

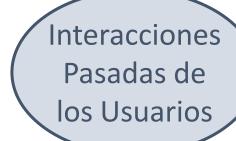
Sistemas de Recomendación

Autor: Rus María Mesas Jávega Tutor: Alejandro Bellogín Kouki

Índice

Introducción

Estado del Arte

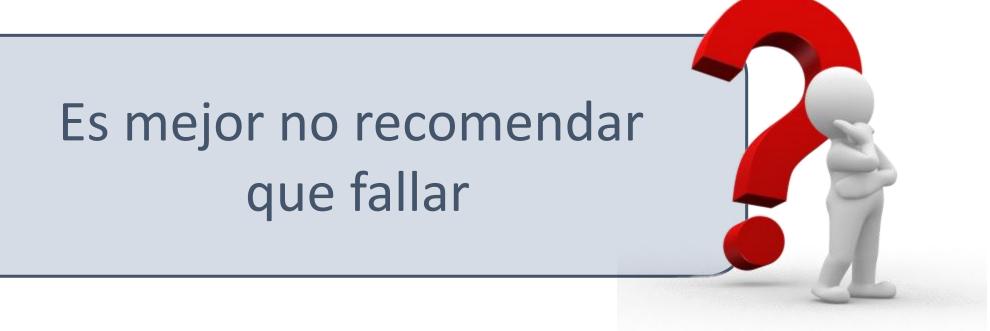

Toma de Decisiones en Algoritmos de Recomendación

Evaluación de Algoritmos que Toman Decisiones

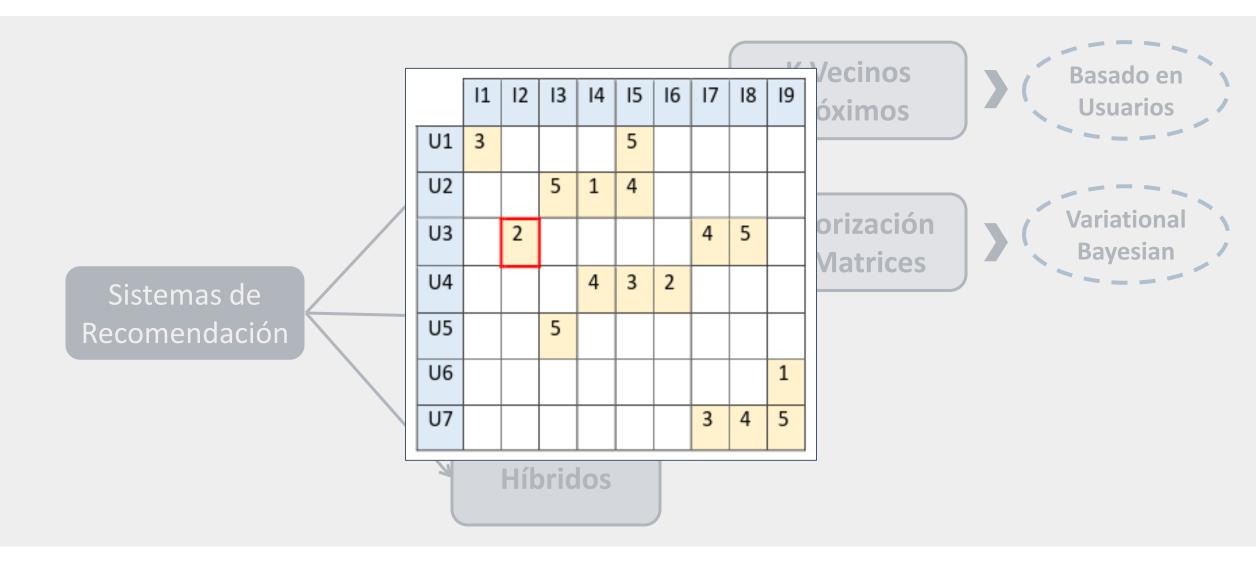
Experimentos y Resultados

Conclusiones y Trabajo Futuro

1. Introducción - Motivación


Sistema de Recomendación

1. Introducción - Hipótesis


1. Introducción - Objetivos

Introducir la toma de decisión en algoritmos de recomendación

Analizar cómo influye la toma de decisión en diferentes dimensiones

Estudiar cómo evaluar los nuevos sistemas y proponer nuevas métricas

2. Estado del Arte

2. Estado del Arte – Evaluación

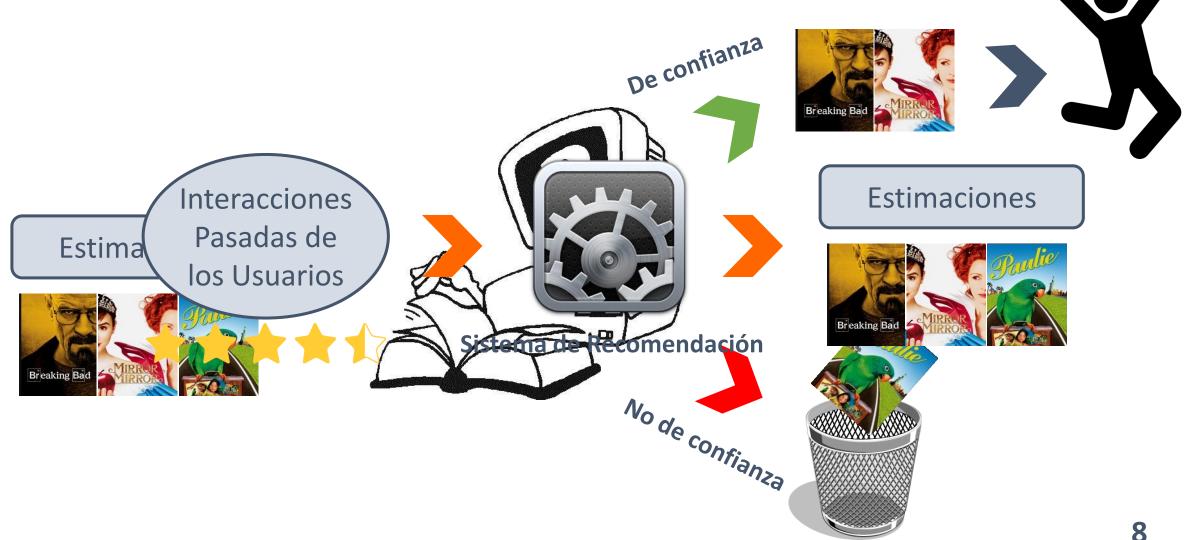
Eficiencia

Robustez

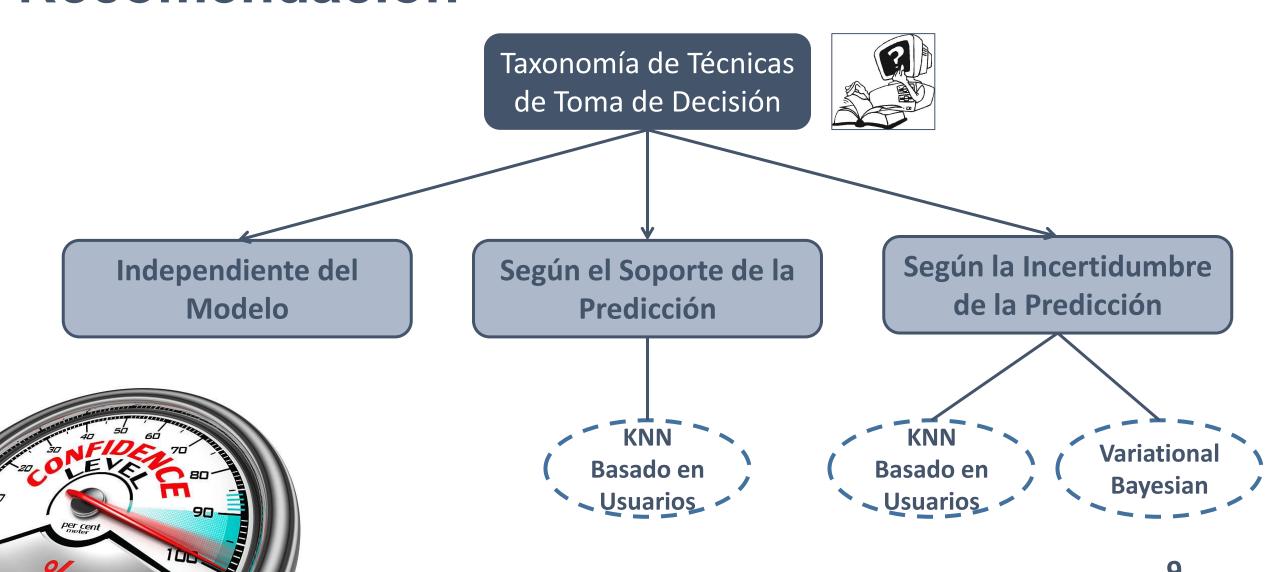
Precisión

Sistema de Recomendación

Confianza


Serendipia

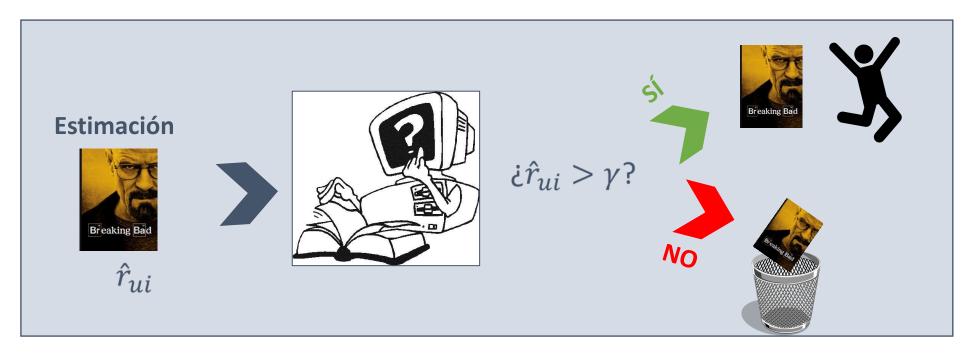
Cobertura


Diversidad

Novedad

3. Toma de Decisión en Algoritmos de Recomendación

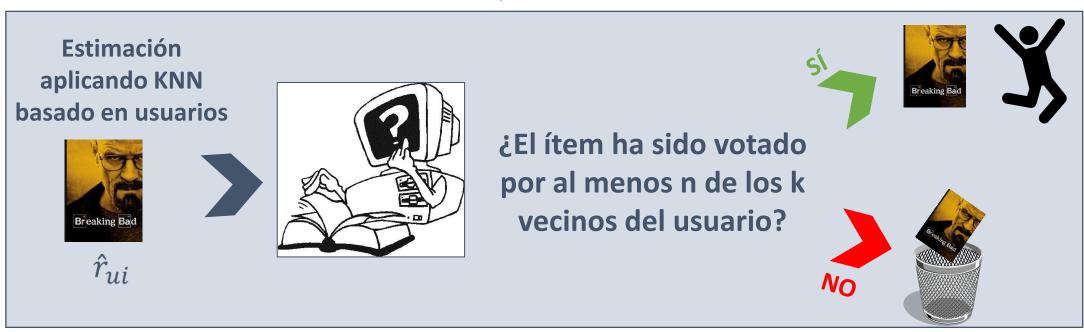
3. Toma de Decisión en Algoritmos de Recomendación



Recomendación Independiente del modelo

IDEA: Recomendar ítem cuyo valor de rating sea mayor que un umbral

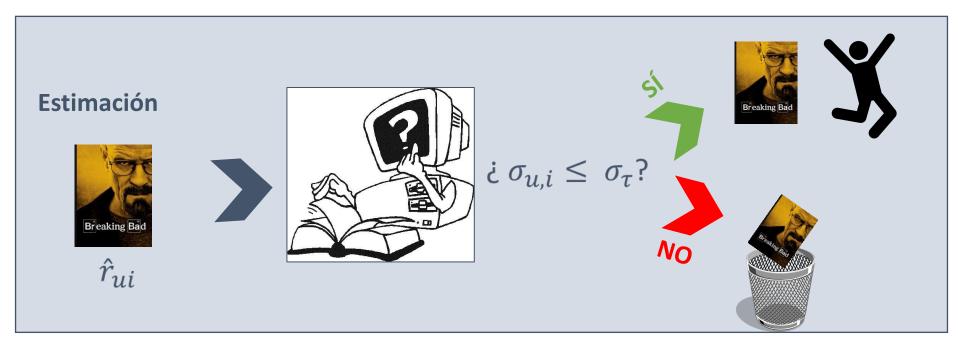
Aplicable a cualquier algoritmo de recomendación



3. Toma de Decisión en Algoritmos de Recomendación Según el Soporte de la Predicción IDEA: Cuantas más opiniones se conocen sobre un ítem

Cuantas más opiniones se conocen sobre un ítem más confianza genera la estimación final

Aplicable a KNN



3. Toma de Decisión en Algoritmos de Recomendación Según la Incertidumbre

IDEA: La desviación típica es sinónimo de incertidumbre. A mayor desviación típica mayor incertidumbre en la estimación y menor confianza en ella.

Aplicable algoritmo que proporcionan fórmula para σ

3. Toma de Decisión en Algoritmos de Recomendación Según la Incertidumbre

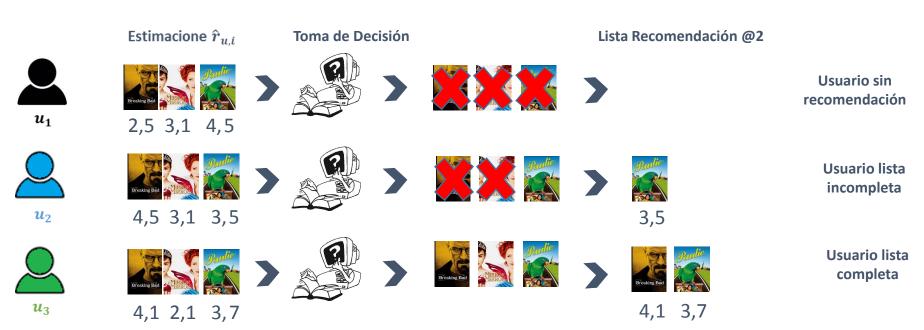
$$\hat{r}_{ui} = \mu$$

$$\hat{r}_{ui} = \mu \pm \lambda \sigma$$

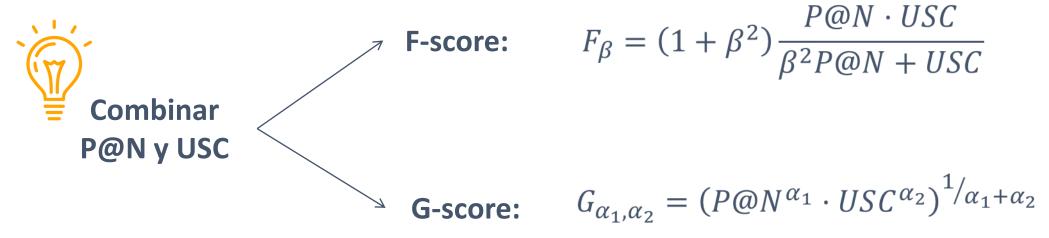
K Vecinos Próximos (KNN)

$$\hat{r}_{ui} = \frac{\sum_{v \in N_i(u)} w_{uv} r_{vi}}{\sum_{v \in N_i(u)} w_{uv}}$$

Media Ponderada

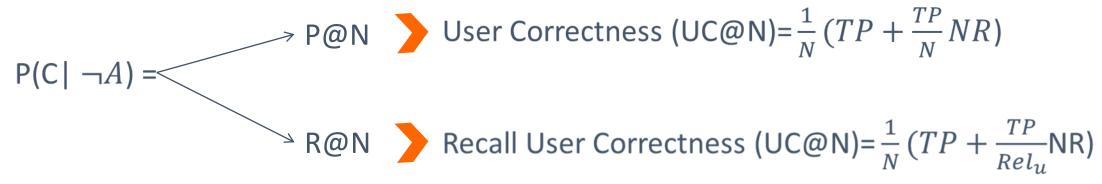

Variational Bayesian

$$\hat{r}_{ui} = \mathbb{E}(\hat{r}_{ui}|R) = \bar{u}^T\bar{\iota}$$


4. Evaluación de Algoritmos que Toman Decisiones Precisión vs Cobertura

4. Evaluación de Algoritmos que Toman Decisiones Precisión vs Cobertura

4. Evaluación de Algoritmos que Toman Decisiones Métricas Correctness



IDEA: Crear una métrica que premie no recomendar a fallar

Para la lista de recomendación de cada usuario calculamos:

$$P@N = TP/N \qquad NR/N$$

$$P(C) = P(C \cap A) + P(C \cap \neg A) = P(C \cap A) + P(C \mid \neg A) + P(\neg A)$$

4. Evaluación de Algoritmos que Toman Decisiones Métricas Correctness

IDEA: Aplicar la misma idea pero desde el punto de vista de ítem

Para cada ítem calculamos:

$$P(C) = P(C \cap A) + P(C \cap \neg A) = P(C \cap A) + P(C \mid \neg A) + P(\neg A)$$

Item Correctness (IC@N)=
$$\frac{1}{|U|}(TP + \frac{TP}{|U|}NR)$$

Recall Item Correctness (IC@N)=
$$\frac{1}{|U|}(TP + \frac{TP}{Rel_i}NR)$$

5. Experimentos y Resultados - Implementación

Implementación
Algoritmos

Implementación completa y
modificaciones Variational Bayesian

python**

Implementación Evaluación

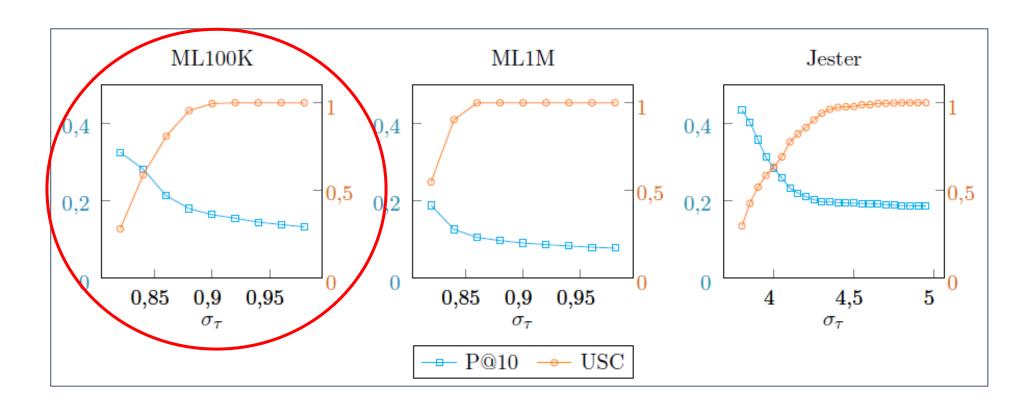
RankSys

Rival

5. Experimentos y Resultados - Datasets

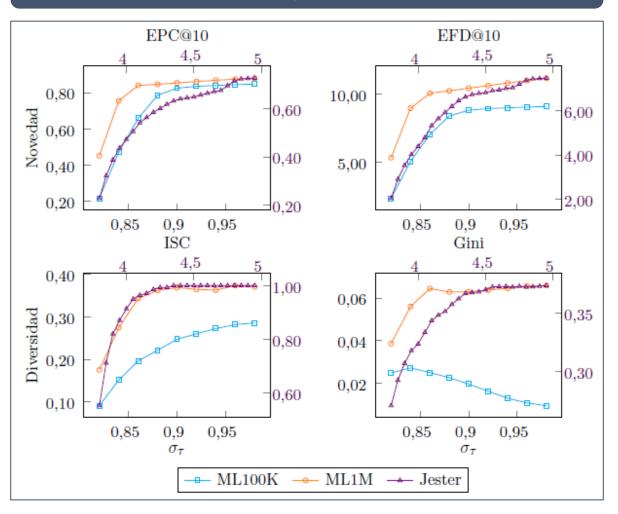
Se han utilizado diferentes conjuntos de distintos dominios para poder obtener conclusiones consistentes de los algoritmos sin depender del conjunto que se haya usado

Dataset	Usuarios	Ítems	Ratings	Densidad	Rango
ML100K	943	1,7K	100K	1,33%	[1, 5]
ML1M	6,0K	3,9K	1M	4,26%	[1, 5]
Jester 🏠	59,1K	150	1,7M	1,33%	[-10, 10]


Experimentos realizados

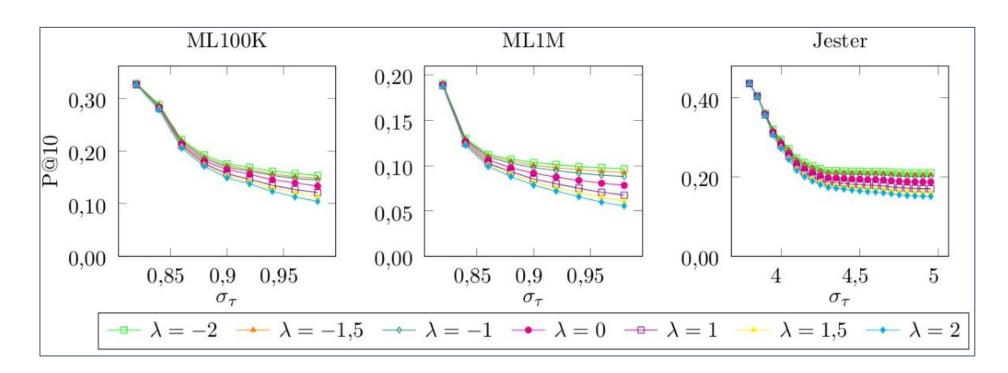
Según la incertidumbre de la predicción Variational Bayesian

Precisión vs Cobertura de Usuario

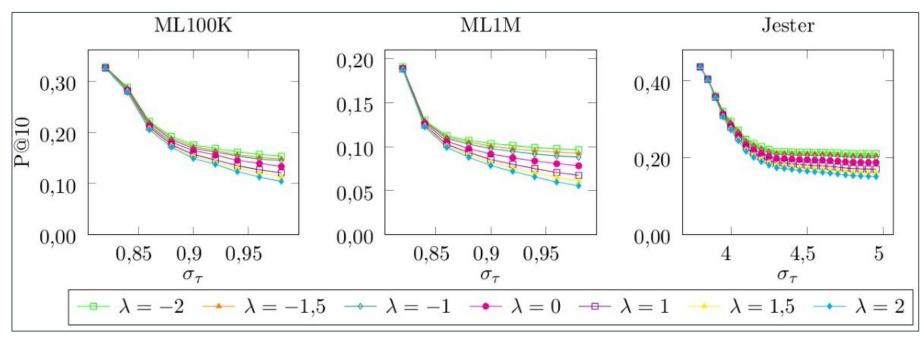


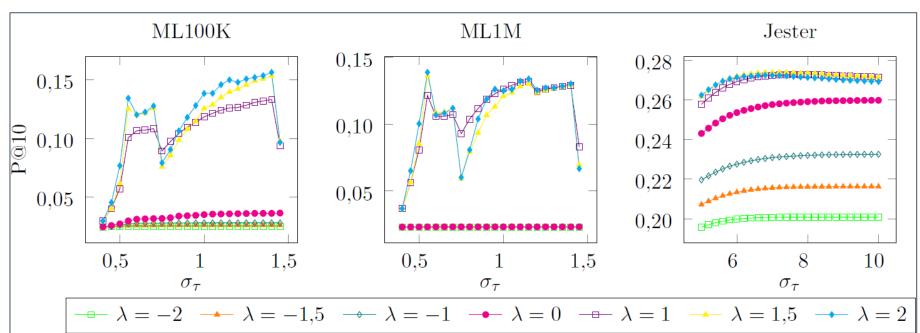
Según la incertidumbre de la predicción Variational Bayesian

	Detalle evaluación ML100K														
-	σ_{τ}	P@10	USC	ISC	F_1	F_2	$F_{0,5}$	$G_{1,1}$	$G_{1,2}$	$G_{2,1}$	UC	RUC	IC	RIC	
Mejora de	el 0, 82 >	0,093 0,326	100,0 28,2	22,7 9,1	0,170 0,303	0,338 0,290	0,113 0,316	0,304 0,303	0,453 0,296	0,205 0,311	0,093 0,100	0,093 0,094	0,001 0,001	0,009 0,006	
250%	0,84	0,283	59,0	15,1	0,382	0,484	0,316	0,408	0,462	$0,\!361$	$0,\!174$	0,170	0,002	0,011	
	$0,86 \\ 0,88$	0,214 $0,181$	$80,9 \\ 95,6$	19,6 $22,2$	$0,338 \\ 0,304$	0,520 $0,514$	$0,\!251 \\ 0,\!216$	0,416 $0,415$	0,519 0,548	$0,333 \\ 0,315$	$0,177 \ 0,176$	$0,\!176$ $0,\!176$	0,002 $0,002$	0,012 0,013	
	$0,90 \\ 0,92$	$0,165 \\ 0,156$	99,5 $100,0$	24,8 $26,0$	0,283 $0,269$	0,495 $0,480$	$0,198 \\ 0,187$	$0,405 \\ 0,395$	$0,546 \\ 0,538$	$0,300 \\ 0,289$	$0,165 \\ 0,156$	$0{,}165 \\ 0{,}156$	$0,002 \\ 0,002$	$0,013 \\ 0,012$	
	0,94	0,145	100,0	27,3	$0,\!254$	0,459	$0,\!175$	0,381	$0,\!526$	$0,\!276$	0,145	0,145	0,002	0,011	
	$0,96 \\ 0,98$	$0,139 \\ 0,133$	100,0 $100,0$	28,2 28,6	$0,245 \\ 0,235$	$0,447 \\ 0,435$	$0,168 \\ 0,161$	$0,373 \\ 0,365$	$0,518 \\ 0,511$	$0,269 \\ 0,261$	$0,139 \\ 0,133$	$0,139 \\ 0,133$	$0,002 \\ 0,002$	$0,011 \\ 0,011$	

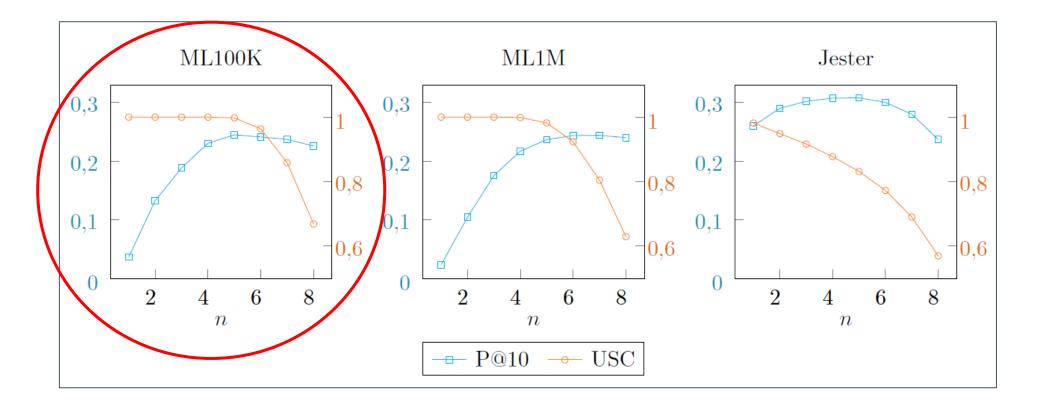

Según la incertidumbre de la predicción Variational Bayesian

Novedad y Diversidad


Según la incertidumbre de la predicción Variational Bayesian


$$\hat{r}_{ui} = \mu \pm \lambda \sigma$$

K Vecinos Próximos

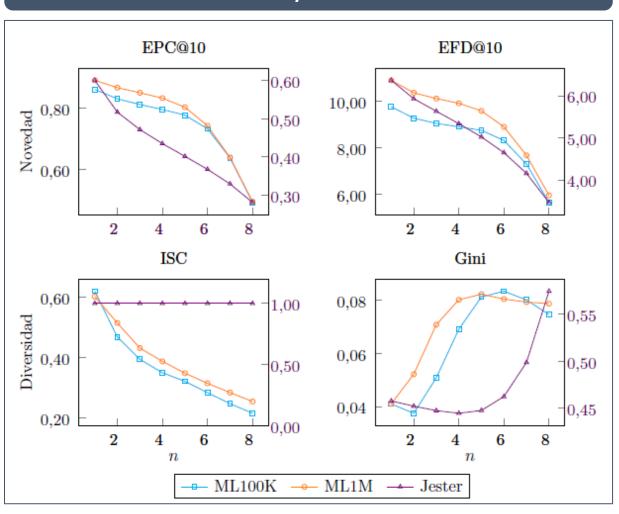


5. Experimentos y Resultad Estimación

Estimación ¿El ítem ha sido votado por al menos n de los k vecinos del usuario? \hat{r}_{ui}

Según el soporte de la predicción (KNN)

Precisión vs Cobertura de Usuario



Según el soporte de la predicción (KNN)

	n	P@10	USC	ISC	F_1	F_2	$F_{0,5}$	$G_{1,1}$	$G_{1,2}$	$G_{2,1}$	UC	RUC	IC	RIC
	1	0,037	100,0	$62,\!1$	0,070	0,159	0,045	0,191	0,332	0,110	0,037	0,037	0,000	0,015
	2	0,133	100,0	46,9	0,234	0,433	0,160	0,364	$0,\!510$	0,260	0,133	0,133	0,002	0,021
	3	0,188	100,0	39,5	0,317	$0,\!537$	0,225	0,434	$0,\!573$	0,329	$0,\!189$	0,189	0,002	0,026
Mejora de	$_{2}$	0,230	100,0	35,1	0,374	$0,\!599$	0,272	$0,\!480$	0,613	$0,\!376$	0,234	0,236	0,003	0,029
562%	5	(0,245)	99,7	32,3	$0,\!393$	0,618	$0,\!288$	$0,\!494$	$0,\!624$	$0,\!391$	$0,\!259$	$0,\!266$	0,003	$0,\!029$
302/0	6	0,241	96,4	28,5	$0,\!386$	0,603	0,284	$0,\!482$	0,607	0,383	$0,\!257$	0,263	0,003	0,026
	7	0,237	85,9	24,8	0,371	$0,\!563$	$0,\!277$	$0,\!451$	$0,\!559$	0,364	0,231	0,231	0,002	0,023
	8	$0,\!226$	66,9	21,7	0,338	$0,\!480$	$0,\!260$	$0,\!389$	$0,\!466$	0,324	$0,\!180$	$0,\!171$	0,002	0,018

Según el soporte de la predicción (KNN)

Novedad y Diversidad

6. Conclusiones y Trabajo Futuro

Propuesta de taxonomía de técnicas para incorporar la toma de decisión. Con mejoras en P@N de hasta el 560% disminuyendo cobertura, novedad y diversidad.

Propuesta de cómo combinar P@10 y USC a través de métricas parametrizables.

Creación de métricas *Correctness:* UC, RUC, IC y RIC. Métricas que premian no contestar frente a fallar y que no necesitan parametrización

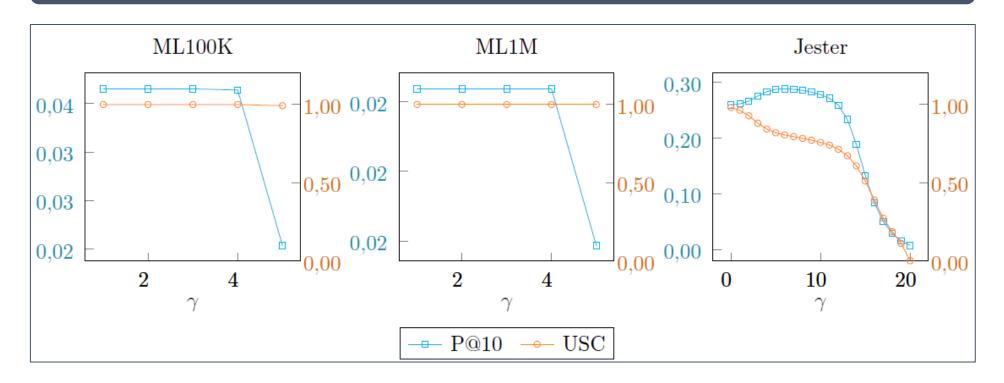
6. Conclusiones y Trabajo Futuro

Ampliar experimentos con nuevos datasets y métricas

Estudiar nuevas formas de incorporar la toma de decisión en nuevos algoritmos de recomendación

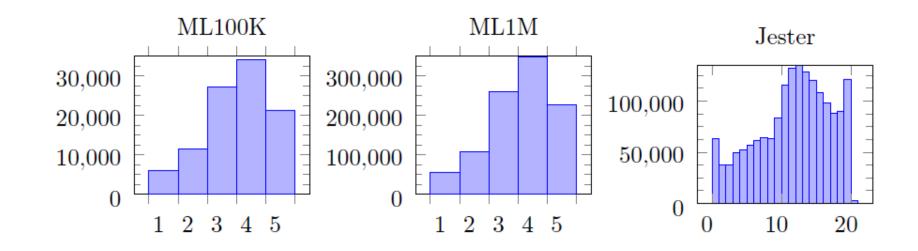
Estudiar cómo combinar otras métricas

Realizar estudios con usuarios

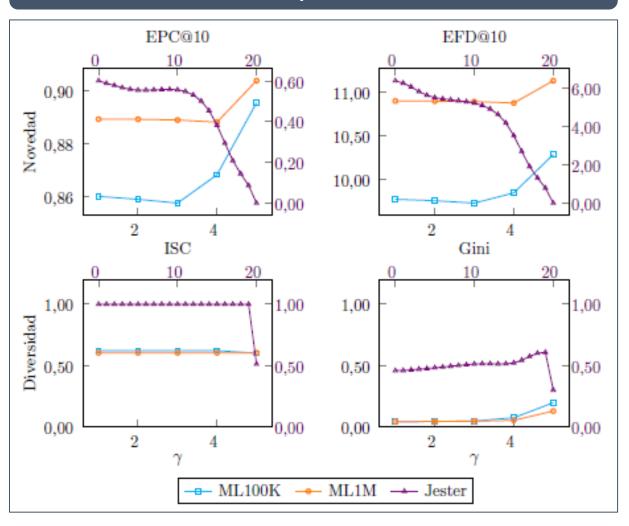


4. Evaluación de Algoritmos que Toman Decisiones Métricas Correctness EJEMPLO

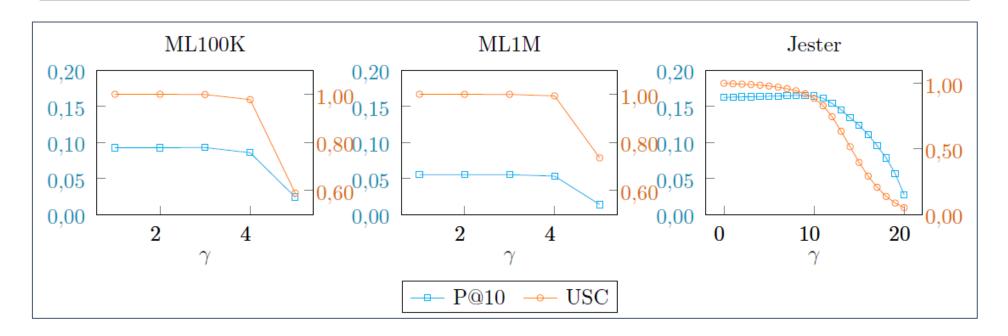
Listas de	Métricas	de evaluación
Recomendación	P@N	\overline{UC}
(a) 0 234 6	0,40	0,40
(b) 1 23	$0,\!20$	$0,\!28$
(c) ①	$0,\!20$	$0,\!36$
(d) ②	0,00	0,00
(e)	0,00	0,00
(f) 06	$0,\!40$	$0,\!64$


Independiente del modelo KNN

Precisión vs Cobertura de Usuario

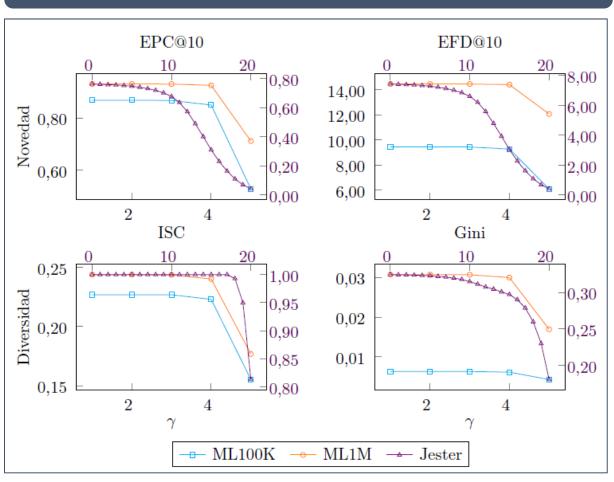

Independiente del modelo KNN

γ	P@10	USC	ISC	F_1	F_2	$F_{0,5}$	$G_{1,1}$	$G_{1,2}$	$G_{2,1}$	UC	RUC	IC	RIC
1	0,037	100,0	62,1	0,071	$0,\!159$	0,045	0,191	0,332	0,110	0,037	0,037	0,000	0,015
2	0,037	100,0	62,1	0,071	$0,\!159$	0,045	0,191	0,332	0,110	0,037	0,037	0,000	0,015
3	0,037	100,0	62,1	0,071	$0,\!159$	0,045	0,191	0,332	0,110	0,037	0,037	0,000	0,015
4	0,036	100,0	62,1	0,070	$0,\!159$	0,045	$0,\!191$	0,331	0,110	0,036	0,036	0,000	0,015
5	0,020	99,2	60,0	0,040	0,094	$0,\!025$	0,142	0,272	0,074	0,022	0,022	0,000	0,011


Independiente del modelo KNN

Independiente del modelo Variational Bayesian

Precisión vs Cobertura de Usuario

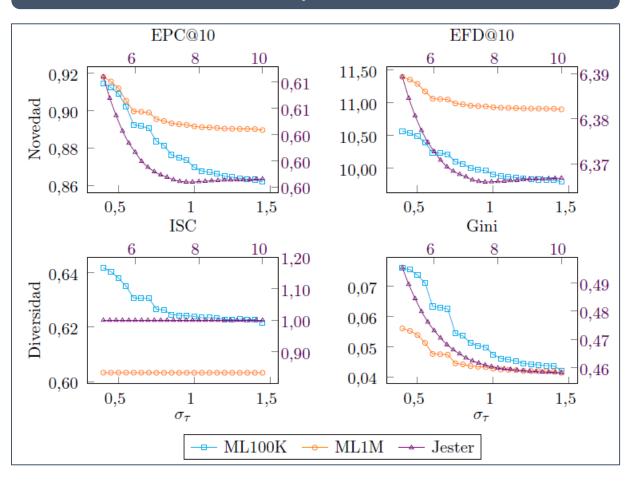


Independiente del modelo Variational Bayesian

γ	P@10	USC	ISC	F_1	F_2	$F_{0,5}$	$G_{1,1}$	$G_{1,2}$	$G_{2,1}$	UC	RUC	IC	RIC
1	0,093	100,0	22,7	0,170	0,338	0,113	0,304	$0,\!453$	0,205	0,093	0,093	0,001	0,009
2	0,093	100,0	22,7	$0,\!170$	0,338	$0,\!113$	0,304	0,453	0,205	0,093	0,093	0,001	0,009
3	0,093	99,9	22,7	0,170	0,338	0,113	0,304	0,452	0,205	0,093	0,093	0,001	0,009
4	0,086	97,8	22,3	$0,\!158$	0,317	$0,\!105$	$0,\!290$	0,434	0,193	0,086	0,085	0,001	0,007
5	0,024	59,0	15,5	0,047	0,104	0,030	0,120	0,204	0,070	0,018	0,015	0,000	0,002

Independiente del modelo Variational Bayesian

Según la incertidumbre de la predicción KNN


$\sigma_{ au}$	P@10	USC	ISC	F_1	F_2	$F_{0,5}$	$G_{1,1}$	$G_{1,2}$	$G_{2,1}$	UC	RUC	IC	RIC
	0,037	100,0	62,1	0,070	$0,\!159$	0,045	0,191	0,332	0,110	0,037	0,037	0,000	0,015
0,40	0,025	100,0	64,2	0,048	0,112	0,031	0,157	0,291	0,085	0,025	0,025	0,000	0,014
0,45	0,026	100,0	64,0	0,050	0,117	0,032	0,161	0,296	0,087	0,026	0,026	0,000	0,014
0,50	0,027	100,0	63,8	0,053	0,123	0,034	0,165	0,301	0,091	0,027	0,027	0,000	0,015
0,55	0,030	100,0	63,5	0,058	0,133	0,037	0,173	0,310	0,096	0,030	0,030	0,000	0,014
0,60	0,031	100,0	63,1	0,061	0,139	0,039	0,177	0,315	0,099	0,031	0,031	0,000	0,014
0,65	0,032	100,0	63,1	0,061	0,140	0,039	0,178	0,316	0,100	0,032	0,032	0,000	0,014
0,70	0,032	100,0	63,1	0,062	0,141	0,039	0,178	0,317	0,100	0,032	0,032	0,000	0,014
0,75	0,032	100,0	62,7	0,062	0,141	0,040	0,178	0,317	0,100	0,032	0,032	0,000	0,014
0,80	0,032	100,0	62,6	0,063	0,143	0,040	0,180	0,319	0,102	0,032	0,032	0,000	0,014
0,85	0,034	100,0	62,5	0,066	0,149	0,042	0,184	0,324	0,105	0,034	0,034	0,000	0,015
0,90	0,034	100,0	62,4	0,066	0,150	0,042	0,185	0,324	0,105	0,034	0,034	0,000	0,015
0,95	0,035	100,0	62,4	0,067	0,152	0,043	0,186	0,326	0,106	0,035	0,035	0,000	0,015
1,00	0,035	100,0	62,4	0,068	0,154	0,043	0,187	0,327	0,107	0,035	0,035	0,000	0,015
1,05	0,036	100,0	62,3	0,069	0,156	0,044	0,189	0,329	0,108	0,036	0,036	0,000	0,015
1,10	0,036	100,0	62,3	0,069	0,156	0,044	0,189	0,329	0,108	0,036	0,036	0,000	0,015
1,15	0,036	100,0	62,3	0,069	0,156	0,044	0,189	0,330	0,109	0,036	0,036	0,000	0,015
1,20	0,036	100,0	62,3	0,069	0,157	0,045	0,190	0,330	0,109	0,036	0,036	0,000	0,015
1,25	0,036	100,0	62,3	0,070	0,157	0,045	0,190	0,330	0,109	0,036	0,036	0,000	0,015
1,30	0,036	100,0	62,3	0,070	0,158	0,045	0,190	0,331	0,109	0,036	0,036	0,000	0,015
1,35	0,036	100,0	62,3	0,070	0,158	0,045	0,190	0,331	0,109	0,036	0,036	0,000	0,015
1,40	0,036	100,0	62,3	0,070	0,158	0,045	0,190	0,331	0,109	0,036	0,036	0,000	0,015
1,45	0,036	100,0	62,2	0,070	0,159	0,045	0,191	0,332	0,110	0,036	0,036	0,000	0,015

Según la incertidumbre de la predicción KNN

Mejora del	σ_{τ}	P@10	USC	ISC	F_1	F_2	$F_{0,5}$	$G_{1,1}$	$G_{1,2}$	$G_{2,1}$	UC	RUC	IC	RIC
95%		0.072	100,0	64,7	0,135	0,281	0,089	0,269	0,417	0,174	0,072	0,072	0,001	0,017
30,0	0,40	0,030	100,0	64,1	0,058	0,133	0,037	0,172	0,310	0,096	0,030	0,030	0,000	0,015
	$0,\!45$	0,045	100,0	64,8	0,087	0,192	0,056	0,213	0,357	0,127	0,045	0,045	0,001	0,016
	0,50	0,077	100,0	64,1	0,143	0,294	0,094	0,277	0,425	0,181	0,077	0,077	0,001	0,019
	$0,\!55$	0,134	100,0	58,8	0,237	0,437	0,162	$0,\!366$	0,512	0,262	0,134	0,134	0,002	0,022
	0,60	$0,\!120$	100,0	53,5	0,215	0,406	$0,\!146$	0,347	0,493	0,243	0,120	0,120	0,001	0,021
	0,65	$0,\!122$	100,0	53,0	0,218	0,411	0,149	$0,\!350$	0,497	0,247	0,122	0,122	0,001	0,021
	0,70	$0,\!128$	100,0	52,7	$0,\!226$	0,422	0,155	0,357	0,503	$0,\!254$	0,128	0,128	0,001	0,022
	0,75	0,079	100,0	58,7	0,147	0,301	0,097	0,281	$0,\!429$	0,184	0,079	0,079	0,001	0,018
	0,80	0,091	100,0	58,4	0,166	0,332	0,111	0,301	0,449	0,202	0,091	0,091	0,001	0,019
	0,85	0,106	100,0	57,1	0,192	0,373	0,130	0,326	0,474	0,225	0,106	0,106	0,001	0,020
	0,90	0,118	100,0	56,1	0,211	0,401	0,143	0,343	0,490	0,240	0,118	0,118	0,001	0,021
	0,95	0,128	100,0	55,0	0,227	0,423	0,155	$0,\!358$	0,504	$0,\!254$	$0,\!128$	$0,\!128$	0,001	0,022
	1,00	0,138	100,0	52,2	0,243	0,445	0,167	0,372	0,517	0,267	0,138	0,138	0,002	0,023
	1,05	0,138	100,0	51,1	0,243	0,445	0,167	0,372	0,517	$0,\!268$	0,138	0,138	0,002	0,023
	1,10	0,146	100,0	50,2	0,254	0,460	$0,\!176$	0,382	$0,\!526$	0,277	0,146	0,146	0,002	0,023
	1,15	0,150	100,0	49,8	0,261	0,468	0,181	0,387	0,531	0,282	0,150	0,150	0,002	0,024
	1,20	0,148	100,0	49,4	0,258	0,464	0,178	0,384	0,529	0,280	0,148	0,148	0,002	0,024
	1,25	0,151	100,0	49,0	0,262	0,470	0,182	0,388	0,532	0,283	0,151	0,151	0,002	0,024
Mejora del	1,30	0,152	100,0	49,0	0,264	0,473	0,183	0,390	0,534	0,285	0,152	0,152	0,002	0,024
	1,35	0,153	100,0	48,6	0,266	0,476	0,185	0,392	0,535	0,287	0,153	0,153	0,002	0,024
322 %	1,46	0,156	100,0	48,5	0,270	0,481	0,188	0,395	0,539	0,290	0,156	0,156	0,002	0,025
	1,45	0,097	100,0	60,3	0,176	0,348	0,118	0,311	0,459	0,211	0,097	0,097	0,001	0,019

Según la incertidumbre de la predicción KNN

Novedad y Diversidad

