

CWI @ TREC 2013: Federated Web Search Track

Alejandro Bellogín, Jiyin He, Arjen P. de Vries Information Access CWI

Summary

- We participated in the two tasks
 - Resource selection
 - Results merging
- Query likelihood alone obtains good results for results merging
- We tested our methods with the FedWeb 2012 collection
 - The performance is not consistent in 2013

FedWeb 2012

- 108 resources (vs 156+1 in 2013)
- Top 10 results
 - Snippets
 - Pages
- Crawled in Dec 2011 Jan 2012 (vs Apr May 2013)
- TREC queries 51 100 (vs 7001 7506 ≈ 200 topics)

Resource selection – Methods

- ODP: similarity between ODP's query and resource categories
 - Similarity function: Jaccard vs Cosine
 - Importance of the category according to its ranking?
 - Consider the query text?

Open Directory Categories (1-10 of 10)

- 1. Science: Physics: Quantum Mechanics: Quantum Fi
- 2. Computers: Software: Operating Systems: Unix: BS
- 3. Computers: Internet: E-mail: Spam: Preventing (1)
- 4. Science: Math: Differential Equations: Dynamical Sy
- 5. Science: Math: Geometry: Computational Geometry

Resource selection – Methods

- ODP: similarity between ODP's query and resource categories
 - Similarity function: Jaccard vs Cosine
 - Importance of the category according to its ranking?
 - Consider the query text?
- Retrieval model: build a pseudo-document and retrieve best matching resources
 - Lucene's TF-IDF, BM25, Language models
 - Only title, only snippet, both

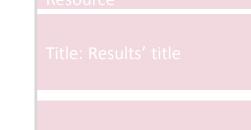
Open Directory Categories (1-10 of 10)

- 1. Science: Physics: Quantum Mechanics: Quantum Fi
- 2. Computers: Software: Operating Systems: Unix: BS
- 3. Computers: Internet: E-mail: Spam: Preventing (1)
- 4. Science: Math: Differential Equations: Dynamical Sy
- 5. Science: Math: Geometry: Computational Geometry

Resource selection – Methods

- ODP: similarity between ODP's query and resource categories
 - Similarity function: Jaccard vs Cosine

retrieve best matching resources


Only title, only snippet, both

Lucene's TF-IDF, BM25, Language models

- Importance of the category according to its ranking?
- Consider the query text?

Open Directory Categories (1-10 of 10)

- 1. Science: Physics: Quantum Mechanics: Quantum Fi
- 2. Computers: Software: Operating Systems: Unix: BS
- 3. Computers: Internet: E-mail: Spam: Preventing (1)
- 4. Science: Math: Differential Equations: Dynamical Systems
- 5. Science: Math: Geometry: Computational Geometry

Desc: Results' snippet

Hybrid: Borda voting to aggregate results from the other methods

Retrieval model: build a pseudo-document and

Resource selection – Results (2012)

Tested several variants on FedWeb 2012

Method	MAP	nDCG	MRR
TF-IDF+ODP Jacc	0.338	0.516	0.564
TF-IDF	0.285	0.412	0.610
ODP Jaccard	0.283	0.471	0.439
BM25 (1.2, 0.2)	0.283	0.400	0.545
$LM (\lambda = 0.1)$	0.280	0.407	0.590
ODP Cosine	0.278	0.462	0.400
BM25 (1.2, 0.8)	0.272	0.397	0.557
LM ($\lambda = 0.5$)	0.263	0.394	0.571
LM ($\lambda = 0.9$)	0.252	0.387	0.566
LM ($\lambda = 0.1$) desc	0.241	0.386	0.602
LM ($\mu = 200$)	0.240	0.378	0.551
LM ($\mu = 2000$)	0.240	0.378	0.551
BM25 (1.2, 0.8) desc	0.239	0.383	0.608
TF-IDF title	0.215	0.321	0.495

Submitted top 3: TF-IDF, ODP Jaccard, and hybrid

Resource selection – Results (2013)

Results not consistent in FedWeb 2013 collection

Method	Run	nDCG@20	ERR@20
BM25 (1.2, 0.8) desc	-	0.1588	0.0204
LM ($\lambda = 0.1$) desc	-	0.1476	0.0204
BM25 (1.2, 0.2)	-	0.1346	0.0068
LM ($\lambda = 0.1$)	-	0.1322	0.0068
TF-IDF	CWI13SniTI	0.1235	0.0067
BM25 (1.2, 0.8)	-	0.1223	0.0102
LM ($\lambda = 0.5$)	-	0.1218	0.0051
LM ($\lambda = 0.9$)	-	0.1153	0.0041
LM ($\mu = 2000$)	-	0.1033	0.0051
LM ($\mu = 200$)	-	0.1017	0.0051
TF-IDF title	-	0.1016	0.0017
TF-IDF+ODP Jacc	CWI130DPTI	0.0961	0.0034
LM ($\lambda = 0.9$)	-	0.0934	0.0017
ODP Jaccard	CWI13ODPJac	0.0497	0.0000

- Not even the fields in the pseudo-document perform the same
 - Best: entire document (2012) vs snippet (2013)

Results merging – Methods

- Based on document relevance
 - Query likelihood (QL)

 $p(d|q) \propto \prod p(w|d)$ $w \in q$

Results merging – Methods

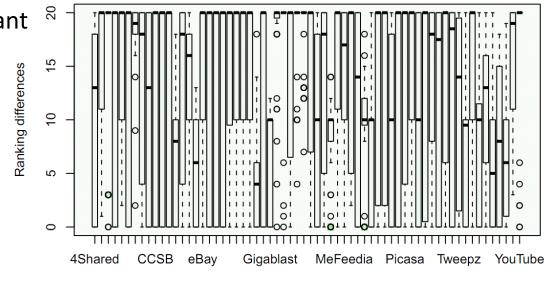
- Based on document relevance
 - Query likelihood (QL)

- Based on resource selection
 - Cluster: for each ranked resource, the retrieved documents are ranked with QL
 - Diversity: IA-select of QL ranking with respect to the resources

resource
$$P(S|q) = \sum_{c} P(c|q)(1 - \prod_{d \in S} (1 - V(d|q, c)))$$

- Boost: use the relevance with respect to the resource to boost the documents $p(d|q,z) \propto p(d|q)p(q|z)$

Results merging – Results


Best 2013 resource selection results Best 2012 resource selection results	Method	P@10	nDCG@20	nDCG@50	nDCG
	2013 data				
	CWI13bstBM25desc* CWI13IndriQL	0.3408 0.3220	0.1224 0.1622	0.2024 0.2371	0.5366 0.5438
	CWI13iaTODPJ CWI13bstTODPJ	$0.2840 \\ 0.2500$	0.1509 0.1466	0.1915 0.1839	0.5253 0.4973
	2012 data	0.1940	0.0551	0.0892	0.4610
Also 2012!	CWI12bstTODPJ* CWI12IndriQL*	0.4960 0.4900	0.1246 0.1464	0.1989 0.2627	0.6081 0.6525
	CWI12clTODPJ* CWI12iaTODPJ*	0.2200 0.1940	0.0666 0.0532	0.1106 0.1015	0.5462 0.5407

Discussion

- Results merging can be solved with simple IR techniques
 - Query likelihood obtained very good results
- How to define a training set for an evolving test environment?
 - The document rankings of the resources change
 - The content of the websites change
 - The type of queries is important
 - tailored to be answered by a specific resource?
 - time-aware?

Distribution of ranking differences per resource

Resource