
Precision-Oriented Evaluation of Recommender Systems:
An Algorithmic Comparison

Alejandro Bellogín, Pablo Castells, Iván Cantador
Universidad Autónoma de Madrid, Escuela Politécnica Superior

Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain

{alejandro.bellogin, pablo.castells, ivan.cantador}@uam.es

ABSTRACT

There is considerable methodological divergence in the way preci-

sion-oriented metrics are being applied in the Recommender Sys-

tems field, and as a consequence, the results reported in different

studies are difficult to put in context and compare. We aim to identi-

fy the involved methodological design alternatives, and their effect

on the resulting measurements, with a view to assessing their suita-

bility, advantages, and potential shortcomings. We compare five

experimental methodologies, broadly covering the variants reported

in the literature. In our experiments with three state-of-the-art re-

commenders, four of the evaluation methodologies are consistent

with each other and differ from error metrics, in terms of the com-

parative recommenders‟ performance measurements. The other

procedure aligns with RMSE, but shows a heavy bias towards

known relevant items, considerably overestimating performance.

Categories and Subject Descriptors: H.3.3 Infor-

mation Search and Retrieval – information filtering.

General Terms: Algorithms, Performance, Experimentation.

Keywords: Evaluation, precision metrics, error metrics.

1. INTRODUCTION
The evaluation of Recommender Systems (RS) has been an expli-

cit object of study in the field since its earliest days, and is still an

area of active research, where open questions remain [3,10]. The

dominant evaluation methodologies in off-line experimentation

have been traditionally error-based. There is however an increas-

ing realization that the quality of the ranking of recommended

items can be more important in practice (in terms of the effective

utility for users) than the accuracy in predicting specific prefe-

rence values. As a result, precision-oriented metrics are being

increasingly often considered in the field. Yet there is considera-

ble divergence in the way these metrics are being applied by

different authors, as a consequence of which, the results reported

in different studies are difficult to put in context and compare.

In the typical formulation of the recommendation problem, user

interests for items are represented as numeric ratings, some of

which are known. Based on this, the task of a recommendation

algorithm consists of predicting unknown ratings based on the

known ones and, in some methods, some additional available

information about items and users. With this formulation, the

accuracy of recommendations has been evaluated by measuring

the error between predicted and known ratings, by metrics such as

the Mean Average Error (MAE), and the Root Mean Squared

Error (RMSE). Although dominant in the literature, some authors

have argued this evaluation methodology is detrimental to the

field since the recommendations obtained in this way are not the

most useful for users [9]. Acknowledging this, recent works eva-

luate top-N ranked recommendation lists with precision-based

metrics [2,8,5,1], drawing from well-studied methodologies in the

Information Retrieval (IR) field.

Precision-oriented metrics measure the amount of relevant and

non-relevant retrieved items. A solid body of metrics, methodolo-

gies, and datasets has been developed over the years in the IR

field to measure this in different ways. There is however a major

difference between the RS and IR experimental settings. In ad-hoc

IR experiments, relevance knowledge is typically assumed to be

(not far from) complete –mainly because in the presence of a

search query, relevance is simplified to be a user-independent

property. However, in RS it is impractical to gather complete

preference information for each user in the system. In datasets

containing thousands of users and items, only a fraction of the

items that users like is generally known. The unknown rest are,

for evaluation purposes, assumed to be non-relevant. This is a

source of –potentially strong– bias in the measurements depend-

ing on how unknown relevance is handled.

To the best of our knowledge, a thorough analysis of precision-

oriented methodologies is still missing in the field. In fact, the

detailed alternatives in the evaluation procedures are not clearly

identified, and the extent to which they are equivalent or provide

comparable results has not been studied in depth. Reported results

differ in several orders of magnitude for the same metric on simi-

lar datasets and similar algorithms in different studies.

In this paper, we present a general methodological framework

for evaluating recommendation lists, covering different evaluation

approaches, most of them documented in the literature, and some

included here for the sake of the systematic consideration of

alternatives. The considered approaches essentially differ from

each other in the amount of unknown relevance that is added to

the test set. We use Precision, Recall, and normalized Discounted

Cumulative Gain (nDCG) [10] as representative precision-

oriented metrics. The purpose of our study is to assess the differ-

ences and potential equivalences resulting from the methodologi-

cal variants, and to what extent precision-based results relate or

differ from error-based metrics. We found that four of the metho-

dologies are consistent with each other in terms of the observed

recommenders‟ performance trend. The other methodology consi-

derably overestimates performance, and suffers from a strong bias

towards known relevant items.

2. A GENERAL METHODOLOGY FOR

EVALUATING RANKED ITEM LISTS
In order to evaluate ranked recommendations for a target user ,

we typically select a set of target items the recommender shall

rank. For that user and each item i in the list, we request a rating

prediction from the recommender, and we sort the target

items by decreasing order of predicted rating value. In IR termi-

nology, we sort based on the retrieval function . In off-line

Copyright is held by the author/owner(s).
RecSys’11, October 23–27, 2011, Chicago, Illinois, USA.

Copyright 2011 ACM 978-1-4503-0683-6/11/10...$10.00.

recommender system evaluation methodologies, a subset of the

known ratings is held off from the recommender as ground truth

for testing. These ratings play the role of known relevance in the

computation of precision metrics: highly rated items are consi-

dered relevant, and items with low ratings, or unrated, are taken as

non relevant. A (domain-specific) threshold value is often speci-

fied to define what a high rating means.

The main substantial difference between how this general eval-

uation scheme has been brought to practice by different authors

lies on how the set of target items is formed. In the following

subsections, we present some plausible generation strategies for

the list , and, when applicable, we reference works where each

strategy has been explicitly reported. Figure 1 summarizes how

the first four evaluation procedures differ from each other (note

that items already present in the user‟s profile are excluded in the

evaluation). We can see here that all the methodologies (except

AllItems) ignore some of the items. One of them (TestRatings)

uses a much smaller number of items than the others.

Figure 1. Graphical representation of the four methodologies.

Target user is represented with a solid triangle, crosses

represent the users’ ratings (unboxed ratings denote the train-

ing set). Black circles represent items included in .

In the remainder, we will use the following additional notation.

 and denote the set of all users and items, and × is the

subset of user-item pairs for which the rating is known.

and denote the training and test subsets into which the set

of known ratings is split for evaluation. We shall note as
 the set of items rated by u in the test set,

where denotes the known rating for i by u, similarly, we

define for the set of items rated by u in the training set.

2.1 TestRatings methodology
This procedure takes the same target item sets as error-based

evaluation. That is, for each user , the list consists of items

rated by u in the test set, . This is the methodology that

selects the smallest set of target items for each user, including no

unrated items at all. Different from the other procedures, in this

methodology, is therefore distinct for each user. The metho-

dology is used in [4] and [5], with a relevance threshold value of 4

in a 1-5 rating scale.

2.2 TestItems methodology
In contrast to the previous methodology, this one adds unrated –

therefore non-relevant– items to . Specifically, the list includes

for all users, all the items having a test rating by some user –and

no training rating by the target user, since it makes no sense to

predict known training ratings–, that is . In this

way, this list can be precomputed for all the users at the begin-

ning. An advantage of this approach is that all users are tested on

the same set of target items (except for the exclusion of items with

training ratings for each target user), which unifies the test condi-

tions for all users. This methodology has been used in [1] to eva-

luate item-based Collaborative Filtering (CF) recommenders.

2.3 TrainingItems methodology
An adaptation of the previous methodology when no information

about the ground truth (test set) wants to be used is defined by

selecting all the items belonging to the training set instead of test

set. In other words, every item rated by some user in the system is

selected –except, again, those rated by the target user–, i.e.,

 . This methodology may be useful when simulat-

ing a real system where no test is available.

2.4 AllItems methodology
A further more general alternative would be to select the whole

set of items (except, as before, those already rated by the target

user): . Thus, items with no ratings may appear in the

recommendation list. This makes no difference with respect to

TrainingItems for CF recommenders, since the algorithm would

not be able to recommend any item having no training ratings, but

could still make a difference for algorithms using other informa-

tion besides ratings (e.g. content-based). Note that compared to

TestItems, AllItems just adds a set of items which have no test

ratings –hence they are non relevant items. This should result in a

slight precision decrease which may be expected to affect all

recommenders evenly.

2.5 One-Plus-Random methodology
A more elaborate methodology has been recently proposed in [6]

and [2]. For each user, a set of highly relevant items is selected

among those contained in the test set, that is, . Then, a

set of non-relevant items is created by randomly selecting addi-

tional items, which we denote as . In [2], the authors set =

1000 and clarify that the set is selected out of those items in

the test set not rated by . Finally, for each item in , the

recommender is requested to produce a ranked recommendation

of the set . Precision and recall metrics for each

user are calculated by averaging the precision and recall values

obtained for the rankings associated to , over all items
 . The final performance values are simply the average of the

values obtained for each user.

In [2], the authors only consider precision and recall, but it is

possible to similarly compute any other precision-oriented metric

such as nDCG upon this procedure.

2.6 Discussion
Among the aforementioned set of methodologies, we can identify

TestRatings as a „cheap‟ methodology, in the sense that the evalu-

ation cost is the same as that of evaluating error-based metrics,

and the set of recommendations to be computed is minimum

compared to the other procedures. Since relevant items tend to be

rated much more frequently than non-relevant ones, the recom-

mender‟s performance is significantly overestimated compared to

real-world (fair) situations. TrainingItems and AllItems metho-

dologies represent the opposite end of the spectrum, adding a high

number of unrated items. These are considered non-relevant, thus

missing a small fraction of unknown positive relevance, and

underestimating precision. Finally, TestItems and One-Plus-

Random methodologies appear to be somewhat fairer with respect

to considering relevant and non-relevant items at the same time.

The latter, however, may depend on the number of non-relevant

TestItems

TrainingItems

AllItems

TestRatings

Target items selected by the methodology

User-item matrix

U

s

e

r

s

items considered (the higher this number, the smaller the perfor-

mance values) and, furthermore, on how the highly relevant items

are selected. In [6], the authors suggest to choose only those top-

rated items. But there may be users who never rate items with that

value and, in that case, the performance of those users could not

be evaluated. This drawback could be avoided by defining “top-

rated” with respect to each user‟s rating scale.

3. EXPERIMENTS
We now compare empirically the evaluation methodologies pre-

sented in the previous section. Specifically, we compare different

evaluation metrics applied to some state-of-the-art recommenda-

tion algorithms in two different training-test configurations, which

differ in how the test rating set is created.

In order to favor repeatability and comparison of results, we use

two predefined splits in the Movielens 100K dataset –which in-

cludes 943 users and 1682 items. Table 1 shows some statistics of

the dataset splits, such as the density and average number of users

and items in training and test for each split. The first partition

(D1) includes five disjoint random splits for cross-validation. The

second dataset (D2) restricts the number of items each user has in

the test set, creating a richer situation with respect to the number

of users being evaluated and the amount of available training data.

Table 1. Characteristics of the two evaluated training/test sets.

 D1 D2

Split information
80% / 20%

5 splits

10 items per user in test

2 splits

Average users in training / test 943 / 766.2 943 / 943

Average items in training / test 1651.6 / 1410.8 1677.5 / 1137

Average density in training / test 0.051 / 0.020 0.057 / 0.009

All the metric values reported herein have been computed using

the trec_eval program, considering users in place of queries, and

test ratings as relevance judgments (qrels). We show results on

precision, recall, and nDCG at cutoff 50, though we obtained

similar results for different cutoffs such as 5 and 10.

We ran three well-known state-of-the-art CF algorithms as im-

plemented in the Mahout library: a user-based strategy with 50

neighbors, denoted as UB50, an item-based strategy using ad-

justed cosine, denoted as IB, and a matrix factorization technique

with 50 factors, denoted as SVD.

Figure 2 summarizes the obtained results. A first relevant obser-

vation is that the comparative results with precision metrics are not

quite the same as with error metrics. Specifically, RMSE would

suggest that the IB recommender performs better than UB, while in

terms of precision metrics, IB appears to clearly underperform in all

the experimental configurations except TestRatings, which aligns

with RMSE. This suggests that IB better predicts low rating values

than UB, but does a poor job with the top user preferences –a

nuance that RMSE does not care for, but real users certainly would.

TestRatings results, on the other hand, match error-based me-

trics, probably because they are computed with the same item set.

In particular, as stated in [8], this methodology would create a

ranked list consisting of the top rated items, which may or may

not be related with the recommended items the user would actual-

ly get in a real application. Counting non-rated items as non-

relevant, in addition to low-rated items, results in an underestima-

tion of the true precision (named “modified precision” in [8]), but

may provide a better indicator of the actual user‟s experience.

We also observe a significant difference in the absolute perfor-

mance values (for any metric) obtained by the TestRatings as

compared to the rest of methodologies. In fact, these results are

similar to those reported in [8], since for all the methodologies

except TestRatings, performance values are very small.

We also see that the threshold value does make a difference in

the performance values –although the relative comparison be-

tween recommenders remains the same. Raising the relevance

threshold makes items rated as 3 in the top 50 now be considered

irrelevant, whereby P@50 naturally decreases. At the same time,

the total number of relevant items drops even faster, whereby

recall increases. The measured recall values are in fact extremely high,

over 0.9, which is clearly far from reflecting a realistic assessment.

Finally, we observe that the methodologies are consistent when

we compare the two evaluated splits: the same trend is observed,

although different absolute values are obtained. This result is not

straightforward, since in these experiments, the number of non-

relevant items is usually overestimated (an item which does not

appear in the user profile does not necessarily imply that it is non-

relevant –perhaps the user was not even aware of its existence). In

fact, as discussed in [3], recall depends heavily on the number of

relevant items that each user has rated, and therefore, it should

only be used for comparison purposes, not interpreted as an abso-

Figure 2. Comparison results, D1 above, D2 below. TR_3 and TR_4 stand for the TestRatings evaluation methodology with

threshold rating values for relevant items set to 3 and 4, respectively. TeI, TrI, AI, and OPR respectively denote TestItems,

TrainingItems, AllItems, and One-Plus-Random evaluation methodologies.

0.85

0.90

0.95

1.00

1.05

1.10

SVD IB UB

RMSE

0

0.05

0.30

0.35

0.40

TR 3 TR 4 TeI TrI AI OPR

P@50 SVD50
IB
UB50

0

0.20

0.90

0.10

0.30

1.00

TR 3 TR 4 TeI TrI AI OPR

Recall@50 SVD50
IB
UB50

0

0.90

0.10

0.05

0.80

1.00

TR 3 TR 4 TeI TrI AI OPR

nDCG@50 SVD50
IB
UB50

0

0.01

0.02

0.03

0.11

0.16

TR 3 TR 4 TeI TrI AI OPR

P@50 SVD50

IB

UB50

0,85

0,90

0,95

1,00

1,05

1,10

SVD IB UB

RMSE

0

0.90

0.10

0.05

0.80

1.00

TR 3 TR 4 TeI TrI AI OPR

nDCG@50 SVD50

IB

UB50

0

0,20

1.00

0,10

0,30

TR 3 TR 4 TeI TrI AI OPR

Recall@50 SVD50

IB

UB50

lute measure. Hence, once this situation has been normalized

(D2), the performance results might vary, which does not occur in

our experiments. In conclusion, the evaluated methodologies are

consistent with respect to the test size, since they obtain almost

the same results in both situations, whether the test size for each

user is random (D1) or fixed (D2).

4. DISCUSSION
As we described above, there are inconsistencies between Te-

stRatings and the rest of the methodologies, mainly because this

procedure does not consider user-item pairs without test rating in

the target lists, and thus, it only evaluates recommendations

over known relevance, which is an unrealistic situation in prac-

tice. In terms of absolute performance values, this methodology

does not discriminate well among the recommenders, in compari-

son with the other methodologies.

The One-Plus-Random procedure, on the other hand, is not able to

find so many relevant items in the top-50 as the rest of methodologies

since, by definition, each produced ranking contains only one relevant

item. However, since that one item is highly relevant (a „5‟ rating

value), it results in a nDCG value comparable to those of the rest of

methodologies. The relative overall comparison between systems is

the same as in the other methodologies, except TestRatings.

We can also observe that TrainingItems and AllItems are com-

pletely equivalent, which is natural since there are no unrated

items in this dataset and only CF recommenders have been eva-

luated. Besides, these methodologies always give lower perfor-

mance values than TestItems since, as discussed earlier, they add

non-relevant items in the final ranking list.

Finally, our study also suggests that taking the absolute values

of metrics literally may be misleading. We see that most of the

time, in our experiments, all the procedures except TestRatings

(the less realistic one) result in metric values below 0.1. This does

not imply the systems are unacceptably bad as it might appear –

these systems get RMSE around or below 1, which is not optimal

but acceptable state-of-the-art. Although such precision values are

low, they afford a sound relative comparison of systems to each other.

5. CONCLUSIONS AND FUTURE WORK
We have described and compared five evaluation methodologies

proposed in the literature on three state-of-the-art recommenders

under two evaluation conditions, i.e., different training/test set

generation. In the experiments, we have found four methodologies

that are consistent with each other, in the sense that the same trend

is observed on the performance of the recommenders. The other

methodology has proved to overestimate performance values, and

leads to a different comparative assessment of the recommenders.

Our experiments lead to questioning again the suitability of er-

ror metrics. As in [8], we have found that there is no direct equi-

valence between results with error-based and precision-based

metrics. Common sense suggests that putting more relevant items

in the top-N is more important for real recommendation effective-

ness than being accurate with predicted rating values, which are

usually not even shown to real users. Our study confirms that

measured results differ between these two perspectives. An online

experiment, where real users‟ feedback is contrasted to the theo-

retic measurements, might shed further light for an objective

assessment and finer analysis of which methodology better cap-

tures user satisfaction.

The suitability of precision-oriented metrics to a typical RS

evaluation framework also deserves further and deeper investiga-

tion. We have shown different methodologies whose differences

arise in how unknown relevance is added to the test set. This is a

key point when evaluating RS, in contrast to IR, since we have to

define training and test sets, whereas in IR, we would have the

whole dataset available, first, for the indexing task, and then, for

the retrieval task. In RS, we need to separate the data into training

and test; the more the training available, the better the algorithm

will learn the users‟ preferences. However, the smaller the test set,

the smaller the confidence about the obtained results. Further-

more, depending on how the recommendation lists are created

different performance values are obtained with precision-oriented

metrics, as we have presented here. An alternative solution may

be to obtain a deeper integration between RS and IR algorithms,

like the one presented recently in [1].

On the other hand, we have focused on different methodologies,

not considering the metrics themselves. We plan to test how other

IR metrics, such as Mean Average Precision (MAP), and Mean

Reciprocal Rank (MRR), and other metrics proposed in the con-

text of RS, such as NDPM and ROC curve [10], compare with the

results presented here, and whether they are sensitive or not to the

experimental configuration, as we have analyzed for precision-

oriented metrics. An additional source of divergence in evaluation

results is how the training and test sets are created. In this paper,

we have experimented with two different splits of a particular

dataset: random 5-fold cross-validation partitions, and a data split

where the number of items in the test set is fixed. Many further

options can be considered, such as leave-one-out, selecting a

percentage of data per user, and restricting the number of items in

the training set for each user. An important restriction, not com-

monly taken into account, is that of generating a temporal split,

which better reflects real-world conditions in which recommender

systems work. Some authors (see [7], among others) have ex-

plored this issue in the context of the Netflix dataset. A compre-

hensive analysis of precision-oriented metrics in that context

would be worthwhile.

Acknowledgements. This work was supported by the Spanish

Ministry of Science and Innovation (TIN2008-06566-C04-02) and

the Community of Madrid (CCG10-UAM/TIC-5877).

6. REFERENCES
[1] A. Bellogín, J. Wang, and P. Castells. Text Retrieval Methods

Applied to Ranking Items in Collaborative Filtering. In ECIR,

Springer, 2011

[2] P. Cremonesi, Y. Koren, and R. Turrin. Performance of Recom-

mender Algorithms on Top-N Recommendation Tasks. In Rec-

Sys, ACM, 2010

[3] J. L. Herlocker, J. A. Konstan, L. G. Terveen, J. T. Riedl. Eva-

luating Collaborative Filtering Recommender Systems. ACM

Transactions on Information Systems, ACM, 2004

[4] T. Jambor and J. Wang. Goal-Driven Collaborative Filtering – A

Directional Error Based Approach. In ECIR, Springer, 2010

[5] T. Jambor and J. Wang. Optimizing Multiple Objectives in

Collaborative Filtering. In RecSys, ACM, 2010

[6] Y. Koren. Factorization Meets the Neighborhood: a Multifaceted

Collaborative Filtering Model. In KDD, ACM, 2008

[7] N. Lathia, S. Hailes, and L. Capra. kNN CF: A Temporal Social

Network. In RecSys, ACM, 2008

[8] M.R. McLaughlin and J.L. Herlocker. A Collaborative Filtering

Algorithm and Evaluation Metric That Accurately Model the Us-

er Experience. In SIGIR, ACM, 2004

[9] S. M. McNee, J. Riedl, J. A. Konstan. Being Accurate Is Not

Enough: How Accuracy Metrics Have Hurt Recommender Sys-

tems. In CHI ’06 Extended Abstracts in Computing Systems,

ACM, 2006

[10] G. Shani and A. Gunawardana. Evaluating Recommendation

Systems. Recommender Systems Handbook, Springer, 2011

