders obtain
better performance values when evaluated on top-N recommendation tasks [12, 1],
and hence, they are being used more frequently nowadays.

At the same time, the LCS algorithm presented before generates a number
ranging from 0 to the length of the alphabet (for instance, for Σ = I the maxi-
mum LCS would be |I|). It might be important – depending on the considered
alternative of the neighbourhood-based recommender – whether the LCS value is
used as such or if it is somehow normalised. Because of this, we propose using
our LCS-based similarity metric with and without normalisation (sim2 and sim1,
respectively). Specifically, we normalise the LCS value between two users (con-
sidering any transformation function f and matching threshold δ) using the length
of the two sequences involved:

sim f ,δ
1 (u, v) = LCS CF(u, v, f , δ) (6)

sim f ,δ
2 (u, v) =

sim f ,δ
1 (u, v)2

| f (u)| · | f (v)|
(7)

In this way, sim f ,δ
1 (u, v) ∈ [0, |Σ|], whereas sim f ,δ

2 (u, v) ∈ [0, 1].

3.4. Toy Example
In this section, we present a small example to show how the different variations

of the LCS-based similarity would be computed. Table 1 presents the interactions
between users and items considered for this example, whereas Table 2 shows the
similarity values in each case, together with the corresponding transformation f
and matching threshold δ.
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u 4 5 3 1
v 4 5 4 4

Table 1: Interaction (ratings) data between two users and five items.

f δ f (u) f (v) sim f ,δ
1 (u, v) sim f ,δ

2 (u, v)
fi 0 (�,1,0,6) (�,5,0,6) 3 0.56

fr
0

(4,5,3,1) (4,5,4,4)
2 0.25

1 3 0.56

fir
0

(�4,15,03,61) (�4,55,04,64)
1 0.06

1 2 0.25

Table 2: Representation and LCS values for different transformation functions and matching
thresholds based on data from Table 1.

The values of sim f ,δ
1 (u, v) from Table 2 are computed using Algorithm 2 (see

Equation 6). When f = fi, the LCS between u and v is (�,0,6), which has a
length of 3, the value of sim f ,δ

1 (u, v); then, the normalised similarity sim f ,δ
2 (u, v) is

computed as in Equation 7, which uses the length of each transformed user (in this
case, | f (u)| = | f (v)| = 4), resulting in a similarity value of 0.5625. It is interesting
to observe that the similarity computed using this transformation is equivalent to
computing the item overlap between the two users, which is the basis for several
metrics such as similarities based on Jaccard or item co-occurrence [1, 21].

From Table 2 we first observe that, for a fixed matching threshold, the repre-
sentation ( f (u) and f (v)) does not change. We also note that each transformation
function f may generate a different representation, which, in any case, will be
treated by the LCS algorithm transparently, as long as such algorithm is able to
deal with the symbols comprising each representation and is capable to decide if
a matching has occurred. Finally, we notice in this example that sim f ,δ

2 (u, v) is
always determined by the value of sim f ,δ

1 (u, v) (for fixed users u, v), this is because
the proposed representation functions do not alter the size of the user vectors;
should we have a function f that depending on the item outputs a different num-
ber of components (e.g., the genres a movie belongs to) then f (u) would change
across representations and the same value of sim f ,δ

1 (u, v) would be normalised to
different values of sim f ,δ

2 (u, v).
Tables 3 and 4 evidence the comment made at the end of Section 3.2: sorting

the items by different criteria has no effect in the LCS computation (as long as this
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f δ f (u) f (v) sim f ,δ
1 (u, v) sim f ,δ

2 (u, v)
fi 0 (�,0,6,1) (�,0,6,5) 3 0.56

fr
0

(4,3,1,5) (4,4,4,5)
2 0.25

1 3 0.56

fir
0

(�4,03,61,15) (�4,04,64,55)
1 0.06

1 2 0.25

Table 3: Representation and LCS values for different transformation functions and matching
thresholds based on data from Table 1. Items ordered by popularity (number of ratings).

f δ f (u) f (v) sim f ,δ
1 (u, v) sim f ,δ

2 (u, v)
fi 0 (1,�,0,6) (5,�,0,6) 3 0.56

fr
0

(5,4,3,1) (5,4,4,4)
2 0.25

1 3 0.56

fir
0

(15,�4,03,61) (55,�4,04,64)
1 0.06

1 2 0.25

Table 4: Representation and LCS values for different transformation functions and matching
thresholds based on data from Table 1. Items ordered by inverse popularity.

sorting is made in the same way for all the items rated by the users, since that is
equivalent to renaming the symbols for each item). We observe that the sequences
built in the three cases (Tables 2, 3, and 4) are different but the similarity value
(the length of the Longest Common Subsequence) is the same. These similarity
metrics with different item orderings, when incorporated into a user-based nearest
neighbour algorithm (Equation 1), produce the same recommendations because
the neighbours found for each user are the same, since the similarity between
users do not depend on how the items are ordered.

4. Empirical Evaluation

We now present several experiments that allow us to analyse the behaviour of
the LCS-based similarity metric under different scenarios (Section 4.2). Prior to
that, in Section 4.1, we introduce the datasets used in our experiments and the
evaluation methodology followed. We then summarise the main results and con-
clusions obtained (Section 4.3) and end this section with a discussion (Section 4.4)
of the obtained results.
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Table 5: Parameters used for the different baselines in each framework. The JMSDSimilarity
is not part of any of the frameworks, but it was implemented on top of them (as explained in
Section 4.1.1).

Framework Recommender class Other classes Parameters

MF
RankSys MFRecommender PLSAFactorizer k = 50; 100 iterations
Mahout SVDRecommender SVDPlusPlusFactorizer k = 50; 100 iterations

UB1

RankSys UserNeighborhoodRecommender TopKUserNeighborhood k ∈ [5, 100]; q = 1;
VectorJaccardUserSimilarity dense = True

Mahout GenericUserBasedRecommender NearestNUserNeighborhood k ∈ [5, 100]
PearsonCorrelationSimilarity

UB2

RankSys UserNeighborhoodRecommender TopKUserNeighborhood k ∈ [5, 100]; q = 1;
VectorCosineUserSimilarity dense = True; α = 0.5

Mahout GenericUserBasedRecommender NearestNUserNeighborhood k ∈ [5, 100]
UncenteredCosineSimilarity

UB3

RankSys UserNeighborhoodRecommender TopKUserNeighborhood k ∈ [5, 100]; q = 1;
JMSDSimilarity*

Mahout GenericUserBasedRecommender NearestNUserNeighborhood k ∈ [5, 100]
JMSDSimilarity*

IB1

RankSys ItemNeighborhoodRecommender TopKItemNeighborhood k ∈ [5, 100]; q = 1;
VectorJaccardItemSimilarity dense = True

Mahout GenericItemBasedRecommender PearsonCorrelationSimilarity

IB2

RankSys ItemNeighborhoodRecommender TopKItemNeighborhood k ∈ [5, 100]; q = 1;
VectorCosineItemSimilarity dense = True; α = 0.5

Mahout GenericItemBasedRecommender UncenteredCosineSimilarity
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4.1. Experimental Setup
4.1.1. Baselines

In this work, since we propose a user-based similarity metric, our main goal
is to compare it against other similarity metrics in a user-based nearest-neighbour
scenario; however, we shall also show the performance of other representative
baselines, such as matrix factorisation, most popular items, and item-based nearest-
neighbour recommenders [23, 27]. To make this comparison easier to reproduce,
we have integrated our similarity metric into two recommendation frameworks
(on top of the similarity interfaces provided by each of them) and used their im-
plementations of user-based nearest-neighbour. Specifically, we have used Ma-
hout1 and RankSys2, where we have also implemented another similarity metric
as baseline, denoted as JMSD [6]:

JMSD(u, v) = Jaccard(u, v) × (1 −MSD(u, v)) =

=
‖I(u) ∩ I(v)‖
‖I(u) ∪ I(v)‖

(
1 −

∑
i∈I(u)∩I(v) (rs

ui − rs
vi)

2

‖I(u) ∩ I(v)‖

)
(8)

where rs corresponds to a normalised rating in the [0, 1] interval.
Interestingly, we have found very different results depending on the framework

being used (something already observed in the literature [29]), and hence, the
results from both frameworks will be reported separately. One possible reason for
this is the fact that RankSys does not normalise the output of the CF algorithm –
as proposed in [12] as an optimisation for ranking-oriented algorithms.

The notation and settings for the different baselines are included in Table 5.

Table 6: Statistics about the datasets used in the experiments.

Dataset #users #items #ratings Density

Lastfm 1, 892 17, 632 92, 834 0.28%
MovieLens 2, 113 10, 197 855, 598 3.97%

4.1.2. Datasets
In the evaluation of the recommendation methods, we have used two pub-

licly available datasets from two different domains: movies (MovieLens-HetRec)

1See https://mahout.apache.org/.
2See http://ranksys.org/.
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and music (Lastfm-HetRec)3. Table 6 shows the basic characteristics about these
datasets. We performed a 5-fold cross-validation evaluation, where 80% of the
data is retained to train the recommenders, and the rest is used for the evaluation.

Furthermore, since the ratings in MovieLens are made on a 5-star scale with
half-star increments (from 0.5 stars to 5.0 stars), every transformation function
will take such rating and multiply it by 10 (instead of what was shown in Sec-
tion 3.1), and then the item id will be multiplied by 100. Prior to this transforma-
tion, for the Lastfm dataset, we transform the frequency numbers to ratings in a
similar way as shown in [10] and [30]. Different from other Lastfm datasets, this
version stores the aggregate frequency of a user towards an item (an artist), and
hence it is not possible to obtain or exploit any temporal information regarding
such interaction, nonetheless this information allows pure collaborative filtering
algorithms – like the one proposed in this paper – to work as usual. It is impor-
tant to note that, if the raw frequencies are being used instead, algorithms where
a Normal distribution is assumed for the ratings are not recommended, but ap-
proaches where a Poisson distribution is exploited are more appropriate, like the
one presented in [16].

4.1.3. Evaluation
We have applied both rating- and ranking-based evaluation metrics; for the

computation of the latter, we followed the methodology called TrainItems in [29],
where every item in the system is considered as a candidate to be part of a user’s
ranking – except those already seen by such user in the training set. We then ap-
plied standard evaluation metrics, either rating-based: mean absolute error (MAE)
and root mean squared error (RMSE) [17]; or ranking-based at different cutoffs:
precision, recall, normalised discounted cumulative gain (nDCG), and mean aver-
age precision (MAP) [4].

We also report alternative evaluation dimensions besides accuracy and preci-
sion, such as novelty and diversity. For this, we computed the following metrics,
all of them available in the RankSys framework and presented in detail in [9, 35],
where the document features correspond to the genres in MovieLens and tags in
Lastfm:

• α-nDCG: a diversity-aware ranking metric where the score of retrieved doc-
uments is penalised if they share features with documents ranked higher in
the list.

3Both datasets are available at http://grouplens.org/datasets/hetrec-2011/.
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• Aggregate diversity (AD): it accounts for the total number of items that the
system recommends.

• EILD (expected intra-list diversity): rank-sensitive and rank-aware expected
intra-list diversity metric.

• EFD (expected free discovery): expected ICF (inverse collection frequency)
of (relevant and seen) recommended items.

• EPC (expected popularity complement): expected number of seen relevant
recommended items not previously seen.

• EPD (expected profile distance): expected distance between the recom-
mended items and the items in the user profile.

• ERR-IA (intent-aware expected reciprocal rank): generalisation of α-nDCG
where the document features are not assumed to be equally probable.

• Gini (or sales diversity in [36]): it takes into account not only whether items
are recommended to someone, but to how many people and how even or
unevenly distributed.

Among these metrics, EFD, EPC, and EPD aims to measure the novelty of
the recommendation list, whereas the rest are diversity-oriented metrics. In the
reported results, the larger these values, the more diversity or novelty is being
measured for that recommender.

4.2. Results
We present now the conducted experimentation, along with the obtained re-

sults, in order to validate our contributions and answer the following research
questions: (i) Which instantiation (combination of transformation, normalisation,
and matching threshold) of a similarity based on the Longest Common Subse-
quence (LCS) algorithm is better aligned with the CF problem? (ii) How does this
similarity perform in terms of prediction accuracy (rating prediction task)? (iii)
How effective is it in terms of precision-based metrics (item ranking task)? And
(iv) what is the impact on beyond-accuracy metrics (diversity and novelty) when
this similarity is used?
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Table 7: Performance (nDCG@5) results in the Lastfm dataset using RankSys framework for
different neighbourhood-based recommendation algorithms. Best value for each k in bold.

Recommender 5 10 20 30 40 50 60 70 80 90 100

fi + 0 + sim1 0.184 0.211 0.220 0.219 0.219 0.217 0.215 0.212 0.211 0.209 0.207
fi + 0 + sim2 0.185 0.212 0.223 0.224 0.224 0.223 0.222 0.220 0.219 0.218 0.217
fir + 0 + sim1 0.164 0.187 0.198 0.199 0.199 0.199 0.198 0.197 0.195 0.193 0.192
fir + 0 + sim2 0.161 0.186 0.200 0.203 0.203 0.203 0.203 0.203 0.202 0.202 0.202

fir + 10 + sim1 0.183 0.205 0.217 0.216 0.217 0.214 0.211 0.209 0.207 0.205 0.204
fir + 10 + sim2 0.184 0.207 0.219 0.221 0.222 0.220 0.220 0.218 0.216 0.215 0.214
fr + 0 + sim1 0.033 0.046 0.060 0.067 0.070 0.074 0.076 0.077 0.078 0.079 0.079
fr + 0 + sim2 0.033 0.046 0.060 0.067 0.071 0.074 0.076 0.077 0.079 0.079 0.080
fr + 10 + sim1 0.030 0.044 0.058 0.065 0.069 0.072 0.073 0.074 0.075 0.076 0.076
fr + 10 + sim2 0.030 0.044 0.058 0.065 0.070 0.072 0.074 0.075 0.076 0.076 0.077

Table 8: Performance (nDCG@5) results in the Lastfm dataset using Mahout framework for dif-
ferent neighbourhood-based recommendation algorithms. Best value for each k in bold.

Recommender 5 10 20 30 40 50 60 70 80 90 100

fi + 0 + sim1 0.156 0.127 0.093 0.074 0.063 0.056 0.048 0.043 0.039 0.035 0.033
fi + 0 + sim2 0.158 0.127 0.094 0.074 0.064 0.056 0.048 0.044 0.039 0.035 0.032
fir + 0 + sim1 0.137 0.107 0.073 0.056 0.046 0.040 0.034 0.030 0.026 0.024 0.021
fir + 0 + sim2 0.138 0.108 0.073 0.056 0.046 0.040 0.034 0.030 0.026 0.023 0.020

fir + 10 + sim1 0.153 0.119 0.086 0.070 0.057 0.049 0.043 0.038 0.035 0.032 0.031
fir + 10 + sim2 0.155 0.122 0.089 0.070 0.057 0.049 0.044 0.039 0.034 0.031 0.030
fr + 0 + sim1 0.033 0.026 0.013 0.007 0.004 0.003 0.002 0.002 0.001 0.001 0.001
fr + 0 + sim2 0.033 0.026 0.014 0.007 0.004 0.003 0.002 0.002 0.001 0.001 0.001
fr + 10 + sim1 0.033 0.028 0.015 0.007 0.004 0.003 0.002 0.002 0.001 0.001 0.001
fr + 10 + sim2 0.032 0.028 0.015 0.007 0.004 0.003 0.002 0.002 0.001 0.001 0.001
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Table 9: Performance (nDCG@5) results in the MovieLens dataset using RankSys framework for
different neighbourhood-based recommendation algorithms. Best value for each k in bold.

Recommender 5 10 20 30 40 50 60 70 80 90 100

fi + 0 + sim1 0.083 0.090 0.112 0.132 0.143 0.152 0.161 0.166 0.169 0.174 0.177
fi + 0 + sim2 0.143 0.164 0.188 0.202 0.210 0.213 0.217 0.218 0.221 0.221 0.221
fir + 0 + sim1 0.099 0.114 0.143 0.162 0.172 0.181 0.185 0.190 0.192 0.194 0.196
fir + 0 + sim2 0.143 0.171 0.194 0.206 0.213 0.217 0.219 0.222 0.223 0.224 0.225

fir + 10 + sim1 0.097 0.107 0.132 0.149 0.161 0.168 0.174 0.181 0.185 0.189 0.191
fir + 10 + sim2 0.146 0.169 0.194 0.207 0.216 0.220 0.224 0.226 0.227 0.229 0.230
fr + 0 + sim1 0.049 0.065 0.085 0.098 0.107 0.114 0.120 0.126 0.132 0.137 0.141
fr + 0 + sim2 0.094 0.114 0.137 0.148 0.155 0.159 0.163 0.165 0.166 0.168 0.169
fr + 10 + sim1 0.069 0.085 0.108 0.119 0.127 0.133 0.138 0.142 0.146 0.149 0.152
fr + 10 + sim2 0.084 0.108 0.128 0.141 0.148 0.154 0.157 0.160 0.164 0.165 0.167

Table 10: Performance (nDCG@5) results in the MovieLens dataset using Mahout framework for
different neighbourhood-based recommendation algorithms. Best value for each k in bold.

Recommender 5 10 20 30 40 50 60 70 80 90 100

fi + 0 + sim1 0.028 0.006 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
fi + 0 + sim2 0.078 0.035 0.013 0.007 0.004 0.003 0.002 0.002 0.002 0.001 0.001
fir + 0 + sim1 0.031 0.015 0.005 0.003 0.001 0.001 0.000 0.000 0.000 0.000 0.000
fir + 0 + sim2 0.086 0.045 0.017 0.009 0.006 0.004 0.003 0.002 0.002 0.001 0.001

fir + 10 + sim1 0.032 0.015 0.005 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000
fir + 10 + sim2 0.087 0.047 0.020 0.011 0.006 0.004 0.004 0.003 0.002 0.002 0.002
fr + 0 + sim1 0.013 0.005 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
fr + 0 + sim2 0.051 0.027 0.010 0.006 0.003 0.002 0.002 0.001 0.001 0.001 0.001
fr + 10 + sim1 0.019 0.004 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000
fr + 10 + sim2 0.049 0.027 0.010 0.006 0.004 0.003 0.003 0.002 0.002 0.002 0.002
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4.2.1. Sensitivity Analysis
In this section, we analyse how the different parameters and configuration set-

tings of the proposed metric affect its performance. For this, we shall compare the
performance of a user-based nearest-neighbour recommender using some instan-
tiations of the LCS-based similarity metric, where we test the three transformation
functions f presented in Section 3.1, two values for the matching threshold δ (ei-
ther 0 – exact matching – or 10 – allowing matching ratings within the range of
one integer), and the normalised and raw values of the LCS algorithm (sim2 and
sim1 respectively).

Tables 7 and 8 show the performance evolution when more neighbours are
considered in RankSys and Mahout frameworks, respectively, in the Lastfm dataset.
First we note that, in both cases, fr as transformation function obtains the worst
performance. This was expected, since defining two users as similar only based
on how many times they used the same rating value (not taking into account the
actual item such rating was applied to) does not make too much sense. However,
taking into account the results that will be presented in the next section, it is in-
teresting to observe that, in Mahout, this simple mechanism performs better than
the item-based recommenders and UB2 (user-based kNN with Cosine similarity),
and in some cases (smaller k’s) it also outperforms UB1.

The best performing transformation function in Lastfm, for both frameworks,
is fi (although fir with δ = 10 performs at the same level at some neighbour-
hood sizes); besides, it outperforms any other alternative in Mahout, whereas in
RankSys it obtains a similar (sometimes better) performance to that of the user-
based baselines.

On the other hand, for the MovieLens dataset (Tables 9 and 10) the best per-
forming transformation function is fir, and this result is consistent for both frame-
works. Again, like in Lastfm, the worst performing transformation function is fr,
although it produces competitive results when enough neighbours are considered.

From these tables, we observe that the most discriminating aspect in our pro-
posed metric is the transformation function f : the matching threshold provides
some improvement but in a much smaller range than the transformation function
(the largest one with fir in RankSys for Lastfm with a 9.5% performance im-
provement); however, the use of normalised similarities typically improves the
performance – more significantly with the RankSys framework, where, as noted
before, the recommender does not normalise the final score – although its effect
depends on the dataset: in MovieLens the improvements are as high as a 50%
(RankSys and fir + 10), whereas in Lastfm there are several configurations where
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Table 11: Configuration of recommendation algorithms that achieve best performance according
to nDCG@5 in Lastfm (left) and MovieLens (right) datasets.

Recommender Lastfm MovieLens
RankSys Mahout RankSys Mahout

UB1 30 5 100 20
UB2 30 5 90 20
UB3 20 5 100 5
IB1 100 (none) 5 (none)
IB2 100 (none) 5 (none)

LCS1 ( fi + 0 + sim2) 40 5 100 5
LCS2 ( fir + 10 + sim2) 60 5 100 5

Table 12: Rating prediction performance for best recommenders using Mahout framework (see
Table 11 for parameters) in Lastfm (left) and MovieLens (right) datasets.

(a) Lastfm

Recommender MAE RMSE

MF 1.199 1.568
UB1 1.166 1.449
UB2 1.218 1.492
UB3 1.018 1.298
IB1 1.483 1.910
IB2 1.172 1.409

LCS1 1.025 1.302

(b) MovieLens

Recommender MAE RMSE

MF 0.564 0.763
UB1 0.815 1.067
UB2 0.806 1.061
UB3 0.658 0.877
IB1 0.875 1.226
IB2 0.761 0.982

LCS2 0.636 0.841

the performance remains unchanged.
Based on these results, we can answer the first research question (which in-

stantiation of the proposed metric is better aligned with the CF problem). As we
discussed above, the fi transformation function allows for larger improvements
than any other of the tested transformations in Lastfm and fir in MovieLens; on
the other hand, a larger matching threshold seems to provide some performance
improvements, however it may introduce some noise; and finally, normalising
the similarity metric does have an effect, but it depends on the dataset and the
actual implementation of the user-based nearest-neighbour recommender (as we
conclude from the very different results obtained from comparing Mahout and
RankSys frameworks). Hence, we summarise these observations by presenting
fi + 0 + sim2 as the optimal instantiation of the LCS-based metric for Lastfm and
fir + 10 + sim2 for MovieLens.
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4.2.2. Rating Prediction Task
In this section we compare the performance of the proposed metric against

other baselines in terms of rating prediction accuracy. This task was very im-
portant in the seminal papers of the area, but its interest has decreased after the
appreciation that accuracy (as measured by error metrics like MAE and RMSE)
does not correlate with user satisfaction at the same level as ranking-based met-
rics [26, 11]. Nonetheless, for the sake of comparison with classical papers, we
present in Table 12 the results obtained for the best instantiations of each recom-
mender in Mahout. Note that we only present results for this framework because
RankSys does not normalise the predicted score, and hence, it does not produce
scores in the range of ratings. The actual parameters used for the baselines are in-
cluded in Table 11 – optimised, like the LCS-based recommenders, for nDCG@5
across the parameters’ range presented in Table 5 –, where LCS1 denotes the op-
timal recommender in Lastfm and LCS2 the optimal one in MovieLens.

We observe that LCS1 shows a very good predictive accuracy in Lastfm, and
very competitive results in MovieLens. This difference might be attributed to the
different source of ratings in each dataset: whereas ratings in MovieLens come
from real users, ratings in Lastfm have been artificially produced from implicit
interactions by the users (see Section 4.1). In any case, both LCS-based simi-
larities outperform classical nearest-neighbour recommenders in terms of rating
prediction accuracy (UB1, UB2, IB1, and IB2) and remain very close to a newer
baseline (UB3).

Based on these results, we can answer the second research question (how does
this similarity perform in terms of prediction accuracy): both MAE and RMSE
are lower for the best LCS-based recommender, and hence, a similarity based on
LCS allows to outperform classical nearest-neighbour algorithms in terms of
prediction accuracy.

4.2.3. Item Ranking Task
In Figures 1 and 2 we present results from the item ranking task in Lastfm and

MovieLens, respectively. Here, in contrast with the previously presented task,
the goal is to include as many relevant items in the top positions of the ranking
presented to the user. Throughout the paper we will focus on rankings composed
of 5 items, even though our experiments evidence similar behaviour for other
cutoffs.

We observe in these figures that the LCS-based recommenders obtain better or
as good results as the other nearest-neighbour recommendation algorithms. In the
case of the Mahout framework, the improvements are quite significant; however,
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Figure 1: Performance results in the Lastfm dataset for RankSys (left) and Mahout (right) frame-
works.
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Figure 2: Performance results in the MovieLens dataset for RankSys (left) and Mahout (right)
frameworks.
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Figure 3: Novelty (EPC, EPD) and diversity (AD, α-nDCG, EILD, and Gini) results in the
Lastfm dataset for RankSys (left) and Mahout (right) frameworks. Gini results are presented mul-
tiplied by a factor of 10 for better visualisation.

when the RankSys framework is used, some metrics obtain values very close to
other baselines – for instance, MAP@5 in Lastfm. In general, the order of the
baselines depends on the framework and dataset: MF is the best baseline in Lastfm
using Mahout whereas UB1 outperforms the rest of the baselines in the other
cases.

Hence, based on these results we can answer the third research question (how
effective is it in terms of precision-based metrics) by summarising the perfor-
mance of similarities based on LCS as very competitive, especially in some
cases (depending on the dataset and specific implementation) where they outper-
form significantly other baselines.

Now, as alternative evaluation dimensions besides accuracy, in Figures 3 and 4
we show the results obtained for the non-performance metrics that measure the
novelty and diversity of the recommendation lists. For the sake of space and
clarity, we do not present results for all the metrics introduced in Section 4.1.
Regarding the novelty metrics, we have discarded EFD because it is very similar
to EPC, while EPC is bounded in [0, 1]. On the other hand, the diversity metrics
tend to measure complementary concepts, except for ERR-IA and α-nDCG, which
are very close to each other – actually, the former is an extension of the latter –;
however, we decided to not present results of ERR-IA because they were not too
discriminative (in the sense that the measurements were almost always too low).
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Figure 4: Novelty (EPC, EPD) and diversity (AD, α-nDCG, EILD, and Gini) results in the
MovieLens dataset for RankSys (left) and Mahout (right) frameworks. Gini results are presented
multiplied by a factor of 10 for better visualisation.

Figures 3 and 4 show that the LCS-based recommenders usually obtain re-
sults very similar to the other user-based nearest-neighbour recommender sys-
tems. This is interesting, especially when the Mahout framework is being used,
since the performance in terms of precision in those cases is much higher, which
results in a recommender with good performance and, at the same time, novel and
diverse recommendations. This is not the case, for instance, of the item-based
nearest-neighbour recommenders, that achieve high diversity values but their per-
formance is suboptimal.

Therefore, we can finally answer the fourth research question (what is the im-
pact on beyond-accuracy metrics when this similarity is used): an LCS-based
similarity metric does not change the novelty and diversity of user-based
nearest-neighbour recommender systems, which, together with the previous
results, shows that this type of similarity produces recommendations with a good
balance of accuracy and diversity/novelty.

4.3. Summary
The reported experiments provide empirical evidence of the usefulness of the

proposed approach. The analysis of the results revealed that it is possible to use
the Longest Common Subsequence (LCS) algorithm as a similarity metric for
Collaborative Filtering. Moreover, its performance is comparable (and sometimes
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better) to that of classical algorithms in the field, both in terms of rating predic-
tion accuracy and item ranking precision, without suffering from the well-known
diversity-accuracy tradeoff.

The proposed LCS-based user similarity has three main components (transfor-
mation function, matching threshold, and normalisation) enabling a wide range of
instantiations. Two of them have shown particularly good results: fi +0+sim2 and
fir + 10 + sim2. Even though the results for the transformation fr are much lower
than for the other transformations, it is remarkable that this approach – which
only takes into account the patterns in rating values selected by the users when
assessing their preferences – obtains competitive results when enough neighbours
are considered. That is, whereas transformations fi and fir produce high-quality
neighbourhoods when these are small, fr needs to consider a large amount of
neighbours to obtain a comparable recommendation accuracy.

The other two components of the proposed similarity (matching threshold and
normalisation) have different effects which depend on the size of the neighbour-
hoods, the nature and characteristics of the datasets, and how the recommenda-
tion algorithms are actually implemented. Whereas normalising the similarity
metric usually improves the accuracy with respect to the algorithms using the not-
normalised version, there are some situations where it has no effect. On the other
hand, the sensitivity to the matching threshold seems to largely depend on how the
ratings are distributed in the dataset, together with how much noise/uncertainty we
are capable to handle in the system, since we would be matching users that have
not expressed their preferences following the exact same behaviour.

4.4. Discussion
As already mentioned, the fi transformation is actually equivalent to the item

overlap between the users (I(u, v) = I(u) ∩ I(v)), which is the basis for other
user similarities like Jaccard or Cosine. In fact, due to the normalisation ap-
plied in sim2, such instantiation is almost equivalent to the Jaccard similarity met-
ric and ranking-equivalent to a binary Cosine, which would explain why UB1
in RankSys (that uses the Jaccard similarity) and the LCS-based recommender
have a performance so close to each other. The explanation goes as follows:
sim fi,0

2 (u, v) = |I(u, v)|2/(|I(u)| · |I(v)|) ∝u |I(u, v)|2/|I(v)|, where in the last step we
make use of a ranking-equivalent transformation (by removing a term that only
depends on user u); on the other hand, Jaccard similarity between users u and v
is computed as |I(u) ∩ I(v)|/|I(u) ∪ I(v)|, this similarity is then used to rank the
potential users as neighbours, so, let us suppose we are computing the neighbours
of user u, then |I(u) ∪ I(v)| = |I(u)| + |I(v)| − |I(u) ∩ I(v)| ∝u |I(v)| − |I(u) ∩ I(v)|; at
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the same time, binary Cosine (where the interactions between users and items are
either 1 or 0) is defined as follows:

cos Bin(u, v) =

∑
i∈I(u,v) ruirvi√∑

i∈I(u) r2
ui
∑

i∈I(v) r2
vi

=

∑
i∈I(u,v) 1√∑

i∈I(u) 1
∑

i∈I(v) 1
=

|I(u, v)|
√
|I(u)| · |I(v)|

Therefore, by taking
√

sim fi,0
2 (u, v) we find an equivalence with cos Bin(u, v).

Even though we have not used this similarity in our experiments, it evidences the
generality of the proposed LCS-based similarity metric, and opens up further de-
velopments where other metrics (such as Pearson correlation) could be integrated
under the same formulation.

Regarding the implementation of the recommendation techniques, we have
obtained very different results in terms of absolute values depending on whether
RankSys or Mahout frameworks were used. The main reason for this, as already
observed in [29], is that it is very difficult to obtain completely objective evalu-
ations unless the whole process (data splitting, recommendation training, candi-
date item selection for evaluation, evaluation metrics) is controlled. In our case,
these frameworks were only used for the recommendation step, and hence, the
rest of the evaluation pipeline remained controlled. However, we did observe dif-
ferences in the algorithms (the most important one is probably that RankSys does
not normalise the predicted score) so we decided to present the results from both
frameworks, since we could not decide which baselines were closer to the state-
of-the-art: Mahout implementations are more similar to the seminal algorithms,
however RankSys produces recommendations of higher quality, following up-to-
day optimisations [12]. Furthermore, considering our approach was implemented
on top of the similarity interfaces defined in each framework, its results are only
comparable in terms of the baselines produced by each framework, since it would
not be fair to compare a recommendation method using our similarity inside the
RankSys framework with the baselines from Mahout.

Finally, from the reported experiments we observe the baselines show a very
different behaviour depending on the dataset: for instance, MF performs better
in MovieLens than in Lastfm. This is also evidenced in the different instantia-
tions of the LCS-based recommender: the optimal configurations for Lastfm and
Movielens are different, including the neighbourhood size (see Table 11). We hy-
pothesise this is due to the different nature the ratings in each dataset come from:
whereas in MovieLens these ratings come from actual interactions between real
users and the system, in Lastfm they have been generated by a monotonic trans-
formation from implicit interactions between the users and the items in the system
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(number of listenings to each artist). Such transformation, even though it respects
the order of the item preferences in a user basis, does not control for other factors
typical in rating-based datasets, such as very skewed rating value histograms and
the missing data not-at-random observation [25, 14]. Because of this, we aim to
extend the LCS-based similarity measure to also deal with implicit feedback; for
such extension we believe that, in contrast to the standard metrics, the basics of
the proposed similarity would remain the same, we will only need to find proper
transformation and matching functions so that the sequences derived from the im-
plicit data can be processed by the LCS algorithm.

5. Related Work

Although LCS is a popular algorithm in science applications like molecular
biology and file comparison [3], it is less known in recommendation, as not many
researchers have integrated this algorithm in their frameworks – either as similar-
ity metric, like we propose in this work, or in any other way. There are, however,
some papers where it is used as a pattern finding algorithm. In [32], the authors
have shown that this algorithm can be used in e-commerce applications by help-
ing users choosing the items they need or like, achieving good results in precision,
recall and F1 metrics. Furthermore, in [22] the authors show the utility of LCS
in an online Web Usage Mining system, obtaining a best case accuracy of 73%.
Nevertheless, using this algorithm as a similarity measure in rating-based systems
is a novel approach – to the best of our knowledge – as other papers have used it
mostly to obtain user patterns from activity logs.

Besides these examples, capturing as much as possible from the interaction
patterns shown by the users has been investigated in the past. Recently, some
authors have exploited Markov chains [34], also combined with matrix factorisa-
tion algorithms and similarity metrics [19] to analyse sequence patterns obtained
from users. These approaches proved to be competitive, especially under sparse
conditions.

6. Conclusions and Future Work

In this paper, we have proposed a new similarity metric between users of a
Collaborative Filtering recommendation system that exploits the Longest Com-
mon Subsequence (LCS) algorithm, including three transformation functions to
represent the users as sequences, a matching threshold to allow not-exact match-
ings in the user representations, and two normalisations to be applied to the output
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of the LCS algorithm. An analogy between an existing similarity metric and one
of the possible instantiations of the proposed metric has been found: represent-
ing the users as items and using the presented normalisation is equivalent to the
binary Cosine metric; this opens up the possibility of extending the current frame-
work so that other, more complex metrics are integrated and generalised. These
equivalences would then introduce new perspectives on the Collaborative Filter-
ing problem, aiming to bring new insights and perhaps a better understanding of
the recommendation problem, from which further researchers might design new
and effective similarity metrics.

The empirical evaluation of our proposal shows competitive results in terms
of precision and beyond-accuracy metrics (diversity and novelty); besides, signif-
icant improvements have been achieved in the rating prediction task. We have
found that, depending on the actual implementation of the recommendation pro-
cess (we have tested two different recommendation frameworks), an LCS-based
similarity could outperform state-of-the-art baselines in two datasets of very dif-
ferent characteristics.

Several directions open up from this point to explore the potential of the pro-
posed similarity metric. We plan to further study how to integrate implicit feed-
back into the computation of the LCS-based similarity. We will also consider
alternative estimations where not only the rating information is used to transform
the users into sequences, but content-based data – such as genres, categories, or
other item features – are exploited to produce a hybrid recommendation system
with minimal modifications of the framework presented herein, since we would
only need to define proper transformation and matching functions able to deal
with the new information.

We are particularly interested in generating user sequences considering the
temporal dimension, so that an LCS-based method could exploit the order in
which users consumed a set of items. Building upon the wide range of alterna-
tives we have presented in this paper, we aim to incorporate temporal information
in a similar way as it was done for time-aware recommender systems (where most
of the formulations come from time-agnostic methods, like the ones introduced
here), so that they could capture the user preferences with more fine-grained con-
trol. As it has been discussed before, building time-based sequences is not a
trivial question, mainly because it is not easy to find datasets with meaningful
timestamps, hence, this issue is not only a modelling problem, but also a problem
of lack of valuable data to be exploited for recommendation.

Finally, it would be interesting to analyse how our approach compares against
other baselines together with its sensitivity to well-known problems in the recom-
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mendation systems area, such as the presence of noise in user preferences [5, 33]
and the new user and item problem, also known as cold-start [15].
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