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User-based collaborative filtering systems suggest interesting items to a user relying on similar-minded 

people called neighbors. The selection and weighting of these neighbors characterize the different 

recommendation approaches. While standard strategies perform a neighbor selection based on user 

similarities, trust-aware recommendation algorithms rely on other aspects indicative of user trust and 

reliability. In this paper we restate the trust-aware recommendation problem, generalizing it in terms of 

performance prediction techniques, whose goal is to predict the performance of an information retrieval 

system in response to a particular query. We investigate how to adopt the above generalization to define a 

unified framework where we conduct an objective analysis of the effectiveness (predictive power) of 

neighbor scoring functions. The proposed framework enables discriminating whether recommendation 

performance improvements are caused by the used neighbor scoring functions or by the ways these 

functions are used in the recommendation computation. We evaluated our approach with several state-of-

the-art and novel neighbor scoring functions on three publicly available datasets. By empirically 

comparing four neighbor quality metrics and thirteen performance predictors, we found strong predictive 

power for some of the predictors with respect to certain metrics. This result was then validated by 

checking the final performance of recommendation strategies where predictors are used for selecting 

and/or weighting user neighbors. As a result, we have found that, by measuring the predictive power of 

neighbor performance predictors, we are able to anticipate which predictors are going to perform better in 

neighbor scoring powered versions of a user-based collaborative filtering algorithm.  
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1. INTRODUCTION 

Collaborative Filtering (CF) is a particularly powerful form of personalized 

recommendation that suggests interesting items to users based – in some way or 

other – on the preferences of similar-minded people [Herlocker et al. 2002; 

O‘Donovan and Smyth 2005]. In CF, the simplest form of input data – evidence of 

user preference – consists of ratings, which are explicit relevance values given by 

users to items of interest. CF algorithms exploit the active user‘s ratings to make 

predictions, and thus have the interesting property that no item descriptions are 
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needed to provide recommendations, since they merely exploit information about past 

ratings between users and items. Compared to content-based information filtering 

approaches, CF has also the salient advantage that a user may benefit from other 

people‘s experience, thereby being exposed to potentially novel recommendations 

beyond her own experience [Adomavicius and Tuzhilin 2005]. 

Collaborative filtering approaches are commonly classified into two main 

categories: model-based approaches and memory-based approaches. Model-based 

approaches build statistical models of user/item rating patterns that provide 

automatic rating predictions. Memory-based approaches, in turn, can be user-based 

or item-based. In this paper we focus on the former, which explicitly seek people –

commonly called neighbors – having tastes (and/or other characteristics) in common 

with the target user, and use preferences of the former to predict ratings for the 

latter. For additional information about collaborative filtering approaches in general, 

the reader is referred to [Su and Khoshgoftaar 2009; Ekstrand et al. 2011; Cacheda 

et al. 2011]. User-based algorithms are built on the principle that a particular user‘s 

rating records are not equally useful to all other users as input to provide them with 

item suggestions [Herlocker et al. 2002]. Central aspects to these algorithms are 

therefore a) how to identify which neighbors form the best basis to generate item 

recommendations for the active user, and b) how to properly make use of the 

information provided by them. Typically, neighborhood identification is based on 

selecting those users who are most similar to the active user according to a similarity 

metric [Desrosiers and Karypis 2011]. The similarity of two users is generally 

computed by a) finding a set of items that both users have interacted with, and b) 

examining to what degree the users displayed similar behaviors (e.g. rating, 

browsing and purchasing patterns) on these items. This basic approach can be 

complemented with alternative comparisons of virtually any user feature a system 

has access to, such as personal demographic and social network data. It is also a 

common practice to set a maximum number of neighbors (or a minimum similarity 

threshold) to restrict the neighborhood either for computational efficiency, or in order 

to avoid noisy neighbors who are not that similar. Once the active user‘s neighbors 

are selected, the more similar a neighbor is to the active user, the more her 

preferences are taken into account as input to produce recommendations. For 

instance, a common user-based approach consists of predicting the relevance of an 

item for the active user by a linear combination of her neighbors‘ ratings, which are 

weighted by the similarity between the target user and her neighbors.  

User similarity has been the central criterion for neighbor selection in most of the 

user-based CF literature [Desrosiers and Karypis 2011]. Nonetheless, it has been 

recently suggested that additional factors could have a valuable role to play on this 

point. For instance, two users with a high global similarity value may no longer be 

reliable predictors for each other at some point, because of a divergence of tastes over 

time. Thus, in the context of user-based CF, more complex methods have been 

proposed in order to effectively select and weight useful neighbors [O‘Donovan and 

Smyth 2005; Desrosiers and Karypis 2011]. In this way, a particularly relevant 

dimension considered in this context relates these additional factors with the general 

concept of trust (trustworthiness, reputation) on a user‘s contribution to the 

computation of recommendations. A number of trust-aware recommender systems 

have been proposed in the last decade [Hwang et al. 2007; O‘Donovan and Smyth 

2005; Golbeck 2009]. Most of these systems focus on the improvement of accuracy 

metrics, such as the Mean Average Error (MAE), by defining different heuristic trust 

functions, which, in most cases, are applied either as additional weighting factors in 

the neighbor-based CF formulation, or as a component of the neighbor selection 

criteria. The way trust is measured is considerably diverse in the literature. In fact, 

the notion of trust has embraced a wide scope of neighbor aspects, spanning from 



personal trust on the neighbor‘s faithfulness, to trust on her competence, confidence 

in the correctness of the input data, or the effectiveness of the recommendation 

resulting from the neighbor‘s data. 

The research presented here seeks to provide an algorithmic generalization for a 

significant variety of notions, computational definitions, and roles of trust in 

neighbor selection. Specifically, we aim to provide a theoretical framework for 

neighbor selection and weighting, in which trust measures can be defined and 

evaluated in terms of improvements on the final recommender‘s performance. We 

cast the rating prediction task – typically based, as described above, on the 

aggregation of the neighbors‘ preferences – into a framework for dynamic 

combination of inputs, from a performance prediction perspective, borrowing from the 

methodology for this area in the Information Retrieval (IR) field. The application of 

this perspective is not trivial, and requires, in particular, a definition of what the 

performance of a neighbor means in this context. Hence, restating the problem in 

these terms, we propose to adapt and exploit techniques and methodologies 

developed in IR for predicting query performance; in our case, we equate the active 

user‘s neighbors to the queries, and our goal is to predict which of these neighbors 

will perform better for the active user (the retrieval system). Furthermore, by 

providing in our framework an objective measurement of the neighbor scoring 

function efficiency, we would be able to obtain a better understanding of the whole 

recommendation process. 

The contributions of this paper can be summarized as follows: 

— A framework that provides a formal setting for the evaluation of neighbor selection 

and weighting functions, while, at the same time, enables discriminating whether 

recommendation performance improvements are achieved by the neighbor scoring 

functions, or by the way these functions are used in the recommendation 

computation. 

— A unification of state-of-the-art trust-based recommendation approaches, where 

trust measures are cast as neighbor performance predictors. As a result, we 

propose four neighbor quality metrics and thirteen performance predictors, defined 

upon a specific neighbor (user-based), a neighbor and the current user (user-user), 

and a neighbor and the current item (user-item). 

— A generalization of the different strategies proposed in the literature to introduce 

trust into collaborative filtering. Moreover, thanks to the proposed formulation, 

new strategies have naturally appeared, and have also been evaluated. Empirical 

results show that the trust metrics, interpreted as neighbor scoring functions, that 

correlate with the notion of neighbor performance, produce better 

recommendations when they are introduced in a user-based collaborative filtering 

algorithm. 

 

The remaining of the paper has the following structure. Section 2 describes the 

different strategies in which neighbor scoring functions can be incorporated into 

standard CF algorithms, along with a survey of the different scoring functions (such 

as trust measures) proposed in the literature. Section 3 presents a unified 

formulation and the proposed framework for neighbor selection and weighting in 

user-based recommendation, and Section 4 describes how the different neighbor 

scoring functions proposed in the literature fit into the framework. Finally, Section 5 

presents experiments conducted with the framework, and Section 6 ends with some 

conclusions and potential future lines of work. 



2. NEIGHBOR SELECTION AND WEIGHTING IN RECOMMENDER SYSTEMS 

The first memory-based CF model can be attributed to Resnick and colleagues 

[Resnick et al. 1994], who modeled a target user  ‘s preferences for items   as 

numeric ratings       , whereby unseen items are recommended to u by predicting 

their ratings taking into account ratings observed by the users   who are most 

―similar‖ to   and have rated such items, as follows: 

                                       

         

 (1) 

where    denotes a rating prediction (as opposed to observed ratings  ),         is the 

set of k most similar users to u, usually called neighborhood,          is a function 

that measures the similarity between two users, and the constant    is a 

normalization factor. The preference of user   for item   is predicted based on the 

average rating      , and the sum of the deviations of neighbor  ‘s ratings for   and 

average ratings      , weighted by the similarities with her neighbors. Other 

formulations consist of the weighted sum of the neighbors‘ ratings and similarities 

(ignoring the average ratings of the target user and neighbors), such as the one 

described in [Adomavicius and Tuzhilin 2005]. In the rest of the paper, we use the 

method proposed by Resnick as presented in Equation 1, although no significant 

modifications would be required if a different method is meant to be used. Thus, 

based on Resnick‘s scheme, the concept of neighbor scoring in CF has been developed 

in different recommendation approaches, which can be described as extensions and 

adaptations of the above user-based CF formula. Some of these extensions also 

involve an elaboration of the neighbor selection and weighting criteria beyond 

similarity. A well-known example is the addition of a confidence weight to the 

similarity measure, where the number of common items rated by two users is taken 

as an additional condition for selecting good neighbors [McLaughlin and Herlocker 

2004; Ma et al. 2007]. In other works, the notion of trust is introduced to provide a 

measure of how neighbors should be weighted or when they should be selected. More 

specifically, in trust-aware recommender systems, a trust model is defined and, 

typically, introduced into the Resnick‘s equation either as an additional weight or as 

a filter for the potential user‘s neighbors. These models can be classified, depending 

on the nature of their input, into rating-based and social-based (using a trust 

network). 

One of the first approaches that uses explicit ratings to define trust metrics 

between users was presented in [O‘Donovan and Smyth 2005]. In that work, the 

authors propose to modify how the ―recommendation partners‖ (neighbors) are 

weighted and selected in the user-based CF formula. They argue that the 

trustworthiness of a particular neighbor should be taken into account in the 

computed recommendation score by looking at how reliable her past 

recommendations were. Trust values are computed by measuring the number of 

correct recommendations in which a user has participated as a neighbor, and then 

they are used for weighting the influence (along with computing the similarity), and 

selecting the active user‘s neighbors. Weng et al. (2006) propose an asymmetric trust 

metric based on the expectation of other users‘ competence in providing 

recommendations to reduce the uncertainty in predicting new ratings. The metric is 

used in the standard CF formula instead of the similarity value. Two additional 

metrics are defined in [Kwon et al. 2009] based on the similarity between the ratings 

of a neighbor and the ratings from the community. Finally, Hwang et al. (2007) 

define two trust metrics (local and global) by averaging the prediction error of co-

rated items between a user and a potential neighbor. 

Social-based trust metrics make use of explicit trust networks of users, built upon 

friendship relations [Avesani et al. 2004; Massa and Bhattacharjee 2004] and explicit 



trust scores between individuals in a system [Ma et al. 2009; Walter et al. 2009]. 

These metrics and, to some extent, their inherent meanings, are different with 

respect to rating-based metrics; nonetheless, in [Ziegler and Lausen 2004], the 

authors conduct a thorough analysis that shows empirical correlations between trust 

and user similarity, suggesting that users tend to create social connections with 

people who have similar preferences. Once such a correlation is proved, techniques 

based on social-based trust can be applicable. In [Golbeck & Hendler 2006], the 

authors propose a metric called TidalTrust to infer trust relationships by using 

recursive search. Inferred trust values are used for every user who has rated a 

particular item in order to select only those users with high trust values. Then, a 

weighted average between ratings and trust provides the predicted ratings. In 

[Massa and Avesani 2007], the authors propose similar local (MoleTrust) and global 

(PageRank) trust metrics; they found that trust-based recommenders are very useful 

regarding cold start users. 

3. A PERFORMANCE PREDICTION FRAMEWORK FOR NEIGHBOR SELECTION AND 
WEIGHTING 

3.1 Unifying Neighbor Selection and Weighting in User-Based Collaborative Filtering 

From the observation that most of the methods for neighbor selection and weighting 

are elaborated upon the standard Resnick‘s scheme, we propose a unified formulation 

as follows. Let us suppose, for the sake of generality, that we have a neighbor scoring 

function          that may depend on the active user  , a neighbor  , and a target 

item  . This function should output a higher value whenever the user, neighbor, item, 

or a combination of them, is more trustworthy (in the case of trust models) or 

expected to perform better as a neighbor according to the information available in the 

system, such as other ratings and external information, like a social network. Using 

this function, we generalize equation 1 to: 

                                                  

            

 (2) 

where the function   denotes the selection of the set of neighbors, and f is an 

aggregation function combining the output of s and similarity into a weight value. In 

this way, we have the neighbor scoring function   integrated into the Resnick‘s 

formula in order to: a) select the neighbors to be considered in the formula, instead of 

or in addition to the most similar users (via function  ), and b) provide a general 

weighting scheme (by introducing an aggregation function  ) between the actual 

neighbor score and the similarity between the active user and her neighbors. Note 

that it is not required that s is bounded, since the constant   would normalize the 

output rating value. The function s is thus a core component in the generalization of 

the collaborative scheme. It might embody similarity in itself (in which case f might 

just return its first argument), but     and f are left in the formulation to simplify 

the connection to the original similarity-only formulation, and to suit particular cases 

where s applies only other principles, separate from similarity. 

The aggregation function   can take different definitions, some examples of which 

can be found in the literature. For instance, O‘Donovan and Smyth (2005) initially 

propose to use the arithmetic mean of the neighbor score ( ) and the similarity ( ; 

henceforth denoted as   ), and end up using the harmonic mean (  ) because of its 

better robustness to large differences in the inputs. In [Bellogín et al. 2010], on the 

other hand, the product function (  ) is used. Moreover, Hwang and colleagues 

[Hwang et al. 2007] propose to directly use the neighbor score as the weight given to 

neighbors, that is, they use the projection function          . Obviously, the 

original Resnick‘s formulation can be expressed as the symmetric projection function 

         . 



The neighborhood selection embodied in function   also generalizes Resnick‘s 

approach – the latter corresponds to the particular case                    , where 

the neighbor scoring function is ignored, and only similarity is used. The general 

form admits different instantiations. In [Golbeck and Hendler 2006] only the users 

with the highest trust values are selected as neighbors. In [O‘Donovan and Smyth 

2005], on the other hand, those users whose trust values exceed a certain threshold 

are taken into consideration. This threshold is empirically defined as the mean across 

all the obtained values for each pair of users. The latter strategy can be formulated in 

general as follows: 

                                      
 

           
         

       

  

There are, nonetheless, some considerations to take into account when using 

specific combinations of neighbor weighting and neighbor selection functions. First, if 

   is used together with   , since only the most similar users are considered in the 

neighborhood, then less reliable users (low   ) who are very similar to the current 

user would be penalized, and more reliable neighbors but less similar to the current 

user are ignored, since they do not belong to the neighborhood. Second, when using    

together with   , neighbors are weighted by their similarities with the active user; 

however, these similarities could be very low, and thus, non-similar but reliable 

neighbors would be penalized. Finally, if    is used with   , the similarity weight will 

not be considered at any point in the recommendation process. Nonetheless, some of 

these configurations may deserve further investigation, and will be considered in 

Section 5, along with other combinations not listed here. 

3.2 Neighbor Selection and Weighting as a Performance Prediction Problem 

Neighbor scoring and selection can be seen as an issue of predicting the effectiveness 

of neighbors as input for collaborative recommendations. This links to a considerable 

body of research on performance prediction in Information Retrieval, as we elaborate 

next. Performance prediction in IR has been mostly addressed in terms of query 

performance, which refers to the effectiveness of an IR system in response to a 

particular query. It also relates to the appropriateness of a query as an expression of 

the user‘s information needs. Dealing effectively with poorly-performing queries is a 

crucial issue in IR, and performance prediction helps systems cope with such problems 

in several ways [Cronen-Townsend et al. 2002; Yom-Tov et al. 2005; Zhou and Croft 

2006]. From the user perspective, it provides valuable feedback that can be used to 

direct a search, e.g. by rephrasing the query or by providing relevance feedback. From 

the perspective of an IR system, performance prediction provides a means to address 

the problem of retrieval consistency: a system can invoke alternative information 

retrieval strategies for different queries according to their expected performance, such 

as query expansion and alternative ranking functions based on predicted 

complexity/difficulty of the query. From the perspective of a system administrator, 

performance prediction could help on identifying queries related to a specific subject 

that are difficult to capture by a search engine, or could help on expanding the 

collection of documents to better answer insufficiently covered subjects. Finally, for 

distributed IR, performance estimations can be used to decide which search engine 

and/or database to use for each particular query, or to decide how much weight give to 

different search engines when their results are combined. 

The same as performance prediction in IR has been used to optimize rank 

aggregation [Yom-Tov et al. 2005], in our proposed framework each user‘s neighbor 

can be seen as a retrieval subsystem (or criterion) whose output is to be combined to 

form the final system output (the recommendations) to the user. In more general 

terms, for user-based CF algorithms, the estimation         of the preference of the 



active user   for a particular item   can be formulated as an aggregation function of 

the ratings of some other users   : 

                                               
where    denotes the selected neighbors for a particular user   according to function   

as defined in the previous section (see Equation 2). As observed in [Adomavicius and 

Tuzhilin 2005], different aggregation functions can be defined, but the most typical 

one is the weighted average function presented in the previous section. 

In that function, the term         can be seen as a retrieval function that 

aggregates the outputs of several utility subfunctions             , each 

corresponding to a recommendation obtained from a neighbor of the active user. The 

combination of utility values is defined as a linear combination (translated by
 
     ) of 

the neighbor‘s ratings, weighted by their similarity          with the active user. 

The computation of utility values in user-based CF thus can be seen as a case of rank 

aggregation in IR, and as such, a case for the enhancement of aggregated results by 

predicting the performance of the recommendation outputs being combined. In fact, 

the similarity value can be seen as a prediction of how useful the neighbor‘s advice is 

expected to be for the active user, which has proved to be a quite effective approach. 

The question is whether other performance factors, beyond user similarity can be 

considered in a way that further enhancements can be drawn, as research on user 

trust awareness has attempted to prove in the last years. 

The IR performance prediction view provides a methodological approach, which 

we propose to adapt to the neighbor selection problem. The approach provides a 

principled path to drive the formulation, development and evaluation of effective 

neighbor selection and weighting techniques, as we shall see. In the proposed view, 

the selection/weighting problem is expressed as an issue of neighbor performance, as 

an additional factor (besides user similarity) to automatically tune the neighbors‘ 

contribution to the recommendations, according to the expected goodness of their 

advice. There are three core concepts in the performance prediction problem as 

addressed in the IR literature: performance predictor, retrieval quality assessment, 

and predictor quality assessment. Since we are dealing with the prediction of which 

users may perform better as neighbors, these three concepts can be translated into: 

neighbor performance predictor, neighbor quality, and neighbor predictor quality. For 

the sake of simplicity, let us assume we can define a performance predictor as a 

function that receives as input a user profile   (in general, it could receive other 

users or items as well), the set of items    rated by that user, and the collection   of 

ratings and items (or any other user preference and item description information) 

available in the system. Then, following the notation given in (Carmel & Yom-Tov, 

2010), we define a neighbor performance prediction function as: 
                 

The function   can be defined in many possible ways, for instance, by taking into 

account the rating distribution of each user, the number of ratings available in the 

system, and the (implicit or explicit) relations made by that user with the rest of the 

community. Essentially, the neighbor performance predictor is intended to estimate 

the true neighbor quality metric, denoted as     , which is typically measured using 

groundtruth information about whether the neighbor‘s influence is positive. The 

application of this perspective is not trivial, and requires, in particular, a definition of 

what the performance of a neighbor means in this context, where no standard metric 

for neighbor performance is yet available in the literature. 

Once the estimated neighbor performance prediction values        are computed 

for all users, the quality of the prediction can be measured by the correlation between 

these estimations and the real values      . In other words, the neighbor predictor 

quality metric is defined as the following correlation: 
                                              



This correlation provides an assessment of the prediction accuracy [Carmel and 

Yom-Tov 2010]; the higher its (absolute) value, the higher the predictive power of  . 

Moreover, the sign of      represents whether the two variables involved (neighbor 

prediction and neighbor quality) are directly or inversely correlated. Then, depending 

on the computed real correlation values, different dependencies between variables 

can be captured. Pearson‘s correlation, which captures linear dependencies between 

variables, is frequently used, and Spearman‘s and Kendall‘s correlation coefficients 

are used in order to uncover non-linear relationships between the variables. 

Besides validating any proposed predictor by checking the correlation between 

predicted outcomes and objective measurements, we may also evaluate the 

effectiveness of the defined predictors by introducing and testing a dynamic variant of 

user-based CF, in which the weights of neighbors are dynamically adjusted based on 

their expected effectiveness, along with the decision of which users belong to each 

neighborhood, as in the general formulation presented in Equation 2, where the 

neighbor scoring function          is defined based on the values computed from each 

neighbor performance predictors. 

Hence, the basic idea of the framework presented here is to formally treat the 

neighbor selection and weighting in memory-based recommendation as a 

performance prediction problem. In the next section we show different approaches to 

measure the true performance of a neighbor. We also present how we can integrate 

the different neighbor scoring functions defined in the literature into our framework; 

in particular, how the trust models and functions described in the previous section 

can be defined in terms of concepts related with performance prediction. 

Additionally, an objective analysis of the trust model efficiency can be conducted 

by means of the proposed framework, which contrasts with the current development 

in memory-based recommendation, where the reason why different neighbor 

weighting strategies result in better or worse recommendation effectiveness is not 

clear. The performance prediction framework provides a principle basis to analyze 

whether the predictors are capturing some valuable, measurable characteristic 

known to be useful for prediction, independently from their latter use in a 

recommendation strategy. Furthermore, if a neighbor scoring function with strong 

predictive power is introduced into the recommendation process and the performance 

is not improved, then, new ways of introducing such predictor into the rating 

estimation should be tested (either for selection or weighting), since we have some 

confidence that this function captures interesting user‘s characteristics, valuable for 

recommendation. 

4. NEIGHBOR QUALITY METRICS AND PERFORMANCE PREDICTORS 

The performance prediction research methodology requires a means to compare the 

predicted performance with observed performance. This comparison is typically 

conducted in terms of some one-dimensional functional values, where the prediction 

can be translated to a certain numeric value (without any further interpretation than 

its relative magnitude, quantifying the expected degree of effectiveness), and 

performance is assessed by some specific metric. In the context of query performance 

in IR, metrics of system effectiveness in response to the query are used for this 

purpose, and the IR field is rich in well studied, widely understood metrics. In our 

case, predicting the performance of a neighbor for recommendation would thus 

require selecting some measure of how effective a neighbor is, for which there is no 

readily available metric in the literature. We thus address this need as part of our 

research. Along with that, we propose several performance predictors, which we shall 

later test empirically (in Section 5) against the proposed neighbor quality metrics. 



4.1 Neighbor Quality Metrics 

The purpose of effectiveness predictors in our framework is to assess how useful 

specific neighbors‘ profiles are as a basis for predicting ratings for the active user. Each 

performance predictor for a neighbor needs thus to be contrasted to a measure of how 

―good‖ is the neighbor‘s contribution to the global community of users in the system. In 

contrast with query performance prediction, where a well-established array of metrics 

can be used to quantify query performance, to the best of our knowledge, there is not 

an equivalent function for CF neighbors in the literature. We therefore need to 

introduce and propose some sound candidate metrics. 

Ideally, in the proposed framework, a quality metric should take the same 

arguments as the predictor, and thus, if we have, for instance, a user-item predictor, 

we should also be able to define a quality metric that depends on users and items. In 

general, we shall focus here on user-based predictors, but it would be possible to 

explore item-based alternatives. Furthermore, we shall consider metrics taking 

neighbors as their single input, independently from which neighborhood that user is 

being involved in (i.e., independently from the target user) and what item is being 

recommended. At the end of this section, nevertheless, we shall introduce a neighbor 

quality metric suitable for the user-user scenario, where both the neighbor and the 

target user are taken into account. 

Now, we propose three different neighbor quality metrics. The first two metrics 

had a different original intended use by their authors, but we find they could be 

useful to evaluate how good a user is as a neighbor. The third one was proposed by us 

in [Bellogín et al. 2010], where the problem of neighbor performance was explicitly 

addressed. In [Rafter et al. 2009], the authors propose two metrics in order to 

examine whether the neighbors have any influence in the recommendation. Both 

metrics are based on the comparison between true ratings and the estimation of a 

neighbor‘s ratings, as a way to measure the direction of the neighbor estimation and 

the average absolute magnitude of the shift produced by this estimation. Thus, the 

larger the neighbor‘s influence, the better her performance, according to our 

definition of ―good‖ neighbor. In this context, we use these metrics as neighbor 

quality metrics as follows: 

  
       

 

    
 

 

   
        

                

    
           

 

  
       

 

    
 

 

   
        

                          

    
           

 

        
 

    
 

 

   
        

                                         

    
           

 

  being a binary function whose output is 1 if its arguments are true, and 0 

otherwise. Metrics   
  and   

  represent the absolute error deviation of a particular 

user; in the second case the deviation is weighted by the similarity between a user 

and her neighbor, as originally proposed in [Rafter et al. 2009]. We found a negligible 

difference between these two metrics, and thus, for the sake of simplicity, in the 

following we will use      
  as the absolute error deviation metric. The metric    

is the sign of error deviation. Now,   
        is an inverse neighborhood, which 

represents those users for whom   is a neighbor, and    denotes the items rated by 

user   in the test set. We can observe how each of these metrics represents a 

different method to measure how accurate the user   is as a neighbor. 

In [Bellogín et al. 2010], a measure named neighbor goodness is proposed, 

which is defined as the difference in performance of the recommender system when 

including vs. excluding the user (their ratings) from the dataset, similar to the 



influence measure proposed in [Rashid et al. 2005]. For instance, based on the mean 

average error standard metric, neighbor goodness can be instantiated as: 

        
 

        
                    

       

                          

            

  

where          represents the predicted rating computed using only the data in  . This 

formula quantifies how much a user affects (contributes to or detracts from) the total 

amount of mean average error of the system, since it is computed in the same way as 

that metric, but leaving out the user of interest – in the first term, it is completely 

omitted; in the second term, the user is only involved as a neighbor. In this way, we 

measure how a user contributes to the rest of users, or put informally, how better or 

worse the ―world‖ is, in the sense of how well recommendations work, with and 

without the user. Hence, if the error increases when the user is removed from the 

dataset, she is considered as a good neighbor. 

Based on the same idea of the last metric, we propose a user-user quality metric, 

which measures how one particular user affects to the error of another user when 

acting as her neighbor: 
                            

We call this metric user-neighbor goodness. It quantifies the difference in user 

 ‘s error when neighbor   is not in the system against the error when such neighbor 

is present, that is, it measures how much each neighbor contributes to reduce the 

error of a particular user. 

4.2 Neighbor Performance Predictors 

Having formulated neighbor selection in memory-based recommendation as an issue 

of neighbor effectiveness prediction, and having proposed effectiveness measures to 

compare against, the core of an approach to this problem is the definition of 

effectiveness predictors, which we address next. Similarity functions and trust 

models such as those discussed in Section 2 can be directly used already for this 

purpose, since in trust-aware recommendation, trust metrics aim to measure how 

reliable a neighbor is when introduced in the recommendation process [O‘Donovan 

and Smyth 2005]. Interestingly, some of them depend only on one user (global trust 

metrics), and others depend on a user and an item or another user (local trust 

metrics). Furthermore, other authors have proposed different indicators for selecting 

good neighbors, mainly based on the overlap between the user and her neighbor, 

without considering the concept of trust. 

We thus distinguish three types of neighbor performance predictors: user 

predictors – equivalent to the global trust metrics –, user-item predictors, and user-

user predictors – equivalent to the local trust metrics. Note that, although trust 

metrics could now be interpreted as neighbor performance predictors, the proposed 

performance prediction framework let us provide an inherent value to these metrics 

(identified as performance predictors), independently of whether they improve the 

algorithm‘s performance when used for selecting or weighting in the specific CF 

algorithm. This is because it is possible to empirically check the quality of the 

prediction by analyzing their correlation with respect to the neighbor performance 

metric, prior to the integration in any CF method. Thus, each predictor would obtain 

an explicit score that represents its predictive power, related with our confidence a 

priori on whether such predictor is capturing the neighbor‘s reliability or 

trustworthiness. In the next subsections, we propose an array of neighbor 

effectiveness prediction methods, by adapting and integrating trust functions from 

the literature into our framework, and we further extend this set by proposing new 

additional predictor functions. 

 



4.2.1. User Predictors 

User predictors depend only on one user –the current neighbor. When that neighbor 

is predicted to perform well, her assigned weight in the CF formulation is high. In 

this context, one of the first trust metrics proposed in the literature is the profile-

level trust [O‘Donovan and Smyth 2005], which is basically defined as the 

percentage of correct recommendations in which a user has participated as a 

neighbor. If we denote the set of recommendations in which a user has been involved 

in as 
                             

then the predictor is defined as follows: 

               
               

           
  

where the definition of correct recommendations depends on a threshold  : 
                                                     

                                         
As before,        represents a binary function, but in this case it outputs a value   

if the predicate   is true, and 0 otherwise. That is, the recommendations considered 

as correct are those in which the user was involved as a neighbor, and her ratings 

were close (up to a distance of  ) to the actual ratings. 

A similar trust metric, called expertise trust, is presented in [Kwon et al. 2009], 

where the concept of ‗correct recommendations‘ is also used. In that work, the authors 

introduce a compensation value for situations in which few raters are available. 

Specifically, the correct recommendation function only outputs a value of 1 when 

there are enough raters for a particular item (more than 10 in the paper). Otherwise, 

an attenuation factor is introduced by dividing the number of raters by 10, in the 

same way as significance weighting is introduced in Pearson‘s correlation in 

[Herlocker et al. 2002]. More formally, the predictor is defined as: 

               
 

           

                     

        

 

where      is 1 when item   has more than 10 raters, and the users who rated item   
are denoted as   . In the same paper the authors propose another trust metric called 

trustworthiness, which is equivalent to the absolute value of the similarity between 

the active user‘s ratings and the average ratings given by the community (denoted as 

  ). The authors also introduce the significance weighting factor   as in [Herlocker et 

al. 2002], in a way that      is 1 when user   has more than 50 ratings; otherwise,   

is computed as the user‘s ratings divided by 50. Once the   factor is computed, the 

predictor is defined as follows: 

                      
                             

                
 

    
            

    

   

In [Hwang et al. 2007], the authors define a global trust metric, which we call 

global trust deviation, defined as an average of local (user-to-user) trust 

deviations. This metric makes use of the predicted rating for a user–item pair, by 

using only one user as neighbor: 

                                        
user   being the considered neighbor. Then, the predictor is computed by averaging 

the prediction error of co-rated items for each user, and normalizing the error 

according to the rating range    (e.g., in a typical 1 to 5 rating scale,     ): 

               
 

       
  

 

       
    

                  

  

 

       

  

      

 



Finally, a performance predictor inspired by the clarity score defined for query 

performance [Cronen-Townsend et al. 2002], was proposed in [Bellogín et al. 2010; 

Bellogín et al. 2011], considering its adaptation to predict neighbor performance in 

CF. In essence, the clarity score captures the lack of ambiguity (uncertainty) in a 

query, by computing the distance between the language models induced by the query 

and the collection, via the Kullback-Leibler divergence. In the same way as query 

clarity captures the lack of ambiguity in a query, user clarity thus computed is 

expected to capture the lack of ambiguity in a user‘s preferences. Hence, the amount 

of uncertainty involved in a user‘s profile is hypothesized to be a good predictor of her 

performance. Thus, the larger the following value is, the lower the uncertainty and 

the higher the expected performance: 

                                         

      

    
       

 

In that work, the probabilistic models defined are based on smoothing estimations 

and conditional probabilities over users and items. Specifically, a uniform 

distribution is assumed for users and items, whereas the user-user probability is 

defined by an expansion through items as follows: 

                    

    

  

Conditional probabilities are linearly smoothed with the user probabilities and the 

maximum likelihood estimators, which finally depend on the rating given by a user 

towards an item; i.e.,                . 
In addition to the integration of the above methods in the role of neighbor 

effectiveness predictors in our framework, we propose two novel predictors based on 

well-known quantities measured over the probability models defined in [Bellogín et 

al. 2010]: the entropy and the mutual information. Entropy as an information-

theoretic magnitude measures the uncertainty associated with a probability 

distribution [Cover and Thomas 1991]. We may therefore assess the uncertainty 

involved in the system‘s knowledge about a user‘s preferences by the entropy of the 

item distribution (the probability to choose an item) given the information in the user 

profile. Hypothesizing that this uncertainty may be a relevant signal in the 

effectiveness of a user as a potential neighbor, we define an entropy-based predictor 

as follows: 

                                        

    

 

Note that the uncertainty, measured in this way, can be due to the system state of 

knowledge about the user‘s tastes, or may come from the user himself (e.g. some 

users may have strong preferences, while others are more undecided), and both 

causes may similarly affect the neighbor effectiveness. In both cases, the predictor 

can be interpreted as the lack of ambiguity in a user profile. 

The second information-theoretic magnitude we propose to use over the 

probability models presented above is the mutual information. To be precise, the 

mutual information is a quantity computed between two random variables that 

measure the mutual dependence of the variables, or, in other terms, the amount of 

uncertainty that knowing either variable provides about the other [Cover & Thomas 

1991]. Here, we propose to adapt this concept, and compute the mutual 

information between the neighbor and the rest of the community, in order to assess 

the uncertainty involved in the neighbor‘s preferences. For this, instead of computing 

the mutual information over all the events in the sample space for both variables 

(users), we fix one of them (for the current neighbor) and move along the other 

dimension: 



                                     

      

        
 

       

 

4.2.2. User-Item Predictors 

User-item predictors are more difficult to apply because of their higher vulnerability 

to data sparsity. In a bi-dimensional user-item input space, less observations can be 

associated to each input data point, whereby the confidence on the predictor outcome 

is lower, as it can be biased to outliers or unusual users or items. Despite this 

difficulty, a local trust metric based on the target user and item is proposed in 

[O‘Donovan and Smyth 2005]. This metric is called item-level trust, and aims to 

discriminate reliable neighbors depending on the current item, since the same user 

may be more trustworthy for predicting ratings for certain items than for others. The 

formulation of this predictor can be seen as a particularization of   , but constraining 

the recommendation set only to the pairs in which the current item is involved: 

                 
                              

                          
  

4.2.3. User-User Predictors 

User-user predictors based on local trust measures have been studied further than 

user-item predictors in the literature in this area, since the former are able to 

represent how much a user can be trusted by another, and allow for different 

interpretations of the relation between users. These measures have been often 

researched in the scope of social networks, and the users‘ explicit links in this context 

[Ziegler and Lausen 2004; Massa and Avesani 2007], along with several trust 

measures based on ratings, as we shall show below. In this way, although social-

based metrics could be smoothly integrated in our framework, we focus here on a 

complementary view on trust though, where predictors are defined based on ratings, 

and leave that other type of predictors as future work. 

A first very simple neighbor reliability criterion one may consider is the amount of 

common experience with the target user, that is, the amount of information upon 

which the two users can be compared. If we define ―user experience‖ in this context 

as the set of items the user has interacted with, we can define a predictor embodying 

this principle as: 
                          

We shall refer to this predictor as user overlap. This predictor will serve as a 

basis for subsequent predictors, since most of them will depend on the items rated by 

both users. For instance, it has a clear use in assessing the reliability of the inter-

user similarity assessments, which has been applied in the literature under a more 

practical, ad-hoc manner [Bellogín et al. 2013]. Specifically, Herlocker et al. (2002) 

proposed the introduction of a weight on the similarity function, where the latter is 

devalued when it has been based on a small number of co-rated items. We can 

formulate Herlocker’s significance weighting predictor as follows: 

                  
       

  

                            

where    is the minimum number of co-rated items that two users should have in 

common in order to avoid similarity penalization. A value of       has proved 

empirically to work effectively. A variation of this scheme was proposed in 

[McLaughlin and Herlocker 2004], to which we shall refer as McLaughlin’s 

significance weighting: 

                  
                

   

   

This predictor is aimed to be equivalent to the Herlocker‘s significance weighting 

(   ) formulation when       . However, we note that     and     represent 



different concepts, and are not fully equivalent. For instance, as noted in [Ma et al. 

2007],     may return values larger than 1 when            , while    , by 

definition, always returns a value in the       interval. Alternatively, the following 

variant can be drawn from [Ma et al. 2007], which is just a more compact 

reformulation of    : 

                  
               

  

   

A more elaborated predictor can be found in [Weng et al. 2006]. The rationale 

behind it is to consider two situations: whether user   takes into account the 

recommendation made by neighbor   or not; in this sense, trustworthiness is defined 

as the reduction in the proportion of incorrect predictions of going from the latter 

situation to the former. The definition of this predictor, denoted as user’s 

trustworthiness, is the following: 

                  
 

                 
 

      
           

           
  

             

 

  

In this formulation,     represents the number of allowed rating values in the 

system (e.g. in a 1 to 5 rating scale,      ), the function            represents the 

number of co-rated items on which  ‘s ratings have the value   while  ‘s ratings are 

 , that is,                                  when each rating tuple is represented as 

       , given a user  , an item  , and a rating value  . In the same way,            
             represents all the co-rated items between   and   rated with any rating 

value by user  , and, analogously,                         . In this case, the 

assumed hypothesis is that trust is one‘s expectation of other‘s competence in 

reducing its uncertainty in predicting new ratings. 

Finally, a user-user predictor can be defined based on the global trust deviation 

predictor defined above (  ). In fact, if we ignore the average along users, we can 

define trust deviation [Hwang et al. 2007] as follows: 

                  
 

       
    

                  

  

 

       

 

This predictor identifies effective neighbors mainly based on how many 

trustworthy (understood as ―accurate‖) recommendations a user has received from 

another. 

 

 
Table I. Overview of the studied neighbor quality metrics. 

Name Description Reference 

  : absolute error 

deviation 

Average difference (deviation) 

between the user‘s true ratings 

and the neighbors‘ estimated 

ratings 

[Rafter et al., 2009] 

  : sign of error deviation 

Similar to    but only considering 

the sign of the rating prediction 

deviation 

[Rafter et al., 2009] 

  : neighbor goodness 

Difference of the system‘s 

performance when including and 

excluding the user‘s ratings 

[Bellogín et al., 2010] 

  : user-neighbor 

goodness 

Difference of the system‘s 

performance for the user when 

including and exclusing her 

neighbors‘ ratings 

This paper 

 

 
  



Table II. Overview of the studied neighbor performance preditors. 

Type Name Rationale Reference 

User 

  : profile-level trust 

Percentage of correct 

recommendations in which the 

user has participated as neighbor 

[O‘Donovan and Smyth 2005] 

  :  expertise trust 

Similar to    but incorporating a 

compensation value for cases of 

small neighborhoods 

[Kwon et al., 2009] 

  : trustworthiness 

Similarity between the user‘s 

ratings and the average ratings 

given by the community 

[Herlocker et al., 2002] 

  : global trust 

deviation 

Average of the prediction error on 

co-rated items for each user 
[Hwang et al., 2007] 

  : user clarity 

Lack of ambiguity in the user‘s 

ratings as a signal for predicting 

the user‘s performance 

[Bellogín et al., 2010] 

  : entropy 

Uncertainty about the user‘s 

ratings based on her rated item 

distribution 

This paper 

  : mutual 

information 

Mutual dependence between the 

user‘s ratings and the ratings of 

the rest of the community 

This paper 

User-item   : item-level trust 

Similar to    but constraining the 

recommendation set to the pairs 

where a particular item appears 

[O‘Donovan and Smyth 2005] 

User-user 

  : user overlap 
Number of items shared by two 

users 
 

   : Herlocker‘s 

significance 

weighting 

Similar to    but incorporating a 

compensation value for cases of 

small overlap 

[Herlocker et al., 2002] 

   ,    : McLaughlin‘s 

significance 

weighting 

Similar to    but incorporating a 

minimum value for cases of small 

overlap 

[McLaughlin and Herlocker, 

2004] 

   : user‘s 

trustworthiness 

Reduction in the proportion of 

incorrect predictions when taking 

or not the neighbor‘s ratings into 

account 

[Weng et al., 2006] 

   : trust deviation 

Similar to    but without 

averaging the deviations for every 

user 

[Hwang et al., 2007] 

 

5. EXPERIMENTS 

We now report experiments in which the proposed neighbor effectiveness prediction 

framework is tested as follows. First, we check the correlation between the user-based 

predictors defined in Sections 4.2.1 and 4.2.3 (summarized in Table II), and the 

neighbor performance metrics proposed in section 4.1 (summarized in Table I), as a 

direct test of their predictive power; for the predictors defined in Section 4.2.2 (user-

item predictors, also in Table II) we cannot analyze their correlation because we have 

no neighbor performance metric depending on both the target user and an item 

available. After that, we test the usefulness of the predictors to enhance the final 

performance of memory-based algorithms, by using the predictors‘ values in the 

selection and weighting of neighbors, that is, taking the predictors as the scoring 

function in equation 2. 

Our experiments have been carried out on two versions of the MovieLens dataset, 

namely the 100K and 1M versions, and on a dataset from Yahoo! Music. One version 

of MovieLens (100K) has 943 users, 1,682 items, and 100,000 ratings, whereas the 

1M version has 6,040 users, 3,900 items, and one million ratings. For these datasets, 

we performed a 5-fold cross validation using five random 80-20% disjoint splits of the 

rating set (in MovieLens 100K we used the partition included in the dataset 



distribution). The Yahoo! dataset contains ratings for songs collected from two 

different sources: ratings supplied by users during normal interaction with Yahoo! 

Music services, and ratings for randomly selected songs collected during an online 

survey conducted by Yahoo! Research. The rating data has been divided into a 

training set, and a test set. The test set consists of the 54,000 ratings for randomly 

selected songs, while the training set consists of approximately 300,000 user-supplied 

ratings. 

Additionally, for the user-based CF method, we use Pearson‘s correlation as the 

similarity measure between users, and a varying neighborhood size ( ), which is a 

parameter with respect to which the results are examined. 

5.1 Correlation Analysis 

We analyze the correlation between neighbor quality metrics and neighbor 

performance predictors in terms of the Pearson‘s and Spearman‘s correlation metrics. 

The correlation provides a measure of the predictive power of the neighbor 

effectiveness prediction approaches: the higher the (absolute) correlation value, the 

better the predictor estimates the positive neighbor effect on the recommendation 

accuracy. The sign of the correlation coefficient represents whether the two variables 

involved –neighbor quality metric and neighbor performance predictor– are directly 

or inversely correlated. 

Tables III and IV show the correlation values obtained on the MovieLens 100K 

dataset for the user-based predictors. We may observe how Spearman‘s correlation 

values are consistent but slightly higher than Pearson‘s, thus evidencing a non-linear 

relationship between the quality metrics and the performance predictors. We 

associate a sign to each quality metric, indicating whether the metric is direct 

(denoted as ‗+‘) or inverse (denoted with ‗-‘), according to the expected sign of the 

correlation with the predictor, i.e., a metric is direct if the higher its value, the better 

the true neighbor performance. 

 
Table III. Pearson’s correlation between the proposed neighbor quality metrics and neighbor performance 

predictors in the MovieLens 100K dataset. Next to the metric name, an indication about the sign of the metric – 

direct(+) or inverse(-) – is included. Not significant values for a  -value of      are denoted with an asterisk (*). 

Neighbor performance 

predictor 

Neighbor quality metric 

Absolute error deviation 

   (-) 

Sign of error 

   (+) 

Neighbor goodness 

   (+) 

Clarity -0.21 +0.14 +0.17 

Entropy -0.18 +0.12 +0.18 

Expertise -0.62 +0.25 +0.03 

Global Trust Deviation -0.35 +0.08 -0.01 

Mutual Information -0.20 +0.12 +0.17 

Profile Level Trust +0.62 -0.24 -0.04* 

Trustworthiness -0.21 +0.20 +0.03 

 

  



Table IV. Spearman’s correlation between quality metrics and performance predictors in the MovieLens 100K 
dataset. 

Neighbor performance 

predictor 

Neighbor quality metric 

Absolute error deviation 

   (-) 

Sign of error 

   (+) 

Neighbor goodness 

   (+) 

Clarity -0.30 +0.21 +0.16 

Entropy -0.22 +0.15 +0.17 

Expertise -0.65 +0.30 +0.02 

Global trust deviation -0.38 +0.11 -0.03 

Mutual Information -0.25 +0.17 +0.16 

Profile Level Trust +0.65 -0.30 -0.02 

Trustworthiness -0.24 +0.25 +0.03 

The absolute error deviation (  ) metric presents higher values when the 

neighbor‘s prediction is less accurate, being thus an inverse neighbor metric. The 

other two metrics, sign of error (  ) and neighbor goodness (  ), are, by definition, 

direct neighbor metrics, since the former indicates how many times a 

recommendation from the neighbor has been made in the right direction, whereas the 

later represents the change in error between excluding a particular user in the 

neighborhood or including her, and thus, the larger this error, the ―better‖ neighbor 

this user is. 

We may observe in Table III that, except for some of the predictors which obtain 

very low absolute values (     ), the four quality metrics are consistent with each 

other. This consistency is evidenced by the way the predictors correlate with the 

different metrics: some of the predictors obtain the correct correlations in every 

situation, that is, positive correlation with direct metrics and negative correlation 

with the inverse metric (like the clarity predictor), while other predictors obtain 

opposite values for all the metrics, that is, positive correlations with the inverse 

metric and negative correlations with direct metrics (such as the profile level trust 

predictor). 

Tables V and VI show the correlation values obtained on the MovieLens 1M 

dataset. We may observe how the trend in correlation is very similar to the behavior 

observed on the 100K dataset, and thus, similar conclusions can be drawn from it. 

There are, however, some changes in the absolute values of the correlation scores for 

some combinations of performance predictor and metric. For instance, the clarity 

predictor and the neighbor goodness metric obtain larger values in this dataset, while 

the correlation between entropy and absolute error deviation is smaller. 

 
Table V. Pearson’s correlation between quality metrics and performance predictors in the MovieLens 1M 

dataset. All the values are significant for a  -value of     . 

Neighbor performance 

predictor 

Neighbor quality metric 

Absolute error deviation 

   (-) 

Sign of error 

   (+) 

Neighbor goodness 

   (+) 

Clarity -0.14 +0.02 +0.40 

Entropy -0.07 -0.08 +0.39 

Expertise -0.95 +0.70 -0.06 

Global Trust Deviation -0.55 +0.36 -0.24 

Mutual Information -0.17 +0.13 +0.30 

Profile Level Trust +0.83 -0.55 +0.04 

Trustworthiness -0.27 +0.36 +0.03 



Table VI. Spearman’s correlation between quality metrics and predictors in the MovieLens 1M dataset. 

Neighbor performance 

predictor 

Neighbor quality metric 

Absolute error deviation 

   (-) 

Sign of error 

   (+) 

Neighbor goodness 

   (+) 

Clarity -0.16 +0.04 +0.35 

Entropy -0.03 -0.10 +0.37 

Expertise -0.94 +0.69 -0.09 

Global trust deviation -0.54 +0.39 -0.25 

Mutual information -0.16 +0.04 +0.31 

Profile level trust +0.94 -0.69 +0.09 

Trustworthiness -0.25 +0.37 +0.02 

It is important to note that the number of points used to compute the correlation 

values is different in the two datasets; there are less than 1,000 points in MovieLens 

100K (with 943 users), and more than 6,000 points in MovieLens 1M dataset. This 

difference affects the significance of the correlation results. The confidence test for a 

Pearson‘s correlation, modeled as the  -value of a  -distribution (assuming normality) 

with     degrees of freedom (being   the size of the sample), is defined by the 

following equation: 

    
   

    
 

The  -value depends on the size of the sample, and thus, the significance of a 

Pearson‘s correlation value   may change for different sample sizes [Snedecor and 

Cochran 1980]. In particular, for small samples, we may eventually obtain strong but 

non-significant correlations; whereas for large samples, on the other hand, we may 

obtain significant differences, even though the strength of the correlation values may 

be lower. In our experiments, for MovieLens 100K, the correlations are significant for 

a  -value of      when       , and in the 1M dataset, when       . Hence, in 

Table III, there is only one non-significant correlation value (denoted with an 

asterisk), whereas in Table V, all the results are statistically significant. The above 

also applies to the Spearman‘s correlations reported in Tables IV and VI [Snedecor 

and Cochran 1980; Zar 1972]. 

Analyzing in more detail the reported results for both datasets, we observe that 

the profile level trust predictor consistently obtains direct correlation values with the 

inverse metrics, and inverse correlation values with the direct metrics. This predictor 

gives higher scores to neighbors with larger deviations in their prediction error, 

which would result on a bad performance prediction, since its predictions are not in 

the same direction than the performance metrics. The expertise and global trust 

deviation predictor obtain strong correlations with the absolute error deviation 

metric, although their correlations with respect to the neighbor goodness metric are 

negligible, especially for the first predictor, in both datasets. At the other end of the 

spectrum, the clarity, entropy, and mutual information predictors obtain strong 

correlation values with the neighbor goodness and moderate correlations with the 

rest of metrics, which make these predictors good candidates for successful neighbor 

performance predictors. Finally, the trustworthiness predictor obtains a significant 

amount of correlation with respect to the absolute error deviation and sign of error 

metrics, although its correlation with respect to the neighbor goodness is very low. 

This predictor thus seems to be useful on estimating how accurate the neighbor may 

be in terms of the error in a user basis, but probably not as a global metric. 

To provide a more general view of the predictive power of the neighbor 

effectiveness prediction approaches, we show in Tables VII and VIII the correlation 



results for the Yahoo! dataset. We can observe that the results are similar to those 

found for the MovieLens datasets, although we can see more differences for some 

predictors with respect to the previous datasets. For instance, the clarity predictor is 

not consistent in the three neighbor quality metrics, since it shows a positive 

correlation with the inverse metric (absolute error deviation) and a negative value 

with the sign of error metric (direct). Furthermore, the sign of the error metric does 

not agree with the neighbor goodness metric, like in Tables III-VI. Aside from these 

differences, the trend in predictive power is comparable to the ones presented before, 

where clarity, entropy, and trustworthiness have strong predictive capabilities, 

whereas the mutual information predictor shows worse results. 

 
Table VII. Pearson’s correlation between quality metrics and performance predictors in the Yahoo! dataset. Not 

significant values for a  -value of      are denoted with an asterisk (*). 

Neighbor performance 

predictor 

Neighbor quality metric 

Absolute error deviation 

   (-) 

Sign of error 

   (+) 

Neighbor goodness 

   (+) 

Clarity +0.28 -0.28 +0.33 

Entropy +0.00* -0.02* +0.26 

Expertise -0.11 -0.06 +0.09 

Global Trust Deviation -0.29 +0.16 +0.02 

Mutual Information +0.04 -0.06 -0.27 

Profile Level Trust +0.11 +0.06 -0.10 

Trustworthiness -0.16 +0.16 +0.03* 

 

Table VIII. Spearman’s correlation between quality metrics and predictors in the Yahoo! dataset. 

Neighbor performance 

predictor 

Neighbor quality metric 

Absolute error deviation 

   (-) 

Sign of error 

   (+) 

Neighbor goodness 

   (+) 

Clarity +0.31 -0.33 +0.34 

Entropy -0.01 -0.03 +0.23 

Expertise -0.07 -0.09 +0.08 

Global trust deviation -0.19 +0.12 -0.01 

Mutual information +0.09 -0.07 -0.26 

Profile level trust +0.07 +0.09 -0.08 

Trustworthiness -0.17 +0.18 +0.03 

Table IX shows the correlations obtained for user-user neighbor predictors and 

the proposed user-neighbor goodness metric. Due to the high dimensionality of the 

vectors involved in this computation, we have only considered those users which have 

at least one item in common, since both the predictors and the metric would return 

the same score –a zero– in any other case. Despite this fact, Pearson‘s correlation is 

almost neglibible for all the datasets, and thus we show here only Spearman‘s 

correlation coefficient. We can observe that in MovieLens datasets the correlation for 

the McLaughlin‘s significance weighting predictor is stronger than for the rest of the 

predictors, which evidences some non-linear relation between this predictor and the 

metric. In the next section, we shall show that this function is one of the best 

performing predictors among the evaluated neighbor scoring functions. The situation 

in the Yahoo! dataset is slightly different, since all the predictors have some 

correlation, except for trust deviation; again, in the next section we shall see that this 

predictor is among the worst performing neighbor scoring functions. These results, 



thus, confirm the usefulness of the proposed neighbor performance metrics, since 

they are able to discriminate which neighbor performance predictors are able to 

capture interesting properties between the user and her neighbors. 

 
Table IX. Spearman’s correlation between the user-neighbor goodness and user-user predictors. 

User-neighbor 

performance predictor 

Dataset 

Movielens 100K Movielens 1M Yahoo! 

Herlocker 0.03 0.02 0.31 

McLaughlin 0.12 0.11 0.32 

Trust Deviation 0.01 0.01 0.11 

User Overlap 0.03 0.02 0.31 

User‘s Trustworthiness -0.02 -0.01 0.31 

In summary, we have observed that most of the performance predictors agree with 

respect to the different performance metrics, and in general, the correlations 

computed between neighbor quality metrics and neighbor performance predictors are 

statistically significant. 

5.2 Performance Analysis 

The results reported in the previous section show that some of the studied predictors 

have the ability to capture neighbor performance, and because of that we hypothesize 

that they could be used to improve the accuracy of a recommendation model. But this 

hypothesis has to be checked, since the metric against which we measure the 

neighbor goodness is not the same as the final recommendation performance metric 

we aim to optimize. With the experiments we report next, we aim to confirm the 

usefulness of the proposed predictors, the validity of the proposed metrics as useful 

references to assess the power of the predictive methods, and the usefulness of the 

overall framework as a unified approach to enhance neighbor-based collaborative 

filtering.  

In order to achieve this, we test the integration of the neighbor predictors into a 

neighbor selection and weighting scheme for user-based CF, as described in Section 

3.1. Besides testing the effectiveness of the predictors, this experiment provides for 

observing to what extent the correlations obtained in the previous section correspond 

with improvements in the final performance of those predictors.  

We provide recommendation accuracy results on the MovieLens 1M and Yahoo! 

datasets. Those obtained on the MovieLens 100K dataset are not reported here since 

they had similar trends to those of MovieLens 1M. Figures 1 and 2 show the Root 

Mean Square Error (RMSE) of the Resnick‘s CF adaptation proposed in Equation 2 

when used for different neighbor selection and weighting approaches for MovieLens 

1M, the equivalent figures for the Yahoo! dataset are presented in Figures 3 and 4. 

The curves at the top of the figures represent the values obtained when neighbor 

performance predictors are used for neighbor weighting, that is, the standard 

neighbor selection strategy is used (     in Equation 2). Furthermore, in each 

approach a different aggregation function is used: whether the harmonic mean 

between the predictor score and the similarity value (function     , on the right) or 

the projection function (    , on the left) in order to ignore the similarity. The 

curves at the bottom of the figures show the neighbor selection approach (     in 

Equation 2) along with the same neighbor weighting functions described above (i.e., 

   on the right and    on the left). The rest of the aggregation functions, such as 

average (  ) and product (  ), were also evaluated for neighbor selection and 

weighting, but they provided results equivalent to those of the harmonic mean. For 

this reason, they have been omitted in the figures to avoid cluttering them. We 



believe this equivalence may be due to the normalization factor included in the CF 

formulation, since it would cancel out the weights obtained by the harmonic, average, 

and product functions in the same way. 

 
Fig. 1. Performance comparison for user-based predictors and different neighborhood 

sizes in MovieLens 1M. 

Figure 1 shows the accuracy results when only user-based neighbor predictors are 

evaluated in the MovieLens 1M dataset. We observe that, independently from the 

neighborhood size, using performance predictors as similarity scores does not lead to 

large differences with respect to the baseline. These results are compatible with 

those presented in [Weng et al. 2006], where the improvement in RMSE is not very 

high (MAE < 0.05 in that work). Note that the accuracy trend on neighborhood size 

in our experiments does not fully match the ones reported in [Herlocker et al. 2002], 

where the optimal neighborhood for MovieLens 100K is much smaller (around 50) 

than in our experiments. This is due to a difference in how the neighborhoods are 

computed: whereas Herlocker and colleagues take a different neighborhood for each 

user–item pair, we take a fixed neighborhood of size k (independent of target items) 

for every user. As a consequence, the optimal neighborhood size to reach a certain 



accuracy level in our implementation is needly larger, since the number of users 

among k preselected neighbors who have rated a target item is usually quite lower 

than k (thus the equivalent effective neighborhood size is much smaller). This version 

of the memory-based CF implementation is common in the field [Ren et al. 2012; Guo 

et al. 2012; Schclar et al. 2009; Clements et al. 2007] and has advantages in terms of 

computational cost, as neighborhoods can be built offline. In exchange, larger 

neighborhood sizes are needed to obtain the best performance values. 

For the sake of clarity, in Tables X and XI, we present the error values for a 

horizontal cut of the left curves; specifically, when the neighborhood size is 50. We 

can observe that some predictors do improve Resnick‘s accuracy. Regarding the use of 

the harmonic mean as aggregation function (curves on the right), similar results are 

obtained except for very large neighborhood sizes, for which some of the performance 

predictors produce worse results than the baseline, probably due to the amount of 

noise created by considering too many neighbors. 

The curves at the bottom of the figures represent the accuracy results for neighbor 

selection strategies. In this case, some of the predictors lead to worse performance 

than the baseline, particularly the profile level trust (  ). This situation is consistent 

with the correlations observed for MovieLens 1M in the previous section, since this 

predictor obtained inverse correlations with the different metrics, i.e., direct 

correlation values with inverse metrics, and inverse values with direct metrics. 

Moreover, as predicted by the correlation analysis, trustworthiness (  ), mutual 

information (  ), and clarity (  ) result in some of the best performing recommenders 

(with strong correlations), as shown in the figures and in Table XI, along with 

expertise (  ) and global trust deviation (  ), which obtained more moderated 

correlation values. 

Table X. Detail of the accuracy in MovieLens 1M of baseline vs. recommendation using neighbor weighting; 
here, performance predictors are used as similarity scores (50 neighbors). 

 RMSE   RMSE 

Resnick 1.174  Resnick 1.174 

Clarity 1.181  Herlocker 1.175 

Entropy 1.175  Item-level Trust 1.264 

Expertise 1.171  McLaughlin 1.174 

Global Trust Deviation 1.173  Trust Deviation 1.173 

Mutual Information 1.180  User Overlap 1.175 

Profile Level Trust 1.177  User‘s Trustworthiness 1.175 

Trustworthiness 1.175    

Table XI. Detail of the accuracy in MovieLens 1M of baseline vs recommendation using neighbor selection; 
here, performance predictors are used for filtering (50 neighbors). 

 RMSE   RMSE 

Resnick 1.174  Resnick 1.174 

Clarity 1.172  Herlocker 1.156 

Entropy 1.189  Item-level Trust 1.843 

Expertise 1.139  McLaughlin 0.581 

Global Trust Deviation 1.158  Trust Deviation 1.168 

Mutual Information 1.171  User Overlap 1.146 

Profile Level Trust 1.310  User‘s Trustworthiness 1.174 

Trustworthiness 1.162    



 
Fig. 2. Performance comparison using user-item and user-user predictors for 

different neighborhood sizes in MovieLens 1M. 

In Figure 2, we can see how user-item and user-user neighbor predictors affect the 

performance of CF recommenders, again for MovieLens 1M. The curves in the top 

show that most of the predictors obtain a similar performance to that of the baseline, 

except for the item-level trust (  ), the performance of which is much worse than 

Resnick‘s. Table X shows the specific error values for these recommenders. It is 

interesting to note that the performance of this predictor is drastically improved 

when using the harmonic mean as the aggregation function (shown on the right side 

of the figure). Similarly to user-based neighbor predictors (Figure 1), some of the 

user-item and user-user predictors decrease their accuracy with large neighborhoods; 

in this case, user‘s trustworthiness (   ) and McLaughlin‘s significance weighting 

(   ) are the most representative examples. 

A different conclusion results when neighbor selection is analyzed (curves at the 

bottom). Two of the predictors are characterized by a much better (McLaughlin‘s 

significance weighting,    ) or worse (item-level trust,   ) final performance, 

independently from the weighting aggregation function. Table XI shows the specific 



error values obtained for each of these predictors. It is interesting how the 

McLaughlin‘s predictor, despite its inability to boost good neighbors (see top figures), 

seems to be very useful for neighbor selection. This effect, nonetheless, is attenuated 

when the neighborhood increases, since in that situation, selection methods have to 

deal with too many users in each neighborhood. We believe the reason why this 

predictor is very good for neighbor selection is because it gives higher scores to those 

neighbors that have more items in common with the active user, and thus the 

confidence in the computation of the similarity values between the neighbor and the 

active user will be higher. It is worth noting that, to the best of our knowledge, this 

function has never been used for neighbor selection, since its original motivation was 

to penalize the similarity value whenever it has been based on a small number of co-

rated items. However, by plugging this function into the framework, and measuring 

its predictive power for user-neighbor performance, a novel application naturally 

emerges and provides very good results. 

 
Fig. 3. Performance comparison for user-based predictors and different neighborhood 

sizes in the Yahoo! dataset. 

Regarding the results in the Yahoo! dataset, we can observe in Figures 3 and 4 

that the performance values are also consistent with the correlations presented in 

Tables VII-IX. More specifically, the profile level trust predictor always performs 

worse than the baseline, just as we observed in the MovieLens 1M dataset, and in 

agreement with its low correlation values presented before. Furthermore, the better 

performing user-based predictors are, again, clarity, trustworthiness, and expertise. 



The performance of the entropy predictor seems to depend on the way it is introduced 

in the recommendation technique, which may be related to its negligible correlations 

for two out of the three neighbor quality metrics. Moreover, in contrast with what 

was observed in the MovieLens 1M dataset, the performance of the mutual 

information predictor is worse now, something already anticipated by its low 

correlations with the absolute error deviation and the sign of error metrics, and its 

negative correlation with neighbor goodness. 

Additionally, in Figure 4 we can observe that the item-level trust, like in the 

MovieLens 1M dataset, is among the worst performing predictors. Another bad-

performing predictor is the trust deviation, whose performance, in contrast to what 

was found in MovieLens, decreases drastically, especially when used as similarity or 

filter; this result, however, is consistent with the correlations presented in Table IX, 

that anticipated that this predictor would not be as good as the rest. Apart from this, 

the user‘s overlap and McLaughlin‘s significance weighting yield very positive 

results, as in the previous experiment with the MovieLens datasets. 

 
Fig. 4. Performance comparison using user-item and user-user predictors for 

different neighborhood sizes in Yahoo!. 

In summary, we have been able to validate the proposed user-user neighbor 

performance metric, and the different evaluated user-user neighbor performance 

predictors. We have obtained positive results when this type of predictors has been 

introduced and compared against the baseline in the different aggregation strategies 



and configurations; and these results are consistent with the correlations obtained 

between the predictors and the performance metrics. In particular, McLaughlin‘s 

significance weighting obtains an improvement up to 55% in accuracy (i.e., error 

decrease) when this predictor is used to select the neighbors which will further 

contribute to the rating prediction. Besides, the (Spearman‘s) correlation for this 

predictor is positive and strong in the MovieLens datasets, in contrast to the values 

obtained for the rest of user-user predictors, which did not improve the accuracy of 

the baseline. At the same time, in the Yahoo! dataset, these correlations are also 

positive, and allow to discriminate between a bad user-user predictor (trust 

deviation) and the rest of the predictors. 

In this situation, a possible drawback of the conducted analysis is that we have 

not been able to define neighbor performance metrics based on user-item pairs, and 

thus the user-item neighbor performance predictors are out of the scope of the 

developed correlation analysis. Nevertheless, results show that the only user-item 

neighbor performance predictor defined here, the item-level trust, is not able to 

outperform the baseline recommender. We believe this fact, which is in contradiction 

with what was reported in [O‘Donovan and Smyth 2005], may be caused by the 

different variables taking place in our evaluation, such as the datasets (MovieLens 

1M instead of MovieLens 100K, and Yahoo!), the neighborhood size (not specified in 

the original paper), and the several aggregation functions and combinations used 

across our experiments. 
 

5.3 Discussion 

The reported experiments provide empirical evidence of the usefulness of the 

proposed framework, and the specific proposed predictors, as an effective approach to 

enhance the accuracy of memory-based CF. As described in the preceding sections, 

the methodology comprises two steps, one in which the predictive power of neighbor 

predictors is assessed, and one in which the predictors are introduced in the CF 

scheme to enhance the effectiveness of the latter. Our experiments confirm a strong 

correlation for some of the predictors – both user predictors and user-user predictors 

– and this has been found to correspond with final accuracy enhancements in the 

recommendation strategy: the predictors that obtained strong direct correlations with 

the performance metrics were the best performing dynamic strategies; the profile 

level trust predictor, which obtained inverse correlation values with respect to the 

neighbor performance metrics, was the worst performing dynamic strategy. In light 

of these results, it could be further investigated whether the actual correlation values 

between neighbor performance predictors and neighbor performance metrics could be 

used to infer how each predictor should be incorporated into the memory-based CF as 

a neighbor scoring function, since there is no obvious link between the ranking of 

best performing scoring functions and the strength of their corresponding 

correlations. As a starting point, only the sign of the correlation could be considered, 

using either the raw neighbor predictor score (for positive correlations) or its inverse 

(for negative values). Then, this rationale could be further elaborated and evaluated 

in order to check whether the performance improvements are consistent. 

Research on finding functions with strong correlation power with respect to 

neighbor performance metrics could be a very interesting area by itself, since it could 

have many different final applications; here, we have experimented with variations 

in neighbor selection and weighting for memory-based CF but those predictors 

(functions) could also be used for active learning [Elahi 2011] or for providing more 

meaningful explanations [Marx et al. 2010], depending or based on the predicted 

performance of a particular user‘s neighbors. In the same way the performance 

prediction research in IR has been mainly focused on defining predictors with strong 

correlation values, not usually investigating the different uses which could be drawn 



from such knowledge, in CF it may be possible to investigate the effect of neighbor 

selection separate from the accuracy of the algorithm, since we have some certainty 

that the ability of performance predictors to capture the neighbor‘s performance is 

related with the correlation values obtained between the predictor and the neighbor 

performance metric. Then, different applications to integrate the output from 

neighbor performance predictors into the recommendation process could be derived, 

such as those mentioned above. 

6. CONCLUSIONS 

We have proposed a theoretical framework for neighbor selection and weighting in 

user-based CF systems, based on a performance prediction approach, drawing from 

query performance methodology in the IR field. By viewing the neighbor-based CF 

rating prediction task as a case of dynamic output aggregation, our approach places 

user-based CF in a more general frame, linking to the principles underlying the 

formation of ensemble recommenders, or rank aggregation in IR. By doing so, it is 

possible to draw concepts and techniques from these areas, and vice versa. Our study 

thus provides a comparison of different state-of-the-art rating-based trust metrics 

and other neighbor scoring techniques, interpreted as neighbor performance 

predictors, and evaluated under this new angle. The framework provides for an 

objective analysis of the predictive power of several neighbor scoring functions, 

integrating different notions of neighbor performance into a unified view. The 

proposed methodology discriminates which neighbor scoring functions are more 

effective in predicting the goodness of a neighbor, and thus identifies which weighting 

functions are more effective in a user-based CF algorithm. 

Drawing from different state-of-the-art neighbor scoring functions – cast as user, 

user-user, and user-item neighbor performance predictors – we have conducted 

several experiments in order to, first, check the predictive power of these functions, 

and second, validate them by comparing the final performance of neighbor-scoring 

powered memory-based strategies with that of the standard CF algorithm. We have 

also evaluated different ways to introduce these functions in the rating prediction 

formulation, namely for neighbor weighting, neighbor selection, and combinations 

thereof. In this context, methods where neighbor scoring functions were integrated 

outperform the baseline for different values of neighborhood size and predictor type. 

We have proposed several neighbor performance metrics that capture different 

notions of neighbor quality. The evaluated performance predictors show consistent 

correlations with respect to these metrics, and some of them present particularly 

strong correlations. Interestingly, a correspondence is confirmed between the 

correlation analysis and the final performance results, in the sense that the 

correlation values obtained between neighbor performance predictors and neighbor 

performance metrics anticipate which predictors will perform better when introduced 

in a memory-based CF algorithm. 

Apart from the performance predictors defined here, other predictors such as item 

or item-item could be defined [Weng et al. 2006; Ma et al. 2007] and easily 

incorporated in item-based algorithms. Additionally, performance predictors defined 

upon social data, such as the user‘s trust network, could be smoothly integrated into 

our framework and analyzed in the future. Furthermore, alternative neighbor 

performance metrics may be defined to check the predictive power of user-user and 

user-item predictors. These metrics, although based on a smaller amount of 

information, may help on better understanding which notions of the neighbor 

performance such predictors are capturing. In particular, our framework would allow 

for different interpretations of the user‘s performance, by modeling different neighbor 

performance metrics, whether they be more oriented to accuracy (using error metrics 



as in this paper) or ranking precision, or even towards alternative metrics such as 

diversity, coverage, or serendipity [Shani and Gunawardana 2011]. 
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