
A

A Framework for Dataset Benchmarking and its Application to a New
Movie Rating Dataset

SIMON DOOMS, Ghent University, Belgium
ALEJANDRO BELLOGIN, Centrum Wiskunde & Informatica, The Netherlands
TOON DE PESSEMIER, iMinds-Ghent University, Belgium
LUC MARTENS, iMinds-Ghent University, Belgium

Rating datasets are of paramount importance in recommender systems research. They serve as input for
recommendation algorithms, as simulation data, or for evaluation purposes. In the past, public accessible
rating datasets were not abundantly available, leaving researchers no choice but to work with old and static
datasets like MovieLens and Netflix. More recently, however, emerging trends as social media and smart-
phones are found to provide rich data sources which can be turned into valuable research datasets. While
dataset availability is growing, a structured way for introducing and comparing new datasets is currently
still lacking. In this work, we propose a five-step framework to introduce and benchmark new datasets in
the recommender systems domain. We illustrate our framework on a new movie rating dataset – called
MovieTweetings – collected from Twitter. Following our framework, we detail the origin of the dataset, pro-
vide basic descriptive statistics, investigate external validity, report the results of a number of reproducible
benchmarks, and conclude by discussing some interesting advantages and appropriate research use cases.

Categories and Subject Descriptors: H.1.2 [Information Systems]: Models and Principles—User/Machine
Systems, Human Information Processing

General Terms: Algorithms, Experimentation, Human Factors

Additional Key Words and Phrases: benchmark, dataset, evaluation, reproducibility, MovieTweetings,
IMDb, Twitter, MovieLens

ACM Reference Format:
Simon Dooms, Alejandro Bellogı́n, Toon de Pessemier, and Luc Martens, 2014. A Framework for Dataset
Benchmarking and its Application to a New Movie Rating Dataset. ACM Trans. Embedd. Comput. Syst. V,
N, Article A (January YYYY), 29 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Recommender systems need input data to drive their decision making process and
generate recommendations for users. The (perceived) quality of the recommendations
in the end does not solely rely on the recommendation algorithms, but also greatly
depends on such provided input data, in combination with other factors such as the

This work is funded by a PhD grant to Simon Dooms of the Agency for Innovation by Science and Technology
(IWT Vlaanderen) and the Spanish Ministry of Science and Innovation (TIN2013-47090-C3-2). Part of this
work was carried out during the tenure of an ERCIM “Alain Bensoussan” Fellowship Programme, funded by
European Comission FP7 grant agreement no.246016. The experiments in this work were carried out using
the Stevin Supercomputer Infrastructure at Ghent University, funded by Ghent University, the Hercules
Foundation and the Flemish Government - department EWI.
Author’s addresses:
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

interface, the explanations provided to the user, and trust in the technology [Knijnen-
burg et al. 2012]. Without input, a recommender is just an engine without fuel and so
the selection of the input data is of paramount importance to any recommender sys-
tem. Because input data (e.g., typically user ratings) are hard to find and difficult to
collect, most research on recommender systems relies on publicly available datasets.

Two of the most popular datasets are the MovieLens [Herlocker et al. 1999;
Bobadilla et al. 2010; Peralta 2007] and the Netflix [Bennett and Lanning 2007;
Töscher et al. 2009; Piotte and Chabbert 2009; Koren 2009] datasets, both focusing
on the movie domain. The first MovieLens dataset (ML 100K) was released at the end
of the 90’s and integrated 100,000 ratings originating from users of the MovieLens
system covering a seven-month period (September 19th, 1997 through April 22nd,
1998). This dataset quickly became very popular because of its simplicity (i.e., only
explicit ratings and very basic item and user data were available) and the lack of
other datasets at that time. Later in 2006, the Netflix dataset originated from the
well-known Netflix prize1, where 1 million dollar was promised to the first team able
to improve the in-house Netflix recommendation algorithm by more than 10%. In the
last few years, dozens of other datasets have become available focusing sometimes on
very divergent item domains (e.g., jokes, like the Jester dataset2), specific meta-data
availability (e.g., contextual information, like the datasets produced in the different
editions of the CAMRA challenge3) or social network information (e.g., cross-domain
ratings from Twitter [Dooms et al. 2014]).

With more datasets becoming available, the need rises for a structured way to intro-
duce a new dataset. Currently datasets are mostly published alongside some minimal
documentation that details only the data itself and its structural properties. Ideally
the introduction of a new dataset should allow researchers to quickly assess the value
of the new data and interpret its comparability to other existing datasets.

In this work, we propose a five-step framework to introduce and benchmark new
datasets in the recommender systems research domain. We illustrate this framework
by applying it to a new movie rating dataset called MovieTweetings. This dataset con-
tains explicit movie ratings, originating from the Internet Movie Database (IMDb)4,
provided on a 10-star rating scale and basic movie information data (i.e., genres) in a
similar format as the MovieLens dataset. An extended version of the dataset has been
the topic of the ACM RecSys Challenge 20145 which focused on user engagement as
evaluation. One of the unique properties of the MovieTweetings dataset is that its rat-
ings are frequently updated and therefore guaranteed to include the most recent and
popular movies. It may be hard however to convince researchers to adopt such a new
dataset instead of an already available and well-known dataset. With the application
of our framework, we aim to illustrate how datasets can be introduced while present-
ing researchers with a complete analysis and some insight into its useful applications
and scenarios.

The remainder of this work is structured as follows. Section 2 details our framework
focusing on the introduction and benchmarking of new datasets. In Section 3 we apply
such framework to the MovieTweetings dataset and provide insights on the origin
of the dataset and its external validity; then, in Section 4 we present benchmarking
results, and in Section 5 we discuss some of the most appropriate use cases for this

1More information at http://www.netflixprize.com.
2Available at http://shadow.ieor.berkeley.edu/humor.
3More information at http://2012.recsyschallenge.com/tracks/camra/.
4See http://www.imdb.com.
5See http://2014.recsyschallenge.com.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.netflixprize.com
http://shadow.ieor.berkeley.edu/humor
http://2012.recsyschallenge.com/tracks/camra/
http://www.imdb.com
http://2014.recsyschallenge.com

A:3

dataset. Finally, the results obtained in this work and their relevance towards future
research are presented in Section 6.

2. A DATASET BENCHMARKING FRAMEWORK
Here we propose a five-step framework for introducing and benchmarking new
datasets; this framework is especially tailored to and tested in the recommender sys-
tems research domain, but we expect it to be useful in related areas – such as user
modeling, personalized search, etc. –, and hence, it could show a wider applicability
in the future. In the following, we provide for each step some explanation and recom-
mended procedures for further analysis.

(1) Dataset Story. This step introduces the item domain, the origin of the dataset,
and its collection procedure. Understanding the way in which the dataset was col-
lected can be very important for future researchers who e.g., discover biases in the
dataset. For example, an e-commerce website may generate more data during the
holiday season, or at some point during the data collection, a user interface may
have changed, resulting in different observed user behavior (and collected user
data). It is therefore important to carefully document the item domain (and its
known characteristics) and the dataset collection procedure.

(2) Descriptive Statistics. Here we list a number of basic statistics of the dataset.
This provides researchers with a sense of dataset size, its sparsity, etc. Statistics
from other similar datasets can also be presented to allow comparison. For datasets
relevant to the recommender systems domain we propose to document at least the
following statistics: number of users, number of items, number of ratings, sparsity
(or density). These statistics are best compared with existing similar datasets in
the same domain (if available) and can be complemented with other metrics that
are relevant to illustrate the difference (or similarity). See Table I for an example
of descriptive statistics applied to the MovieTweetings dataset.

(3) External Validity. The goal of this step is to inspect the external validity of the
dataset. It can start out with clearly defining a number of hypothesized biases that
can then be confirmed or rejected. These biases can be analyzed in various ways;
for the MovieTweetings dataset we employ a correlation analysis methodology: the
average ratings are correlated with rating statistics from IMDb and compared with
those from the MovieLens dataset; nonetheless, a similar analysis could be derived
if no ratings are available. A popularity study can further help in identifying the
major differences and similarities with other datasets. Comparing the dataset with
other similar datasets may seem trivial at first, but the difficulty lies in uncovering
the relevant differences in rating behavior, or user interactions in general. A sim-
ple count of the number of users, items and ratings may not be sufficient. We used
rating histograms and plotted various rating distributions to compare the funda-
mental differences in item popularity between MovieTweetings and MovieLens; in
the general case where ratings are not available, histograms based on (user, item)
occurrences may reveal behavior trends in a similar way as the rating histograms.

(4) Reproducible Benchmarks. In this step, well-known recommendation algo-
rithms would run using publicly available software libraries. Results under vary-
ing conditions (e.g., data splitting methodologies and evaluation metrics) would
then be reported and compared against those found for other datasets. The goal
here is to evaluate the baseline performance of a particular dataset, by testing it
using well-known recommendation algorithms. Iteratively repeating the same ex-
periments with increasingly growing slices of the dataset furthermore allows to
inspect the stability and consistency of the results. Performance results can be
measured by a wide variety of evaluation metrics commonly adopted in the recom-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

mender systems literature [Shani and Gunawardana 2011] and considering addi-
tional contexts [Campos et al. 2014]. Also the evaluation methodology is a variable
that can be tested, although the focus should be on consistency, and hence the same
methodology should be applied to all the experiments, otherwise the results will
not be comparable [Said and Bellogı́n 2014]. If possible, such methodology should
be as close to the real life scenario where the dataset will be used as possible.
An important aspect here is that publicly available software libraries are used,
and their parameters are clearly reported to allow for experimental reproducibil-
ity [Bellogı́n et al. 2013]. In this work, we use MyMediaLite in combination with
the trec eval program, but there are many other options available (e.g., the Ri-
val toolkit6 for recommender systems evaluation [Said and Bellogı́n 2014]). We
experimented with a wide variety of experimental conditions: 5 recommendation
algorithms, 2 data splitting methodologies and multiple evaluation metrics (both
rank-based and error-based). The results should be compared with other similar
datasets in the same item domain to find out if the analyzed dataset is as difficult
(or easy) as the other datasets. We believe this aspect can remain unnoticed even
after the aforementioned analyses, since the datasets may be similar from a global
point of view, but in a user (or item) basis, the scarcity (or abundance) of data,
or their distributions, may complicate (or favor) some recommendation methods
over others, evidencing an inherent difference in the data patterns. An extreme
example would be a dataset where an item average recommender achieves a very
good performance, indicating that the most important signal is the item’s average
rating, no matter how different the dataset is to previous datasets in terms of dis-
tributions and popularity correlations. The nature of these differences may arise,
in fact, from outside of the dataset, external factors such as the interface of the
original system the ratings were collected from or the main goal the user is aiming
to satisfy with the system.

(5) Use Cases & Advantages. Finally, it would be a good practice to indicate the
intended use cases for the dataset and its advantages against other already avail-
able datasets. The use cases can be supported by a number of experiments that
illustrate why the dataset may be a better choice in certain situations.

3. INTRODUCING THE MOVIETWEETINGS DATASET
We now illustrate our proposed benchmarking framework on a new movie rating
dataset called MovieTweetings. In this section, we detail how it was collected, present
some descriptive statistics and discuss external validity.

3.1. Dataset Story
While searching the Internet for structured movie preference information, to our own
surprise, we discovered a vast number of explicit movie ratings from IMDb being
posted on Twitter by means of a social sharing feature. This notion of social sharing is
increasingly becoming more popular on the Internet. Websites offer promote buttons
that aid users in posting interesting content (i.e., often the page the user is currently
browsing) directly to their social network. When such a button is clicked, a user may
add some additional comments before finally submitting. The content provider usually
already provides a suggestion (template) for what a user might post, for instance, the
title of the page together with the url and some reference to the social network account
of the website itself (illustrated in Fig. 1).

6Available at http://rival.recommenders.net

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://rival.recommenders.net

A:5

Fig. 1. Illustration of the social sharing feature that is included in many websites (here: washington-
post.com). By clicking a share button, the content provider provides a suggestion as to what the user might
post to its social network (here: twitter.com).

We have found that one of the mobile apps from the IMDb platform7, after a movie
has been rated, offers a well-structured template to post to Twitter (Fig. 2). When a
user rates a movie on the iOS mobile app, an option is available to ‘Share my rating’.
When enabled, the user is taken to a screen that proposes to post the following text
(for the movie ‘Man of Steel’):

I rated Man of Steel 10/10 #IMDb

This pre-formatted tweet is well-structured and therefore apt for automated extrac-
tion. In the tweet we find the title of the movie, the rating, and a website-specific hash-
tag. The hashtag allows for easy filtering tweets originating from IMDb. When the
tweet is posted, a link to the IMDb page of the involved movie is inserted as follows:

I rated Man of Steel http://www.imdb.com/title/tt0770828 10/10 #IMDb

From this link, the IMDb id of the movie can be extracted which allows us to unam-
biguously identify the movie that is rated in the tweet (which is not always possible
using only the movie title). While searching Twitter can lead to many ambiguous re-
sults, we can use the proposed fixed format of the tweet to our advantage. Instead of
searching for the movie title, we use the query ‘I rated #IMDb’ and then apply string
matching techniques to extract the relevant fields from the returned tweets. Specifi-
cally, we extract the following fields from the tweets:

— Twitter user id
— IMDb movie id
— Rating
— Timestamp

Furthermore, we also extract additional genre data from the IMDb page of the
movie rated in the tweet. Such additional genre data can be exploited by content-
based recommenders who would use movie attributes in the recommendation pro-
cess [Lops et al. 2011]. Even more content attributes can be downloaded by extracting
them directly from the corresponding IMDb page (whose URL can be reconstructed
directly from the IMDb movie id by adding “http://www.imdb.com/title/tt”). Some-
times users tend to extend the default tweet (up to the limit of 140 characters imposed

7Available at http://www.imdb.com/apps.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.imdb.com/apps

A:6

Fig. 2. Screenshots from the iPhone mobile IMDb app illustrating the process of rating a movie and sharing
it on Twitter.

by Twitter), proposed by the IMDb app, with their own personal opinions or additional
comments. For our dataset, however, we do not integrate these additional comments
which would require Natural Language Processing [Yi et al. 2003] and might introduce
more noise than information. Instead, we focus on the available explicit feedback, i.e.,
the numerical rating. Starting March 7, 2013 we queried the Twitter search API on a
daily basis and extracted ratings from relevant tweets into our dataset. The dataset
itself consists of three files: ratings.dat, users.dat and movies.dat, which are formatted
similarly as the popular MovieLens dataset to facilitate integration in existing imple-
mentations:

— ratings.dat contains the ratings as tuples, together with the user, movie and corre-
sponding timestamp. The user id is an internal numerical identifier, while the movie
id is the IMDb id. Ratings range from 1 to 10 in the analyzed dataset8.

— users.dat provides a link between the internal user ids and the true Twitter id of
the user, allowing for additional data enrichment.

— movies.dat lists the movies that were rated at least once, together with the movie
year and genre data, from IMDb.

The dataset offers two repositories9: latest data and snapshots. Latest data always
contains all the data in the dataset, including the most recently added data. This repos-
itory will therefore be subject to frequent updates. The snapshots, on the other hand,
offer fixed portions of the dataset in various sizes (e.g., 10K, 100K, 150K) to stimulate
and facilitate experimental reproducibility. The dataset license is MIT10, which allows
both academic researchers and industry to benefit from the data.

8The dataset does include a few 0/10 ratings, but they are originating from users that manually changed
the rating value to 0 in the template tweet. These rating values will be ignored in this work.
9Available at https://github.com/sidooms/MovieTweetings.
10Available at http://opensource.org/licenses/MIT.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

https://github.com/sidooms/MovieTweetings
http://opensource.org/licenses/MIT

A:7

Table I. Basic characteristics dataset comparison

Metric MT 100K ML 100K ML 10M100K*

Users 16,554 943 2,059
Users with at least 5 ratings 4,692 943 1,597
Users with at least 10 ratings 2,583 943 1,244
Users with at least 20 ratings 1,154 943 932
Items 10,506 1,682 6,930
Ratings 100,000 100,000 100,000
Density 0.06 % 6.3 % 0.7 %
Minimum # ratings per user 1 20 1
Average # ratings per user 6 106 49
Maximum # ratings per user 320 737 1,563
Minimum # ratings per item 1 1 1
Average # ratings per item 10 59 14
Maximum # ratings per item 1,812 583 529
Earliest rating Feb 28, 2013 Sep 20, 1997 Nov 22, 2008
Latest rating Sep 1, 2013 Apr 22, 1998 Jan 5, 2009
Time span 186 days 214 days 44 days

3.2. Descriptive Statistics
We now present some descriptive statistics of the MovieTweetings dataset. In Table I
we list some basic numerical characteristics and compare them with other known
datasets for reference. As reference dataset we use MovieLens because it is the most
popular movie rating dataset in the recommender systems domain and is still publicly
available11 (the Netflix dataset is not anymore due to privacy issues). Both Movie-
Tweetings (MT) and MovieLens (ML) have a dataset snapshot containing 100K rat-
ings, so these are obvious candidates for a comparison. MovieTweetings is however a
natural, unfiltered dataset, i.e., no users and items have been omitted, while in the
MovieLens 100K dataset only users with at least 20 ratings are included. To increase
the comparability of the datasets, we generated a new MovieLens dataset based on
the data of MovieLens 10M. We sliced the (chronologically) last 100K ratings of this
bigger dataset, taking into account the rating timestamps. While in MovieLens 10M
all users have rated at least 20 movies, for its 100K subset, this will no longer be true,
making the comparison with MovieTweetings more fair. We will refer to this dataset as
the ML 10M100K* dataset, in order to distinguish it from the alternative name of the
Movielens 10M dataset (ML 10M100K) that considers the fact that such dataset con-
tains around 100K tag assignments. Wherever possible, we also include the standard
MovieLens 100K in the comparative experiments as another baseline.

The density metric is calculated according to the following equation:

rating density = 100× # available ratings

all possible ratings
= 100× # available ratings

(# users)× (# items)
(1)

The numbers in Table I clearly indicate one of the major aspects that differentiates
the MovieTweetings dataset: its low density. The number of items and users is much
higher (almost by a factor of 10) for MovieTweetings compared to the other datasets.
While most rating datasets are restricted to users of the particular closed system (e.g.,
the Netflix or MovieLens system), the MovieTweetings dataset integrates data from
users of the IMDb platform, which is very popular and open to anyone on the Internet.
Also in terms of number of items, the IMDb catalog is not restricted to movies that
can be rented but rather includes almost all existing movies. Integrating the IMDb

11At http://grouplens.org/datasets/movielens.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://grouplens.org/datasets/movielens

A:8

platform as rating source, therefore leads to very high numbers of distinct users and
items, leading to a density value closer to 0 than for the other datasets.

Table I also lists time information regarding the included ratings for each of the
datasets. We can clearly see how the MovieLens 100K is the oldest dataset with rat-
ings at least 15 years older than the MovieTweetings ratings. The artificially created
MovieLens ML 10M100K* dataset contains more recent ratings (2008-2009), but is
still older than MT. In terms of time span however, ML 100K and MT 100K are roughly
the same. The main conclusion we can draw from the presented descriptive statistics
is that although datasets are hard to compare because of their many differences, we
can increase comparability by using multiple (samples of) datasets and if necessary
create artificial (or derived) ones.

3.3. External Validity
In this subsection we explore the external validity of the MovieTweetings dataset by
investigating some possible biases and more thoroughly comparing the dataset with
other known rating datasets in the domain.

The MovieTweetings dataset may be subject to biases introduced by the manner in
which it is collected and in the sampling inherent to the Twitter API [Morstatter et al.
2013]. To understand the consequence of working with the MovieTweetings dataset, it
is important to first understand these biases and study the extent of their impact. The
ratings in the dataset come from users of the IMDb platform that rate movies using
the mobile IMDb app for iOS and post the rating (publicly) to Twitter. One obvious
bias to consider here is the effect of the ratings being collected through Twitter and not
directly from IMDb itself. Only data from Twitter users with a public profile that chose
to share their IMDb rating is included. Maybe these users are sharing their high and
low ratings, but consider the mid-range ratings – such as 6/10 – not interesting enough
to be posted to their social network. Another more structural bias comes from the fact
that the dataset focuses on the IMDb platform. This platform offers a broad selection
of movie information, but not the movies itself. Apart from the ability to watch the
trailer of a movie, users can not watch movies on the IMDb site before rating them,
something possible in a system like Netflix. Moreover, the rating scale may also affect
the users [Gena et al. 2011], since the IMDb platform allows to rate movies using
a 10-star feedback system, instead of the more common 5-star feedback system (like
MovieLens).

3.3.1. Twitter Bias. To study the possible rating bias introduced by including only Twit-
ter ratings, we would need to compare the ratings of the entire IMDb platform with the
subset of the ratings extracted through Twitter. For this purpose a correlation study
seems appropriate. The complete set of IMDb ratings (per user) is not available but the
platform does provide the aggregated average movie scores. Unfortunately, IMDb does
not disclose its exact averaging formula. On their website they claim to apply various
filters to eliminate the effect of fake ratings by individuals who are trying to distort the
aggregated rating of a movie. Therefore in our correlation analysis we have to take at
least a small amount of noise into account (i.e., perfect correlation will not be possible).

For every movie that was included in the MovieTweetings (100K snapshot) dataset,
we used the OMDb API12 to obtain the aggregated average IMDb rating. We then
compared this average value with the average of the MovieTweetings ratings for that
movie in a correlation analysis. Fig. 3 (left) shows the resulting scatter plot, visualizing
every movie with its aggregated IMDb rating (on the Y-axis) and the corresponding av-
erage MovieTweetings rating (on the X-axis). The resulting Pearson correlation value

12Available at http://www.omdbapi.com.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.omdbapi.com

A:9

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●● ●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●
●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Correlation IMDb vs MovieTweetings

MovieTweetings average movie rating

IM
D

b
av

er
ag

e
m

ov
ie

 r
at

in
g

Spearman correlation = 0.536
Pearson correlation = 0.542

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

6
7

8
9

10

Pearson correlation

Minimum number of ratings

P
ea

rs
on

 c
or

re
la

tio
n

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
● ● ● ● ●

1 3 5 7 9 11 13 15 17 19

0.
5

0.
6

0.
7

0.
8

0.
9

1

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Correlation >= 20 ratings

MovieTweetings average movie rating

IM
D

b
av

er
ag

e
m

ov
ie

 r
at

in
g

Spearman correlation = 0.930
Pearson correlation = 0.924

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

6
7

8
9

10

Fig. 3. Plots illustrating the correlation of the aggregated IMDb rating and the averaged MovieTweetings
rating per movie. The figure on the left shows the correlation for all movies in the MovieTweetings dataset.
In the middle, the Pearson correlation values are shown for movie subsets having a minimum of 1-20 ratings.
The scatter plot on the right illustrates the absence of noise for movies with a minimum of 20 ratings.

is 0.542, which indicates a positive correlation. When we inspect the scatter plot, we
find this confirmed, in particular for the higher rating values (higher than 6). The fig-
ure however also shows a significant amount of noise, which we hypothesize originates
from movies with a low number of ratings.

To experiment with the effect of the rating frequency of the movies, we repeated the
correlation analysis for different subsets of the MovieTweetings movies: we illustrate
in the middle plot of Fig. 3 the increasing Pearson correlation for the movie subsets
having a minimum of 2, 3, ..., 20 ratings. As expected, the harder the constraint, the
more the influence of the noise is reduced, which leads to a stronger linear correlation
(when 20 ratings are considered). Fig. 3 (right) plots the correlation values including
only movies with a minimum of 20 ratings. Note that the correlation seems to converge
to a value below the perfect correlation (i.e., of 1.0), this may be the result of not using
the exact averaging formula of IMDb.

Complementary to this correlation analysis, we further compare the Movie-
Tweetings dataset with the IMDb ratings by performing a popularity analysis for both
datasets. A well-known IMDb popularity list is the top 250 movie list13. This list shows
the best rated movies according to a Bayesian estimate defined in Equation 2:

weighted rating (WR) =
v

v +m
∗R+

m

v +m
∗ C (2)

where:

— R = average for the movie (mean) = (Rating)
— v = number of votes for the movie = (votes)
— m = minimum votes required to be listed in the Top 250 (currently 25,000)
— C = the mean vote across the whole report (currently 7.0)

So the overall popularity score takes into account the rating values, as well as the
number of ratings itself to rank the movies. We adopted this as the definition of
popularity and implemented the formula to rank the movies in the MovieTweetings
dataset. For the same set of movies we also calculated the IMDb popularity value us-
ing the IMDb average rating values. Having calculated both the IMDb popularity and
the MovieTweetings popularity value, the two lists can be ranked according to each

13Accessible at http://www.imdb.com/chart/top?ref =nv ch 250 4.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.imdb.com/chart/top?ref_=nv_ch_250_4

A:10

Jaccard index for popular movies (IMDb VS MovieTweetings)
Popularity = IMDb bayesian estimate

Number of considered popular movies (cutoff value)

Ja
cc

ar
d

si
m

ila
rit

y
in

de
x

0 100 250 400 600 800

0
0.

2
0.

4
0.

6
0.

8
1

0.72

Fig. 4. The Jaccard similarity index, indicating the similarity between the top popular IMDb and Movie-
Tweetings movies, for different cutoff lengths. Only movies with a minimum of 20 ratings are taken into
account.

value and compared. For the comparison, we employ a similar method as the one used
in [Bellogı́n et al. 2013] to compare lists of popular artists, where the Jaccard similarity
index was used for different cutoff values. This is needed because standard correlation
indices cannot be used, since a top-K list does not necessarily share the same items,
which would make the computation of Spearman’s or Pearson’s correlation unfeasible.
Fig. 4 shows the Jaccard index for all movies with a minimum of 20 ratings. While the
top 10 popular movies are almost identical, the two datasets tend to diverge when less
popular movies are considered (with another small spike at around top 50) and slowly
converge to a Jaccard value of 1 at the end.

Table II shows the list of top 10 movies for both MovieTweetings and IMDb and
their resulting Jaccard index values. The lists are very similar except for some small
changes in the ordering. Apart from the similarity amongst these top popular movies,
data show that more recent movies tend to obtain a higher overall popularity score in
the MovieTweetings dataset. This is to be expected, considering how MovieTweetings
collects its data from Twitter. Therefore the dataset contains more recent and currently
popular movies. We expect however that with more data being collected regularly, the
effect of the recentness of the movies will gradually decrease.

While the MovieTweetings dataset may favor recent movies, we hypothesize that,
in general, similar trends can be noticed for IMDb. One of such trends is the type of
movies that are popular, i.e., the genre. A set of genres is available for each movie
allowing for a new correlation analysis, this time comparing the similarity amongst
genres of popular movies for both MovieTweetings and IMDb. For this experiment we
focus on the top 250 popularity list. For the 250 most popular movies we summed up
the number of times each genre occurred (that is, we computed the term frequency of
each genre [Baeza-Yates and Ribeiro-Neto 2011]), doing this for both datasets. Fig. 5
shows the correlation between the genre counts of the most popular MovieTweetings
movies versus the ones of IMDb.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

Table II. List of top 10 popular movies from IMDb vs MovieTweetings

Ranking IMDb MovieTweetings Jaccard

1 The Shawshank Redemption The Shawshank Redemption 1.00
2 The Godfather The Dark Knight 0.33
3 The Dark Knight The Godfather 1.00
4 Pulp Fiction Pulp Fiction 1.00
5 The Godfather: Part II LOTR: The Return of the King 0.67
6 The Good, the Bad and the Ugly Terminator 2: Judgment Day 0.50
7 LOTR: The Return of the King Schindler’s List 0.56
8 Schindler’s List Forrest Gump 0.60
9 12 Angry Men Saving Private Ryan 0.50

10 Inception Inception 0.54

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Correlation genres top 250 movies IMDb Vs MovieTweetings

Genre frequency MovieTweetings top 250 popular movies

G
en

re
 fr

eq
ue

nc
y

IM
D

b
to

p
25

0
po

pu
la

r
m

ov
ie

s

Sci−Fi

Crime

Romance

Animation
Music

Comedy

War

Horror

Film−Noir

Western

Thriller

Adventure

Mystery

Drama

Action

Documentary

Musical

History
Family

FantasySport

Biography

Spearman correlation = 0.9935
Pearson correlation = 0.9964

Fig. 5. The correlation of how many times each genre occurred in the top 250 movie list for MovieTweetings
and IMDb.

While the Jaccard index for the top 250 popular movies was 0.72 (see Fig. 4), Fig. 5
clearly shows how highly correlated the movie genres are for both lists (Spearman
correlation is 0.99). This close-to-perfect correlation indicates that although the movie
lists may not be strictly identical, movies are being replaced by similar (probably more
recent) movies with similar genres. For instance, in both datasets Drama seems to be
the most popular genre, followed by Thriller and Crime.

3.3.2. IMDb bias. Another interesting approach towards investigating biases in the
MovieTweetings dataset is to compare it with other popular datasets in the domain.
This would allow us to verify how inherently different the ratings originating from the
IMDb platform are from other movie platforms like Netflix and MovieLens. We already
presented some basic statistics about the MovieTweetings dataset and compared them
with the MovieLens dataset in Table I. We now provide a more thorough analysis and
comparison of the dataset properties.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

MovieTweetings

Rating values

F
re

qu
en

cy

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

1 2 3 4 5 6 7 8 9 10

Fig. 6. Rating value histogram for the MovieTweetings dataset. The rating values are based on the IMDb
10-star rating scale.

In terms of number of ratings, the three datasets were equal (i.e., 100K ratings),
nonetheless it is worth comparing the distribution of their rating values to uncover
different rating behaviors. In Fig. 6 we plotted the histogram of the rating values for
MovieTweetings. These values are based on the IMDb 10-star rating scale, whereas
MovieLens users rated on a 5-star rating scale. The difference in rating scales makes
it hard to compare the rating frequencies. Therefore, to ease the comparison with the
MovieLens datasets, we paired the rating values for MovieTweetings in Fig. 7.

Every histogram displays the rating values on the X-axis and the number of times
each rating value occurred in the dataset (i.e., frequency) on the Y-axis. A general trend
is that the more positive rating values are more frequent in any of the three datasets.
This is a well-known observation in the recommender systems research domain re-
ferred to as not random missing data [Marlin and Zemel 2009]. Users mostly watch
movies they assume to be interesting (based on, for instance, genre, trailer, or other
movie information), and therefore most movies they rate (apart from the ones they
wrongfully assumed interesting) will be rated positively, which explains why generally
negative/low ratings are not present in these datasets.

Although all three datasets distributions are showing a skew towards more positive
rating values, the trend is significantly stronger for MovieTweetings. Only 2% of its
rating values are smaller than 5 (neutral rating), compared to the MovieLens datasets
where 17% for ML 100K and 11% for ML 10M100K* are lower than 3 (the counterpart
neutral value in these datasets). A possible explanation for this may be the fact that
users are not explicitly asked to rate movies on the IMDb platform as is the case
for the MovieLens system. IMDb only recently included (basic) recommendations on
its website, hence there used to be no direct incentive to rate movies other than to
contribute to the aggregated IMDb rating value for a specific movie. We hypothesize
that therefore users are even more skewed towards only rating exceptionally good
movies, resulting in higher rating values.

Aside from the rating value distribution, it is also important to compare the general
rating distribution among the datasets. In Fig. 8 the distribution of the ratings across

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

MovieTweetings

Rating values

F
re

qu
en

cy
0

10
00

0
20

00
0

30
00

0
40

00
0

[1−2] [3−4] [5−6] [7−8] [9−10]

ML 100K

Rating values

0
10

00
0

20
00

0
30

00
0

40
00

0

1 2 3 4 5

ML 10M100K*

Rating values

0
10

00
0

20
00

0
30

00
0

40
00

0

1 2 3 4 5

Fig. 7. Rating value histograms for the datasets MovieTweetings, ML 100K and ML 10M100K* illustrating
a similar (yet stronger for MovieTweetings) shift towards positive rating values across the datasets.

the items is shown (similar to [Cremonesi et al. 2010] where Netflix and MovieLens
were compared). Items are ordered by popularity (most popular at the bottom) and
expressed as a percentage of the total number of items. From the figure we can see that
in the case of MovieTweetings, 40% of the total amount of ratings is provided on only
1% of all the items (i.e., the 1% most popular), compared to MovieLens where this is
10%. Thus, in general the MovieTweetings dataset is less dense, but 40% of the ratings
are mostly concentrating on a very small number of items which greatly increases the
density for these items in particular (the top 105 most popular movies are each rated on
average 380 times). The ML 10M100K* rating distribution is somewhat more similar
to MovieTweetings than ML 100K is, but both are in fact still significantly different
from the MovieTweetings rating distribution. Hence, MovieTweetings is more biased
towards popular movies.

An important aspect about the MovieTweetings dataset is its recentness. Since rat-
ings are mined from Twitter, there is no limitation as to how old or recent a rated
movie should be. Data show however that recent movies are rated more, obviously be-
cause users tend to rate the movies they have just seen, and recent movies are more
easily available (in cinemas) while being – probably – more interesting topics to share
on a social network. Specifically, in Fig. 9 we plotted the year of every rated movie
and its frequency for the three datasets. In general, similar patterns can be observed:
a long tail with a peak at the end. The location of the peak indicates the most recent
movies in the dataset, which is 2013 for the MovieTweetings dataset and towards 1998
and 2009 for the MovieLens-based datasets. The histograms here indicate how old the
MovieLens datasets truly are. The MovieLens datasets include more ratings from older
movies, which may still be relevant data for some use cases (e.g., recommending classic
movie titles to older users). In most cases, however, users will prefer recommendations
for modern and recent movies and for those situations the MovieTweetings dataset
may offer an ideal way of bootstrapping a recommender system and avoid cold start
issues for new users or unrated items.

Similarly as we compared the IMDb ratings with MovieTweetings, we now compare
MovieTweetings with MovieLens by means of a rating correlation analysis. To be able
to easily compare the rating values we rescaled the MovieTweetings ratings to a 5-
star scale. For movies in MovieLens also present in the MovieTweetings dataset, we
calculated the average movie rating and correlated the results. We present the results
for the ML 10M100K* dataset, we found similar results for movies from ML 100K and
we shall comment on this later.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

Rating distribution comparison

% of ratings

%
 o

f i
te

m
s

MovieTweetings
ML 100K
ML 10M100K*

0.
01

%
0.

1%
1%

10
%

10
0%

0 20% 40% 60% 80% 100%

Fig. 8. Rating distribution comparison, linking the number of ratings with the number of rated items. Items
are sorted according to popularity i.e., most rated, with the most popular items at the bottom. Note that the
Y-axis is a log scale.

MovieTweetings

Movie year of rating

F
re

qu
en

cy

1950 1960 1970 1980 1990 2000 2010

0
50

00
15

00
0

25
00

0

ML 100K

Movie year of rating
1950 1960 1970 1980 1990 2000 2010

0
50

00
10

00
0

15
00

0

ML 10M100K*

Movie year of rating
1950 1960 1970 1980 1990 2000 2010

0
20

00
40

00
60

00

Fig. 9. Histograms illustrating how frequent movies of a given year (on the X-axis) were rated for Movie-
Tweetings, ML 100K, and ML 10M100K*.

Fig. 10 shows the results for movies which have been rated at least 1, 2, 3, 4, 5
and 20 times. The exact Spearman and Pearson correlation values are listed in Ta-
ble III. These figures show trends similar to the comparison of MovieTweetings and
IMDb data. For all movies (i.e., figure for movies with >= 1 ratings) a general trend
of positive correlation can be noted, while some movies show diverging rating values
(i.e., dots arranged vertically on the figure). This effect decreases when we restrict the
movie set to movies with a minimum of 2, 3, etc. ratings, which again confirms the
diverging rating values to originate from movies which have been rated only a few
times. Correlation values get stronger when increasing the minimal rating threshold

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

0 1 2 3 4 5

0
1

2
3

4
5

movies >= 1 ratings

MovieTweetings

M
L

10
M

10
0K

*

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

0 1 2 3 4 5

0
1

2
3

4
5

movies >= 2 ratings

MovieTweetings

M
L

10
M

10
0K

*

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

0 1 2 3 4 5

0
1

2
3

4
5

movies >= 3 ratings

MovieTweetings

M
L

10
M

10
0K

*

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 1 2 3 4 5

0
1

2
3

4
5

movies >= 4 ratings

MovieTweetings

M
L

10
M

10
0K

*

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 1 2 3 4 5

0
1

2
3

4
5

movies >= 5 ratings

MovieTweetings

M
L

10
M

10
0K

*
●

●

●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 1 2 3 4 5

0
1

2
3

4
5

movies >= 20 ratings

MovieTweetings

M
L

10
M

10
0K

*

Fig. 10. Scatter plot illustrating the correlation of the average MovieTweetings rating per movie and the
ML 10M100K* dataset for different subsets of movies which have been rated at least 1, 2, 3, 4, 5, 20 times.
The MovieTweetings results have been rescaled to a 5-star rating scale to make the ratings more compara-
ble.

Table III. Correlation values for average movie rat-
ings of MovieTweetings and ML 10M100K*

Configuration Spearman Pearson

movies >= 1 ratings 0.425 0.449
movies >= 2 ratings 0.481 0.483
movies >= 3 ratings 0.538 0.545
movies >= 4 ratings 0.567 0.489
movies >= 5 ratings 0.580 0.475

movies >= 20 ratings 0.497 0.651

per movie, except in the last case (the subset of movies with at least 20 ratings), where
there are too few movies (i.e., less than 30) with at least 20 ratings that occur at the
same time in the MovieTweetings and the ML 10M100K* dataset to make a proper
analysis.

Similar results were obtained for the ML 100K dataset, more specifically, ML 100K
presented a slightly larger overlap with MovieTweetings in terms of movies (i.e., 80
movies with at least 20 ratings), but the overlap between these datasets was still too
limited to perform a thorough popularity comparison, as we did in the previous sub-
section.

In summary, in this section we have addressed the external validity of the Movie-
Tweetings rating data by investigating biases, studying its properties and comparing
it against other similar datasets. With a sufficient number of minimum ratings per
movie, the dataset correlates strongly with ratings found on the IMDb website, as
confirmed by the popularity analysis. The dataset does however show a bias towards

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

very recent and popular movies, but similar trends could be noted for the MovieLens
datasets.

4. BENCHMARKING THE MOVIETWEETINGS DATASET
We now analyze the MovieTweetings dataset under several conditions (data splitting,
performance of recommendation methods, and evaluation metrics) and compare these
results with those obtained using other datasets. By doing this, we aim to provide a
(reproducible) benchmark against which other experimental variations – out of the
scope of this work – can be, in the future but also retroactively, compared.

4.1. Experimental Setup
We again use two versions of the MovieLens data (i.e., ML 100K and ML 10M100K*)
against which we compare the MovieTweetings (MT) 100K snapshot. Note that we
selected these datasets because of their similarity in both domain and properties with
the MovieTweetings dataset.

We follow the evaluation methodology presented in [Koren 2008] (denoted as RPN
in [Said and Bellogı́n 2014]), where for each user a set of not relevant items (unrated
by this user in the training and testing splits) is randomly selected (100 in our case),
and then, for each highly relevant item in the testing split (i.e., those rated as 5 in
MovieLens or as 10 in MovieTweetings), a ranking is generated by predicting a score
for this item and the other (not relevant) items. Then, the performance of this ranking
is measured using the trec eval program14. In this way, standard retrieval metrics
such as precision, normalized Discounted Cumulative Gain (nDCG) or Mean Average
Precision (MAP) could be used [Baeza-Yates and Ribeiro-Neto 2011]. Additionally, and
for the sake of comparison with previous works, we also measured error-based metrics
such as Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), pervasive
in the recommender systems literature [Shani and Gunawardana 2011]. We have to
note that the dataset framework we present here can be instantiated using any other
evaluation strategy available in the literature; in fact when the TestItems evaluation
methodology from [Bellogı́n et al. 2011] or TrainItems from [Said and Bellogı́n 2014]
were tested in some preliminary experiments, we found comparable results but decided
to stick with RPN because it is insensitive to the sparsity bias [Bellogı́n 2012] – which
allows proper comparisons of algorithms when the sparsity changes – even though
these strategies could be understood to be closer to real life than RPN.

We have tested five recommendation algorithms as implemented in the MyMedia-
Lite Recommender System library (version 3.10)15. All of them only use ratings as the
basis of the predictions, two are non-personalized (user and item average) methods,
and the rest do use information about the target user – either as memory-based col-
laborative filtering algorithms (user and item nearest neighbor) or as a model-based
(matrix factorization) recommender. Table IV shows a description of these approaches,
along with the default parameters for MyMediaLite version 3.10 used in our experi-
ments. Note that some of these specifications are not standard (e.g., the cosine function
as similarity, or using a baseline predictor in the nearest neighbor methods), but since
they are applied to all the datasets impartially, the overall conclusions should be fair
and not sensitive to this aspect. In any case, we did a preliminary test with Pearson’s
correlation as similarity function and the general trend remained the same, the only
change was that the performance of UserKNN and ItemKNN improved slightly (but
uniformly in the three datasets).

14Available at http://trec.nist.gov/trec eval.
15Available for download at http://mymedialite.net.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://trec.nist.gov/trec_eval
http://mymedialite.net

A:17

0.
0

0.
1

0.
2

0.
3

0.
4

MAP (MovieLens 100K)

Dataset slices (10K−100K)

M
A

P

●

●
● ●

●

●

●
●

●
●

10 20 30 40 50 60 70 80 90 100

●

ItemAverage
ItemKNN
MatrixFactorization
UserAverage
UserKNN

0.
8

0.
9

1.
0

1.
1

1.
2

RMSE (MovieLens 100K)

Dataset slices (10K−100K)

R
M

S
E

●

●
●

● ● ●
●

● ● ●

10 20 30 40 50 60 70 80 90 100

0.
0

0.
1

0.
2

0.
3

0.
4

MAP (MovieLens ML10M100K*)

Dataset slices (10K−100K)

M
A

P

●

●

●
● ●

● ●
●

●
●

10 20 30 40 50 60 70 80 90 100

0.
8

0.
9

1.
0

1.
1

1.
2

RMSE (MovieLens ML10M100K*)

Dataset slices (10K−100K)

R
M

S
E

● ●
● ●

●
● ● ●

● ●

10 20 30 40 50 60 70 80 90 100

0.
0

0.
1

0.
2

0.
3

0.
4

MAP (MovieTweetings)

Dataset slices (10K−100K)

M
A

P

●
●

●
●

●

●
● ●

● ●

10 20 30 40 50 60 70 80 90 100

1.
4

1.
6

1.
8

2.
0

2.
2

RMSE (MovieTweetings)

Dataset slices (10K−100K)

R
M

S
E

●
●

●

●

●
●

●
● ● ●

10 20 30 40 50 60 70 80 90 100

Fig. 11. Mean Average Precision (MAP, the higher the better) and Root Mean Squared Error (RMSE, the
lower the better) metrics computed using a cross-validation 5-fold splitting strategy, using a varying number
of ratings for each split (from 10K to 100K).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

0.
0

0.
1

0.
2

0.
3

0.
4

MAP (MovieLens 100K)

Dataset slices

M
A

P

●

●

50K+10K 90K+10K

●

ItemAverage
ItemKNN
MatrixFactorization
UserAverage
UserKNN

0.
8

0.
9

1.
0

1.
1

1.
2

RMSE (MovieLens 100K)

Dataset slices

R
M

S
E

●
●

50K+10K 90K+10K

0.
0

0.
1

0.
2

0.
3

0.
4

MAP (MovieLens ML10M100K*)

Dataset slices

M
A

P

●

●

50K+10K 90K+10K

0.
8

0.
9

1.
0

1.
1

1.
2

RMSE (MovieLens ML10M100K*)

Dataset slices

R
M

S
E

●

●

50K+10K 90K+10K

0.
0

0.
1

0.
2

0.
3

0.
4

MAP (MovieTweetings)

Dataset slices

M
A

P

● ●

50K+10K 90K+10K

1.
4

1.
6

1.
8

2.
0

2.
2

RMSE (MovieTweetings)

Dataset slices

R
M

S
E

● ●

50K+10K 90K+10K

Fig. 12. MAP and RMSE metrics computed using a temporal splitting strategy.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

Table IV. Description of the recommendation algorithms evaluated and the values of the parameters used

Name Description Parameters

ItemAverage Target item’s average rating –
UserAverage Target user’s average rating –

ItemKNN Item-based nearest neighbor k=80, correlation=BinaryCosine,
reg u=15, reg i=10, num iter=10

UserKNN User-based nearest neighbor k=80, correlation=BinaryCosine,
reg u=15, reg i=10, num iter=10

MatrixFactorization Factorization of rating matrix using
stochastic gradient descent

num factors=10, regularization=0.015,
learn rate=0.01, learn rate decay=1,
num iter=30

4.2. Benchmarking Results
We now present the results obtained when comparing the algorithms listed in Table IV
for the three datasets introduced before (whose statistics are summarized in Table I).
We analyze these results (presented in Fig. 11 and Fig. 12) according to three dimen-
sions: evaluation metrics, data splitting, and recommendation performance. Besides,
we also experiment with different data slices or subsets of the original dataset that
contain the first DR ratings (where DR varies from 10K to 100K, in 10K increments).
For the evaluation metrics, we focus on Mean Average Precision (MAP) [Baeza-Yates
and Ribeiro-Neto 2011] and Root Mean Squared Error (RMSE) [Shani and Gunawar-
dana 2011], although other ranking-based metrics like nDCG, precision, and recall
produced similar results as those obtained for MAP, likewise for MAE with RMSE.
For data splitting we experiment first with a standard way for randomly generating
training and testing splits: a cross-validation splitting strategy that generates non-
overlapping subsets (to be used as training and testing splits) where every (user, item,
rating) tuple is evaluated once – i.e., it only appears in one testing split, and it is
guaranteed that there is one split containing such tuple. The results we report here
have been averaged over 5 folds, although similar results were found with 10 folds. The
second splitting strategy evaluated is based on a temporal splitting, where the testing
split occurs after the training split. We use ten thousand ratings for testing, and exper-
iment with a window of the previous 50, 000 or 90, 000 ratings as training split. These
settings correspond with the following evaluation conditions, as presented in [Campos
et al. 2014]: community-centered base set, time-dependent rating order, and fixed size
(10K ratings). We apply these conditions to the whole dataset and to the subset of the
first 60K ratings.

From Fig. 11 and Fig. 12 we observe that the performance of the recommender al-
gorithms is heavily influenced by the evaluation metric (RMSE16 or MAP) used to
decide which recommenders perform better. Specifically, whereas the ranking-based
metric (MAP) is very stable – in terms of dataset snapshots and splitting strategies
–, preserving the trend in best/worst recommenders, the error-based metric (RMSE)
has more fluctuations. Furthermore, the RMSE metric is not useful to discriminate
which recommender is performing best because its values are very close to each other,
and, in general, it is not consistent that the best method with RMSE (lowest value)
achieves the best value with MAP (highest value) or viceversa17; in particular, the
worst method according to RMSE in MovieTweetings is the matrix factorization al-
gorithm, which has a medium-to-high performance in terms of MAP. We argue some
of these differences between MAP and RMSE may be due to the different levels of

16Note that for RMSE, the range of ratings in MT is different (from 1 to 10) than the one from ML (from 1
to 5); thus, the range of possible error is higher in the former.
17This conclusion confirms works such as [McNee et al. 2006; Cremonesi et al. 2010; Bellogı́n et al. 2011]
where error-based metrics show different behaviors, usually not linked with the final experience of the user.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

0
5

10
15

Density analysis

Dataset slices (10K−100K)

D
en

si
ty

 (
%

)
●

●

●
● ● ● ● ● ● ●

10 20 30 40 50 60 70 80 90 100

●

MovieTweetings
MovieTweetings (min 20 ratings)
MovieLens 100K
MovieLens 10M100K*

Fig. 13. Comparison of density values for each snapshot of the datasets analyzed in the paper.

0
50

00
10

00
0

15
00

0
20

00
0

Unique users and items

Dataset slices (10K−100K)

N
um

be
r

of
 u

ni
qu

es

●

●

●

●

●

●

●

●
●

●

10 20 30 40 50 60 70 80 90 100

●

Users (MovieTweetings)
Items (MovieTweetings)
Users (MovieTweetings min 20 ratings)
Items (MovieTweetings min 20 ratings)

Fig. 14. Unique users and items at each MovieTweetings snapshot.

density (as defined in Equation 1) presented in each of these datasets, since in such
scenario it is more likely that more users or items may have no training information
(or very little) after splitting the dataset, which seems to have a stronger effect on
error-based metrics and leads to very similar performance values for very different
recommendation methods. Fig. 13 compares the density in these datasets every ten
thousand ratings; in this context it is clear that the sparsity in the original Movie-
Tweetings dataset is higher (i.e., density is lower), mainly because it contains a much
larger number of users and items than the other datasets, but keeps the same number
of ratings. This aspect of the dataset may also affect the fact that MAP is lower in MT
than in ML datasets, because it is a more difficult (less dense) dataset.

To further analyze the differences in behavior when other assumptions in the
dataset are considered, we generated a subset of MovieTweetings where only users
with at least 20 ratings are kept, as the ML 100K dataset was originally released. As

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

0.
0

0.
1

0.
2

0.
3

0.
4

MAP (MovieTweetings, min 20 ratings/user)

Dataset slices (10K−100K)

M
A

P

● ●
●

●

● ●
● ● ● ●

10 20 30 40 50 60 70 80 90 100

●

ItemAverage
ItemKNN
MatrixFactorization
UserAverage
UserKNN

1.
4

1.
6

1.
8

2.
0

2.
2

RMSE (MovieTweetings, min 20 ratings/user)

Dataset slices (10K−100K)

R
M

S
E

●

●

●

●

●

● ●
●

● ●

10 20 30 40 50 60 70 80 90 100

Fig. 15. MAP and RMSE metrics computed using a cross-validation 5-fold splitting strategy for the users
in the MovieTweetings dataset with at least 20 ratings.

we see in Fig. 13, this artificially generated dataset is less sparse than the original
MT dataset, although it gets closer to the original dataset when more ratings (larger
dataset slices) are considered; this can be explained by looking at the dynamics of the
number of users and items available at each slice point (Fig. 14). Furthermore, the
recommendation performance (illustrated in Fig. 15) has now changed and the rela-
tive performance between the recommendation methods changes more often than in
the previous case; also the range between RMSE values is larger for some of these al-
gorithms and, especially for MAP, there are different best methods at each point, like
the matrix factorization method, that outperforms the other algorithms after the 40K
slice.

Regarding the performance of recommendation algorithms, each dataset has
a different optimal method, but in general the matrix factorization recommender is
among the top performing recommenders, in agreement with previous research in
rating-based recommendation [Koren et al. 2009; Cremonesi et al. 2011], and at the
same time, the non-personalized recommenders (user and item average) have a very
low performance. It should be noted that the user-based nearest neighbor and the item
average recommenders are equivalent in the MovieLens datasets in terms of MAP
(meaning that their rankings are effectively the same), whereas in MovieTweetings
they perform differently. Besides, the two neighbor-based recommenders (UserKNN
and ItemKNN) outperform the rest of the algorithms in MovieTweetings, both in terms
of MAP and RMSE.

The relative ranking-based performance, in most of the cases, does not change too
much from the first slice (10K ratings) to the last one (100K ratings). One exception to
this is the matrix factorization algorithm in the MT dataset. As already observed be-
fore in the literature [De Pessemier et al. 2010; Campos et al. 2011], recommendation
performance increases in the MovieLens datasets when more ratings are available, but
this is not the case with the MovieTweetings dataset, where all the recommenders, ex-
cept the matrix factorization method, decrease or maintain their performance. A sim-
ilar result was observed in [Said et al. 2009], where a dataset with several new items
was used, which lowered the recommendation precision. These results are completely
reversed when the subset of users with more than 20 ratings (Fig. 15) is analyzed, since
here the performance increases with more data (except for the UserAverage method).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

Note also that the best recommender in terms of MAP (the matrix factorization method
with a value of 0.15 using all ratings) is the worst according to RMSE (value of 1.73,
also using the whole dataset). A possible explanation to these effects is the amount of
users and items presented in this constrained dataset (Fig. 14), where a smaller num-
ber of items and, especially, of users is available in the dataset, which makes it easier
for the recommenders to obtain a higher performance.

Error-based metrics, as discussed before, are not very useful to decide which is the
best recommender. In the same way, it is very difficult to decide in which of the slices
the algorithms perform better. These facts make the error-based metrics not so in-
teresting to predict which recommenders will perform better in the future, given a
particular dataset slice. These predictions, however, could be easily drawn from the
results with the ranking-based metrics.

Finally, it is interesting to note that the results obtained in each of the data split-
ting techniques evaluated are very consistent for the MT dataset, whereas this is
not the case for the ML datasets. Specifically, the best and worst recommenders re-
main the same for ML 100K, but the ones in the middle vary drastically their rela-
tive performance; even worse, for ML 10M100K* the best recommender using cross-
validation (matrix factorization) is one of the worst using a temporal split (the best
here is ItemKNN). This consistency in the evaluation for the MovieTweetings dataset
is a positive characteristic, since it shows a direct correspondence between the stan-
dard offline evaluation using repeatable tests (cross-validation) and the more realistic
evaluation scenarios (temporal split).

In summary, we have evaluated different aspects of the MovieTweetings dataset
from a practical perspective. We have found that it is not very different to the two
versions of the MovieLens dataset we have experimented with when using a specific
splitting strategy, but it is more consistent across data splitting strategies. Nonethe-
less, we have observed that its very high sparsity may produce lower performance
scores in general, and that the RMSE scores are not very useful to discriminate the
recommendation methods, although this was also true – to a lower extent – for the
other datasets.

5. DISCUSSION: APPROPRIATE USE CASES AND ADVANTAGES
Finally, our benchmarking framework proposes a discussion of appropriate use cases
for the application of the dataset and listing its advantages towards other currently
available (similar) datasets. We start with the latter, i.e., a listing of the advantages of
the MovieTweetings dataset.

— Realistic user behavior. The MovieTweetings dataset is unfiltered and therefore
a natural dataset. No users or items are excluded from the dataset for not having
a sufficient amount of ratings. This has important consequences for running exper-
iments but also has the advantage of allowing to simulate realistic user behavior.
A real-life recommender system will have to deal with non-active users and poorly
rated items, and so the MovieTweetings dataset can offer a means to experiment
with and simulate these scenarios.

— Meta-data easily expandable. The meta-data contained in the dataset consists of
movie genres (as available in the MovieLens dataset), but can be very easily supple-
mented with other movie information. Because the dataset links every movie to the
unique IMDb identifier, additional meta-data can be collected by using tools as the
OMDb API or by scraping the original IMDb website itself.

— Non-anonymized users. Because rating data is collected from publicly available
information, the users contained in the MovieTweetings dataset did not need to
be anonymized. So the user identifiers used in the dataset can be linked to the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

real Twitter users. Additional user data can easily be collected using the Twitter
API and by analyzing online user behavior. Furthermore, the integration of real
approachable users in the dataset offers an interesting user-base for researchers
that may spark a new generation of low-effort online/live user-centric evaluation
experiments.

— Frequently updated. The most important advantage and difference towards other
datasets is the fact that the dataset is updated regularly. Instead of offering data
from a fixed period in time, new ratings extracted from Twitter are added frequently.
As long as the updating of the MovieTweetings dataset is maintained by its admin-
istrators, it will therefore continue to contain the most recent and popular movies,
which makes it an interesting seed dataset for user-centric experiments.

Different datasets have different properties and their suitability therefore largely
depends on the scenario they are deployed in. We now list some of the typical sce-
narios in which public rating datasets are deployed and compare the applicability of
MovieTweetings against other public datasets such as MovieLens.

— Use MovieTweetings for user-centric experiments.
User-centered experiments are one of the scenarios in which very often public rating
datasets are imported into recommender systems. In such experiments the goal is
to have real users interact with a recommender system to learn about their satisfac-
tion and behavioral patterns. Evaluation may be focused on various aspects of e.g.
the recommendation algorithm or the user interface. To be able to generalize results
from user-centric experiments, the experiments must be performed on a realistic de-
ployment of the recommender system. Realistic deployment means that the system
properties should be as close as possible to those of the final system (if it would be
deployed for real) including available content items and a sufficient amount of users.
Many examples can be found in the literature where the MovieLens dataset is used
to drive such user-centric experiments (e.g., [Hurrell and Smeaton 2013; Said et al.
2013]). While in the past MovieLens may have been an appropriate sample of realis-
tic rating data, nowadays the dataset is outdated and may even negatively influence
the user experience. To illustrate this, we run a small experiment where we visu-
ally inspect (as real users would do) the recommendations generated for a random
user, using either the MovieLens (100K) or MovieTweetings (100K) dataset as input
data. The MyMediaLite MatrixFactorization implementation was used to generate
the recommendations. Table V compares the top 10 results for a random user of both
datasets.

Table V. Comparing MatrixFactorization recommendation results
for the MovieLens and MovieTweetings datasets

MovieTweetings MovieLens

Wrong Turn 5: Bloodlines (2012) Pulp Fiction (1994)
Sound City (2013) The Godfather (1972)
The Cloth (2012) GoodFellas (1990)
Mud (2012) Paths of Glory (1957)
Now You See Me (2013) Apocalypse Now (1979)
Ted (2012) Secrets & Lies (1996)
The Host (2013) Citizen Kane (1941)
Mr. Popper’s Penguins (2011) A Space Odyssey (1968)
The Hunger Games (2012) The Third Man (1949)
Warrior (2011) Chinatown (1974)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

The results illustrate how the recentness of the recommended movies based on
MovieLens is limited, while MovieTweetings has much more recent data and thus
is able to recommend more recent movies. Even the best recommendation algorithm
may be evaluated negatively if it can only recommend from an outdated item cat-
alog. For all experimentation that involves actual users, we therefore rec-
ommend to use the MovieTweetings dataset instead of the more commonly
used MovieLens dataset. We have shown that the MovieTweetings dataset can
be regarded as a recent update of the MovieLens dataset showing much of the same
properties albeit with higher amounts of items and users. More items may actually
be an additional advantage for user-centric experiments since the item catalog may
be larger, more diverse and therefore has a higher chance of containing interesting
items.
In particular for user-centric experiments MovieTweetings has a unique feature
that no other public rating dataset offers: non-anonymized users. Users in the
dataset are actual Twitter users and can publicly be interacted with. This opens
up the Twitter platform for all sorts of novel types of evaluation experiments like
e.g. deploying a recommender system as an automated Twitter account.

— Use MovieTweetings for realistic offline simulation.
Simulation is another type of scenario in which public rating datasets are often
imported into recommender systems. When a recommendation algorithm has been
implemented, its designer may be curious about the performance in terms of some
offline calculable metrics such as RMSE. Again literature often employs the Movie-
Lens dataset to do this, but as noted by [Gunawardana and Shani 2009], those re-
sults are biased towards users with a large number of ratings. Since MovieLens
is a filtered dataset containing only users with a minimum of 20 ratings, obtained
results may not be generalizable to users with 19, 18, or even less, ratings. The
MovieTweetings dataset allows us to verify this claim.
For the 5 algorithms introduced in Section 4.1, we calculate the average RMSE
value for different configurations of the dataset, each time containing only users
with minimum x ratings, with x ranging from 1 to 20. Fig. 16, shows the results
of the experiment. As expected, a significant variance can be detected between the
different configurations. The results clearly show how a metric such as RMSE can
fluctuate when changing sets of users are taken into account and, therefore, no over-
all RMSE truly represents all users in a system.
Since MovieTweetings is an unfiltered dataset, RMSE values can be cal-
culated for all sorts of users, which allows for a more realistic simulation
of offline recommendation quality. An example of a situation where such an
analysis is useful, is the decision of the minimal required ratings for users in a sys-
tem [Kluver and Konstan 2014]. Recommender systems usually do not recommend
items to new users but instead require them to rate a sufficient number of items
first. This number is often chosen arbitrarily, but the MovieTweetings dataset may
support such a decision by making it possible to simulate recommendation quality
metrics for different groups of users. For instance, based on the results in Fig. 16
we could decide that, for our recommender, a minimum of 8 ratings should be re-
quired for new users, since having more than 8 ratings seems to no longer lead to
substantially better RMSE values.
Another example of offline simulation made possible by the MovieTweetings dataset
is measuring which algorithms work best on different kinds of users. In Fig. 17, we
show the RMSE results for again the same 5 recommendation algorithms but this
time restricting the dataset in the different configurations (on the X-axis) to contain
only users with an exact (instead of minimum) number of ratings x, with x ranging
from 1 to 20. The results show how the ItemAverage, UserKNN, and ItemKNN seem

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

1.
4

1.
6

1.
8

2.
0

2.
2

RMSE MovieTweetings 100K

Minimum number of ratings per user (1−20)

R
M

S
E

●
●

●
● ●

●
●

●

●

●
●

●
●

● ●

●

● ●

●

●

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

●

ItemAverage
ItemKNN
MatrixFactorization
UserAverage
UserKNN

Fig. 16. The RMSE values averaged over all users for changing configurations including only users with a
minimum of 1 rating, 2 ratings, 3 ratings, and so on.

good (i.e., RMSE is lower) candidate recommendation algorithms for users with a
low number of ratings, while UserAverage, UserKNN, and ItemKNN are good ap-
proaches for users with a number of ratings close to 20. Interestingly, the simple
ItemAverage and UserAverage algorithms are showing almost identical recommen-
dation quality as the more advanced (but computationally heavier) ItemKNN and
UserKNN methods.
The MovieLens dataset does not support analyzing patterns as those presented in
the previous examples. Researchers may attempt to simulate behavioral patterns
of users with less than 20 ratings by creating artificial MovieLens users (with e.g.,
randomly removed ratings), but the generalization power and correctness of such
results would be equally artificial.

— Use MovieLens (and MovieTweetings) for comparative offline experiments.
Aside from serving as bootstrap data for either user-centric or simulation experi-
ments, public rating datasets are also often used in comparative offline experiments
(e.g. [de Castro et al. 2007]). Academic researchers having implemented a new rec-
ommendation method, often publish the details of their algorithm with some accom-
panying results of how the algorithm compares to other state of the art (or well-
known) recommendation algorithms. Since the goal here is to benchmark two (or
more) algorithms relative to each other, the dataset in itself is not that important.
What is important though is that the same dataset and other evaluation dimen-
sions (metric, splitting strategy, etc.) are used equivalently for each benchmark sit-
uation [Said and Bellogı́n 2014]. The MovieLens 100K has served as a well-accepted
benchmarking dataset in the recommender systems domain for many years, and

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

RMSE MovieTweetings 100K

Exact number of ratings per user (1−20)

R
M

S
E

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

●

ItemAverage
ItemKNN
MatrixFactorization
UserAverage
UserKNN

Fig. 17. The RMSE values averaged over all users for changing configurations including only users with
exactly 1 rating, 2 ratings, 3 ratings, and so on.

so there is no reason to change that. Researchers are familiar with the dataset
structure, its properties, and typical values for the popular evaluation metrics on
default recommendation algorithms. We thus recommend the continued use of
the MovieLens dataset for comparative offline experiments.
Nonetheless, we note that as time progresses, the MovieLens dataset will become
less relevant and eventually researchers will have to switch to more recent datasets
even for offline comparative scenarios. We therefore recommend researchers to
future-proof their work by reporting algorithmic results measured on both the
MovieLens as well as the MovieTweetings dataset. Since the data formats of both
datasets are identical, in most cases the implementation effort to do this will be very
low.

6. CONCLUSIONS
In this work, we proposed a framework for introducing and benchmarking new
datasets in the research domain. The five-step framework was illustrated on a movie
ratings dataset called MovieTweetings. In step 1, the origin of the dataset was detailed.
The MovieTweetings dataset is collected dynamically from Twitter and originates from
structured tweets posted through the IMDb platform. Step 2 presented basic descrip-
tive statistics about the dataset while comparing them with other known (and similar)
datasets in the domain. We found that even though equal dataset sizes were taken into
account, the dataset showed to have some significantly different properties in compar-
ison with the MovieLens dataset. The extreme low density (or high sparsity) resulting
from a much higher number of items and users was one of these observations. In step 3,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

we focused on external validity. Some hypothesized data biases were investigated (e.g.,
how similar are the MovieTweetings ratings to the IMDb ratings) through a number
of correlation analyses and the dataset was compared with other similar datasets in
the movie domain. We showed that with a sufficient minimum number of ratings per
movie, the dataset correlated strongly with the rating patterns as found on the IMDb
website. Although the MovieTweetings items are more biased towards more recent and
popular movies, similar rating patterns to those of the MovieLens dataset could be ob-
served. In step 4, we reported some results on a number of reproducible benchmarks
exploring multiple dimensions as recommendation algorithms, evaluation metrics, and
data splitting strategies. Lastly in step 5, the advantages of the dataset (against other
datasets) were listed and scenarios in which the dataset could be successfully deployed
were discussed. We showed how MovieTweetings was especially interesting for user-
centric and simulation focused experiments and could be used complementary to the
MovieLens dataset for offline comparative experiments.

By illustrating our analysis of the MovieTweetings dataset and its properties, we
hope to inspire future researchers to publish and benchmark datasets in a similarly
structured fashion such that the added value, properties, and optimal use cases of
future datasets can easily be compared and interpreted.

Several open problems with benchmarking and comparing datasets still remain.
Probably the most important one is how to benchmark a dataset with unique proper-
ties or even from a new domain (‘are the results obtained using MovieTweetings trans-
ferable to a domain like Facebook?’), since we base most of our analysis on comparisons
against other datasets from similar domains. Another related problem would be how
to deal with datasets that combine more than one domain, so that cross-domain recom-
mendations can be tested. Because of the limited dimensions of the MovieTweetings
dataset (compared to other available datasets) we were unable to analyze the effect of
sampling size beyond 100K ratings. Since the dataset is still growing on a daily basis,
we look to future work for reporting such additional analyses.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their helpful and constructive comments.

REFERENCES
Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. 2011. Modern Information Retrieval - the concepts and

technology behind search, Second edition. Pearson Education Ltd., Harlow, England.
Alejandro Bellogı́n. 2012. Performance prediction and evaluation in Recommender Systems: an Information

Retrieval perspective. Ph.D. Dissertation. Universidad Autónoma de Madrid.
Alejandro Bellogı́n, Pablo Castells, and Iván Cantador. 2011. Precision-oriented evaluation of recommender

systems: an algorithmic comparison. In RecSys, Bamshad Mobasher, Robin D. Burke, Dietmar Jannach,
and Gediminas Adomavicius (Eds.). ACM, 333–336.

Alejandro Bellogı́n, Pablo Castells, Alan Said, and Domonkos Tikk. 2013. Workshop on reproducibility and
replication in recommender systems evaluation: RepSys. In RecSys, Qiang Yang, Irwin King, Qing Li,
Pearl Pu, and George Karypis (Eds.). ACM, 485–486.

Alejandro Bellogı́n, Arjen de Vries, and Jiyin He. 2013. Artist popularity: do web and social music services
agree. In Int. Conf. on Weblogs and Social Media (ICWSM), Boston.

James Bennett and Stan Lanning. 2007. The Netflix prize. In Proceedings of KDD cup and workshop, Vol.
2007. 35.

Jesús Bobadilla, Francisco Serradilla, and Jesus Bernal. 2010. A new collaborative filtering metric that
improves the behavior of recommender systems. Knowledge-Based Systems 23, 6 (2010), 520–528.

Pedro G. Campos, Fernando Dı́ez, and Iván Cantador. 2014. Time-aware recommender systems: a compre-
hensive survey and analysis of existing evaluation protocols. User Modeling and User-adapted Interac-
tion 24, 1-2 (2014), 67–119.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28

Pedro G. Campos, Fernando Dı́ez, and Manuel Sánchez-Montañés. 2011. Towards a more realistic evalua-
tion: testing the ability to predict future tastes of matrix factorization-based recommenders. In Proceed-
ings of the Fifth ACM Conference on Recommender Systems (RecSys ’11). ACM, New York, NY, USA,
309–312. DOI:http://dx.doi.org/10.1145/2043932.2043990

Paolo Cremonesi, Franca Garzotto, Sara Negro, Alessandro Papadopoulos, and Roberto Turrin. 2011.
Comparative evaluation of recommender system quality. In CHI ’11 Extended Abstracts on Hu-
man Factors in Computing Systems (CHI EA ’11). ACM, New York, NY, USA, 1927–1932.
DOI:http://dx.doi.org/10.1145/1979742.1979896

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of Recommender Algorithms on
Top-n Recommendation Tasks. In Proceedings of the Fourth ACM Conference on Recommender Systems
(RecSys ’10). ACM, New York, NY, USA, 39–46. DOI:http://dx.doi.org/10.1145/1864708.1864721

Pablo AD de Castro, Fabrı́cio Olivetti de França, Hamilton M Ferreira, and Fernando J Von Zuben. 2007.
Applying biclustering to perform collaborative filtering. In Intelligent Systems Design and Applications,
2007. ISDA 2007. Seventh International Conference on. IEEE, 421–426.

Toon De Pessemier, Simon Dooms, Tom Deryckere, and Luc Martens. 2010. Time dependency
of data quality for collaborative filtering algorithms. In Proceedings of the Fourth ACM
Conference on Recommender Systems (RecSys ’10). ACM, New York, NY, USA, 281–284.
DOI:http://dx.doi.org/10.1145/1864708.1864767

Simon Dooms, Toon De Pessemier, and Luc Martens. 2014. Cross-domain rating datasets from structured
data on Twitter. In Workshop on Modeling Social Media: Mining Big Data in Social Media and the Web
(MSM), at WWW 2014.

Cristina Gena, Roberto Brogi, Federica Cena, and Fabiana Vernero. 2011. The impact of rating scales on
users rating behavior. In User Modeling, Adaption and Personalization. Springer, 123–134.

Asela Gunawardana and Guy Shani. 2009. A survey of accuracy evaluation metrics of recommendation
tasks. Journal of Machine Learning Research 10 (2009), 2935–2962.

Jonathan L Herlocker, Joseph A Konstan, Al Borchers, and John Riedl. 1999. An algorithmic framework for
performing collaborative filtering. In Proceedings of the 22nd annual international ACM SIGIR confer-
ence on Research and development in information retrieval. ACM, 230–237.

Eoin Hurrell and Alan F Smeaton. 2013. A conversational collaborative filtering approach to recommenda-
tion. In Advances in Visual Informatics. Springer, 13–24.

Daniel Kluver and Joseph A. Konstan. 2014. Evaluating recommender behavior for new users. In Eighth
ACM Conference on Recommender Systems, RecSys ’14, Foster City, Silicon Valley, CA, USA - October 06
- 10, 2014. 121–128. DOI:http://dx.doi.org/10.1145/2645710.2645742

Bart P. Knijnenburg, Martijn C. Willemsen, Zeno Gantner, Hakan Soncu, and Chris Newell. 2012. Explain-
ing the user experience of recommender systems. User Model. User-Adapt. Interact. 22, 4-5 (2012), 441–
504.

Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted collaborative filtering model.
In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining (KDD ’08). ACM, New York, NY, USA, 426–434. DOI:http://dx.doi.org/10.1145/1401890.1401944

Yehuda Koren. 2009. The Bellkor solution to the Netflix grand prize. Netflix prize documentation (2009).
Yehuda Koren, Robert M. Bell, and Chris Volinsky. 2009. Matrix factorization techniques for recommender

systems. IEEE Computer 42, 8 (2009), 30–37.
Pasquale Lops, Marco de Gemmis, and Giovanni Semeraro. 2011. Content-based recommender systems:

state of the art and trends. In Recommender Systems Handbook. 73–105.
Benjamin M Marlin and Richard S Zemel. 2009. Collaborative prediction and ranking with non-random

missing data. In Proceedings of the third ACM conference on Recommender systems. ACM, 5–12.
Sean M. McNee, John Riedl, and Joseph A. Konstan. 2006. Being accurate is not enough: how

accuracy metrics have hurt recommender systems. In CHI ’06 Extended Abstracts on Hu-
man Factors in Computing Systems (CHI EA ’06). ACM, New York, NY, USA, 1097–1101.
DOI:http://dx.doi.org/10.1145/1125451.1125659

Fred Morstatter, Jürgen Pfeffer, Huan Liu, and Kathleen M. Carley. 2013. Is the sample good enough?
Comparing data from Twitter’s streaming API with Twitter’s Firehose. In ICWSM, Emre Kiciman,
Nicole B. Ellison, Bernie Hogan, Paul Resnick, and Ian Soboroff (Eds.). The AAAI Press.

Verónika Peralta. 2007. Extraction and Integration of MovieLens and IMDb Data. Technical Report. Techni-
cal Report, Laboratoire PRiSM, Université de Versailles, France.

Martin Piotte and Martin Chabbert. 2009. The pragmatic theory solution to the Netflix grand prize. Netflix
prize documentation (2009).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1145/2043932.2043990
http://dx.doi.org/10.1145/1979742.1979896
http://dx.doi.org/10.1145/1864708.1864721
http://dx.doi.org/10.1145/1864708.1864767
http://dx.doi.org/10.1145/2645710.2645742
http://dx.doi.org/10.1145/1401890.1401944
http://dx.doi.org/10.1145/1125451.1125659

A:29

Alan Said and Alejandro Bellogı́n. 2014. Comparative recommender system evaluation: bench-
marking recommendation frameworks. In Eighth ACM Conference on Recommender Sys-
tems, RecSys ’14, Foster City, Silicon Valley, CA, USA - October 06 - 10, 2014. 129–136.
DOI:http://dx.doi.org/10.1145/2645710.2645746

Alan Said, Ben Fields, Brijnesh J Jain, and Sahin Albayrak. 2013. User-centric evaluation of a k-furthest
neighbor collaborative filtering recommender algorithm. In Proceedings of the 2013 conference on Com-
puter supported cooperative work. ACM, 1399–1408.

Alan Said, Robert Wetzker, Winfried Umbrath, and Leonhard Hennig. 2009. A hybrid PLSA approach for
warmer cold start in folksonomy recommendation. In Proceedings of the RecSys’09 Workshop on Recom-
mender Systems & The Social Web. CEUR-WS Vol. 532, 87–90.

Guy Shani and Asela Gunawardana. 2011. Evaluating recommendation systems. In Recommender Systems
Handbook. 257–297.

Andreas Töscher, Michael Jahrer, and Robert M Bell. 2009. The BigChaos solution to the Netflix grand
prize. Netflix prize documentation (2009).

Jeonghee Yi, Tetsuya Nasukawa, Razvan Bunescu, and Wayne Niblack. 2003. Sentiment analyzer: Extract-
ing sentiments about a given topic using natural language processing techniques. In Data Mining, 2003.
ICDM 2003. Third IEEE International Conference on. IEEE, 427–434.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1145/2645710.2645746

	Introduction
	A Dataset Benchmarking Framework
	Introducing the MovieTweetings Dataset
	Dataset Story
	Descriptive Statistics
	External Validity
	Twitter Bias
	IMDb bias

	Benchmarking the MovieTweetings Dataset
	Experimental Setup
	Benchmarking Results

	Discussion: Appropriate Use Cases and Advantages
	Conclusions

