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Recommender Systems

= Content-based filtering (CB), Collaborative Filtering (CF), Hybrid Filtering (HF)
= For example: User-based Collaborative Filtering
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Motivation

Can we detect ambiguous users?
In fact, when Is a user considered ambiguous?
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Hypothesis

The amount of uncertainty (ambiguity)
In user data may correlate with the
accuracy of a system’s
recommendations
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Research Question

How to dynamically adapt a recommendation strategy to the
user’s preference information available at a certain time?
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Research Question

How to dynamically adapt a recommendation strategy to the
user’s preference information available at a certain time?

Or, if we predict which are the ambiguous users, can we treat
them in a way such the system’s performance increases?
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Proposal

1. Define a predictor of performance y=1vy(u, 1,1, ...)

2. Introduce the predictor in an adaptive strategy:
a) Evaluate its predictiveness using correlation with performance measure
b) Evaluate final performance: static vs adaptive strategy
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Predictor definition

= Based on performance prediction from Information Retrieval

* “Estimation of the system’s performance in response to a specific query”

= User clarity: captures uncertainty in user data

* Distance between the user’s and the system’s probability model

clarity (u)= > p(x|u)log(

user’s model

Xe X

J system’s model

« X may be: users, items, ratings, or a combination
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Applications

= Neighbour weighting in Collaborative Filtering
» User’s neighbours are weighted according to their similarity
* (Can we take into account the neighbour’s confidence/ambiguity?

= Hybrid recommendation
« \Weight is the same for every item and user (learnt from training)
« What about boosting those users predicted to perform better for some method?
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Adaptive Strategies

= User neighbour weighting
* Static: g(u,i)=C > sim(u,v)xrat(v,i)

ve N [u]
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Adaptive Strategies

= User neighbour weighting 1

* Static: g(u,i)=C > sim(u,v)xrat(v,i)
ve N [u]

« Adaptive: g(u,i)y=C > sim (u,v)x rat(v,i)
ve N [u]
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Adaptive Strategies

= Hybrid recommendation

ostatie g (uii)=Ax g, (Ui)+ (1= A)x g, (U.i)
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Adaptive Strategies

= Hybrid recommendation 3

ostatie g (uii)=Ax g, (Ui)+ (1= A)x g, (U.i)

+ Adaptive: g(u,i): gRl(u,i)+(l—@x 9., (U,i)
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Results — Neighbour weighting

= Correlation analysis 1
« With respect to Neighbour Goodness metric: “how good a neighbour is to her vicinity”

% training  10%  20% 30% 40% 50% 60% 70% 80% 90%
correlation -0.10 0.10 0.18 0.18 0.18 0.17 0.17 0.15 0.15

= Performance [1] (MAE = Mean Average Error, the lower the better)
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Results — Neighbour weighting

= Correlation analvsis m

Positive, although not very strong correlations

= Performance [1] (MAE = Mean Average Error, the lower the better)

Improvement of over 5% wrt. the baseline
Plus, it does not degrade performance
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Results — Hybrid recommendation

= Correlation analysis 2
* With respect to nDCG@50 (nDCG, normalized Discount Cumulative Gain)

Predictor CBF IB TF-L1 TF-L2 UB Median Mean
ItemSimple 0.257 0.146 0.521 0.564 0.491 0.491 0.396
ItemUser 0.252 0.188 0.534 0.531 0.483 0.483 0.398
RatUser 0.234 0.182 0.507 0.516 0.469 0.469 0.382
Ratltem 0.191 0.184 0.442 0.426 0.395 0.395 0.328
IRUser 0.171 -0.092 0.253 0.399 0.257 0.253 0.198
IRItem 0.218 0.152 0.453 0.416 0.372 0.372 0.322
IRUserltem 0.265 0.105 0.523 0.545 0.444 0.444 0.376

= Performance 3 nDCG@50
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Results — Hybrid recommendation

= Correlation analysis

In average, most of the predictors obtain positive, strong correlations

= Performance [z

Adaptive strategy outperforms static for
different combination of recommenders

odeling, Adaptation and Personalizati I R G

July 13, Girona, Spain

IR Group @ UAM



Contributions

= Inferring user’s performance in a recommender system

= Building adaptive recommendation strategies

« Dynamic neighbour weighting: according to expected goodness of neighbour
« Dynamic hybrid recommendation: based on predicted performance

= Encouraging results
« Adaptive strategies obtain better (or equal) results than static
* Positive predictive power (good correlations between predictors and metrics)
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Future Work

What is performance?

We need a theoretical background
« Why do some predictors work better?

Explore other input sources
 Implicit data (with time)
« Social links

Larger datasets
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FW — Performance definition

RMSE?

Precision?

User satisfaction?
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FW — Theoretical background

Predictor CBF JB TF-L1 TF-12 UB Median  Mean
ItemSimple 0.257 14 0.521 0.564 0.491 0.491 0.396
ItemUser 0.252 0.188 0.534 0.531 0.483 0.483 0.398
RatUser 0.234 0.182 0.507 0.516 0.469 0.469 0.382
Ratltem O442— D=2 0.395 0.328
IRUser : 0.253 0.198
IRItem 0.218 = J.4T0 : 0.372 0.322
IRUserltem 0.265 A1t 0.523 0.545 0.444 0.444 0.376
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FW — Other input sources
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FW — Other input sources

Y=v(u, ...)
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FW — Other input sources

Time Tzer Iten
1108335607000 387 1330 1[ 1[(11
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FW — Other input sources

D)
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Questions to the committee

= In the same way as we have translated the performance prediction concept from
IR to RS, Is there any concept from the User Modelling area which infers the
ambiguity in a user profile and can be incorporated in a similar way into RS?

= Up to now, we have focused our research on user-based CF and ensemble
recommenders. We believe this idea may also be useful in a personalisation
scenario, where depending on how ambiguous a user is predicted to be, the
personalisation should receive more or less weight than the query. Could this be
Interesting for the UMAP community? Moreover, is there any other
application where the proposal may also be relevant?

= In theory, correlation values between a predictor and a performance metric should
uncover some aspects of the user, such as her ambiguity and uncertainty. At this
moment, we have checked that performance predictors are able to capture rating
noise (as in Amatriain et al., UMAP 2009). If a user study could be conducted,
which variables should be measured in order to validate our predictors?
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Answers (from reviews)

= Concepts from User Modelling area which infers the ambiguity in a
user profile
* More general: context
« Goal: how to find the best fit of the conditions for a particular user goal

= Useful for personalisation? Or any other application?
* It could be, but the model might be much more complex

= Variables to measure in a hypothetical user study
* |t depends on the user profile representation
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