
Comparative Recommender System Evaluation:
Benchmarking Recommendation Frameworks

Alan Said
∗

TU-Delft
The Netherlands

alansaid@acm.org

Alejandro Bellogín
∗

Universidad Autónoma de Madrid
Spain

alejandro.bellogin@uam.es

ABSTRACT
Recommender systems research is often based on comparisons of
predictive accuracy: the better the evaluation scores, the better the
recommender. However, it is difficult to compare results from dif-
ferent recommender systems due to the many options in design and
implementation of an evaluation strategy. Additionally, algorithmic
implementations can diverge from the standard formulation due to
manual tuning and modifications that work better in some situations.

In this work we compare common recommendation algorithms as
implemented in three popular recommendation frameworks. To pro-
vide a fair comparison, we have complete control of the evaluation
dimensions being benchmarked: dataset, data splitting, evaluation
strategies, and metrics. We also include results using the internal
evaluation mechanisms of these frameworks. Our analysis points to
large differences in recommendation accuracy across frameworks
and strategies, i.e. the same baselines may perform orders of magni-
tude better or worse across frameworks. Our results show the neces-
sity of clear guidelines when reporting evaluation of recommender
systems to ensure reproducibility and comparison of results.
Categories and Subject Descriptors: H.5.1 [Multimedia Informa-
tion Systems]: Evaluation/methodology
General Terms: Experimentation, Documentation, Performance

1. INTRODUCTION
Recommender systems are a popular means of assisting users in
online services, whether for music (Spotify, Last.fm), movies and
videos (Netflix, YouTube) or other items (Amazon, eBay, etc.). In
recent years, the recommender system-related research field has
grown exponentially, and today most top-tier research venues fea-
ture tracks on recommendation (or closely related). There has been
a parallel development in the industry and many of the positions in
data science list knowledge of recommendation techniques as a top
priority. This gain in popularity has led to an overwhelming amount
of research literature over the last few years. With this in mind, it
becomes increasingly important to be able to measure recommen-
dation models against each other in order to objectively estimate
their qualities. In today’s recommender systems-related literature,

∗Authors contributed equally to this work.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RecSys’14, October 6–10, 2014, Foster City, Silicon Valley, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2668-1/14/10 ...$15.00.
http://dx.doi.org/10.1145/2645710.2645746 .

a majority of papers state what datasets, algorithms, baselines and
other potential settings are used in order to ensure replication, some
manuscripts additionally present running times, hardware and soft-
ware infrastructure, etc. In light of the vast variety of existing meth-
ods to implement and evaluate a recommender system, this is a very
positive aspect. It should however be critically analyzed in order
to ensure improvement in the field. It is known from Information
Retrieval, that even when standard datasets are used and a well-
established set of baselines are known, no overall improvement over
the years is guaranteed [2].

Looking back on the accumulated amount of work in the re-
search community, there have emerged three popular recommen-
dation frameworks: Apache Mahout (Mahout) [23], LensKit [10]
and MyMediaLite [12]. The latter two have been developed by re-
searchers in academia, whereas Mahout is an Apache Software
Foundation project. Even though the frameworks provide basically
the same recommendation algorithms, they have differences in their
implementations, data management, and evaluation methods. The
frameworks provide basic evaluation packages able to calculate
some of the most common evaluation metrics (e.g. precision, re-
call, root-mean-square error, etc.). However, due to the difference
in implementation between the same algorithm across frameworks,
even when using the same dataset, it becomes uncertain whether a
comparison of results from different frameworks is possible.

To analyze if such a comparison between recommendation frame-
works is indeed possible, we performed a standalone evaluation of
recommendation results, allowing fine-grained control of a wide va-
riety of parameters within the evaluation methodology. In this way,
we aim to ensure an objective comparison of the recommendation
accuracy under some common dimensions, such as the dataset used,
the algorithms evaluated, the evaluation metrics analyzed and so on.
Our work provides a cross-system and cross-dataset benchmark of
some of the most common recommendation and rating prediction
algorithms. It also highlights the differences in recommendation
accuracy between implementations of the same algorithms on dif-
ferent frameworks, distinct levels of accuracy in different datasets,
and variations of evaluation results on the same dataset and in the
same framework when employing various evaluation strategies.

2. BACKGROUND
It lies in the nature of recommender systems that progress is mea-
sured by evaluating a system and benchmarking it towards other
state of the art systems or algorithms. This is generally true for many
machine learning-related approaches.

Recommender systems have experienced a steep evolution in the
last decade, evaluation methods have seen a similar, although not
as diverse development. Seminal works on recommender systems
evaluation include Herlocker et al.’s survey [15] and Shani and
Gunawardana’s book chapter [29].

Currently, recommender systems-related research literature com-
monly include evaluation sections. However, it still often remains
unclear how the proposed recommendations perform compared to
others. Given the fact that many recommendation approaches are
researched, developed and deployed for specific purposes, it is im-
perative that the evaluation should deliver a clear and convincing
overview of the systems’ recommendation qualities, i.e. show in de-
tail how the system was evaluated in order to make a comparison to
other systems feasible. As an experiment, we studied all full-length
(8 page, non-industry) research papers from the two, at the time of
writing, most recent ACM RecSys conferences (i.e. after the release
of MyMediaLite [12] and LensKit [10]) and analyzed how repro-
ducible the results were, 56 papers in total. Reproducibility refers
to the description of the experimental setup, the dataset used, the
recommendation framework used, etc., in order to allow replication
and validation of the results by a third party. Our analysis focused
on four aspects of the contributions:
• Dataset - if the dataset used is publicly available. Excluding

proprietary datasets or ones collected specifically for the paper
from public sources (unless made available for download).
• Recommendation framework - if the recommendations were

generated by openly available frameworks or if the source
code was made available. Excluding software not available
publicly or where nothing was mentioned.
• Data details - if a feasible reproduction of training/test splits

is possible (irrespective of dataset) or whether not enough
details were given for a successful replication.
• Algorithmic details - if algorithms were described in suf-

ficient detail, e.g., neighborhood sizes for nearest neighbor
(kNN) or number of factors for matrix factorization approaches.

We see these aspects related to the two issues identified by Kon-
stan and Adomavicius [17] as being critical for making research
cumulative and allowing rapid progress, i.e. ensuring reproducibil-
ity and replication by (i) thoroughly documenting the research and
using open data, and (ii) following standards and using best-practice
methods for coding, algorithms, data, etc.

In our study we found that only about half of the papers (30)
used open datasets, a similar amount (35) presented information
on training/test splits, making similar splits possible, even though a
direct replication often remained unfeasible. It stands to reason that
some organizations cannot share their data openly, making a detailed
description of how the data is used even more important. In total,
from 56 papers, only one used a combination of an open dataset, an
open framework and provided all necessary details for replication
of experiments and results. Even though a majority presented an
evaluation and comparison towards a baseline, in most cases the
information provided was not sufficient for accurate replication, i.e.
only providing the algorithm type without additional details (e.g.
kNN without neighborhood size, similarity metrics, etc), stating that
the data were split into 80%-20% training/test sets but not providing
the splitting strategy (per-user, per-item, random, etc.), or what ac-
tually constituted an accurate recommendation. Algorithmic details
were fully disclosed in only 18 papers, which could perhaps be mo-
tivated by the fact that certain algorithmic aspects should be learned
on the data (or withheld as part of an organization’s intellectual
property); there is however no clear reason for withholding data
splitting details. We believe this can be due to lack of space and/or
the perceived lower importance of specific details concerning the
deployment and evaluation.

3. EVALUATION & RECOMMENDATION
This section presents the evaluation methodology and recommenda-
tion frameworks used in this paper.

3.1 Evaluation
To provide a fair comparison, we believe complete control over
the evaluation protocol needs to be retained. Because of this, we
have identified four stages that will be benchmarked using different
alternatives available in the literature: data splitting, item recommen-
dation, candidate item generation, and performance measurement.

3.1.1 Data splitting
One aspect of the evaluation setting is the dataset partition strategy.
Different training and test partitions may have considerable impact
on the recommendation performance. Although an exhaustive anal-
ysis of data partitioning is out of the scope of our work, we briefly
discuss some common methods.

Time-based approaches [?, 14] consider the timeline of events,
i.e. the timestamps of when user-item interactions were performed.
A basic approach is to select a point in time to separate training
data (all interaction records prior to that point) and test data (after
the split time point). The split point can be set so as to, e.g. have a
desired training/test ratio which can be global, with a single common
split point for all users, or user-specific, to ensure the same ratio per
user. None of the recommenders evaluated in the scope of this work
take time into consideration, hence this is left as future work, where
a wider set of recommenders will be tested.

If we ignore time, there are at least three strategies to withhold
items: a) sample a fixed (different) number for each user; b) sample a
fixed (same for all) number for each user, also known as given n or all
but n protocols; c) sample a percentage of all interactions using cross
validation, where non-overlapping subsets are generated, i.e. every
(user, item, rating) tuple is evaluated once. Protocol c, appears to be
the most popular [13, 28], although all but n (b) is also common [?].
We will use cross validation (cv) and test two variations: global
splitting into (non-overlapping) folds (global cv), and each user’s
ratings list divided into the given number of folds and assigned to
its corresponding split (per-user cv). We also try other strategies
using a fixed number of sampled items, selected as a percentage of
the total ratings (global ratio) or as a percentage of a user’s ratings,
partitioning on a user basis (per-user ratio).

Independent of the partition, the goals of an evaluation may be
different in each situation, thus, a different setting (and partition)
should be employed [14, 15]. If this is not the case, the results
obtained in one setting could be invalid, i.e. evaluating something
not sought for. As a result, the partition protocol in use needs to be
clearly specified, and assessed if it is appropriate in the context. In
this work we benchmark different instantiations of some of these
protocols to provide a comparison. In practice the protocol should be
selected such that it aligns with the evaluated approach and research
goals – not necessarily the protocol obtaining best results.

3.1.2 Recommendation
Once the training and test splits are available, we produce recom-
mendations using three common state-of-the-art methods from the
recommender systems literature: user-based collaborative filtering
(CF), item-based CF and matrix factorization. One reason behind
this choice is the availability of the methods in the compared frame-
works, which is not the case for less standard algorithms.

Item-based recommenders look at each item rated by the target
user, and find items similar to that item [28, 30]. Item similarity
is defined in terms of rating correlations between users, although
cosine-based or probability-based similarities have also been pro-
posed [8]. Adjusted cosine has been shown to perform better than
other similarity methods [28]. The rating prediction computed by
item-based strategies is generally estimated as follows [28]:

r̃(u, i) = C
∑
j∈Si

sim(i, j)r(u, j) (1)

where Si is the set of items similar to i [8]. We should note that
Si is generally replaced by Iu – all items rated by user u – since
unrated items are assumed to be rated with a zero.

The user-based CF algorithm can be found in the literature under
two different formulations; in the first one, rating deviations from
the user’s and neighbor’s rating means are considered [24] (Eq. 2),
whereas in the second one raw scores given by each neighbor are
used [30] instead (Eq. (3)):

r̃(u, i) = r̄(u) + C
∑

v∈Nk(u)

sim(u, v) (r(v, i)− r̄(v)) (2)

r̃(u, i) = C
∑

v∈Nk(u)

sim(u, v)r(v, i) (3)

where Nk(u) is a neighborhood of (typically) the k most similar
users to u [9]; r̄(u) is the user’s average rating. Note that both
variations are referred to using the same name, making it difficult to
a priori know which version is used.

The user similarity sim(u, v) is often computed using the Pearson
correlation coefficient or the cosine similarity between the user
preference vectors [1]. We include here a shrunk version of these
similarities, as proposed in [18]:

sims(a, b) =
na,b

na,b + λs
sim(a, b) (4)

where na,b is the number of users who rated both items (or items
rated by both users), and λs is the shrinking parameter.

Matrix factorization recommenders use dimensionality reduction
in order to uncover latent factors between users and items, e.g. by
Singular Value Decomposition (SVD), probabilistic Latent Semantic
Analysis or Latent Dirichlet Allocation. Generally, these systems
minimize the regularized squared error on the set of known ratings
to learn the factor vectors pu and qi [20]:

min
q∗,p∗

∑
(u,i)

(r(u, i)− qTi pu)2 + λ
(
‖qi‖2 + ‖pu‖2

)
(5)

Since a closed formulation for these models also depends on how
the parameters are learned for Eq. (5) we selected the same learning
approach in each framework (when possible).

Table 1 shows the classes in each framework corresponding to
user-, item- and matrix factorization-based recommenders together
with their parameters. Note that FunkSVD [11] is not available
in MyMediaLite, instead SVDPlusPlus [18] is used as it performs
similarly to the other methods, although it requires a longer training
time – due to the algorithm, not the implementation.

3.1.3 Candidate items generation
Once recommendations have been generated, the next step is to
measure recommendation performance based on predictive accuracy
(the error with respect to the predicted rating) and/or ranking-based
precision. Both types have their limitations: the former needs the
recommender to output a score meaningful as a rating, the latter is
sensitive to the number of unknown items in the generated ranking,
and how they are selected [4]. Regarding this aspect, the following
candidate generation strategies, where Lu is for the set of target
items the recommender ranks (candidate items), have been proposed:
UserTest This strategy takes the same target item sets as standard

error-based evaluation: for each user u, the list Lu consists
of items rated by u in the test set. The smallest set of target

items for each user is selected, including no unrated items. A
relevance threshold is used to indicate which of the items in
the user’s test are considered relevant. Threshold variations
can be static for all users [16], or per-user [3].

TrainItems Every rated item in the system is selected – except
those rated by the target user. This strategy is useful when
simulating a real system where no test is available, i.e. no
need to look into the test set to generate the rankings.

RelPlusN For each user, a set of highly relevant items is selected
from the test set. Then, a set of non-relevant items is created
by randomly selecting N additional items. In [6], N is set to
1, 000 stating that the non-relevant items are selected from
items in the test set not rated by u. Finally, for each highly
relevant item i, the recommender produces a ranking of the
union between this item and the non-relevant items. Metrics
for each user are calculated by averaging the values obtained
for the rankings associated to each user over every highly
relevant item. The final performance values are averaged over
the values obtained for each user.

3.1.4 Performance measurement
The final stage in the proposed evaluation protocol is to measure
the performance of the produced scores. The last step (candidate
items generation) is not required for error-based metrics, e.g. mean
absolute error (MAE) and root-mean-square error (RMSE) as these
only consider predictions on items in the test set, whereas the rec-
ommendation step generates predictions for all items in the dataset.
Nevertheless, it is crucial to report the coverage of the methods –
in terms of user coverage (fraction of users that receive at least one
recommendation) and catalog coverage (fraction of items that can
be recommended) [29]. This is due to the fact that, in principle, no
backup recommender is used as fallback, i.e. if we expect to receive
10 recommendations for a user but only get 8, we measure the per-
formance based on those 8 items. This is a well-known problem [15]
and the suggested solution is to report both accuracy and coverage.

Error-based metrics are useful under the assumption that a system
that provides more accurate predictions is preferred by the user [29].
Although this has been studied and refuted by several authors [7,21],
it still is one of the de facto evaluation techniques used.

Ranking-based metrics like precision, recall, nDCG, and mean
reciprocal rank (MRR) aim to capture the quality of a particular
ranking, taking into account that the user has expressed a preference
towards some items, typically those in the test set rated above a
certain threshold. The candidate item generation strategy will change
the value computed with these metrics since a different ranking is
evaluated, although the order of the recommenders does not have to
change. Bellogín et al. [4] observed that one difference in the results
is the range of the evaluation metrics. This becomes clear when using
the RelPlusN strategy with different values of N , the larger the N ,
the smaller the value of the metric, as more items are considered in
the ranking. In our experiments, after the stages described above,
we used trec_eval1 to produce ranking-based metrics.

3.2 Recommendation Frameworks
Our analysis is based on three open source recommendation frame-
works popular in the recommender systems community; Mahout,
MyMediaLite, and LensKit. Even though the frameworks have been
developed with a similar goal in mind (an easy way to deploy rec-
ommender systems in research and/or production environments) and
share some basic concepts, there are certain differences. These vary
from how data is interacted with to differences in implementation
across algorithms, similarity metrics, etc.

1Available at http://trec.nist.gov/trec_eval/

http://trec.nist.gov/trec_eval/

Framework Class Similarity
Item-based

LensKit ItemItemScorer CosineVectorSimilarity, PearsonCorrelation
Mahout GenericItemBasedRecommender PearsonCorrelationSimilarity
MyMediaLite ItemKNN Cosine, Pearson

User-based Parameters
LensKit UserUserItemScorer CosineVectorSimilarity, PearsonCorrelation SimpleNeighborhoodFinder, NeighborhoodSize
Mahout GenericUserBasedRecommender PearsonCorrelationSimilarity NearestNUserNeighborhood, neighborhood size
MyMediaLite UserKNN Cosine, Pearson neighborhood size

Matrix factorization
LensKit FunkSVDItemScorer IterationCountStoppingCondition, factors, iterations
Mahout SVDRecommender FunkSVDFactorizer, factors, iterations
MyMediaLite SVDPlusPlus factors, iterations

Table 1: Details for the item-based, user-based and matrix factorization-based recommenders benchmarked in each framework. Namespace
identifiers have been omitted due to space constraints.

This section highlights some of the features of the frameworks
and gives an overview of differences and similarities between them,
specifically what the frameworks provide in terms of evaluation and
data management (test and training splitting), but also how certain
algorithms are implemented.

3.2.1 LensKit
LensKit is a Java framework and provides a set of basic CF algo-
rithms. The current version at the time of writing was 2.0.5.

To demonstrate some of the implementational aspects of LensKit,
we look at a common similarity method, the Pearson Correlation.
In LensKit, it is based on Koren and Bell’s description [19] (stated
in the source code), having the possibility to set the shrinkage pa-
rameter λs mentioned in Eq. (4). Additionally, LensKit contains
an evaluator class which can perform cross validation and report
evaluation results using a set of metrics. Available metrics include
RMSE, nDCG, etc. (although it lacks precision and recall metrics).

3.2.2 Mahout
Mahout, also written in Java, had reached version 0.8 at the time of
writing. It provides a large number of recommendation algorithms,
both non distributed as well as distributed (MapReduce); in this
work we focus solely on the former for the sake of comparison.

Mahout’s Pearson Correlation calculates the similarity of two
vectors, with the possibility to infer missing preferences in either. λs

is not used, instead a weighting parameter suits a similar purpose.
There are several evaluator classes, we focus on the Information

Retrieval evaluator (GenericRecommenderIRStatsEvaluator) which
calculates e.g. precision, recall, nDCG, etc. Generally, the evaluators
lack cross validation settings, instead, a percentage can be passed
to the evaluator and only the specified percentage of (randomly se-
lected) users will be evaluated. Additionally, the evaluator trains
the recommendation models separately for each user. Furthermore,
while preparing individual training and test splits, the evaluator re-
quires a threshold to be given, i.e. the lowest rating to be considered
when selecting items into the test set. This can either be a static value
or calculated for each user based on the user’s rating average and
standard deviation. Finally, users are excluded from the evaluation
if they have less than 2 ∗ N preferences (where N is the level of
recall).

3.2.3 MyMediaLite
MyMediaLite had, at the time of writing, reached version 3.10. It is
implemented in C# and offers multi-platform support via Mono.

One key difference between MyMediaLite and the other two
frameworks is that MyMediaLite addresses rating and item pre-
diction as separate problems. However, it provides a rating-based
recommendation setting similar to the other frameworks.

Dataset Users Items Ratings Density Time
Movielens 100k 943 1,682 100,000 6.30% ’97-’98
Movielens 1M 6,040 3,706 1,000,000 4.47% ’00-’03
Yelp2013 45,981 11,537 229,907 0.04% ’05-’13

Table 2: Statistics of the three datasets used in this paper.

MyMediaLite’s Pearson correlation class cites [19] as the basis
for the implementation. Similar to LensKit, the shrinkage parameter
λs can be used through a constructor. It is not used by default.

4. EXPERIMENTS & EVALUATION
In order to provide a comparison, we performed an analysis of results
obtained using a protocol using the four steps from Section 3.1,
and using the internal evaluation methods of each framework. All
experiments were run on computers with Fedora Linux (v.18), 8Gb
RAM and Intel Core2 Quad Q6600 2.40GHz CPUs. For Mahout
and LensKit, Java (1.7.0_25-b15) was allowed to use 3Gb of RAM.
MyMediaLite was run on Mono 3.2.7.

4.1 Datasets
We use three datasets, two from the movie domain (Movielens 100k
& 1M2) and one with user reviews of business venues (Yelp3). All
datasets contain users’ ratings on items (1-5 stars). The selection of
datasets was based on the fact that not all evaluated frameworks
support implicit or log-based data. The first dataset, Movielens
100k (ML100k), contains 100,000 ratings from 943 users on 1,682
movies. The second dataset, Movielens 1M (ML1M), with 1 million
ratings from 6,040 users on 3,706 items. The Yelp 2013 dataset
contains 229,907 ratings by 45,981 users on 11,537 businesses. The
datasets additionally contain item meta data, e.g. movie titles, busi-
ness descriptions, these were not used in this work. A summary of
data statistics is shown in Table 2.

4.2 Controlled evaluation protocol
We used the Movielens 100k dataset to benchmark the four stages
of the proposed controlled evaluation. More specifically, we tested
the data splitting configuration experimenting with cross validation
(5 folds) vs. random partition (80%-20% ratio), for both user and
global splits (see Section 3.1.1) [26]. The recommendations were
produced using the algorithms presented in Section 3.1.2, i.e., matrix
factorization (SVD), user-based CF (UB) and item-based CF (IB)
nearest neighbor. Then, error-based metrics were computed using
the corresponding test splits and our own code (available in [26]),
whereas the ranking-based metrics were calculated after running the
different strategies to generate candidate items using the trec_eval
tool; in this case, we considered an item relevant if it had been rated
with a 5, similar to Cremonesi et al. [6]. For the RelPlusN strategy,
N was set to 100, a lower value than the typical one (i.e., 1,000)
2http://grouplens.org/datasets/movielens/
3http://www.kaggle.com/c/yelp-recsys-2013

http://grouplens.org/datasets/movielens/
http://www.kaggle.com/c/yelp-recsys-2013

IB
 C

os
 IB

 P
ea

 SVD 1
0SVD 5
0

SVD s
qr

t(I
)

UB C
os

 1
0

UB C
os

 5
0

UB C
os

 sq
rt(

I)
UB P

ea
 1

0
UB P

ea
 5

0

UB P
ea

 sq
rt(

I)

AM
gl
cv

LK
gl
cv

MML
gl
cv

AM
pu
cv

LK
pu
cv

MML
pu
cv

AM
gl
rt

LK
gl
rt

MML
gl
rt

AM
pu
rt

LK
pu
rt

MML
pu
rt

500

1000

1500

Value

(a) Time (in seconds)

IB
 C

os
 IB

 P
ea

 SVD 1
0SVD 5
0

SVD s
qr

t(I
)

UB C
os

 1
0

UB C
os

 5
0

UB C
os

 sq
rt(

I)
UB P

ea
 1

0
UB P

ea
 5

0

UB P
ea

 sq
rt(

I)

AM
gl
cv

LK
gl
cv

MML
gl
cv

AM
pu
cv

LK
pu
cv

MML
pu
cv

AM
gl
rt

LK
gl
rt

MML
gl
rt

AM
pu
rt

LK
pu
rt

MML
pu
rt

0.9

1.0

1.1

1.2

1.3

Value

(b) Root-mean-square error (RMSE)

Figure 1: Time and RMSE for the controlled evaluation protocol. IB and
UB refer to item- and user-based respectively; Pea and Cos to Pearson and
Cosine; gl and pu to global and per user; AM, LK, MML to the frameworks;
and cv, rt to cross validation and ratio. (NB: To be viewed in color.)

but it allows us to perform more exhaustive experiments, while
keeping the comparison fair (since this parameter applies evenly to
all evaluated recommenders). After that, we further extended our
experiments with the other datasets, for a subset of the configurations
used in the experiments with Movielens 100k.

4.3 Framework-dependent protocols
In addition to the controlled evaluation, we used each framework’s
internal evaluation methods. This was performed for Movielens
100k4, default evaluation settings were used, e.g. the frameworks
created the training/test splits based on default configurations. LensKit
and MyMediaLite performed 5-fold cross validation, in Mahout,
the recommender generates training/test splits individually for each
user. Since there is no common evaluation metric calculated in these
frameworks, we present nDCG values for LensKit and Mahout,
and RMSE values for LensKit and MyMediaLite. The algorithms
used were according to Table 1. In Mahout’s case, the evaluator
needs the level of recall (N) prior to recommendation and evalua-
tion (see Section 3.2.2), thus we setN = 50 for Mahout. In the case
of MyMediaLite, where it distinguishes between rating prediction
and item recommendation, we used the rating prediction setting to
generate predictions and recommendations.

5. RESULTS
Note that due to space constraints we do not present the results from
all runs. Instead focus is on presenting a full coverage of the main
benchmarking dataset, Movielens 100k, with additional results from
the other datasets for completeness.

5.1 Controlled evaluation protocol
Figs. 1 and 2 show a subset of the most important metrics com-

puted using the controlled evaluation protocol. The figures show
a wide combination of strategies for data splitting, recommenda-
tion, and candidate items generation, along with prediction accuracy
(RMSE Fig. 1b), ranking quality (nDCG@10 Fig. 2c), coverage
(Figs. 2a and 2b), and running times of the different recommenders
(Fig. 1a). Although the same gradient is used in all the figures, we
have to note that for coverage and nDCG higher values (red) are
better, whereas for time and RMSE lower values (blue) are better.
4Attempts to use the Yelp2013 dataset were also made. The running
time and memory usage of the frameworks made it unfeasible.

In terms of running time, we see in Fig. 1a that the most expen-
sive algorithm is MyMediaLite’s item-based method (using Pearson
correlation), regardless of splitting strategy. MyMediaLite’s factor-
ization algorithm needs more time than SVD in other frameworks,
this is due to the base factorizer method being more accurate but
also more computationally expensive (see Section 3.1.2). In general,
we observe that LensKit has the shortest running time no matter
the recommendation method or data splitting strategy. Note that for
datasets with other characteristics this can differ.

Looking at the RMSE values, we notice (Fig. 1b) a gap in the
MyMediaLite recommenders. This is due to MyMediaLite dis-
tinguishing between rating prediction and item recommendation
tasks (Section 3.2.3). In combination with the similarity method
used (cosine), this means the scores are not valid ratings. Moreover,
MyMediaLite’s recommenders outperform the rest. There is also
difference between using a cross validation strategy or a ratio par-
tition, along with global or per user conditions. Specifically, better
values are obtained for the combination of global cross validation,
and best RMSE values are found for the per user ratio partition.
These results can be attributed to the amount of data available in
each of these combinations: whereas global splits may leave users
out of the evaluation (the training or test split), cross validation
ensures that they will always appear in the test set. Performance
differences across algorithms are negligible, although SVD tends to
outperform others within each framework.

Finally, the ranking-based evaluation results should be carefully
analyzed. We notice that, except for the UserTest candidate items
strategy, MyMediaLite outperforms Mahout and LensKit in terms of
nDCG@10. This high precision comes at the expense of lower cov-
erage, specifically of the catalog (item) coverage. As a consequence,
MyMediaLite seems to be able to recommend at least one item per
user, but far from the complete set of items, in particular compared
to the other frameworks. This is specifically noticeable in rating-
based recommenders (as we recalled above, all except the UB and IB
with cosine similarity), whereas the ranking-based approach obtains
coverage similar to other combinations. In terms of nDCG@10, the
best results are obtained with the UserTest strategy, with noticeable
differences between recommender types, i.e. IB performs poorly,
SVD performs well, UB in between, in accordance with e.g. [19].
The splitting strategy has little effect on the results in this setting.

Tables 3b and 3c show results for the Movielens 1M and Yelp2013
datasets respectively, where only a global cross validation splitting
strategy is presented as we have shown that the rest of strategies do
not have a strong impact on the final performance. We also include
in Table 3a the corresponding results from Figs. 1 and 2 for compar-
ison. In the tables we observe that most of the conclusions shown
in Figs. 1 and 2 hold in Movielens 1M, likely due to both datasets
having a similar nature (movies from Movielens, similar sparsity),
even though the ratio of user vs. items and the number of ratings is
different (see Table 2). For instance, the running time of IB is longest
for Mahout; and Mahout and MyMediaLite have coverage problems
when random items are considered in the evaluation (i.e., RPN item
candidate strategy), in particular in the UB recommender. LensKit’s
performance is superior to Mahout’s in most of the situations where
a fair comparison is possible (i.e., when both frameworks have a
similar coverage), while at the same time MyMediaLite outperforms
LensKit in terms of nDCG@10 for the RPN strategy, although this
situation is reversed for the UT strategy.

The majority of the results for the dataset based on Yelp reviews
are consistent with those found for Movielens 1M. One exception is
the IB recommender, where the LensKit implementation is slower
and has a worse performance (in terms of RMSE and nDCG) than
Mahout. This may be attributed to the very low density of this
dataset, which increases the difficulty of the recommendation prob-

IB
 C

os
 IB

 P
ea

 SVD 1
0SVD 5
0

SVD s
qr

t(I
)

UB C
os

 1
0

UB C
os

 5
0

UB C
os

 sq
rt(

I)
UB P

ea
 1

0
UB P

ea
 5

0

UB P
ea

 sq
rt(

I)

AM
RPN

gl
cv

LK
RPN

gl
cv

MML
RPN

gl
cv

AM
TI
gl
cv

LK
TI
gl
cv

MML
TI
gl
cv

AM
UT
gl
cv

LK
UT
gl
cv

MML
UT
gl
cv

AM
RPN
pu
cv

LK
RPN
pu
cv

MML
RPN
pu
cv

AM
TI
pu
cv

LK
TI
pu
cv

MML
TI
pu
cv

AM
UT
pu
cv

LK
UT
pu
cv

MML
UT
pu
cv

AM
RPN

gl
rt

LK
RPN

gl
rt

MML
RPN

gl
rt

AM
TI
gl
rt

LK
TI
gl
rt

MML
TI
gl
rt

AM
UT
gl
rt

LK
UT
gl
rt

MML
UT
gl
rt

AM
RPN
pu
rt

LK
RPN
pu
rt

MML
RPN
pu
rt

AM
TI
pu
rt

LK
TI
pu
rt

MML
TI
pu
rt

AM
UT
pu
rt

LK
UT
pu
rt

MML
UT
pu
rt

25

50

75

100
Value

(a) User coverage (in percent)

IB
 C

os
 IB

 P
ea

 SVD 1
0SVD 5
0

SVD s
qr

t(I
)

UB C
os

 1
0

UB C
os

 5
0

UB C
os

 sq
rt(

I)
UB P

ea
 1

0
UB P

ea
 5

0

UB P
ea

 sq
rt(

I)

AM
RPN

gl
cv

LK
RPN

gl
cv

MML
RPN

gl
cv

AM
TI
gl
cv

LK
TI
gl
cv

MML
TI
gl
cv

AM
UT
gl
cv

LK
UT
gl
cv

MML
UT
gl
cv

AM
RPN
pu
cv

LK
RPN
pu
cv

MML
RPN
pu
cv

AM
TI
pu
cv

LK
TI
pu
cv

MML
TI
pu
cv

AM
UT
pu
cv

LK
UT
pu
cv

MML
UT
pu
cv

AM
RPN

gl
rt

LK
RPN

gl
rt

MML
RPN

gl
rt

AM
TI
gl
rt

LK
TI
gl
rt

MML
TI
gl
rt

AM
UT
gl
rt

LK
UT
gl
rt

MML
UT
gl
rt

AM
RPN
pu
rt

LK
RPN
pu
rt

MML
RPN
pu
rt

AM
TI
pu
rt

LK
TI
pu
rt

MML
TI
pu
rt

AM
UT
pu
rt

LK
UT
pu
rt

MML
UT
pu
rt

25

50

75

100
Value

(b) Catalog coverage (in percent)

IB
 C

os
 IB

 P
ea

 SVD 1
0SVD 5
0

SVD s
qr

t(I
)

UB C
os

 1
0

UB C
os

 5
0

UB C
os

 sq
rt(

I)
UB P

ea
 1

0
UB P

ea
 5

0

UB P
ea

 sq
rt(

I)

AM
RPN

gl
cv

LK
RPN

gl
cv

MML
RPN

gl
cv

AM
TI
gl
cv

LK
TI
gl
cv

MML
TI
gl
cv

AM
UT
gl
cv

LK
UT
gl
cv

MML
UT
gl
cv

AM
RPN
pu
cv

LK
RPN
pu
cv

MML
RPN
pu
cv

AM
TI
pu
cv

LK
TI
pu
cv

MML
TI
pu
cv

AM
UT
pu
cv

LK
UT
pu
cv

MML
UT
pu
cv

AM
RPN

gl
rt

LK
RPN

gl
rt

MML
RPN

gl
rt

AM
TI
gl
rt

LK
TI
gl
rt

MML
TI
gl
rt

AM
UT
gl
rt

LK
UT
gl
rt

MML
UT
gl
rt

AM
RPN
pu
rt

LK
RPN
pu
rt

MML
RPN
pu
rt

AM
TI
pu
rt

LK
TI
pu
rt

MML
TI
pu
rt

AM
UT
pu
rt

LK
UT
pu
rt

MML
UT
pu
rt

0.0

0.2

0.4

0.6

0.8

Value

(c) Normalized discounted cumulative gain at 10 (nDCG@10)
Figure 2: User and catalog coverage, nDCG and MAP for the controlled evaluation. RPN, TI and UT refer to RelPlusN, TrainItems and
UserTest strategies (other acronyms from Fig. 1). (NB: To be viewed in color.)

lem; nonetheless it should be noted that LensKit is able to achieve
a much higher coverage for some recommenders – especially for
the user-based – than Mahout. The performance of MyMediaLite
is also affected in this dataset, where we were not able to obtain
recommendations for three of the methods: two of them required
too much memory, and the other required too much time to finish.
For the recommenders that finished, the results are better for this
framework, especially compared to LensKit, the other one with full
coverage with the RPN strategy.

5.2 Framework-dependent protocols
The results of the framework-dependent evaluation are shown in
Table 4. Table 4a shows evaluation results in terms of nDCG, gener-
ated by Mahout and LensKit, whereas Table 4b shows the RMSE
values from LensKit and MyMediaLite. We start by studying the
results presented in Table 4a, where it seems that LensKit outper-
forms Mahout at several orders of magnitude. The highest nDCG
obtained by Mahout (0.2868) is less than one third of the lowest
value obtained by LensKit (0.9422). This should be taken in the
context of each framework’s evaluator. Recall that Mahout’s eval-
uator will only consider users with a certain minimum number of
preferences (two times the level of recall). Our level of recall was set
to 50, meaning only users with at least 100 preferences are evaluated
(corresponding only to circa 33% of the users in this dataset).

Looking at the RMSE results obtained by LensKit and MyMedia-
Lite in Table 4b, the difference between the frameworks is not as
large as in the previous case. All RMSE results are between 7.5%
(UBCos50) and 11.7% (UBCos10) of each other. In this case, both
frameworks created five instances of training/tests splits with an

80%-20% ratio. The splits are randomly seeded, meaning that even
though the frameworks only create five training/test datasets, they
are not the same between the two frameworks.

A further observation to be made is how the framework’s internal
evaluation compares to our controlled evaluation. We see that the
frameworks perform better in the controlled environment than in the
internal ditto. This could be the effect of different ways of calculating
the RMSE, i.e. how the average is computed (overall or per user), or
what happens when the recommender cannot provide a rating.

In the case of nDCG (Table 4a), we see that Mahout’s values
fluctuate more in both versions of the controlled evaluation (RPN
and UT) than in Mahout’s own evaluation. The internal evaluation
results consistently remain lower than the corresponding values
in the controlled setting – although the RPN values are closer to
Mahout’s own results. The UT (UserTest) values obtained in the
controlled evaluation are several orders of magnitude higher than
in the internal setting, even though the setting resembles Mahout’s
own evaluation closer than the RPN setting. A link to the different
results could potentially be the user and item coverage. Recall that
Mahout’s internal evaluation only evaluates users with more than
2 ∗N preferences, whereas the controlled setting evaluates the full
set of users. LensKit’s internal evaluation consistently shows better
results than the controlled setting. We believe this could be an effect
related to how the final averaged nDCG metric is calculated (similar
to the mismatch in RMSE values mentioned above).

Given the widely differing results, it seems pertinent that in or-
der to perform an inter-framework benchmarking, the evaluation
process needs to be clearly defined and both recommendations and
evaluations performed in a controlled and transparent environment.

(a) Movielens 100k

Alg. F.W. Time RMSE nDCG@10 User cov.(%) Cat. cov.(%)
(sec.) RPN UT RPN UT RPN UT

IBCos
AM 238 1.041 0.003 0.501 98.16 100 99.71 99.67
LK 44 0.953 0.199 0.618 98.16 100 99.88 99.67
MML 75 NA 0.488 0.521 98.16 100 100 99.67

IBPea
AM 237 1.073 0.022 0.527 97.88 100 86.66 99.31
LK 31 1.093 0.033 0.527 97.86 100 86.68 99.31
MML 1,346 0.857 0.882 0.654 98.16 100 2.87 99.83

SVD50
AM 132 0.950 0.286 0.657 98.12 100 99.88 99.67
LK 7 1.004 0.280 0.621 98.16 100 100 99.67
MML 1,324 0.848 0.882 0.648 98.18 100 2.87 99.83

UBCos50
AM 5 1.178 0.378 0.387 35.66 98.25 6.53 27.80
LK 25 1.026 0.223 0.657 98.16 100 99.88 99.67
MML 38 NA 0.519 0.551 98.16 100 100 99.67

UBPea50
AM 6 1.126 0.375 0.486 48.50 100 10.92 39.08
LK 25 1.026 0.223 0.657 98.16 100 99.88 99.67
MML 1,261 0.847 0.883 0.652 98.18 100 2.87 99.83

(b) Movielens 1M

Alg. F.W. Time RMSE nDCG@10 User cov.(%) Cat. cov.(%)
(sec.) RPN UT RPN UT RPN UT

IBCos
AM 23,027 1.028 0.002 0.534 100 100 99.88 99.99
LK 1,571 0.906 0.225 0.627 100 100 100 100
MML 1,350 NA 0.525 0.515 100 100 100 100

IBPea
AM 23,148 0.972 0.019 0.578 99.98 100 94.55 99.97
LK 1,832 1.052 0.091 0.593 99.98 100 94.59 99.97
MML > 5 days – – – – – – –

SVD50
AM 9,643 0.858 0.337 0.692 100 100 100 100
LK 89 0.879 0.200 0.660 100 100 100 100
MML 25,987 0.804 0.909 0.677 100 100 2.55 100

UBCos50
AM 118 1.123 0.544 0.421 31.36 99.43 3.04 20.37
LK 2,445 0.957 0.293 0.676 100 100 100 100
MML 1,046 NA 0.542 0.553 100 100 100 100

UBPea50
AM 149 1.077 0.513 0.504 38.88 99.98 5.05 25.96
LK 2,408 0.957 0.293 0.676 100 100 100 100
MML 181,542 0.807 0.906 0.660 100 100 2.55 100

(c) Yelp2013

Alg. F.W. Time RMSE nDCG@10 User cov.(%) Cat. cov.(%)
(sec.) RPN UT RPN UT RPN UT

IBCos
AM 737 1.146 0.109 0.761 85.32 80.60 70.05 90.01
LK 5,955 1.231 0.065 0.824 100 100 100 100
MML 30,718 0.229 0.668 100 100 100 100

IBPea
AM 712 1.577 0.350 0.659 61.23 63.07 17.33 68.19
LK 558 1.236 0.281 0.690 66.84 71.38 21.62 71.97
MML > 5 days – – – – – – –

SVD50
AM 404 1.125 0.181 0.865 100 100 100 97.57
LK 483 1.250 0.114 0.732 100 100 100 100
MML 995 1.131 0.995 0.930 100 100 2.53 100

UBCos50
AM 967 1.204 0.569 0.662 43.81 76.57 5.85 32.38
LK 4,298 1.149 0.090 0.863 100 100 99.99 97.57
MML ME – – – – – – –

UBPea50
AM 774 1.307 0.643 0.531 29.95 46.31 3.06 29.67
LK 4,311 1.149 0.090 0.863 100 100 99.99 97.57
MML ME – – – – – – –

Table 3: Performance results in Movielens 100k, 1M and Yelp2013
with the controlled evaluation protocol with cross validation as
splitting strategy for the frameworks (F.W) column.

6. DISCUSSION
In the light of the previous section, it stands clear that even though the
evaluated frameworks implement the recommendation algorithms in
a similar fashion, the results are not comparable, i.e. the performance
of an algorithm implemented in one cannot be compared to the
performance of the same algorithm in another. Not only do there
exist differences in algorithmic implementations, but also in the
evaluation methods themselves.

There are no de facto rules or standards on how to evaluate a
recommendation algorithm. This also applies to how recommen-
dation algorithms of a certain type should be realized (e.g., default
parameter values, use of backup recommendation algorithms, and
other ad-hoc implementations). However, this should perhaps not
be seen as something negative per se. Yet, when it comes to perfor-
mance comparison of recommendation algorithms, a standardized
(or controlled) evaluation is crucial [17]. Without which, the relative
performance of two or more algorithms evaluated under different
conditions becomes essentially meaningless. In order to objectively

(a) nDCG for AM and LK
Alg. F.W. nDCG
IBCos AM 0.000414780

LK 0.942192050

IBPea AM 0.005169231
LK 0.924546132

SVD50 AM 0.105427298
LK 0.943464094

UBCos50 AM 0.169295451
LK 0.948413562

UBPea50 AM 0.169295451
LK 0.948413562

(b) RMSE values for LK and MML.
Alg. F.W. RMSE
IBCos LK 1.01390931

MML 0.92476162

IBPea LK 1.05018614
MML 0.92933246

SVD50 LK 1.01209290
MML 0.93074012

UBCos50 LK 1.02545490
MML 0.95358984

UBPea50 LK 1.02545490
MML 0.93419026

Table 4: Results using the internal evaluation methods of each frame-
work.

and definitively characterize the performance of an algorithm, a
controlled evaluation, with a defined evaluation protocol is a prereq-
uisite.

To date, the most well-known recommender system-related event,
the Netflix Prize5, created a benchmarking environment where all
participating algorithms were evaluated in the same controlled set-
ting. It is debatable whether the research advances accomplished
during the Prize’s three-year run would have been matched if there
had been no standardized and controlled evaluation and benchmark-
ing environment. Having said this, we should also stress the im-
portance of research conducted outside the scope of such actions.
However, when it comes to recommender systems, given that much
of the progress is measured in terms of higher precision or recall,
lower RMSE, higher nDCG, etc., it seems intuitive that some form
of controlled evaluation could lead to a broader understanding of
recommender system algorithms’ qualities in general.

As a note, we should mention that the Netflix Prize focused on
improving Netflix’ internal rating prediction algorithm by 10% in
terms of RMSE. Even though this comparison is by no means fair
(in the scope of the Netflix Prize at least), we have shown that
RMSE values between the same algorithms implemented in different
frameworks can often differ by more than 10%.

We have highlighted that there exist large discrepancies in rec-
ommender algorithm quality, not only for different algorithms, but
specifically for the same algorithms implemented in different popu-
lar recommender system frameworks. Our analysis further shows
that not only do the disparities exist in common metrics, but addi-
tionally in metrics which are perhaps more seldom used for rec-
ommender systems-related research purposes, e.g. user and catalog
coverage as well as the time needed to train the algorithms. Given
the recent investigation on how well common metrics actually cor-
respond to users’ taste, e.g. RMSE [22, 27], precision [21], etc. we
believe that it is crucial to not only report the accuracy of recom-
mender algorithms, but the evaluation methodology as well, in order
to ensure reported progress is not only due to the specific implemen-
tation details of a particular framework. Especially, given the large
amount of recommender systems-related research being conducted,
and the variety of open source frameworks as well as individually
implemented code, it is necessary to not only describe in detail the
algorithms used, but also the complete evaluation process, including
strategies for data splitting, specifics on the evaluation metrics and
methods, etc.

For example, by working with the Yelp dataset we observed that
not all the frameworks are able to deal equally with too sparse data;
in particular this dataset is not too large (around 200k ratings, one
fifth of the Movielens 1M dataset) but it contains a larger number
of items and users than the other compared datasets. This condition
made it impossible for us to run some of the algorithms implemented
in the frameworks.

5http://www.netflixprize.com

http://www.netflixprize.com

7. CONCLUSION & FUTURE WORK
We have shown the disparity of evaluation results between three
common recommendation frameworks. Even though the frame-
works implement similar (if not the same) algorithms, there exist
large differences in the reported recommendation quality, both in
the frameworks internal evaluations as well as in the external eval-
uations performed in the scope of this work. Using three popular
and publicly available datasets, we evaluated three types of recom-
mendation algorithms (user-based and item-based nearest neigh-
bor CF and SVD-based matrix factorization). We evaluated the
results using each framework’s internal evaluation modules as well
as through a controlled evaluation – the latter case ensuring that
no implementation-specific factors affected the results of the eval-
uation. Our analysis shows that, even in a controlled environment,
the same algorithms evaluated on identical data show performance
discrepancies. These discrepancies range from minor to quite signif-
icant, e.g. catalog coverage ranging between 3% and 100% for the
same algorithm and setting in two different frameworks (Table 3a
UBPea50, MML vs. LK), or a 33% difference in RMSE (Table 3b
UBPea50, AM vs. MML). Similarly, our analysis of running times
show large differences between the frameworks, e.g. a factor of
1,200 between AM and MML for user-based nearest-neighbor using
Pearson (Table 3b). The differences in evaluation results using the
internal evaluation methods provided by the frameworks show even
larger discrepancies, e.g. IBCos AM vs. LK (Table 4), where nDCG
differs a factor of 2,300 (0.00041 vs. 0.9422).

In light of the presented results, it stands clear that the evalua-
tion and presentation of recommendation results should be given
in ample detail in order to ensure a fair comparison to the baseline
algorithms used. The presented work shows that inter-framework
comparisons of recommendation quality can potentially point to in-
correct results and conclusions, unless performed with great caution
and in a controlled, framework independent environment.

We are currently performing further studies on evaluation discrep-
ancies in recommender systems and attempting to limit the effects
of this by developing an open source recommender systems eval-
uation toolkit6 [26] (which was also used in this work). With this
toolkit, our attempt is to formalize a set of standardized evaluation
methodologies, independent of specific recommendation or eval-
uation strategy. In the future, we aim to extend our work to other
evaluation dimensions (e.g., diversity, novelty), along with consid-
ering implicit feedback datasets and other contextual dimensions –
like time and social networks – in the evaluation protocols.

8. ACKNOWLEDGMENTS
The authors thank Zeno Gantner and Michael Ekstrand for support
during this work. This work was partly carried out during the tenure
of an ERCIM “Alain Bensoussan” Fellowship Programme. The
research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreements n◦246016 and n◦610594, and the Spanish
Ministry of Science and Innovation (TIN2013-47090-C3-2).

9. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of

recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE Trans. Knowl. Data Eng., 17(6):734–749, 2005.

[2] T. G. Armstrong, A. Moffat, W. Webber, and J. Zobel. Improvements
that don’t add up: ad-hoc retrieval results since 1998. In CIKM, pages
601–610, 2009.

[3] C. Basu, H. Hirsh, and W. W. Cohen. Recommendation as
classification: Using social and content-based information in
recommendation. In J. Mostow and C. Rich, editors, AAAI/IAAI, pages
714–720. AAAI Press / MIT Press, 1998.

6http://rival.recommenders.net

[4] A. Bellogín, P. Castells, and I. Cantador. Precision-oriented evaluation
of recommender systems: an algorithmic comparison. In RecSys,
pages 333–336, 2011.

[5] J. S. Breese, D. Heckerman, and C. M. Kadie. Empirical analysis of
predictive algorithms for collaborative filtering. volume
abs/1301.7363, 2013.

[6] P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender
algorithms on top-n recommendation tasks. In RecSys, pages 39–46,
2010.

[7] P. Cremonesi, A. Sansottera, and S. Gualandi. On the cooling-aware
workload placement problem. In AI for Data Center Management and
Cloud Computing, 2011.

[8] M. Deshpande and G. Karypis. Item-based top-n recommendation
algorithms. ACM Trans. Inf. Syst., 22(1):143–177, Jan. 2004.

[9] C. Desrosiers and G. Karypis. A comprehensive survey of
neighborhood-based recommendation methods. In Ricci et al. [25],
pages 107–144.

[10] M. D. Ekstrand, M. Ludwig, J. A. Konstan, and J. Riedl. Rethinking
the recommender research ecosystem: reproducibility, openness, and
lenskit. In RecSys, pages 133–140, 2011.

[11] S. Funk. Netflix update: Try this at home. http://sifter.org/˜simon/
journal/20061211.html (retrieved Jan. 2014), Dec 2006.

[12] Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme.
Mymedialite: A free recommender system library. In RecSys, pages
305–308, New York, NY, USA, 2011. ACM.

[13] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A
constant time collaborative filtering algorithm. Inf. Retr.,
4(2):133–151, July 2001.

[14] A. Gunawardana and G. Shani. A survey of accuracy evaluation
metrics of recommendation tasks. J. Mach. Learn. Res.,
10:2935–2962, Dec. 2009.

[15] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl.
Evaluating collaborative filtering recommender systems. ACM Trans.
Inf. Syst., 22(1):5–53, Jan. 2004.

[16] T. Jambor and J. Wang. Optimizing multiple objectives in collaborative
filtering. In RecSys, pages 55–62, New York, NY, USA, 2010. ACM.

[17] J. A. Konstan and G. Adomavicius. Toward identification and adoption
of best practices in algorithmic recommender systems research. In
RepSys, pages 23–28, New York, NY, USA, 2013. ACM.

[18] Y. Koren. Factorization meets the neighborhood: A multifaceted
collaborative filtering model. In KDD, pages 426–434, New York, NY,
USA, 2008. ACM.

[19] Y. Koren and R. Bell. Advances in collaborative filtering. In Ricci
et al. [25], pages 145–186.

[20] Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization techniques
for recommender systems. IEEE Computer, 42(8):30–37, 2009.

[21] S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not
enough: how accuracy metrics have hurt recommender systems. In
CHI Extended Abstracts, pages 1097–1101, 2006.

[22] T. T. Nguyen, D. Kluver, T.-Y. Wang, P.-M. Hui, M. D. Ekstrand,
M. C. Willemsen, and J. Riedl. Rating support interfaces to improve
user experience and recommender accuracy. In RecSys, RecSys ’13,
pages 149–156, New York, NY, USA, 2013. ACM.

[23] S. Owen, R. Anil, T. Dunning, and E. Friedman. Mahout in Action.
Manning Publications Co., Greenwich, CT, USA, 2011.

[24] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl.
Grouplens: An open architecture for collaborative filtering of netnews.
In CSCW, pages 175–186, 1994.

[25] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors.
Recommender Systems Handbook. Springer, 2011.

[26] A. Said and A. Bellogín. Rival – a toolkit to foster reproducibility in
recommender system evaluation. In RecSys, 2014.

[27] A. Said, B. J. Jain, S. Narr, and T. Plumbaum. Users and noise: The
magic barrier of recommender systems. In UMAP, pages 237–248.
Springer, 2012.

[28] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Item-based
collaborative filtering recommendation algorithms. In WWW, pages
285–295, 2001.

[29] G. Shani and A. Gunawardana. Evaluating recommendation systems.
In Ricci et al. [25], pages 257–297.

[30] U. Shardanand and P. Maes. Social information filtering: Algorithms
for automating "word of mouth". In CHI, pages 210–217, 1995.

http://rival.recommenders.net

	1 Introduction
	2 Background
	3 Evaluation & Recommendation
	3.1 Evaluation
	3.1.1 Data splitting
	3.1.2 Recommendation
	3.1.3 Candidate items generation
	3.1.4 Performance measurement

	3.2 Recommendation Frameworks
	3.2.1 LensKit
	3.2.2 Mahout
	3.2.3 MyMediaLite

	4 Experiments & Evaluation
	4.1 Datasets
	4.2 Controlled evaluation protocol
	4.3 Framework-dependent protocols

	5 Results
	5.1 Controlled evaluation protocol
	5.2 Framework-dependent protocols

	6 Discussion
	7 Conclusion & Future Work
	8 Acknowledgments
	9 References

