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ABSTRACT 

There is considerable methodological divergence in the way preci-

sion-oriented metrics are being applied in the Recommender Sys-

tems field, and as a consequence, the results reported in different 

studies are difficult to put in context and compare. We aim to identi-

fy the involved methodological design alternatives, and their effect 

on the resulting measurements, with a view to assessing their suita-

bility, advantages, and potential shortcomings. We compare five 

experimental methodologies, broadly covering the variants reported 

in the literature. In our experiments with three state-of-the-art re-

commenders, four of the evaluation methodologies are consistent 

with each other and differ from error metrics, in terms of the com-

parative recommenders‟ performance measurements. The other 

procedure aligns with RMSE, but shows a heavy bias towards 

known relevant items, considerably overestimating performance. 

Categories and Subject Descriptors: H.3.3 Infor-

mation Search and Retrieval – information filtering.  

General Terms: Algorithms, Performance, Experimentation. 

Keywords: Evaluation, precision metrics, error metrics. 

1. INTRODUCTION 
The evaluation of Recommender Systems (RS) has been an expli-

cit object of study in the field since its earliest days, and is still an 

area of active research, where open questions remain [3,10]. The 

dominant evaluation methodologies in off-line experimentation 

have been traditionally error-based. There is however an increas-

ing realization that the quality of the ranking of recommended 

items can be more important in practice (in terms of the effective 

utility for users) than the accuracy in predicting specific prefe-

rence values. As a result, precision-oriented metrics are being 

increasingly often considered in the field. Yet there is considera-

ble divergence in the way these metrics are being applied by 

different authors, as a consequence of which, the results reported 

in different studies are difficult to put in context and compare. 

In the typical formulation of the recommendation problem, user 

interests for items are represented as numeric ratings, some of 

which are known. Based on this, the task of a recommendation 

algorithm consists of predicting unknown ratings based on the 

known ones and, in some methods, some additional available 

information about items and users. With this formulation, the 

accuracy of recommendations has been evaluated by measuring 

the error between predicted and known ratings, by metrics such as 

the Mean Average Error (MAE), and the Root Mean Squared 

Error (RMSE). Although dominant in the literature, some authors 

have argued this evaluation methodology is detrimental to the 

field since the recommendations obtained in this way are not the 

most useful for users [9]. Acknowledging this, recent works eva-

luate top-N ranked recommendation lists with precision-based 

metrics [2,8,5,1], drawing from well-studied methodologies in the 

Information Retrieval (IR) field. 

Precision-oriented metrics measure the amount of relevant and 

non-relevant retrieved items. A solid body of metrics, methodolo-

gies, and datasets has been developed over the years in the IR 

field to measure this in different ways. There is however a major 

difference between the RS and IR experimental settings. In ad-hoc 

IR experiments, relevance knowledge is typically assumed to be 

(not far from) complete –mainly because in the presence of a 

search query, relevance is simplified to be a user-independent 

property. However, in RS it is impractical to gather complete 

preference information for each user in the system. In datasets 

containing thousands of users and items, only a fraction of the 

items that users like is generally known. The unknown rest are, 

for evaluation purposes, assumed to be non-relevant. This is a 

source of –potentially strong– bias in the measurements depend-

ing on how unknown relevance is handled. 

To the best of our knowledge, a thorough analysis of precision-

oriented methodologies is still missing in the field. In fact, the 

detailed alternatives in the evaluation procedures are not clearly 

identified, and the extent to which they are equivalent or provide 

comparable results has not been studied in depth. Reported results 

differ in several orders of magnitude for the same metric on simi-

lar datasets and similar algorithms in different studies.  

In this paper, we present a general methodological framework 

for evaluating recommendation lists, covering different evaluation 

approaches, most of them documented in the literature, and some 

included here for the sake of the systematic consideration of 

alternatives. The considered approaches essentially differ from 

each other in the amount of unknown relevance that is added to 

the test set. We use Precision, Recall, and normalized Discounted 

Cumulative Gain (nDCG) [10] as representative precision-

oriented metrics. The purpose of our study is to assess the differ-

ences and potential equivalences resulting from the methodologi-

cal variants, and to what extent precision-based results relate or 

differ from error-based metrics. We found that four of the metho-

dologies are consistent with each other in terms of the observed 

recommenders‟ performance trend. The other methodology consi-

derably overestimates performance, and suffers from a strong bias 

towards known relevant items. 

2. A GENERAL METHODOLOGY FOR 

EVALUATING RANKED ITEM LISTS 
In order to evaluate ranked recommendations for a target user  , 

we typically select a set    of target items the recommender shall 

rank. For that user and each item i in the list, we request a rating 

prediction         from the recommender, and we sort the target 

items by decreasing order of predicted rating value. In IR termi-

nology, we sort    based on the retrieval function   . In off-line 
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recommender system evaluation methodologies, a subset of the 

known ratings is held off from the recommender as ground truth 

for testing. These ratings play the role of known relevance in the 

computation of precision metrics: highly rated items are consi-

dered relevant, and items with low ratings, or unrated, are taken as 

non relevant. A (domain-specific) threshold value is often speci-

fied to define what a high rating means. 

The main substantial difference between how this general eval-

uation scheme has been brought to practice by different authors 

lies on how the set    of target items is formed. In the following 

subsections, we present some plausible generation strategies for 

the list   , and, when applicable, we reference works where each 

strategy has been explicitly reported. Figure 1 summarizes how 

the first four evaluation procedures differ from each other (note 

that items already present in the user‟s profile are excluded in the 

evaluation). We can see here that all the methodologies (except 

AllItems) ignore some of the items. One of them (TestRatings) 

uses a much smaller number of items than the others. 

Figure 1. Graphical representation of the four methodologies. 

Target user is represented with a solid triangle, crosses 

represent the users’ ratings (unboxed ratings denote the train-

ing set). Black circles represent items included in   . 

   
In the remainder, we will use the following additional notation. 

 and  denote the set of all users and items, and      ×   is the 

subset of user-item pairs for which the rating is known.     

and     denote the training and test subsets into which the set 

of known ratings is split for evaluation. We shall note as     
                 the set of items rated by u in the test set, 

where        denotes the known rating for i by u, similarly, we 

define     for the set of items rated by u in the training set. 

2.1 TestRatings methodology 
This procedure takes the same target item sets as error-based 

evaluation. That is, for each user  , the list    consists of items 

rated by u in the test set,       . This is the methodology that 

selects the smallest set of target items for each user, including no 

unrated items at all. Different from the other procedures, in this 

methodology,    is therefore distinct for each user. The metho-

dology is used in [4] and [5], with a relevance threshold value of 4 

in a 1-5 rating scale. 

2.2 TestItems methodology 
In contrast to the previous methodology, this one adds unrated –

therefore non-relevant– items to   . Specifically, the list includes 

for all users, all the items having a test rating by some user –and 

no training rating by the target user, since it makes no sense to 

predict known training ratings–, that is             . In this 

way, this list can be precomputed for all the users at the begin-

ning. An advantage of this approach is that all users are tested on 

the same set of target items (except for the exclusion of items with 

training ratings for each target user), which unifies the test condi-

tions for all users. This methodology has been used in [1] to eva-

luate item-based Collaborative Filtering (CF) recommenders. 

2.3 TrainingItems methodology 
An adaptation of the previous methodology when no information 

about the ground truth (test set) wants to be used is defined by 

selecting all the items belonging to the training set instead of test 

set. In other words, every item rated by some user in the system is 

selected –except, again, those rated by the target user–, i.e., 

          . This methodology may be useful when simulat-

ing a real system where no test is available. 

2.4 AllItems methodology 
A further more general alternative would be to select the whole 

set of items (except, as before, those already rated by the target 

user):         . Thus, items with no ratings may appear in the 

recommendation list. This makes no difference with respect to 

TrainingItems for CF recommenders, since the algorithm would 

not be able to recommend any item having no training ratings, but 

could still make a difference for algorithms using other informa-

tion besides ratings (e.g. content-based). Note that compared to 

TestItems, AllItems just adds a set of items which have no test 

ratings –hence they are non relevant items. This should result in a 

slight precision decrease which may be expected to affect all 

recommenders evenly. 

2.5 One-Plus-Random methodology  
A more elaborate methodology has been recently proposed in [6] 

and [2]. For each user, a set of highly relevant items is selected 

among those contained in the test set, that is,         . Then, a 

set of non-relevant items is created by randomly selecting   addi-

tional items, which we denote as    . In [2], the authors set   = 

1000 and clarify that the set     is selected out of those items in 

the test set not rated by  . Finally, for each item   in    , the 

recommender is requested to produce a ranked recommendation 

of the set            . Precision and recall metrics for each 

user are calculated by averaging the precision and recall values 

obtained for the rankings associated to    , over all items   
   . The final performance values are simply the average of the 

values obtained for each user. 

In [2], the authors only consider precision and recall, but it is 

possible to similarly compute any other precision-oriented metric 

such as nDCG upon this procedure. 

2.6 Discussion 
Among the aforementioned set of methodologies, we can identify 

TestRatings as a „cheap‟ methodology, in the sense that the evalu-

ation cost is the same as that of evaluating error-based metrics, 

and the set of recommendations to be computed is minimum 

compared to the other procedures. Since relevant items tend to be 

rated much more frequently than non-relevant ones, the recom-

mender‟s performance is significantly overestimated compared to 

real-world (fair) situations. TrainingItems and AllItems metho-

dologies represent the opposite end of the spectrum, adding a high 

number of unrated items. These are considered non-relevant, thus 

missing a small fraction of unknown positive relevance, and 

underestimating precision. Finally, TestItems and One-Plus-

Random methodologies appear to be somewhat fairer with respect 

to considering relevant and non-relevant items at the same time. 

The latter, however, may depend on the number   of non-relevant 
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items considered (the higher this number, the smaller the perfor-

mance values) and, furthermore, on how the highly relevant items 

are selected. In [6], the authors suggest to choose only those top-

rated items. But there may be users who never rate items with that 

value and, in that case, the performance of those users could not 

be evaluated. This drawback could be avoided by defining “top-

rated” with respect to each user‟s rating scale. 

3. EXPERIMENTS 
We now compare empirically the evaluation methodologies pre-

sented in the previous section. Specifically, we compare different 

evaluation metrics applied to some state-of-the-art recommenda-

tion algorithms in two different training-test configurations, which 

differ in how the test rating set is created. 

In order to favor repeatability and comparison of results, we use 

two predefined splits in the Movielens 100K dataset –which in-

cludes 943 users and 1682 items. Table 1 shows some statistics of 

the dataset splits, such as the density and average number of users 

and items in training and test for each split. The first partition 

(D1) includes five disjoint random splits for cross-validation. The 

second dataset (D2) restricts the number of items each user has in 

the test set, creating a richer situation with respect to the number 

of users being evaluated and the amount of available training data. 

Table 1. Characteristics of the two evaluated training/test sets. 

 D1 D2 

Split information 
80% / 20% 

5 splits 

10 items per user in test 

2 splits 

Average users in training / test 943 / 766.2 943 / 943 

Average items in training / test 1651.6 / 1410.8 1677.5 / 1137 

Average density in training / test 0.051 / 0.020 0.057 / 0.009 

All the metric values reported herein have been computed using 

the trec_eval program, considering users in place of queries, and 

test ratings as relevance judgments (qrels). We show results on 

precision, recall, and nDCG at cutoff 50, though we obtained 

similar results for different cutoffs such as 5 and 10. 

We ran three well-known state-of-the-art CF algorithms as im-

plemented in the Mahout library: a user-based strategy with 50 

neighbors, denoted as UB50, an item-based strategy using ad-

justed cosine, denoted as IB, and a matrix factorization technique 

with 50 factors, denoted as SVD. 

Figure 2 summarizes the obtained results. A first relevant obser-

vation is that the comparative results with precision metrics are not 

quite the same as with error metrics. Specifically, RMSE would 

suggest that the IB recommender performs better than UB, while in 

terms of precision metrics, IB appears to clearly underperform in all 

the experimental configurations except TestRatings, which aligns 

with RMSE. This suggests that IB better predicts low rating values 

than UB, but does a poor job with the top user preferences –a 

nuance that RMSE does not care for, but real users certainly would. 

TestRatings results, on the other hand, match error-based me-

trics, probably because they are computed with the same item set. 

In particular, as stated in [8], this methodology would create a 

ranked list consisting of the top rated items, which may or may 

not be related with the recommended items the user would actual-

ly get in a real application. Counting non-rated items as non-

relevant, in addition to low-rated items, results in an underestima-

tion of the true precision (named “modified precision” in [8]), but 

may provide a better indicator of the actual user‟s experience. 

We also observe a significant difference in the absolute perfor-

mance values (for any metric) obtained by the TestRatings as 

compared to the rest of methodologies. In fact, these results are 

similar to those reported in [8], since for all the methodologies 

except TestRatings, performance values are very small. 

We also see that the threshold value does make a difference in 

the performance values –although the relative comparison be-

tween recommenders remains the same. Raising the relevance 

threshold makes items rated as 3 in the top 50 now be considered 

irrelevant, whereby P@50 naturally decreases. At the same time, 

the total number of relevant items drops even faster, whereby 

recall increases. The measured recall values are in fact extremely high, 

over 0.9, which is clearly far from reflecting a realistic assessment. 

Finally, we observe that the methodologies are consistent when 

we compare the two evaluated splits: the same trend is observed, 

although different absolute values are obtained. This result is not 

straightforward, since in these experiments, the number of non-

relevant items is usually overestimated (an item which does not 

appear in the user profile does not necessarily imply that it is non-

relevant –perhaps the user was not even aware of its existence). In 

fact, as discussed in [3], recall depends heavily on the number of 

relevant items that each user has rated, and therefore, it should 

only be used for comparison purposes, not interpreted as an abso-

Figure 2. Comparison results, D1 above, D2 below. TR_3 and TR_4 stand for the TestRatings evaluation methodology with 

threshold rating values for relevant items set to 3 and 4, respectively. TeI, TrI, AI, and OPR respectively denote TestItems, 

TrainingItems, AllItems, and One-Plus-Random evaluation methodologies. 
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lute measure. Hence, once this situation has been normalized 

(D2), the performance results might vary, which does not occur in 

our experiments. In conclusion, the evaluated methodologies are 

consistent with respect to the test size, since they obtain almost 

the same results in both situations, whether the test size for each 

user is random (D1) or fixed (D2). 

4. DISCUSSION 
As we described above, there are inconsistencies between Te-

stRatings and the rest of the methodologies, mainly because this 

procedure does not consider user-item pairs without test rating in 

the    target lists, and thus, it only evaluates recommendations 

over known relevance, which is an unrealistic situation in prac-

tice. In terms of absolute performance values, this methodology 

does not discriminate well among the recommenders, in compari-

son with the other methodologies. 

The One-Plus-Random procedure, on the other hand, is not able to 

find so many relevant items in the top-50 as the rest of methodologies 

since, by definition, each produced ranking contains only one relevant 

item. However, since that one item is highly relevant (a „5‟ rating 

value), it results in a nDCG value comparable to those of the rest of 

methodologies. The relative overall comparison between systems is 

the same as in the other methodologies, except TestRatings. 

We can also observe that TrainingItems and AllItems are com-

pletely equivalent, which is natural since there are no unrated 

items in this dataset and only CF recommenders have been eva-

luated. Besides, these methodologies always give lower perfor-

mance values than TestItems since, as discussed earlier, they add 

non-relevant items in the final ranking list. 

Finally, our study also suggests that taking the absolute values 

of metrics literally may be misleading. We see that most of the 

time, in our experiments, all the procedures except TestRatings 

(the less realistic one) result in metric values below 0.1. This does 

not imply the systems are unacceptably bad as it might appear –

these systems get RMSE around or below 1, which is not optimal 

but acceptable state-of-the-art. Although such precision values are 

low, they afford a sound relative comparison of systems to each other. 

5. CONCLUSIONS AND FUTURE WORK 
We have described and compared five evaluation methodologies 

proposed in the literature on three state-of-the-art recommenders 

under two evaluation conditions, i.e., different training/test set 

generation. In the experiments, we have found four methodologies 

that are consistent with each other, in the sense that the same trend 

is observed on the performance of the recommenders. The other 

methodology has proved to overestimate performance values, and 

leads to a different comparative assessment of the recommenders.  

Our experiments lead to questioning again the suitability of er-

ror metrics. As in [8], we have found that there is no direct equi-

valence between results with error-based and precision-based 

metrics. Common sense suggests that putting more relevant items 

in the top-N is more important for real recommendation effective-

ness than being accurate with predicted rating values, which are 

usually not even shown to real users. Our study confirms that 

measured results differ between these two perspectives. An online 

experiment, where real users‟ feedback is contrasted to the theo-

retic measurements, might shed further light for an objective 

assessment and finer analysis of which methodology better cap-

tures user satisfaction. 

The suitability of precision-oriented metrics to a typical RS 

evaluation framework also deserves further and deeper investiga-

tion. We have shown different methodologies whose differences 

arise in how unknown relevance is added to the test set. This is a 

key point when evaluating RS, in contrast to IR, since we have to 

define training and test sets, whereas in IR, we would have the 

whole dataset available, first, for the indexing task, and then, for 

the retrieval task. In RS, we need to separate the data into training 

and test; the more the training available, the better the algorithm 

will learn the users‟ preferences. However, the smaller the test set, 

the smaller the confidence about the obtained results. Further-

more, depending on how the recommendation lists are created 

different performance values are obtained with precision-oriented 

metrics, as we have presented here. An alternative solution may 

be to obtain a deeper integration between RS and IR algorithms, 

like the one presented recently in [1]. 

On the other hand, we have focused on different methodologies, 

not considering the metrics themselves. We plan to test how other 

IR metrics, such as Mean Average Precision (MAP), and Mean 

Reciprocal Rank (MRR), and other metrics proposed in the con-

text of RS, such as NDPM and ROC curve [10], compare with the 

results presented here, and whether they are sensitive or not to the 

experimental configuration, as we have analyzed for precision-

oriented metrics. An additional source of divergence in evaluation 

results is how the training and test sets are created. In this paper, 

we have experimented with two different splits of a particular 

dataset: random 5-fold cross-validation partitions, and a data split 

where the number of items in the test set is fixed. Many further 

options can be considered, such as leave-one-out, selecting a 

percentage of data per user, and restricting the number of items in 

the training set for each user. An important restriction, not com-

monly taken into account, is that of generating a temporal split, 

which better reflects real-world conditions in which recommender 

systems work. Some authors (see [7], among others) have ex-

plored this issue in the context of the Netflix dataset. A compre-

hensive analysis of precision-oriented metrics in that context 

would be worthwhile. 
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