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ABSTRACT
Recommender systems is an active research area where the
major focus has been on how to improve the quality of gen-
erated recommendations, but less attention has been paid
on how to do it in an efficient way. This aspect is increas-
ingly important because the information to be considered by
recommender systems is growing exponentially. In this pa-
per we study how different data structures affect the perfor-
mance of these systems. Our results with two public datasets
provide relevant insights regarding the optimal data struc-
tures in terms of memory and time usages. Specifically, we
show that classical data structures like Binary Search Trees
and Red-Black Trees can beat more complex and popular
alternatives like Hash Tables.
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1. INTRODUCTION
Quality and efficiency are the two main aspects to consider

when deciding which algorithm is more suitable to a partic-
ular recommendation task. However, most of the papers
in the area have focused on the first aspect, addressing the
second one if it is required due to external constraints, e.g.,
quick response to the user, limited hardware, etc. Besides
this, a recent trend in recommendation, and especially in
Collaborative Filtering (CF), is to perform in-memory data
processing [11], which makes efficiency even more important
than before. This limits the application of works where CF
data is indexed [6, 1].

Even when efficiency is considered as a system goal, there
are not so many publications where more efficient data struc-
tures have been proposed [3]; this is because in general effi-
ciency constraints are tackled by means of parallel process-
ing or by designing recommendation algorithms that achieve
high quality with less amount of data [8].

In this work, we study how different data structures actu-
ally affect the efficiency of recommendation algorithms, both
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in terms of memory usage and time. We consider classical
data structures like Binary Search Trees and Hash Tables,
and compare their performance on two public datasets when
Collaborative Filtering algorithms are used.Hence, we em-
pirically show that each recommendation stage – mainly,
data loading and algorithm training – requires a different
optimal data structure, where Binary Search Trees, Double
Linked Lists, and Red-Black Trees turn out to show a good
tradeoff between memory and time usage in two datasets
with different characteristics.

2. BACKGROUND

2.1 Collaborative Filtering
The aim of Recommender Systems (RS) is to assist users

in finding their way through huge databases and catalogs,
by filtering and suggesting relevant items taking into ac-
count the users’ preferences (i.e., tastes, interests, or pri-
orities). Collaborative Filtering systems can be considered
as the earliest and most widely deployed recommendation
approach [8], suggesting interesting items to users based on
the preferences from “similar” people [9]. These algorithms
compute similarities between users or items and take those
similarities into account when producing the recommenda-
tions. More specifically, this is the standard definition for a
user-based nearest neighbour algorithm (UB):

r̂ui =

∑
v∈N(u) rviwuv∑
v∈N(u) |wuv|

where N(u) is the neighbourhood of user u, representing
the most similar users according to some similarity metric,
rvi is the rating given by user v to item i, wuv denotes the
similarity between u and v, and r̂ui is the predicted rating
according to this formulation. Alternatively, it is possible to
predict ratings using an item-based nearest neighbour for-
mulation (IB):

r̂ui =

∑
j∈N(i) rujwij∑
j∈N(i) |wij |

It is also possible to incorporate the user or item devi-
ation in the formulation, this is called the mean centering
formulation for UB:

r̂ui = r̄u +

∑
v∈N(u) (rvi − r̄v)wuv∑

v∈N(u) |wuv|

where r̄u is the rating average of u.
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This family of algorithms have two critical parameters:
the size of the neighbourhood being considered and the sim-
ilarity metric. Similarities are usually based on distance and
correlation metrics [9]. We present here two of the most pop-
ular ones when rating data is available – Cosine and Pearson
correlation coefficient:

cos(u, v) =

∑
i∈Iuv

ruirvi√∑
i∈Iu

r2ui
∑

i∈Iv
r2vi

Pearson(u, v) =

∑
i∈Iuv

(rui − r̄u)(rvi − r̄v)√∑
i∈Iuv

(rui − r̄u)2
∑

i∈Iuv
(rvi − r̄v)2

Note that in both definitions Iuv is used, denoting the
items rated by both users. Since this may be too strict in
some scenarios, missing ratings can be filled with a default
value by means of a process called imputation [8].

2.2 Data Structures
Data Structures allow for different ways to store data

in memory. The purpose of the data structures varies in
each application; actually, in [5], Falley shows a classifica-
tion of data structures according to their purpose: storage
structures (arrays, linked structures, hash tables), process-
oriented structures (stacks, queues, priority queues, iter-
ators), and descriptive structures (collections, sets, linear
lists, binary trees). There are many other data structures
that are less known or only used in very specific scenarios [4]:
Fibonacci heaps, interval trees, disjoint set forests, among
others.

In this section, we introduce the data structures that will
be used later in the experiments. We selected these struc-
tures because they are well known and used throughout the
computer science literature, but some of them have not been
explicitly used in the field of Recommender Systems.

Binary Search Tree (BST) It is organised in a binary
tree, where each node contains a key, satellite data,
and pointers to its left and right child. The keys are
always stored in such a way as the BST property holds:
let x be a node, if y is a node in the left subtree of x
then y.key ≤ x.key, if y is a node in the right subtree
of x then y.key ≥ x.key. Basic operations on a BST
(search, insert, delete) take time proportional to the
height of the tree, for a complete BST with n nodes,
such operations run in O(lgn) average time and take
O(n) space.

Red-Black Tree (RBT) It is a BST with one extra bit
of storage per node: its color (red or black); by con-
straining the node colors on any simple path from root
to a leaf, RBTs ensure that no such path is more than
twice as long as any other, so that the tree is approx-
imately balanced, guaranteeing that basic operations
take O(lgn) time in the worst case, instead of O(n).

Order Statistic Tree (OST) This data structure is built
by augmenting an RBT so that finding the ith smallest
number in a set or the rank of a given element in the
total ordering of the set can be performed in O(lgn).

B-Tree (BT) It is a balanced search tree designed to min-
imise disk I/O operations. They are based on the

RBTs but each node may have many children (not
necessary binary), having large branching factors. The
time and space complexity of a BT is similar to RBT
considering that the branching factor is taken as the
base of the logarithm.

Double Linked List (DLL) It is a basic data structure
where objects are arranged in linear order, the main
difference in a DLL with respect to a Linked List is that
it is possible to go forward and backwards in the list.
Time complexity is constant for inserts and deletes un-
less we want to delete a particular element, where a
search must be performed and, hence, it would run in
O(n) time.

Hash Table (HT) It is an effective data structure for im-
plementing dictionaries. Although searching for an el-
ement in a hash table can take as long as searching
for an element in a linked list, in practice, under rea-
sonable assumptions, the average time to search for
an element is O(1) [4]. The space used by this struc-
ture depends on how each bucket (used to store one or
multiple keys due to collisions) is implemented, but if
space and time efficient structures are used, HTs would
use O(n) space.

3. IMPACT OF DATA STRUCTURES IN
COLLABORATIVE FILTERING

To measure the impact of different data structures in Col-
laborative Filtering algorithms, we have developed a frame-
work1 where rating prediction and item ranking tasks are
available for a range of recommendation algorithms (mainly
user- and item-based collaborative filtering) using different
data structures transparently from inside of these algorithms.
Once a data structure is selected, it is used to store the infor-
mation associated to users, items, and user ratings to items,
and is queried to generate recommendations. Furthermore,
each data structure is initialised according to some parame-
ters from the dataset – number of users and items – and the
algorithm – user- or item-based.

The two main dimensions we are interested in analysing
are memory usage and time efficiency. Effectiveness of the
algorithms is not considered since it does not change when
a specific data structure is selected. Moreover, the impact
in testing time is also omitted because the experiments do
not show significant differences between the structures be-
ing analysed, probably due to the datasets being too small.
Hence, in Sections 3.2 and 3.3 we present the results related
to the memory and time usages, considering the following
recommendation stages: data loading and algorithm train-
ing. Before that, in Section 3.1 we provide details about the
datasets used and the specific evaluation protocol followed.

3.1 Experimental Settings
We use two datasets, one from the movie domain (Movie-

lens2) and another from the music domain (Lastfm3). The
first one consists of 100, 000 ratings from 943 users on 1, 682
movies. The second one contains 92, 834 user-artist relations
from 1, 892 users on 17, 632 artists. Since this dataset does

1http://bitbucket.org/PabloSanchezP/dt4recsys
2Available at http://grouplens.org/datasets/movielens/
3Available at http://grouplens.org/datasets/hetrec-2011/

http://bitbucket.org/PabloSanchezP/dt4recsys
http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/hetrec-2011/


Table 1: Aggregated memory usage (in MB) of the
Movielens and Lastfm datasets. Lowest values per
column in bold.

Movielens Lastfm
Loading Training Loading Training

BST 61.56 196.84 51.30 885.79
RBT 61.56 296.51 51.30 1, 861.37
OST 61.56 280.42 51.30 1, 616.19
BT 61.56 148.29 61.56 1, 406.57
DLL 61.56 299.78 51.30 725.98
HT1 292.42 1, 950.43 492.48 1, 865.23
HT2 202.47 2, 202.69 317.61 1, 011.68

Table 2: Aggregated time usage (in seconds) of the
Movielens and Lastfm datasets. Lowest values per
column in bold.

Movielens Lastfm
Loading Training Loading Training

BST 1.98 68.72 15.73 59.46
RBT 0.50 55.18 0.55 47.46
OST 0.53 56.97 0.50 125.55
BT 0.67 67.30 0.59 131.55
DLL 1.94 71.93 54.06 136.69
HT1 0.80 349.97 1.94 1, 130.53
HT2 1.21 455.25 1.41 1, 380.52

not provide explicit ratings, a normalisation is applied on a
per user basis [2] to be able to apply standard collaborative
filtering algorithms such as those presented in Section 2.1.

More specifically, the recommenders involved in these ex-
periments are: baselines (user, item, and system bias [8],
and combinations) and user- and item-based nearest neigh-
bour recommenders [9] (where the standard (Std) and the
mean-centering (MC ) formulations were tested, using Co-
sine and Pearson coefficient as similarity metrics, with and
without imputation, and a fixed neighbourhood size of 50).

Regarding the evaluation protocol followed, we rely on one
method from the Java language to measure the time spent
during loading and training (System.currentTimeMillis())
and on the following methods to account for the difference
in the used memory before and after loading the data and
training the algorithms: Runtime.totalMemory() and Run-

time.freeMemory(). Note that the garbage collector may
be called at any time, therefore these methods may not re-
turn the actual used memory at some point. In any case,
we report results for each combination of recommendation
algorithm and data structure using a 5-fold cross validation
procedure.

3.2 Impact on Memory Usage
The results about memory usage of the experimental setup

previously described are summarised in Table 1. Here, two
implementations of Hash Tables are reported: HT1 uses
DLL as the internal structure, and HT2 uses RBT. We ob-
serve that it is difficult to have a good performance in the
two recommendation stages being analysed: loading and
training; this is true in general except for BST and DLL,
which perform well in both datasets, an interesting feature
since each dataset has a different distribution of users and
items.

To further understand in which situations each data struc-
ture may be more useful, we present in Table 3 the memory
usage of the training stage in an algorithm basis (only for

Movielens due to space constraints). Although these results
are affected by how and when the garbage collector is called,
we observe some trends that are worth analysing. Based
on these results we first notice that, obviously, each recom-
mendation algorithm requires different amount of memory
to work, the baselines being the best for saving memory.
Second, each algorithm and family of algorithms perform
better with some data structures; in some situations the op-
timal structure may save up to a 97% of the memory used
by another structure (compare BT with HT1 or HT2 for
UB+Std+Cos). In general, it seems that when Pearson cor-
relation is used, the algorithms impose less constraints in
terms of memory. Hash Tables, on the other hand, per-
form worse than the other structures in most of the situ-
ations. This is because how they were implemented: they
always take as much space as the number of users or items,
even if some buckets are never used. We have performed
additional tests with different parameters and found values
where memory is optimised, but we leave the analysis of the
optimal parameter (on a dataset basis) as future work.

3.3 Impact on Time Efficiency
Table 2 summarises the results about time efficiency for

the two datasets presented before. We observe a tradeoff
between time and memory usage: data structures optimised
for memory need more time to load and train the algorithms.
Although the differences are not large (especially in Movie-
lens) we believe this might be an important issue if large
datasets are used and want to be stored completely in mem-
ory.

As before, we present in Table 4 the time usage in an algo-
rithm basis for Movielens. We observe that imputed versions
of the algorithms require more time (reasonable because the
similarities will use more ratings in their computations) and
item-based recommenders take longer than user-based ones
(probably because this dataset has more items than users).
Here the differences between the data structures are not as
evident as before – except for the Hash Tables – and the
optimal data structure allows to save a minimal amount
of time with respect to other data structures for the same
type of algorithm (the largest improvement being a 39% for
UB+MC+Pearson comparing DLL against RBT). Like in
the previous scenario, Hash Tables obtain the worst perfor-
mance in most cases, but this situation may change dramat-
ically if the number of buckets are tuned to optimise this
data structure.

4. CONCLUSIONS AND FUTURE WORK
In this paper we have analysed the performance of data

structures when Collaborative Filtering algorithms keep their
data in memory. We have shown that a balance should be
met between memory and time usage, since efficient data
structures in terms of the former perform worse for the
latter. Our results evidence that B-Trees provide a good
balance between memory and time usage in the two pub-
lic datasets used in our experiments, a data structure not
very common in public implementations of recommender
systems.

In the future, we will explore compressing techniques be-
fore data are stored in the data structures to check if the
results from the literature remain the same or change de-
pending on the underlying data structure [11, 6]; we also
aim to investigate the use of compact data structures [7],



Table 3: Memory usage (in MBs) of different recommendation algorithms in the Movielens dataset for the
training stage. In bold, the best result for each algorithm.

BST RBT OST BT DLL HT1 HT2
Baseline 61.56 61.56 61.56 61.56 61.56 61.56 61.56

IB

MC

Cos 308.83 308.82 309.33 114.05 314.64 259.17 300.92
Cos Imp 308.89 308.95 309.55 114.08 314.56 274.74 279.83
Pearson 205.93 661.91 1, 074.41 435.64 818.83 467.35 503.91
Pearson Imp 169.87 171.41 172.02 152.81 121.32 2, 220.15 2, 396.86

Std

Cos 308.81 308.87 309.54 114.09 314.59 282.11 349.84
Cos Imp 308.86 309.03 309.50 114.10 314.61 198.40 343.91
Pearson 128.92 1, 048.82 450.74 215.34 1, 185.58 809.77 838.60
Pearson Imp 169.86 171.43 172.08 152.80 160.35 471.97 508.03

UB

MC

Cos 172.18 172.18 172.80 107.27 172.50 4, 888.11 4, 662.75
Cos Imp 172.13 172.19 172.75 107.29 172.49 3, 959.31 3, 545.73
Pearson 163.98 275.67 164.09 333.30 164.18 2, 212.05 3, 226.90
Pearson Imp 116.67 116.64 117.38 32.61 116.72 2, 493.56 3, 395.48

Std

Cos 172.15 172.16 172.77 107.32 172.55 4, 621.12 4, 468.72
Cos Imp 172.14 172.15 172.73 107.26 172.55 4, 499.40 3, 351.26
Pearson 163.92 257.17 289.68 168.84 164.19 3, 075.34 2, 056.81
Pearson Imp 106.36 116.72 117.35 34.83 116.75 4, 144.32 5, 013.45

Table 4: Time usage (in seconds) of different recommendation algorithms in the Movielens dataset for the
training stage. In bold, the best result for each algorithm.

BST RBT OST BT DLL HT1 HT2
Baseline 0.63 0.63 0.63 0.63 0.62 0.64 0.64

IB

MC

Cos 74.98 67.44 70.42 83.40 79.89 424.35 553.42
Cos Imp 104.50 92.51 94.73 105.70 107.77 448.43 570.05
Pearson 47.08 40.92 42.34 55.71 51.03 558.41 690.08
Pearson Imp 118.76 104.56 104.13 117.13 122.13 981.67 1, 494.49

Std

Cos 75.38 68.92 70.24 83.25 80.14 432.88 564.33
Cos Imp 101.70 86.40 93.87 102.90 106.99 440.29 573.59
Pearson 49.56 41.99 42.98 60.20 52.28 572.47 744.42
Pearson Imp 129.20 100.33 105.54 116.35 121.06 793.33 974.41

UB

MC

Cos 39.25 30.46 31.14 38.80 44.87 86.33 106.91
Cos Imp 63.62 39.39 43.21 50.13 66.62 96.70 116.43
Pearson 28.86 19.99 20.71 29.52 32.90 110.99 133.83
Pearson Imp 67.70 48.15 48.70 58.55 71.75 154.39 195.22

Std

Cos 38.47 30.27 31.17 39.19 44.00 86.81 106.74
Cos Imp 61.78 43.41 42.90 50.35 66.29 99.23 120.44
Pearson 28.42 19.60 20.94 29.22 33.11 108.04 141.79
Pearson Imp 70.23 48.45 48.48 56.43 70.10 205.16 197.87

which will obtain a better memory usage but possibly also
a worse time performance. We are also interested in ex-
tending these analyses to datasets with a different ratio of
users/items – for instance, when there exist many more users
in the system than items in the catalog.
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