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Abstract. Text Classification systems are able to deal with large datasets, spend-
ing less time and human cost compared with manual classification. This is
achieved, however, in expense of loss in quality. Semi-Automatic Text Classifica-
tion (SATC) aims to achieve high quality with minimum human effort by ranking
the documents according to their estimated certainty of being correctly classified.
This paper introduces the Document Difficulty Framework (DDF), a unification
of different strategies to estimate the document certainty, and its application to
SATC. DDF exploits the scores and thresholds computed by any given classifier.
Different metrics are obtained by changing the parameters of the three levels the
framework is lied upon: how to measure the confidence for each document-class
(evidence), which classes to observe (class) and how to aggregate this knowledge
(aggregation). Experiments show that DDF metrics consistently achieve high er-
ror reduction with large portions of the collection being automatically classified.
Furthermore, DDF outperforms all the reported SATC methods in the literature.

1 Introduction and Motivation

Automatic Text Classification (TC) provide much faster and cheaper classification than
human experts. However, even though there have been large improvements in the last
decades, human experts achieve higher quality. Since the introduction of automatic clas-
sifiers, two alternative options can be applied. Firstly, a full-automatic classification
system is applied, where every document is classified according to the decisions made
by the classifier. Secondly, a completely manual classification is performed, where hu-
man experts classify each document. The main drawbacks of the latter option are its
huge cost and potential unfeasibility for large collections. On the other hand, the qual-
ity achieved by the manual approach will be higher. Full automatic TC is preferred if
large datasets are used (i.e. webpage classification) or when lower quality is not as im-
portant as the human effort required. On the other hand, manual classification is the
best option for systems that require high-quality and have medium size such as law or
medical data. In general, the time saved by using an automatic system is leveraged with
the possible quality loss with respect to the manual classification.

This research focuses on an intermediate solution using Semi-Automatic Text Classi-
fication (SATC) [8, 1]. The main goal is to achieve high quality with minimum human



effort or, more specifically, to use human experts only for the documents that the au-
tomatic system is more likely to misclassify. Therefore, maximising the quality, while
minimising the cost. Given a set of documents to be labelled and a specific classifier,
a SATC algorithm needs to rank the documents according to the likelihood of their
classification decisions to be correct. The ranking allows experts to inspect documents
iteratively, starting with the most uncertain ones, until a specific point, where the rest of
the documents are automatically assigned. In addition, this strategy can be applied with
variable resources over time (i.e. less human experts could be available).

This paper introduces the Document Difficulty Framework (DDF), a family of doc-
ument certainty algorithms, and its application to SATC. DDF exploits the document-
class confidence scores computed by a classifier and the class thresholds given by any
class-based thresholding strategy to calculate the certainty of each document. This im-
plies that the class scores for all documents have to be computed. The framework
defines an array of different metrics, depending on three different dimensions: how
the document-class evidence is computed (evidence), which classes will be considered
(class), and how to aggregate a document-based certainty (aggregation).

The remainder of this paper is organised as follows: Section 2 presents the background
and related research. Section 3 introduces DDF, and analyses its different variations.
Experiments are explained and analysed in Sections 4. Finally, Section 5 concludes the
paper and presents the future work.

2 Background and Related Research

2.1 Multi-Label Text Classification

In multi-label TC (ML-TC), each document can belong to multiple classes. As a result,
a classification process assigns a boolean value to each pair (dj , ci) ∈ D × C, where
D is a set of documents and C is a set of predefined categories [9]. To achieve this
goal, most classifiers use a two-step procedure. Firstly, the classifier produces a score
for each pair (dj , ci), and then a thresholding strategy decides, for each of the scores,
if that value implies that the document belongs to the class (T) or not (F). Given a
classifier σ and a threshold function δ, both processes can be mathematically denoted
as: σ ∈ Σ : D × C → [0,∞], δ : Σ ×D × C → {T, F}.
There are different types of thresholding strategies, based on documents or topics. For
instance, using RCut [12], the R classes with higher score for a specific document are
selected. On the other hand, SCut computes the threshold per class which maximises its
quality (i.e. measured using F1) [12]. If the number of training examples for a category
is small, SCut can compute a very high or very low threshold from a global point of
view. To address these drawbacks, SCutFBR.1 and SCutFBR.0 were introduced [12].
These metrics modify the behaviour of SCut in the case that the quality obtained for a
class is lower than a value (fbr). The former strategy uses the highest ranked document
as threshold value, while SCutFBR.0 assigns an infinite value. As a result, SCutFBR.0
does not assign any document in any class with lower quality than fbr.



2.2 Semi Automatic Text Classification (SATC)

SATC assumes that neither manual, nor full automatic classification is the optimum
solution. This situation appears when full automatic classification achieves lower than
required quality, and a full manual classification is either too expensive or unfeasible
due to lack of resources. The foundation of SATC is that if we are able to separate
the documents with high probability to be correctly classified, and the ones that are
probably wrong, the latter can be inspected by human experts while the former will be
automatically classified. As a result, the resources (the human experts) are optimised,
while the quality remains high. To solve this task, SATC methods rank the documents
to be classified according to their uncertainty. SATC assumes that the documents with
higher certainty are probably better classified, whereas the documents with higher un-
certainty are incorrectly classified. Therefore, the quality is maximised if the human
annotators inspect the documents starting from the ones with higher uncertainty. The
possibility of combining human and automatic classification has been suggested be-
fore [13, 9, 6]. However, only two approaches have been proposed: Document Diffi-
culty and Utility-Theoretic Ranking. Both of them have been proven to be well-suited
for SATC. Nonetheless, their performance have never been compared in the literature.

Document Difficulty [8] uses the classification scores and thresholds as evidence to
compute the document certainty, where the labels with greater certainty are those with
larger relative difference with respect to their threshold. The aggregation of label con-
fidences is performed by averaging the confidences for those classes the document will
be labelled in. The reason for the name similarity is that DDF extends and generalises
the principles we explained in [8], mainly exploiting the classification scores and the
threshold values within a classifier-independent framework. However, while only one
method was proposed in that work, DDF represents a family of certainty metrics, where
the previous metric appears naturally as an special case. In addition, the evaluation is
also different. Our previous work evaluated the quality of the subset of automatically
classified documents, instead of the whole collection. This research analyses the quality
of the full test set, including both manual and automatic classified documents subsets.

The Utility-Theoretic Ranking (UT) method [1] optimises the global quality of the sys-
tem, exploiting the potential benefit of manually inspecting each document, using the
confidence scores of a classifier, and the gain in terms of quality that could be achieved,
if that label is actually correct. The main conceptual difference with our approach is
that UT exploits the collection information, whereas DDF focuses on each document
independently. Furthermore, DDF exploits threshold information, and class filtering for
the aggregated document certainty.

Similar to SATC, Active Learning (AL) ranks documents according to their benefit in
the learning process, selecting which unlabelled documents should be manually labelled
and being included as training examples. However, SATC focuses on the classification
step, while AL operates in the training phase, selecting the documents from which the
classifier can learn the most. Extensive research has been done related to single-label
AL [7, 10]. However, very limited research has tried to address the same problem in a
multi-label environment [4, 11].



2.3 Semi Automatic Text Classification Evaluation

SATC is evaluated using traditional classification quality measures such as micro-
averaged-F1, once the human and the automatic decisions have been combined. This
approach, introduced by Berardi et al. [1], provides quality values for different propor-
tions of the collection being automatically classified, where the most uncertain docu-
ments are manually classified. In addition, the goal of SATC is not only to compute the
quality but to analyse how it varies depending on the number or documents considered.
Therefore, quality variations with respect to the full automatic quality with the same
classifier are also computed. The main issue is that the relative quality increase is fully
dependent on the base quality, when all the documents are automatically classified. For
instance, in some cases, a 100% quality increase is impossible (i.e. full automatic clas-
sification achieving 95% quality), while more than 100% is possible for others, making
a comparison over different classifiers impossible. Berardi et al. [1] addressed these
challenges and introduced two alternatives based on the error reduction with respect to
the full automatic system, instead of its quality increase. Error Reduction at rank (ER)
measures the error reduction with a specific number of documents being automatically
classified, where Ep(n) models the error (defined as 1-quality) achieved by a classifier
p with n documents being manually classified,

ERp(n) =
Ep(0)− EP (n)

Ep(0)
(1)

Normalised Error Reduction at rank (NER) subtracts the error reduction at rank n
achieved by a random ranker ( n

|Te| , where |Te| is the size of the documents to be clas-
sified) from ER in order to obtain more meaningful quality values,

NERp(n) = ERp(n)−
n

|Te|
(2)

A third metric was also proposed by the same authors to include the specific position
of each document into the evaluation: Expected Normalised Error Reduction (ENER)
exploits the probability of a human expert inspecting n documents (Ps(n)),

ENERp =

|Te|∑
n=1

Ps(n) ·NERp(n) (3)

Ps(n) can follow different probability distributions, Berardi et al. [1] suggested the
definition shown below, where p models the probability of the next document to be
inspected,

Ps(n) =

{
pn−1 · (1− p) if n ∈ {1, ..., |Te|}
pn−1 if n = |Te| (4)

The value of p can be defined as a function of the expected ratio (ξ) of documents being
manually classified. p = 1

ξ·|Te| . Therefore, p is computed for different expected ratios
of manually classified documents. Extended information about this evaluation can be
found in Berardi et al. [1].



Table 1. DDF Levels. ci represents a class, d a document, and s the classifier’s score for each
document-class pair. t(ci) is the threshold for ci, and q(ci) is the estimated quality for ci.

Evidence Class Aggregation
ε; given d, ci, t(ci) γ; given d, ci, t(ci), ε α; given γ(ε, d, ·)

S s(d, ci) A ε(d, ci) M maxci∈C γ(ε, d, ci)
D ln(1 + |s(d, ci)− t(ci)|) P

{
ε(d, ci) if s(d, ci) ≥ t(ci)
0 otherwise

A avgci∈Cγ(ε, d, ci)

R ln(1 + |s(d,ci)−t(ci)|
t(ci)

) W avgci∈Cq(ci) · γ(ε, d, ci)

3 Document Difficulty Framework for SATC

The Document Difficulty Framework (DDF) is a family of document certainty metrics
within the context of TC. DDF extends and generalises the principles we explained
in previous research [8], exploiting the classification scores and the threshold values
within a classifier-independent framework to compute the document certainty. This
computation is divided into three different levels, inspired by the comparison of multi-
label AL metrics by Esuli et al. [4]: evidence, class and aggregation. The evidence
level computes the confidence value for each document and category, using their clas-
sification score and the class threshold. The class level specifies which classes are to be
considered in the final aggregation. The aggregation level combines the filtered confi-
dence levels, producing a document-based certainty.

DDF is based on the composition of the three transformation functions, one for each
level, where ε represents the evidence, γ the class, and α the aggregation level,

certainty(d) = α ({γ(ε(d, ·))}) (5)

A method within the framework consists in a specific strategy for each level. Table 1
summarises the different candidates analysed herein for each DDF levels. Each method
is represented as the concatenation of three letters, representing the strategy followed
in each one of the levels. For instance, following Table 1, the difficulty measured by the
DPA variation is defined as follows,

certainty(d) = avgci∈C:s(d,ci)≥t(ci) ln(1 + |s(d, ci)− t(ci)|) (6)

This method considers absolute distance for evidence function (D), only for positive
classes (P ), and computing the final aggregation as the average topic confidence (A).

3.1 Evidence Level

The evidence level is responsible for computing a confidence value for a document-
topic pair. It is modelled as a function ε ∈ E : D × C → [0,∞], where D denotes
the set of documents, and C the classes. Three candidates are considered for this level:
score (S), absolute difference (D) and relative difference (R).



The first strategy (S) follows the same principle as relevance sampling [7], exploiting
the score obtained by the classifier. It assumes that the higher the value the more relevant
the score. Therefore, classes with higher scores are the ones with more certainty.

The second method (D) exploits the score and the threshold, assuming that larger dis-
tances imply lower uncertainty and higher chance that the document is correctly classi-
fied. This assumption is similar to uncertainty sampling [7]. A logarithmic function is
applied to limit the effect of very large differences.

The last method (R) applies the same principles as the difference approach. However,
it uses a relative difference instead of the absolute value. The rationale is that the abso-
lute distances can be misleading. For instance, a distance of 0.2 would be much more
important if the threshold is 0.05 than if it is 0.6.

3.2 Class Level

The class level behaves as a filter, selecting whether to exploit the certainty of a specific
label, and hence, if it will be available at the next aggregation step or not. It is defined
as a function γ ∈ Γ : E ×D×C → [0,∞], where a composition with an element ε ∈ E
would be applied. Two candidates are considered for this level: all (A) and positive (P ).

The first strategy (A) consists on not applying any filtering, hence considering all the
confidence scores for a specific document.

The second method (P ) selects the classes for which the classification score is higher
or equal than the threshold. These are the classes which will be assigned to the doc-
ument if automatic classification is applied. This strategy aims to focus the difficulty
computation on the positive labels. In TC, the positive labels are more representative
that the negative ones due to the fact that the number of positive classes for a specific
document is usually much smaller than the number of negative ones. For example, the
average number of classes per document in Reuters-21578 is 1.24, while the number
of classes is 90. This approach assumes that if all classes are observed, the document
certainties are somehow diluted because most of the documents will obtain a high con-
fidence that do not belong to a large subset of the classes.

3.3 Aggregation Level

When multi-label data is used, a certainty value per document has to be provided, since
the ranking of the labels can not be used to select nor to rank documents. For example,
even if 90% of the most certain labels are selected, it is impossible to decide which
documents should be automatically classified. For this reason, the filtered evidence per
class should be combined into a single certainty metric for each document. This level
is defined as a function α ∈ A : {Γ} × D → [0,∞]. Typically, it will be applied to
the set of possible functions γ ∈ Γ , one for each class ci ∈ C. This is equivalent,
taken a document d and an evidence level function ε as inputs, to the set Γ (γ, ε, d) =
{γ(ε, d, ci) : ci ∈ C}. It should be noted that a one-to-one relation exists between the
set of classes used in the definition of Γ and Γ itself, and thus, this notation could be



simplified as in Table 1. Three candidates are considered for this level: maximum (M ),
average (A) and weighted (W ).

The first method (M ) selects the most certain class for each document. The goal is
to rank higher documents with at least one class correctly classified. This is specially
important for collections with a low number of classes per document.

The second method (A) averages the confidence values for the filtered classes, providing
a general estimation of how certain the class labels are.

The third method (W ) uses an averaged weighted linear combination (WLC), based on
the quality estimation per class. Classes with low expected quality are weighted less,
because even if their assignation seems certain, it is likely to be a misclassification. The
estimated quality values are obtained in the cross-validation phase.

4 Results and Discussion

4.1 Experimental Set-Up

The quality of the certainty algorithms for SATC is evaluated using ER and ENER [1].
ER is plotted with different percentages of the collection being manually classified,
while the ENER metric provides values to directly compare the quality achieved by
DDF methods with other state of the art approaches. Two traditional TC collections
(Reuters-21578 and 20-newsgroups) are used:

20-newsgroups is a collection of approximately 20, 000 newsgroup documents and
20 classes, with almost uniform distribution of documents over classes (Obtained from
http://people.csail.mit.edu/jrennie/20Newsgroups/). The split for the collection is based
on time as it is suggested. Cross-posting emails have not been considered. This collec-
tion has been selected to observe the behaviour of DDF with a single label collection.

Reuters-21578 contains structured information about newswire articles that can
be assigned to several classes. Two variations of the “ModApte” split are used.
Reuters-21578 uses only documents that belong to classes with at least one train-
ing and one test document. As a result, there are 7770/3019 documents for training and
testing, observing 90 classes with a highly skewed distribution over classes (same as
Yang et al. [12]). On the other hand, Reuters-21578-115 uses documents belonging to
classes with at least one training or testing document. This configuration has 9603/3299
documents for train and test respectively, and 115 classes. Reuters-21578-115 allows
a direct comparison with the results presented by Berardi et al. [1].

Three different families of classifiers have been used, namely Naive Bayes (Weka [5]
implementation), SVM using LibSVM [3], and our own implementation of k-NN. Doc-
uments are represented using ltc [2] and χ2 is used for feature selection: 5,000 features
for NB and k-NN for 20-newsgroups, and 3,000 for the others. SVM uses 10,000 fea-
tures (based on full automatic classification experiments). Stemming and stop-words
removal have been applied. SCutFBR.1 [12] thresholding strategy is applied with an fbr
value of 0.3 and a 5-fold cross-validation process, optimising micro-average-F1. The
SVM scores are obtained by running LibSVM with the option (-b 1).



(a) Reuters-21578 SPW (b) Reuters-21578-115 RAW (c) 20-newsgroups SPW

Fig. 1. Micro-averaged F1 evaluation for different ratios of manually classified documents.

(a) Reuters-21578 SPW (b) Reuters-21578-115 RAW (c) 20-newsgroups SPW

Fig. 2. Error Reduction for different ratios of manually classified documents.

4.2 Results

Figure 1 shows the absolute quality (micro-averaged F1) depending on the percentage
of manually classified documents. Due to clarity, only the best DDF metric per collec-
tion is shown. It illustrates how the best DDF metrics achieve high quality levels, while
manually assigning a small subset of the collections. For instance, for Reuters-21578,
micro-average F1 of more than 95% can be achieved with as few as 20% of the docu-
ments manually classified. Furthermore, they also show that perfect quality is achieved
with approximately 50 and 60% of documents manually classified for Reuters-21578
and Reuters-21578-115 respectively. 20-newsgroups appears to be a more challeng-
ing collection for SATC. Perfect quality is only achieved only after 80% of documents
are inspected by experts. The main reason for this seems to be the uniformed distribu-
tion of documents over classes and the high similarity between some of the classes. The
best performing model in all cases is SVM, while k-NN is the second best algorithm,
despite the fact that it performs poorly when applied to 20-newsgroups.



Table 2. 20-newsgroups ENER wrt. the expected ratio of manually classified docs (ξ). Best re-
sults per model in bold, best overall is underlined. Improvement (%) wrt. RPA between brackets.

NB kNN SVM
0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2

RPA .097 .164 .230 .073 .127 .185 .121 .194 .251
SAA -.014 (-114) -.021 (-113) -.030 (-113) .038 (-48) .058 (-55) .074 (-60) .044 (-64) .046 (-77) .037 (-85)
SAM .090 (-6) .151 (-8) .211 (-9) .070 (-5) .116 (-9) .161 (-13) .119 (-1) .195 (1) .265 (6)
SAW .012 (-88) .030 (-82) .061 (-74) .041 (-45) .062 (-51) .081 (-56) .012 (-90) .033 (-83) .069 (-72)
SPA .097 (0) .164 (0) .228 (-1) .073 (-1) .123 (-3) .175 (-6) .120 (-0) .197 (2) .267 (6)
SPM .096 (-0) .160 (-3) .218 (-5) .072 (-2) .119 (-6) .165 (-11) .120 (-1) .196 (1) .266 (6)
SPW .097 (1) .166 (1) .231 (0) .073 (-1) .125 (-2) .180 (-3) .121 (1) .198 (2) .268 (7)
DAA .094 (-3) .158 (-4) .219 (-5) .069 (-6) .116 (-9) .170 (-8) .119 (-2) .194 (0) .260 (4)
DAM .050 (-48) .077 (-53) .112 (-51) .048 (-34) .081 (-37) .119 (-35) .079 (-35) .136 (-30) .200 (-20)
DAW .091 (-6) .155 (-6) .216 (-6) .064 (-12) .107 (-16) .156 (-16) .117 (-3) .193 (-1) .259 (3)
DPA .097 (1) .166 (1) .234 (2) .073 (0) .127 (0) .186 (0) .121 (0) .197 (2) .262 (4)
DPM .096 (-0) .163 (-1) .226 (-2) .073 (-1) .124 (-3) .174 (-6) .121 (-0) .196 (1) .261 (4)
DPW .097 (1) .167 (2) .235 (2) .073 (0) .128 (1) .188 (1) .121 (0) .198 (2) .265 (6)
RAA .089 (-8) .153 (-7) .215 (-6) .068 (-8) .116 (-9) .171 (-7) .119 (-1) .195 (1) .260 (4)
RAM .066 (-31) .113 (-31) .172 (-25) .053 (-28) .095 (-25) .145 (-22) .092 (-24) .156 (-20) .216 (-14)
RAW .086 (-11) .150 (-8) .213 (-7) .064 (-13) .107 (-16) .159 (-14) .118 (-3) .193 (-0) .260 (3)
RPM .096 (-1) .160 (-3) .221 (-4) .073 (-0) .124 (-2) .176 (-5) .120 (-0) .193 (-0) .250 (-0)
RPW .097 (0) .165 (1) .232 (1) .073 (0) .128 (0) .187 (1) .121 (0) .195 (1) .256 (2)

ER evaluation is shown in Figure 2. Although the best model from this perspective is
SVM, it illustrates almost overlapped curves for all different classifiers, specially for
Reuters-21578-115. This result strongly supports the generalisation of DDF metrics.

Tables 2-4 allow to directly compare different SATC methods. They show the ENER
quality evaluation for all the DDF candidates, with different percentages of the docu-
ments expected to be manually classified (ξ). The best performing models presented in
the literature are chosen as baselines: The baselines for Reuters-21578-115 are the re-
sults reported by Berardi et al. [1] for their Utility-Theoretic method (UT ). The method
we introduced in [8], modelled as RPA within the DDF framework, is used as baseline
for the other two collections. UT quality for 20-newsgroups and Reuters-21578 was
not reported by Berardi et al. [1]. In all cases, the performance of DDF is higher when
SVM is used, instead of NB or k-NN. For Reuters-21578-115, one DDF metric (SVM
with a RAW configuration) outperforms both baselines (UT and RPA), as well as any
other DDF candidates. The improvements are as high as 14 and 50% with respect to UT
and RPA, respectively. In addition, DPA and DPW also outperform UT when ξ = 0.2.
All collections confirm the quality of DDF, with several candidates outperforming our
previously proposed method (RPA) [8].

For 20-newsgroups, there is almost not difference between the performance of candi-
dates applying average aggregation and those applying weighted aggregation (i.e. DPA
vs DPW). The main reason for this is that the classes quality are very similar. Fur-
thermore, although no one of the best candidates includes the aggregation based on
the maximum confidence (surprisingly being a single-label collection), this strategy
achieves high quality (i.e. SPM is virtually as good as the best candidate for SVM).

Reuters-21578 and Reuters-21578-115 are analysed together as their main differ-
ence is the existence of documents without any correct class for the latter. The first



Table 3. Reuters-21578 ENER wrt. the expected ratio of manually classified docs (ξ). Best
results per model in bold, best overall is underlined. Increment (%) wrt. RPA between brackets.

NB kNN SVM
0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2

RPA .101 .178 .245 .139 .233 .317 .156 .250 .321
SAA .027 (-73) .032 (-82) .026 (-89) .091 (-35) .155 (-33) .226 (-29) .050 (-68) .052 (-79) .042 (-87)
SAM .089 (-12) .162 (-9) .244 (-0) .102 (-27) .176 (-25) .251 (-21) .171 (10) .269 (8) .349 (9)
SAW .140 (38) .210 (19) .283 (16) .095 (-32) .162 (-30) .235 (-26) .157 (0) .246 (-1) .321 (0)
SPA .103 (2) .184 (4) .267 (9) .135 (-3) .221 (-5) .304 (-4) .193 (24) .297 (19) .376 (17)
SPM .094 (-8) .166 (-6) .248 (1) .120 (-14) .189 (-19) .260 (-18) .171 (9) .270 (8) .351 (9)
SPW .104 (2) .185 (4) .269 (10) .137 (-2) .225 (-3) .309 (-2) .192 (23) .297 (19) .376 (17)
DAA .105 (4) .183 (3) .265 (8) .163 (17) .234 (1) .300 (-5) .175 (12) .262 (5) .337 (5)
DAM .055 (-45) .093 (-48) .130 (-47) .064 (-54) .122 (-48) .196 (-38) .041 (-74) .074 (-71) .135 (-58)
DAW .081 (-20) .157 (-11) .242 (-1) .167 (20) .240 (3) .308 (-3) .157 (0) .248 (-1) .326 (2)
DPA .105 (4) .192 (8) .277 (13) .143 (2) .238 (2) .323 (2) .187 (19) .293 (17) .372 (16)
DPM .096 (-5) .174 (-2) .257 (5) .126 (-10) .197 (-16) .266 (-16) .164 (5) .262 (5) .342 (7)
DPW .105 (4) .193 (8) .280 (14) .144 (3) .241 (4) .329 (4) .187 (20) .294 (18) .374 (16)
RAA .115 (14) .189 (6) .267 (9) .138 (-1) .229 (-2) .310 (-2) .171 (9) .260 (4) .334 (4)
RAM .082 (-20) .135 (-24) .178 (-27) .064 (-54) .131 (-44) .209 (-34) .119 (-24) .192 (-23) .250 (-22)
RAW .126 (24) .205 (16) .285 (17) .158 (13) .245 (5) .323 (2) .211 (35) .295 (18) .361 (13)
RPM .093 (-8) .150 (-16) .193 (-21) .126 (-10) .195 (-16) .258 (-18) .136 (-13) .203 (-19) .254 (-21)
RPW .106 (5) .190 (7) .267 (9) .142 (2) .239 (3) .325 (3) .170 (9) .270 (8) .344 (7)

Table 4. Reuters-21578-115ENER wrt. the expected ratio of manually classified docs (ξ). Best
results per model in bold, best overall is underlined. Improvement (%) wrt. Utility-Theoretic (UT)
Ranking between brackets (Berardi et al [1]).

NB kNN SVM
0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2

UT .145 .221 .285 .145 .221 .285 .145 .221 .285
SAA .015 (-90) .019 (-91) .014 (-95) .060 (-58) .109 (-51) .172 (-40) .032 (-78) .035 (-84) .032 (-89)
SAM .111 (-23) .165 (-25) .230 (-19) .058 (-60) .113 (-49) .186 (-35) .127 (-12) .206 (-7) .282 (-1)
SAW .133 (-9) .187 (-16) .248 (-13) .065 (-55) .116 (-48) .180 (-37) .127 (-12) .200 (-10) .267 (-6)
SPA .068 (-53) .142 (-36) .224 (-21) .063 (-56) .132 (-40) .216 (-24) .103 (-29) .196 (-11) .283 (-1)
SPM .054 (-63) .119 (-46) .200 (-30) .056 (-61) .112 (-49) .185 (-35) .092 (-37) .179 (-19) .265 (-7)
SPW .067 (-53) .142 (-36) .224 (-21) .064 (-56) .134 (-39) .220 (-23) .102 (-30) .196 (-11) .283 (-1)
DAA .097 (-33) .153 (-31) .221 (-23) .139 (-4) .199 (-10) .260 (-9) .114 (-21) .194 (-12) .274 (-4)
DAM .032 (-78) .047 (-79) .063 (-78) .070 (-52) .121 (-45) .184 (-35) .055 (-62) .100 (-55) .170 (-40)
DAW .039 (-73) .101 (-54) .181 (-36) .141 (-3) .202 (-8) .265 (-7) .089 (-39) .173 (-22) .260 (-9)
DPA .069 (-52) .147 (-33) .230 (-19) .067 (-54) .144 (-35) .234 (-18) .101 (-30) .200 (-9) .292 (2)
DPM .055 (-62) .121 (-45) .201 (-29) .059 (-59) .120 (-46) .195 (-31) .091 (-37) .182 (-18) .271 (-5)
DPW .069 (-52) .148 (-33) .232 (-19) .067 (-54) .146 (-34) .237 (-17) .102 (-30) .201 (-9) .293 (3)
RAA .136 (-6) .186 (-16) .243 (-15) .121 (-16) .199 (-10) .273 (-4) .129 (-11) .201 (-9) .269 (-5)
RAM .077 (-47) .113 (-49) .143 (-50) .062 (-57) .125 (-43) .199 (-30) .104 (-28) .170 (-23) .235 (-18)
RAW .147 (2) .204 (-8) .264 (-7) .133 (-8) .209 (-6) .280 (-2) .167 (15) .240 (9) .306 (7)
RPA .055 (-62) .124 (-44) .195 (-32) .065 (-55) .141 (-36) .231 (-19) .087 (-40) .178 (-19) .266 (-7)
RPM .041 (-72) .081 (-64) .118 (-58) .060 (-59) .120 (-46) .194 (-32) .073 (-49) .148 (-33) .221 (-22)
RPW .067 (-54) .143 (-36) .220 (-23) .066 (-54) .144 (-35) .236 (-17) .097 (-33) .193 (-13) .282 (-1)



Table 5. Average ENER evaluation for DDF patterns and ξ = 0.1

Collection Model S** D** R** *A* *P* **A **M **W

20newsgroups
NB .108 .148 .151 .107 .164 .131 .137 .139
kNN .100 .114 .116 .095 .125 .111 .110 .109
SVM .144 .186 .188 .149 .196 .170 .179 .168

Reuters21578 115
NB .129 .119 .142 .131 .130 .129 .108 .154
kNN .119 .155 .156 .155 .132 .154 .118 .158
SVM .169 .175 .188 .169 .186 .167 .164 .201

Reuters21578
NB .157 .165 .174 .152 .179 .160 .147 .190
kNN .188 .212 .212 .188 .220 .218 .168 .225
SVM .238 .239 .245 .211 .271 .236 .211 .275

observation, in terms of performance, is that models considering positive classes lose
their competitiveness against selecting all classes, for Reuters-21578-115. The reason
is that this strategy was conceived for collections where test documents have at least one
correct class, as documents with no classes are assigned a large uncertainty. This also
explains the poor performance of our previous method [8], with decreases of more than
50% ENER, both with respect to the best DDF metric and UT. Another interesting dif-
ference is that, while there is a clear winner for Reuters-21578-115 (RAW), there
is none for Reuters-21578. Furthermore, the qualities achieved by the best model
in Reuters-21578 are significantly higher than those for Reuters-21578-115. This
means that the addition of documents without correct classes makes the SATC prob-
lem more complex to solve, or at least that DDF metrics are less suited for this type
of datasets. Results also show that SAA (and SAW for 20-newsgroups because of the
similar qualities per class) is only suited for classifiers that do not normalise the scores
per document. SAA performs as a random ranker for this type of classifiers which in-
clude the versions of NB and SVM presented on this paper. If the classification scores
are normalised per document (

∑
ci∈C s(d, ci) = 1), SAA produces the same difficulty,

independently of the document. Other very poor metric is DAM, because the highest
confidence based on difference is usually based on a very low (or even zero) score.
Therefore, the certainty computation will be uniquely based on this information.

Table 5 summarises the average quality for candidates sharing two strategies, with
ξ = 0.1 (arbitrarily chosen). For instance, S** averages the error reduction for ev-
ery variation using positive labels (this is, it encapsulates information about SAA,
SAM, SAW, SPA, SPM, and SPW). This analysis provides information about which
strategies are better for each level in different conditions, and it helps to understand
some of the previously reported results from a general perspective. For the evidence
level, the best strategy is the relative difference, independently of classifier and col-
lection. This result confirms our previous assumptions made for the RPA method [8].
The class level illustrates that the selection of positive classes achieves good quality,
as long as the assumption that all the documents have at least one correct class is cor-
rect. Otherwise, all classes should be considered. The aggregation level shows that the
exploitation of quality estimation outperforms the other strategies for Reuters-21578
and Reuters-21578-115. All strategies perform similarly for 20-newsgroups.



5 Conclusions and Future Work

SATC represents a largely unexplored task within TC which is critical in environments
where high quality classification is needed, but resources are limited. Its main goal
is to achieve high quality with minimum human effort, minimising the potential cost.
This research introduces DDF, a document certainty framework based on classification
scores and class thresholds, and its application to SATC.

DDF generalises several methods by abstracting three different levels, specifying how
to manipulate the scores and thresholds to obtain a document certainty measure. Results
show that DDF metrics achieve virtually perfect classification with as low as 50% of
documents being classified. SVM is the best classifier for DDF and RAW is its best
overall variation, with the exception of 20-newsgroups, where SPW and DPW are the
best ones. DDF outperforms all the previously proposed methods in the literature for
SATC. The strategy analysis shows that the best models should include a relative dif-
ference of scores, and the exploitation of estimated class quality. In addition, observing
only the positive classes for a document achieves better quality, but only if all docu-
ments belong to at least one class.

Future work will provide deeper analysis of the combination between difference strate-
gies, as well as their behaviour for different ratios of the collection. The combination of
DDF and the Utility-Theoretic Ranking method, and the combination of DDF values as
features for a meta-ranker are also interesting lines of research.
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