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• Topics (recommender systems): algorithms 
(probabilistic, hybrid, trust-based, social-based, graph-
based), evaluation (methodologies, biases), user 
analysis (user clarity, coherence, performance) 
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• A recommender system aims to find and 
suggest items of likely interest based on the 
users’ preferences 
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Background 

• A recommender system aims to find and 
suggest items of likely interest based on the 
users’ preferences 

• Examples: 

– Netflix: tv shows and movies 

– Amazon: products 

– LinkedIn: jobs and colleagues 

– Last.fm: music artists and tracks 



Background 

• Typically, the interactions between user and 
system are recorded in the form of ratings 

– But also: clicks (implicit feedback) 

• This is represented as a user-item matrix: 
i1 … ik … im 

u1 

…
 

uj ? 

…
 

un 



Motivation 

• Evaluation is an integral part of any 
experimental research area 

• It allows us to compare methods… 



Motivation 

• Evaluation is an integral part of any 
experimental research area 

• It allows us to compare methods… 

• … and decide a winner (in competitions) 



Motivation 

• A proper evaluation culture allows advance the 
field 

 

 

 

 

 

• … or at least, identify when there is a problem! 



Motivation 

• In recommendation, we find inconsistent 
evaluation results, for the “same” 

– Dataset 

– Algorithm 

– Evaluation metric 

Movielens 1M 
[Cremonesi et al, 2010] 

Movielens 100k 
[Gorla et al, 2013] 

Movielens 1M 
[Yin et al, 2012] 

Movielens 100k, SVD 
[Jambor & Wang, 2010] 



Motivation 

• In recommendation, we find inconsistent 
evaluation results, for the “same” 

– Dataset 

– Algorithm 

– Evaluation metric 
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Motivation 

• In recommendation, we find inconsistent 
evaluation results, for the “same” 

– Dataset 

– Algorithm 

– Evaluation metric 
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We need to understand why this happens 



In this tutorial 

• We will present the basics of evaluation 

– Accuracy metrics: error-based, ranking-based 

– Also coverage, diversity, and novelty 

 

• We will focus on reproducibility 

– Define the context 

– Present typical problems 

– Propose some guidelines 

 



NOT in this tutorial 

• In-depth analysis of evaluation metrics 

– See chapter 9 on handbook [Shani & Gunawardana, 2011] 

• Novel evaluation dimensions 

– See tutorial at WSDM ’14 and SIGIR ‘13 on 
diversity and novelty 

• User evaluation 

– See tutorial at RecSys 2012 by B. Knijnenburg 

• Comparison of evaluation results in research 

– See RepSys workshop at RecSys 2013 
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Recommender Systems Evaluation 

• Typically: as a black box 

Train Test 
Valida
tion 

Dataset 

Recommender 
generates 

a ranking 
(for a user) 

a prediction for a 
given item (and user) 

precision 
error 

coverage 
… 



Evaluation metrics 

• Accuracy metrics: typically reported in the 
literature (and usually, only these) 

• Non accuracy metrics: related to other 
evaluation dimensions 

– Coverage 

– Diversity  

– Novelty 

– … 



Accuracy metrics 

• Error-based 

– RMSE, MAE 

• Ranking-based 

– Precision, recall, MAP, nDCG 

• Other accuracy metrics 

– AUC, NDPM, correlation 



Error-based metrics 

• Assumption: more accurate predictions, better 

• Pre-assumption: we are predicting ratings 

• Conclusion: not useful for implicit feedback 

 

 

 

 
MAE = Mean Absolute Error 

RMSE = Root Mean Squared Error 

 



Error-based metrics 

• Variations: 
– Normalize RMSE or MAE by the range of the 

ratings (divide by rmax – rmin) 

– Average RMSE or MAE to compensate for 
unbalance distributions of items or users 

 

 

 
uMAE = user-averaged Mean Absolute Error 

 



Error-based metrics 

• Limitations: 

– Depend on the ratings range (unless normalized) 

– Depend on the recommender output’s range 

– Not valid for recommenders that produce a score 
(not a rating): probability, similarity, etc. 

– Do not distinguish errors on top items and the rest 
User-item pairs Real Rec1 Rec2 Rec3 

(u1, i1) 5 4 8 5 

(u1, i2) 3 2 4 1 

(u1, i3) 1 1 2 1 

(u2, i1) 3 2 4 2 

MAE/RMSE 0.75/0.87 1.5/1.73 0.75/1.12 



Ranking-based metrics 

• Assumption: users only care about errors in 
the item rank order provided by the system 

• They are usually computed up to a ranking 
position or cutoff k 

 

 

 
 

P = Precision (Precision at k) 

R = Recall (Recall at k) 



Ranking-based metrics 

• Assumption: users only care about errors in 
the item rank order provided by the system 

• They are usually computed up to a ranking 
position or cutoff k 

 

 

 
 

MAP = Mean Average Precision 



Ranking-based metrics 

• Assumption: users only care about errors in 
the item rank order provided by the system 

• They are usually computed up to a ranking 
position or cutoff k 

 

 

 
 

 

nDCG = normalized Discounted Cumulative Gain 



Ranking-based metrics 

• There are many others: 

– Rank score (half-life utility): like nDCG but with a 
different discount function 

– Mean percentage ranking 

– Mean reciprocal rank: only takes into account 
where the first relevant result occurs 

– Average rank of correct recommendation 

– Average reciprocal hit-rank 



Ranking-based metrics 

• Limitations: 

– Performance is, probably, underestimated (since 
real preferences are scarce and unknown 
preferences are assumed to be not relevant) 

– Implementation-dependent when there are ties in 
the scores that generate the ranking 

– Different results depending on the cutoff… 

– … And no agreement about which cutoff is best:  
1, 3, 5, 10, 50, …? 



Other accuracy metrics 

• AUC: area under the (ROC) curve 
At each rank position: 

– If item relevant: curve up 

– Otherwise: curve right 

• Random recommender 
– straight diagonal line 

– AUC = 0.5 

• Variations 
– Global ROC 

– Customer ROC: same number of items to each user 
[Herlocker et al, 2004] 



Other accuracy metrics 

• NDPM: normalized distance-based performance measure 

• It compares two weakly ordered rankings 

 

 

– con: number of discordant item pairs 

– tie: number of compatible item pairs 

– normalized by the number of pairs not tied in the real 
ranking 



Other accuracy metrics 

• Rank correlation coefficients between 
predicted and ideal ranking: 

– Spearman 

– Kendall 

• NDPM is similar but provides a more accurate 
interpretation of the effect of tied user ranks 

• Limitation: interchange weakness 

– Interchanges at the top of the ranking have the 
same weight as in the bottom 



Non accuracy metrics: Coverage 

• User coverage 

• Catalog/item coverage 

– Simple ratio [Ge et al, 2010] 

– Based on Gini’s index [Shani & Gunawardana, 2011] 

– Based on Shannon’s entropy [Shani & Gunawardana, 2011] 

• “Practical accuracy of a system”: combination 
of coverage and accuracy 

– A system with low coverage is less useful 



Non accuracy metrics: Diversity 

Diversity Relevance? 



Non accuracy metrics: Diversity 

• How to measure diversity? Several proposals: 

– Using a distance/dissimilarity function [Zhang & Hurley, 2008] 

– Measuring the intra-list similarity [Ziegler et al, 2005] 

– Using statistics to analyze the item distribution 
(concentration curve) [Zhang & Hurley, 2009] 

– Based on entropy [Bellogín et al, 2010] 

– Based on Gini’s index [Fleder & Hosanagar, 2009] 

 

• Formal framework in [Vargas & Castells, 2011] 

 



Non accuracy metrics: Novelty 

• Novel recommendations: items the user did not 
know prior to the recommendation 

• Directly measured in online experiments 

• Not clear how to do it in offline experiments: 

– Using a taxonomy (items about novel topics) [Weng et al, 

2007] 

– New items over time [Lathia et al, 2010] 

– Based on entropy, self-information and Kullback-
Leibler divergence [Bellogín et al, 2010; Zhou et al, 2010; Filippone 

& Sanguinetti, 2010] 



Recommender Systems Evaluation: 
Summary 

• Usually, evaluation seen as a black box 

• Mostly focused on metrics 

– Especially, on accuracy metrics 

• But there are other dimensions worth of interest 

• No metric is perfect 

• We should agree on standard implementations, 
parameters, instantiations, …  

– Example: trec_eval in IR 
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Reproducible Experimental Design 

• We need to distinguish 

– Replicability 

– Reproducibility 

 

• Different aspects: 

– Algorithmic 

– Published results 

– Experimental design 



Definition: 
Replicability 

To copy something 

• The results 

• The data 

• The approach 
 

Being able to evaluate 
in the same setting 
and obtain the same 
results 

 



Definition: 
Reproducibility 

To recreate something 

• The (complete) set 
of experiments 

• The (complete) set 
of results 

• The (complete) 
experimental setup 

 

To (re) launch it in 
production with the 
same results  

 



Comparing against the state-of-the-art 

Your settings are not exactly 
like those in paper X, but it is 

a relevant paper 

Reproduce results 
of paper X 

They are (too) 
different 

Replicate results of 
paper X 

Do they agree with the 
original paper? 

Let’s start from 
scratch 

Congrats! You have shown that 
paper X behaves different in 

the new context 

Sorry, there is something 
wrong/incomplete in the 

experimental design 



What do they mean? 

Can we recreate them? 



Replicability 

• Why do we need to 
replicate? 



Replicability 

• Making sure your 
results were not a fluke 

• Can others 
repeat/validate your 
experiments, results, 
conclusions? 

 

http://validation.scienceexchange.com 



Reproducibility 

Why do we need to 
reproduce? 

 

 

Because these two are not 
the same 



Reproducibility 

• In order to ensure that our experiments, 
settings, and results are: 

– Valid 

– Generalizable 

– Of use for others 

– etc. 

we must make sure that others can reproduce 
our experiments in their setting 



Making reproducibility easier 

• Description, description, 
description 

• No magic numbers 

• Specify the value for all the 
parameters 

• Motivate! 

• Keep a detailed protocol 

• Describe process clearly 

• Use standards 

• Publish code (nobody 
expects you to be an 
awesome developer, 
you’re a researcher) 

 



Replicability, reproducibility, and 
progress 

• Can there be actual progress if no valid 
comparison can be done? 

• What is the point of comparing two 
approaches if the comparison is flawed? 

• How do replicability and reproducibility 
facilitate actual progress in the field? 

 



Evaluation as a black box 

Train Test 
Valida
tion 

Dataset 

Recommender 
generates 

a ranking 
(for a user) 

a prediction for a 
given item (and user) 

precision 
error 

coverage 
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Evaluation as black boxes 

Train Test 
Valida
tion 

Dataset 

Recommender 
generates 

a ranking 
(for a user) 

a prediction for a 
given item (and user) 

precision 
error 

coverage 
… 



An experiment 

• We used internal evaluation methods in Mahout 
(AM), LensKit (LK), and MyMediaLite (MML) 

[Said & Bellogín, 2014] 



Evaluation as black boxes 

PROS 

• Easy 

• Don’t reinvent the wheel 

 

CONS 

• Cherry-picking 
– Good results 

– Wrong (not optimal) setting 

• Not comparable 
– Add/remove bias from data 

• Difficult to disclose all the 
details 
– Is step N important? 

– What did I do after step M? 



Some problems with “black boxes” 

• What do you do when a recommender cannot 
predict a score? 

– This has an impact on coverage 



Some problems with “black boxes” 

• What do you do when a recommender cannot 
predict a score? 

– This has an impact on coverage 

– It can also affect error-based metrics 

User-item pairs Real Rec1 Rec2 Rec3 

(u1, i1) 5 4 NaN 4 

(u1, i2) 3 2 4 NaN 

(u1, i3) 1 1 NaN 1 

(u2, i1) 3 2 4 NaN 

MAE/RMSE, ignoring NaNs 0.75/0.87 2.00/2.00 0.50/0.70 

MAE/RMSE, NaNs as 0 0.75/0.87 2.00/2.65 1.75/2.18 

MAE/RMSE, NaNs as 3 0.75/0.87 1.50/1.58 0.25/0.50 



Some problems with “black boxes” 

• NDCG has at least two discounting functions 

– Which one are you using: linear or exponential 
decay? 



Some problems with “black boxes” 

• How do you select the candidate items to be 
ranked? 

Solid triangle represents the target user. 
Boxed ratings denote test set. 
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Some problems with “black boxes” 

• How do you select the candidate items to be 
ranked? 

[Said & Bellogín, 2014] 



Summary 

• Important issues in recommendation 

– Validity of results (replicability) 

– Comparability of results (reproducibility) 

– Validity of experimental setup 

 

• We need to incorporate reproducibility and 
replication to facilitate the progress in the field 
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Key Takeaways 

• Every decision has an impact 

– We should log every step taken in the 
experimental part and report that log 

• There are more things besides papers 

– Source code, web appendix, etc. are very useful to 
provide additional details not present in the paper 

• You should not fool yourself 

– You have to be critical about what you measure 
and not trust intermediate “black boxes” 



We must avoid this 

From http://dilbert.com/strips/comic/2010-11-07/ 



Pointers 

• Email and Twitter 

– Alejandro Bellogín 

• alejandro.bellogin@uam.es 

• @abellogin 

– Alan Said 

• alansaid@acm.org 

• @alansaid 

• Slides: 
• In Slideshare... soon! 

 

mailto:alejandro.bellogin@uam.es
mailto:alansaid@acm.org


Thank you! 
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Rank-score (Half-Life Utility) 



Mean Reciprocal Rank 



Mean Percentage Ranking 

[Li et al, 2010] 



Global ROC 

[Schein et al, 2002] 



Customer ROC 

[Schein et al, 2002] 


