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Abstract. Recommender Systems need to deal with different types of users who
represent their preferences in various ways. This difference in user behaviour has
a deep impact on the final performance of the recommender system, where some
users may receive either better or worse recommendations depending, mostly, on
the quantity and the quality of the information the system knows about the user.
Specifically, the inconsistencies of the user impose a lower bound on the error the
system may achieve when predicting ratings for that particular user.
In this work, we analyse how the consistency of user ratings (coherence) may
predict the performance of recommendation methods. More specifically, our re-
sults show that our definition of coherence is correlated with the so-called magic
barrier of recommender systems, and thus, it could be used to discriminate be-
tween easy users (those with a low magic barrier) and difficult ones (those with a
high magic barrier). We report experiments where the rating prediction error for
the more coherent users is lower than that of the less coherent ones. We further
validate these results by using a public dataset, where the magic barrier is not
available, in which we obtain similar performance improvements.

1 Introduction

Recommender systems aim to help people find items of interest from a large pool of
potentially interesting items. However, when receiving these recommendations not all
users are equally satisfied. One reason for this is, e.g. the choice of the recommenda-
tion algorithm. However, even when we account for this aspect, some users may receive
better recommendations than others. Previous research has analysed this issue and char-
acterised it as a matter of user inconsistency, that is, users have an inherent noise when
interacting with the recommender system, which then affects the reliability of the rec-
ommendations produced. This concept is know as the magic barrier of recommender
systems, a term coined by Herlocker et al. [9], referring to the upper bound on rating
prediction accuracy: above it any further improvements on the evaluation metrics are
meaningless [1, 18].

In this context, we aim to infer which users have a higher level of inconsistency a
priori, that is, find the magic barrier without having the additional re-ratings as required



in the approaches suggested until now. We are particulary interested in predicting which
users will have a low/high magic barrier using readily available information. We pro-
pose to measure how coherent a user’s ratings are within an item’s feature space. In
doing so, we associate highly coherent ratings to users with a lower magic barrier.

Once the magic barrier – or any other measure of user’s inconsistency – is success-
fully predicted, several applications to improve the recommender system’s performance
become available. One possibility would be to create separate training models for a sub-
set of the users according to their predicted consistency.

Our research aims to answer the following two research questions: RQ1) is the
rating coherence of a user a good predictor of the magic barrier? and RQ2) is it possible
to cluster the user community into easy and difficult users – according to their coherence
– so that the performance of the system is improved? We address the first question by
measuring the correlation between our definitions of coherence and the magic barrier of
each user. For the second question, we study how the error of the recommender system
changes when considering different subsets of users (selected according to the proposed
coherence values) to train and test the models.

The rest of the paper is organised as follows. Section 2 presents other research
considering the concept of user inconsistencies, it also defines the magic barrier that
we will use throughout this paper. Section 3 describes our approaches to measure the
coherence of a user; then, in Section 4 the datasets and other experimental settings are
introduced. Finally, Section 5 shows the results obtained, Section 6 provides additional
works dealing with the problem of predicting the user’s difficulty or the performance of
a system, and Section 7 concludes the paper and presents some lines of future work.

2 Measuring User Inconsistency in Recommendation

One of the first works mentioning user-induced noise in movie ratings was presented
in [10] by Hill et al., where the authors created an email-based movie recommendation
service. The service asked its users to rate movies from a list of 500 pre-selected movies
before attempting to create recommendations. The authors mention The Upper Limit as
a bound on performance prediction based on the idea that a person’s ratings are noisy or
inconsistent. Based on statistical theory, the authors claim that it will never be possible
to perfectly predict the users’ ratings, instead they cite the square root of the observed
test-retest reliability correlation as the optimal level of prediction due to the levels of
noise in user-generated data. No attempt at estimating the level of noise was however
performed in the scope of that work.

To our knowledge, the first mention of the magic barrier, the term currently in use
for stating the practical upper bound on rating prediction accuracy (or lower bound
on rating prediction error), appeared in Herlocker et al. in their seminal paper on rec-
ommender system evaluation [9]. In that work, the authors speculate whether recom-
mender systems are hitting such a potential magic barrier, e.g. a point where natural
variability may prevent us from obtaining much more accurate predictions. Addition-
ally, the authors speculate whether minuscule rating prediction errors actually translate
to a perceived improvement from the users or whether the increasingly smaller accuracy
improvements have no effect on the quality as perceived by the end users.



Cosley et al. in [5] conducted an early study on the Movielens4 website where a
selection of users were asked to provide re-ratings to previously rated movies. Similarly,
Amatriain et al. attempted to characterise the noise in ratings based on the reliability in
the re-rating process [1, 2]. More recently, Kluver et al. addressed this problem from a
different direction [12], where instead of measuring the level of noise in the dataset, the
authors measure how much preference information is contained in a rating. To do this,
the authors based their approach on Shannon’s information entropy, which indicates
how much actual information is concealed in a rating. Preference bits were then found
through repeated re-ratings by users on the same items. Each re-rating can then be used
to estimate the amount of preference bits in a rating.

In this paper, we focus on the definition of magic barrier as defined by Said et al.
in [18] and [19]. This concept is derived as the lower bound of the Root Mean Squared
Error (RMSE) that can be attained by an optimal recommender system. It is defined
as the standard deviation of the inconsistencies (noise) inherent in the user ratings, as
follows:

B̂X =

√√√√ 1
|X |

∑
(u,i)∈X

(r(u, i)− o(u, i))2 (1)

where X is the set of ratings for which we have re-ratings (opinions, in that work)
available, r(u, i) denotes the actual rating for user u on item i, and o(u, i) is the opinion
given by the user at a different point in time than r(u, i). Note that this definition of
the magic barrier actually is an estimation as it is not possible to directly determine
the magic barrier because it involves an optimal rating function which is not usually
available [18].

3 A Measure of User Coherence for Recommendation

Given a user u, her rated items I(u) ⊆ I, and the ratings r(u, i) assigned to these items,
i.e., i ∈ I(u), we aim to provide a score γ(u) = γ(I(u)) that measures how coherent a
user profile is in terms of her assigned ratings. To compute this score we propose to use
an external information source with which we can measure the inconsistencies of the
user’s ratings, by describing items in terms of specific features, e.g. genres. Although
other measures could be available where no external information is required, such as
the entropy of the ratings [12] or the Kullback-Leibler divergence between the user’s
preferences and the overall preferences [4], we believe that our formulation provides
a measure that is easily explainable and justifiable, allowing for further feedback from
the recommender system to the user. Furthermore, as we show in the rest of the paper,
this measure obtains very good results, despite its simplicity.

3.1 Example

Before presenting the actual definition of the rating coherence of a user (or user co-
herence, for simplicity), let us first consider the examples presented in Figure 1. Here

4 http://www.movielens.org



we have two users that have rated the exact same set of items, although their ratings
are slightly different. Specifically, the user in Figure 1a gives more consistent ratings
to items sharing the same features, which in this case corresponds to the movie’s gen-
res. In the long term we argue that such a user will have a more consistent (less noisy)
behaviour, since her taste for each item feature seem to be well defined.

Action Comedy

Horror

(a) A coherent user (c(u) = −1.28)

Action Comedy

Horror

(b) A not coherent user (c(u) = −5.95)

Fig. 1: Example of a coherent vs. not coherent user. Our definition of coherence takes
into account the rating’s deviation within each item feature, which in this example con-
sists of three genres: action, comedy, and horror.

3.2 A Simple Definition for User Coherence

Following the rationale presented before, we define the user coherence based on a set
of item features F as:

c(u) = −
∑
f∈F

σf (u) (2)

where σf (u) =
√∑

i∈I(u,f) (r(u, i)− r̄f (u))2 corresponds to the user’s rating devia-

tion within a specific feature f , having an associated mean rating for that feature r̄f (u),
which simply corresponds to the average rating within the set of items rated by user u
that belong to feature f , denoted here as I(u, f). We refer to this formulation as basic
coherence.

With this formulation, the coherence c(u) captures the variance of a user’s ratings
relative to the feature space in which the items are defined. Moreover, it also incorpo-
rates a negative sign to indicate that the larger the variance, the less coherent (or more
incoherent) a user should be.

The key aspect of this function, hence, is that we are accounting for the rating de-
viation of the user with respect to a particular feature space. Besides, such definition
allows for a more general case, where the space F could be – instead of (textual) item
features – any embedding of the items into a space F , such as an item clustering or
the latent factors of the items, and also other functions apart from standard deviation to
statistically summarise the user’s ratings for a given feature, as will be described in the
next section.



Table 1: Possible functions g(u, f) to be used in Equation 3, where u(f) denotes the
user’s ratings associated with items linked to feature f , u(F) is the same but for any
feature in the feature space F , and the probabilities p(f |u) and p(f) are computed
normalising the rating values of a user or of the whole community for a given feature.

Function g(u, f) Definition Function g(u, f) Definition

Entropy p(f |u) log p(f |u) KLD p(f |u) log p(f |u)
p(f)

Mean µ(u(f)) Weighted Mean µ(u(f)) ‖u(f)‖
‖u(F)‖

Std. dev. σ(u(f)) Weighted Std. dev. σ(u(f)) ‖u(f)‖
‖u(F)‖

Size ‖u(f)‖

Going back to our previous example presented in Figure 1, we can observe that the
values of c(u) match our intuition about which user is more coherent, since user in
Figure 1a receives a higher value from the proposed measure.

3.3 A General Definition for User Coherence

Based on the simple formulation presented in Equation 2, we now introduce a more
general definition for the coherence of a user. We now allow (see Equation 3) any ar-
bitrary function defined upon the information known for a user u and a specific feature
f to be used. This information will generally be the ratings given by u to the items
associated with f , that is u(f) = {r : (u, i, r) ∀i ∈ F−1(f)}, where F(i) denotes the
subset of features f ∈ F for item i.

cg(u) = −
∑
f∈F

g(u, f) (3)

Table 1 shows some possibilities for these functions applied over the vector of rat-
ings u(f). Entropy, Kullback-Leibler divergence (KLD), standard deviation, mean, and
size are presented in the table, along with two weighted versions of the standard devia-
tion and mean to account for the actual number of items rated by the user in each feature.
We have to note that the basic coherence presented in the previous section corresponds
to the one where standard deviation is used as the function g(u, f).

We have to emphasise that any of these variations of coherence can be calculated
using the same data available for training the recommender system, and that no infor-
mation from the test set is required.

4 Experimental Setup

We now describe the two datasets used to test the predictive power of the proposed mea-
sures for user coherence introduced in Section 3. We also present the specific training
and test splits we generate to properly assess the performance improvement by exploit-
ing a user clustering into easy and difficult users once the proposed coherence measure
is used.



Table 2: Statistics of the datasets used for the experiments, where opinions refers to
those used to estimate the magic barrier as in [18].

Dataset Users Items Ratings Density Range of ratings

Movielens 6,040 3,900 1,000,209 4.24% [1-5]
Moviepilot 318,418 31,948 12,825,203 0.13% [0-100]

Moviepilot opinions 306 2,309 6,299 0.89% [0-100]

4.1 Datasets

We have used two datasets, whose statistics are presented in Table 2: Moviepilot and
Movielens. The former is a snapshot of the commercial movie recommender system
Moviepilot5, having more than one million users, 55, 000 movies, and over 10 million
ratings. Movies are rated on a 0 to 100 scale with a step size of 5. To estimate the magic
barrier, in [18] a user study was performed to collect users opinions on movies that
had been previously rated on Moviepilot. We refer the reader to the detailed description
contained in that paper, the relevant part for the present work is that every user taking
part in this study gave their opinion on at least 20 movies, which were collected and
aggregated to calculate the magic barrier of the system as presented in Section 2.

The second dataset used in our experiments is one of the datasets provided by
Movielens6, containing one million ratings, more than 6, 000 users and almost 4, 000
items, as we can see in Table 2. Since the re-ratings or other opinions are not avail-
able for this dataset, the magic barrier cannot be estimated, but we can still use it (in
Section 5.2) as a proof of concept that the proposed coherence functions are able to
discriminate between difficult and easy users.

Table 3: Notation for the different training and test models considered.
Name Training Test

All Tre ∪ Trd Tee ∪ Ted

All-Easy Tre ∪ Trd Tee

All-Diff Tre ∪ Trd Ted

Easy-Easy Tre Tee

Diff-Diff Trd Ted

4.2 Training and Test Splits

As stated in the research question RQ2, we aim to check if it is possible to cluster the
users (into easy and difficult ones) such that the performance of the system is improved

5 http://www.moviepilot.de/
6 Available at http://www.grouplens.org/node/73



as a result of this user partition. To properly evaluate this, we propose the splits for
the training and test sets summarised in Table 3. The training and test splits for the
easy users are denoted as Tre and Tee, whereas the splits corresponding to the difficult
users are referred to as Trd and Ted. Assuming that we have already classified the users
as easy or difficult ones (e.g., using a percentage p of all the users labelled as easy
users), we perform a 5-fold cross validation within the whole set of ratings relative to
each of the easy and difficult users, in order to obtain a training and test split for each
subset of the data. Other splitting conditions may be used (based on percentage or time
conditions) instead of 5-fold, and will be considered in the future.

Once these splits are generated, we build the combinations for training and test
models presented in Table 3. The rationale of these models goes as follows: the All
model is a simple evaluation split where all the users are used to train and test a specific
recommender system; the Easy-Easy and Diff-Diff evaluation models focus only on one
type of user, by training and testing on the ratings associated with that corresponding
type of user. The other two combinations use the same training information available as
in All, but only evaluate one type of user, either those classified as easy users (All-Easy)
or as difficult ones (All-Diff ).

5 Results

In this section we present two experiments that aim to answer the research questions
stated earlier, i.e. RQ1) is the rating coherence of a user a good predictor of the magic
barrier?, and RQ2) is it possible to cluster the users into easy and difficult users so that
the overall performance of the system is improved?

For these experiments, we have used the datasets described in Section 4.1. For the
second experiment, we performed a standard 5-fold cross-validation evaluation, split-
ting the data according to the different strategies described in Section 4.2, where we
assume that half of the users are easy and the other half are difficult (i.e., p = 0.5 from
previous section), once they are sorted according to a particular coherence function. In
each fold, the training and test splits contained 80% and 20% of the data respectively.

The recommendation algorithm tested is a standard user-based collaborative fil-
tering method [21], using Pearson’s correlation as the user similarity function and 50
neighbours.

Furthermore, for the features used to compute the coherence functions, we ex-
ploit, for the Movielens dataset, the genres provided in the original files. In the case
of Moviepilot we use four of the available tagging features [17]: genres, plot keywords,
emotion keywords, and intended audience.

The evaluation metric we use in our experiments is the Root Mean Squared Error
(RMSE). We report this metric because it is related with the concept of magic barrier
(indeed, the magic barrier is defined as the RMSE of an optimal function [18]), although
in the future we plan to explore alternative evaluation metrics, e.g., precision, recall,
nDCG, etc. RMSE is calculated for a test set T as:

RMSE =

√√√√ 1
|T |

∑
(u,i)∈T

(r(u, i)− r̃(u, i))2 (4)



Table 4: Spearman’s correlation between coherence and user magic barrier. ∅ indicates
that no feature space was used. Note that the desired correlation is negative as the more
coherent a user is, the better performing she is (i.e. she has a lower magic barrier).

Coherence Genres Emotion keywords Intended audience Plot keywords ∅

Entropy 0.050 0.016 0.048 0.000 NA
KLD 0.098 0.055 0.067 0.068 NA
Mean 0.114 0.113 0.097 0.106 0.104
Weighted Mean 0.010 0.068 0.072 -0.028 0.104
Std. dev. -0.331 -0.438 -0.383 -0.279 -0.432
Weighted Std. dev. -0.398 -0.455 -0.432 -0.394 -0.432
Size 0.077 0.074 0.066 0.088 0.072

Random -0.015
Number of ratings -0.072
Average rating -0.104

where r(u, i) and r̃(u, i) denote the real and predicted ratings for every pair of item i
and user u contained in T .

5.1 User Coherence and Magic Barrier

In this experiment, we assess the validity of the proposed coherence functions as good
predictors for the magic barrier to answer the research question RQ1. With this goal in
mind, we show in Table 4 the Spearman’s correlation values between the coherence and
the magic barrier per user (Pearson’s correlation was very similar). Note that Pearson’s
correlation coefficient is designed to capture linear relationships between the two vari-
ables whereas Spearman’s captures non-linear dependencies. Both correlations provide
scores in the range of −1 to 1, where 1 denotes a perfect correlation, −1 represents an
inverse correlation, and the absolute value is the strength of the relationship.

We observe in Table 4 that the correlations for the weighted version of the coher-
ence function (that is, where the importance of each feature in the user profile is ignored)
show more predictive power only when the standard deviation is used. Besides, entropy
and KLD do not perform very well. Additionally, Emotion keywords and Intended Au-
dience seem to be the best feature spaces for most of the coherence formulations, and
especially, for the cases where a strong correlation is obtained. We have to however
note that these feature spaces offer a low coverage in terms of the items identified with
these features [20], thus this aspect should also be taken into account when selecting
the feature to use.

We have also analysed the behaviour of the proposed coherence functions when
the feature space is reduced to having only one feature (which is shared among all the
items). The results for this case (column ∅ in Table 4) evidence that the actual feature
space may not be so important, and that the proposed coherence functions (except En-
tropy and KLD, which produce the same value – a zero – when computed for an event
space of size 1) are able to predict a user’s magic barrier using exclusively ratings. This
is especially true when standard deviation is used as function g. Note, however, that



Table 5: RMSE values using different features for the coherence and the training and
test splits described in Section 4.2. N and H denote, respectively, the best and worst
values obtained in each dataset (the lower the error, the better).

Training and Test Splits
Dataset All All-Easy All-Diff Easy-Easy Diff-Diff

Moviepilot 23.097 20.079 26.278 19.279N 28.219H
Movielens 1.090 0.974 1.195 0.933N 1.226H

although the obtained correlations in this case are similar to those presented before,
strongest relations are always found when a feature space is used.

In our analysis, we have also included a random magic barrier predictor to check
its neutral correlations (around zero), along with two other baseline predictors based
on the number of ratings each user has and her average rating. These results show that
the proposed coherence function is not trivial, and that it is actually capturing some-
thing that other transformations based on the same information (ratings) are not able to
provide.

This experiment hence confirms that the user coherence measured as proposed in
Section 3 provides good predictions of the magic barrier; as a consequence, we should
be able to exploit the ranking generated by sorting the users according to their coherence
value to lower the magic barrier for the more coherent (or easy) users. In the next
section, we show that this may be generalised when no information about the magic
barrier is available, and only the final RMSE of the system can be measured.

5.2 User Coherence and Recommendation Performance

Now we aim to address research question RQ2, where we investigate if we can improve
the recommendation performance by clustering the population of users according to
their coherence.

Based on the results presented in the previous section, we are going to restrict our
analysis on the weighted version of the standard deviation function for user coherence.
Moreover, to ensure fair comparisons between Movielens and Moviepilot datasets, we
use genres as feature space; recall that in this situation the correlation was not the
strongest, but it was also significant (almost −0.4).

Table 5 shows the RMSE values for the different training and test splits presented
in Table 3. We observe that the best result is always obtained when only easy users are
included in the training set, that is, those classified as more coherent, and according to
the correlation analysis, those having a lower magic barrier. Similarly, the difficult (less
coherent) users produce the worst recommendation performance. This is an indicative
that the magic barrier is a valid estimation of the final performance of the system.

Moreover, we also notice that the baseline performance (from the All split) is re-
duced when only easy (more coherent) users are evaluated. Besides, if we average the
error found in All-Easy and All-Diff (since in each of these splits half of the users were
evaluated) in Movielens, we obtain slightly better results than when we evaluate the
complete dataset (specifically, we have an average RMSE of 1.0845). Note that in the



three splits the recommendation model learnt from the training data is the same and the
only difference is in the test set used to compute the RMSE.

These results evidence that the coherence function we have proposed in this paper
is able to detect users that exhibit an inherent lower noise, even when no information
about the magic barrier is available. On top of this, the user-based recommender we
have tested takes advantage of this aspect and learns (and predicts) their preferences
more accurately. On the other hand, the difficult users do not only receive bad recom-
mendations, but they can improve their accuracy by training the recommendation model
with more data; that is, whereas coherent users obtain decent performance by using only
ratings from other coherent users, less coherent users need information from outside of
their own cluster, showing their higher level of noise.

In summary, this experiment answers positively to the second research question,
namely, that it is possible to exploit the coherence values to build different training and
test models in such a way that the error decreases for the easy users, and in some cases
(i.e., the Movielens dataset), even the average error obtained for the easy and difficult
users is balanced out and outperform the overall error.

6 Related Work

Aiming to understand how recommenders fail for certain users, and attempting to char-
acterise those users has been researched by some authors. Rashid et al. propose in [16] a
measure of the effect of a user in the recommendations received by an algorithm, named
as influence. Their original definition is very expensive, since it measures the effect a
user has over the rest via the predictions they receive, for which they need to compute
predictions for items using a training model where the target user has been removed.

In [6], Ekstrand & Riedl examine why some recommenders fail in the context of
hybrid recommendation, with the goal of selecting better components to build more
efficient ensembles. They found that recommenders fail on different users and items,
and obtained specific user features – such as the user’s rating count, the average rating,
and their variance – that allow to predict the performance of an algorithm.

In [11], Kille & Albayrak assign a difficulty value reflecting the expected evaluation
outcome of the user. The authors propose to measure this difficulty in terms of the
diversity of the rating predictions and rankings when comparing the output of several
recommender systems. Some diversity metrics from [13] are proposed, but they are not
tested nor implemented in any real dataset.

By drawing from Information Retrieval related quantities, Bellogı́n et al. present
in [3, 4] a family of performance predictors for users. Correlations found between
ranking-based metrics and such predictors are strong, and the authors propose to ex-
ploit them in at least two applications: dynamic neighbourhood building and dynamic
ensemble recommendation, where the weights for the neigbours or the recommenders
would dynamically change depending on the predicted performance of each variable.

More recently, a similar approach was developed using a machine learning method
based on decision trees. In [7], Griffith et al. aim to predict the user’s performance in
terms of the user’s average error by extracting user’s rating information (such as the
number of ratings, average rating, standard deviation, number of neighbours, average



similarity, etc.). The correlations obtained are very strong (around 0.8) but no actual
applications are proposed in that paper.

In summary, the idea of predicting the performance of recommenders has attracted
a lot of attention in the field so far, however, to the best of our knowledge, no other
work has been able to predict an actual measure of user inconsistency – like the magic
barrier – and successfully apply it to improve the performance of the whole (or even of
a subset) of the system, as we have presented in this work.

7 Conclusions and Future Work

The research presented here aims to provide a deeper understanding of what user char-
acteristics are related with the appropriateness and relevance of the recommender’s sug-
gestions for each user. We have observed that being statistically coherent – in terms of
rating deviation – gives enough information to predict the user inconsistency as mea-
sured by her magic barrier, especially if such coherence is measured within an item’s
feature (e.g., genres). This opens up the possibility for a (production) recommender
system to perform different actions on the users depending on their predicted incon-
sistencies, such as proactively asking some specific users (the ones predicted as most
difficult) to rate more items or training separate models for the easy and difficult users.
Our experiments show that by creating such separate training models improvements
with respect to the global model can be achieved, specifically, around 14% for the sub-
set of easier users. It should be feasible to improve these results if an ad-hoc tuning over
the set of more difficult users is performed.

We have explored only one type of recommendation algorithm (i.e., collaborative
filtering, and in particular, user-based methods), but it is an open question whether all
recommenders may improve their performance in the same way with respect to the
proposed coherence function. More importantly, apart from the error-based evaluation
metrics used in this work, we are interested in evaluating with ranking-based metrics
– like precision – to analyse if user inconsistencies are also reflected in terms of, or
if they affect whatsoever, their ranking performance. We also plan to develop other
coherence-related predictors proposed in the fields of Information Retrieval [8] and
Machine Learning [14,15], to capture additional insights about the user behaviour with
respect to the recommender system.
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