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Motivation

= Why some recommendation methods perform better than others?
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Motivation

= Why some recommendation methods perform better than others?

= Focus: nearest-neighbour recommenders

* What aspects of the similarity functions are more important?
* How can we exploit that information?
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Context

= Recommender systems

» Users interact (rate, purchase, click) with items
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Context

= Recommender systems

» Users interact (rate, purchase, click) with items

 Which items will the user like?
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Context

= Nearest-neighbour recommendation methods

* The item prediction is based on “similar” users
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Context

= Nearest-neighbour recommendation methods

* The item prediction is based on “similar” users
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Different similarity metrics — different neighbours
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Different similarity metrics — different recommendations

Alejandro Bellogin — ICTIR, October 2013



\ CWL_

Different similarity metrics — different recommendations
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Research question

= How does the choice of a similarity metric
determine the quality of the recommendations?
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Problem: sparsity

= Too many items exist, not enough ratings will be available

= A user’s neighbourhood is likely to introduce not-so-similar users
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Different similarity metrics — which one is better?

= Consider Cosine vs Pearson similarity

Cosine similarity Pearson similarity
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= Most existing studies report Pearson correlation to lead superior
recommendation accuracy
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Different similarity metrics — which one is better?

= Consider Cosine vs Pearson similarity

Cosine similarity

Pearson similarity
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= Common variations to deal with sparsity

* Thresholding: threshold to filter out similarities (no observed difference)

* Item selection: use full profiles or only the overlap

* Imputation: default value for unrated items
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Different similarity metrics — which one is better?

I(u,v) =1 I(u,v) =I(w)NI(v)
_Imputation

Similarity m Full3 FullA Overlap

Cosine | 0.511 T 0.392 0.333 0.187 |
Pearson | 0.451 0.443 0.456 T  0.220 |

= Which similarity metric is better?
e Cosine is not superior for every variation
= Which variation is better?
* They do not show consistent results
= Why some variations improve/decrease performance?

— Analysis of similarity features
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Analysis of similarity metrics

= Based on

 Distance/Similarity distribution
* Nearest-neighbour graph
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Analysis of similarity metrics

= Distance distribution
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= |n high dimensions, nearest neighbour is unstable:

If the distance from query point to most data points is less than (1 + €)
times the distance from the query point to its nearest neighbour

Beyer et al. When is “pgearest neighbour” meaningful? ICDT 1999
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Analysis of similarity metrics

= Distance distribution

e Quality g(n, f): fraction of users for which the similarity function has ranked at
least n percentage of the whole community within a factor f of the nearest
neighbour’s similarity value
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Analysis of similarity metrics

= Distance distribution

e Quality g(n, f): fraction of users for which the similarity function has ranked at
least n percentage of the whole community within a factor f of the nearest
neighbour’s similarity value

e QOther features:

Distribution features Definition
Average neighbour | |U|™" Z ko Z sim(u, v)
similarity, ans(k) uel vENL (u)

Neighbour similarity | ans(k)™ (ans(k) — ans(k - r))
ratio, nsr(r; k)

Min e N, (w) SIM(w, v)

Neighbour stability L Z :
iU £ MaXye Ny (u) sim(u, v)
1 min.,, ., sim(u, v
Stability >y vel\u 2 (U, v)
iU £ MaX,e Ny (u) sim(u, v)
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Analysis of similarity metrics
» Nearest neighbour graph (NN¥)

* Binary relation of whether a user belongs or not to a neighbourhood

Graph features Definition
Average graph distance | [U/]™" Z 5p(u)
ueld
Clustering coefficient | [U4]™" Z ce(u)
uel
12
Graph density '
Vivi-1)
Graph diameter max  sp(u,v)
(u,v)eld XU
Maximum graph distance maii{ sp(u)
ue

Median in-degree | M,cy[deg™ (u)]

Median out-degree | Myecy[deg™ (u)]
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Experimental setup

= Dataset

* MovielLens 1M: 6K users, 4K items, 1M ratings
* Random 5-fold training/test split

= JUNG library for graph related metrics

= Evaluation
* Generate a ranking for each relevant item, containing 100 not relevant items
* Metric: mean reciprocal rank (MRR)
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Performance analysis

= Correlations between performance and features of each similarity
(and its variations)

Distribution features Correlation
Average neighbour similarity —0.97
Neighbour similarity ratio, nsr(10) 0.88
Neighbour stability —0.92

Stability —0.33

Quality, (0.5, 1) —0.74

Quality, ¢(0.5, 2) 0.26

Quality, ¢(0.5, 3) 0.32

Graph features Correlation

Average graph distance —0.77
Clustering coeflicient —0.21

Graph density 0.29

Graph diameter 0.70

Maximum graph distance —-0.51
Median in-degree 0.85

Median out-degree NA
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Performance analysis — quality

= Correlations between performance and characteristics of each
similarity (and its variations)

Distribution features Correlation

Quality, ¢(0.5,1)% ®# —0.74
Quality, ¢(0.5,2)8 ¢ 0.26
Quality, ¢(0.5,3)1 1 0.32

= Fora user

* If most of the user population i low quality correlates with

effectiveness (discriminative similarity)

* If most of the user population is high quality correlates with
ineffectiveness (not discriminative €nough)

Quality g(n, f): fraction of users for which the similarity function has ranked at least n percentage of
the whole community within a factor f of the nearest neighbour’s similarity value
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Meighbour stability

Graph diameter
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Performance analysis — examples
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Imputation
Similarity | FullO Full3 FullAvg Overlap
Cosine | 0.511 7 0.392 0.333 0.187 |
Pearson | 0.451 0.443 0.456 T 0.220 |
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Conclusions (so far)

= We have found similarity features correlated with their final
performance

* They are global properties, in contrast with query performance predictors

* Compatible results with those in database: the stability of a metric is related
with its ability to discriminate between good and bad neighbours
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* Adjusting their values according to the correlations found

Application

= Transform “bad” similarity metrics into “better performing” ones

= Transform their distributions

* Using a distribution-based normalisation [Fernandez, Vallet, Castells, ECIR 06]
* Take as ideal distribution (E) the best performing similarity (Cosine Full0O)
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Application

= Transform “bad” similarity metrics into “better performing” ones

* Adjusting their values according to the correlations found

= Transform their distributions

* Using a distribution-based normalisation [Fernandez, Vallet, Castells, ECIR 06]

* Take as ideal distribution (E) the best performing similarity (Cosine Full0O)

= Results

Top 50

Orig Norm

Cosine FullO| 0.511 -]
Cosine Full3 | 0.392 0.388
Cosine FullAvg| 0.333 0.328
Cosine Overlap | 0.187 0.181
Pearson Full0| 0.451 0.445
Pearson Full3| 0.443 0.443
Pearson FullAvg| 0.456 0.454
Pearson Overlap| 0.220 0.217
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Conclusions

= We have found similarity features correlated with their final
performance

* They are global properties, in contrast with query performance predictors

* Compatible results with those in database: the stability of a metric is related
with its ability to discriminate between good and bad neighbours

= Not conclusive results when transforming bad-performing
similarities based on distribution normalisations

* We want to explore (and adapt to) other features, e.g., graph distance

* We aim to develop other applications based on these results, e.g., hybrid
recommendation
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Different similarity metrics — all the results

= Performance results for variations of two metrics

e Cosine
e Pearson

= Variations

* Thresholding: threshold to filter out similarities (no observed difference)

* Imputation: default value for unrated items

Imputation
Recommender Similarity | FullO Full3 FullAvg Overlap
UB Cosine | 0.511 T  0.392 0.333 0.187
Pearson | 0.451 0.443 0.456 T  0.220
Cosine | 0.471 T 0.303 0.269 0.156
UBMeans — poarson | 0371 0.368 043117  0.192
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Bever’s “quality”
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To determine the quality of answers for NN queries, we examined the per-
centage of queries in which at least half the data points were within some factor
of the nearest neighbor. Examine the graph at meditance/k distance = 3.
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The graph says that for k =1 (normal NN problem) of the queries had at
leagt half the data within a factor of 3 of the distanc&To the NN. For k = 10,
f the queries had at least half the data within a factor of 3 of the distance

othe 10th nearest neighbor. It is easy to see that the effect of changing k on
the quality of the answer is most significant for small values of k.
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