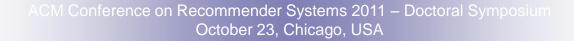
Alejandro Bellogín

Supervised by Pablo Castells and Iván Cantador

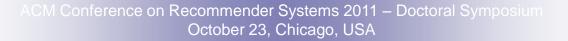
Escuela Politécnica Superior Universidad Autónoma de Madrid

@abellogin alejandro.bellogin@uam.es



Motivation

Is it possible to predict the accuracy of a recommendation?



Hypothesis

Data that are commonly available to a Recommender System could contain **signals** that enable an *a priori* estimation of the **success** of the recommendation

Research Questions

- 1. Is it possible to define a performance prediction **theory** for recommender systems in a sound, formal way?
- Is it possible to adapt query performance techniques (from IR) to the recommendation task?
- 3. What kind of **evaluation** should be performed? Is IR evaluation still valid in our problem?
- 4. What kind of recommendation **problems** can these models be applied to?

RQ1. Is it possible to define a performance prediction **theory** for recommender systems in a sound, formal way?

a) Define a predictor of performance $\gamma = \gamma(u, i, r, ...)$

b) Agree on a performance metric $\mu = \mu(u, i, r, ...)$

c) Check predictive power by measuring correlation $corr([\gamma(x_1), ..., \gamma(x_n)], [\mu(x_1), ..., \mu(x_n)])$

d) Evaluate final performance: dynamic vs static

- **RQ2**. Is it possible to **adapt** query performance techniques (from IR) to the recommendation task?
- In IR: "Estimation of the system's performance in response to a specific query"
- Several predictors proposed
- We focus on query clarity \rightarrow user clarity

- It captures uncertainty in user's data
 - Distance between the user's and the system's probability model

clarity
$$(u) = \sum_{x \in X} p(x | u) \log \begin{pmatrix} p(x | u) \\ p_c(x) \end{pmatrix}$$

user's model

system's model

• X may be: users, items, ratings, or a combination

7

• Three user clarity formulations:

Name	Vocabulary	User model	Background model
Rating-based	Ratings	$p(r \mid u)$	$p_{c}(r)$
Item-based	Items	$p(i \mid u)$	$p_{c}(i)$
Item-and-rating-based	Items rated by the user	$p(r \mid i, u)$	$p_{ml}(r \mid i)$

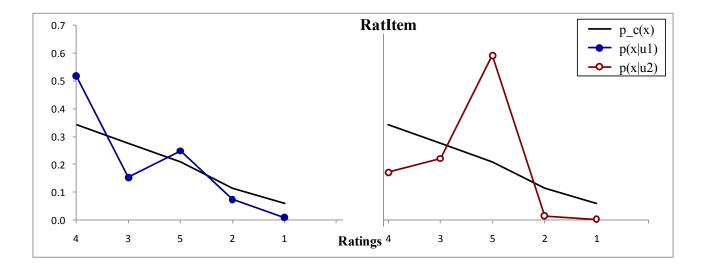
clarity
$$(u) = \sum_{x \in X} p(x | u) \log \begin{bmatrix} p(x | u) \\ p_c(x) \end{bmatrix}$$
 user model
background model

ACM Conference on Recommender Systems 2011 – Doctoral Symposium October 23, Chicago, USA

• Seven user clarity models implemented:

Name	Formulation	User model	Background model
RatUser	Rating-based	$p_{U}(r \mid i, u); p_{UR}(i \mid u)$) $p_{c}(r)$
RatItem	Rating-based	$p_{I}(r \mid i, u); p_{UR}(i \mid u)$) $p_{c}(r)$
ItemSimple	Item-based	$p_{R}(i \mid u)$	$p_{c}(i)$
ItemUser	Item-based	$p_{UR}(i \mid u)$	$p_{c}(i)$
IRUser	Item-and-rating-bas	ed $p_{U}(r \mid i, u)$	$p_{ml}(r \mid i)$
IRItem	Item-and-rating-bas	ed $p_{I}(r \mid i, u)$	$p_{ml}(r \mid i)$
IRUserItem	Item-and-rating-bas	$ed \qquad p_{UI}\left(r \mid i, u\right)$	$p_{ml}(r \mid i)$

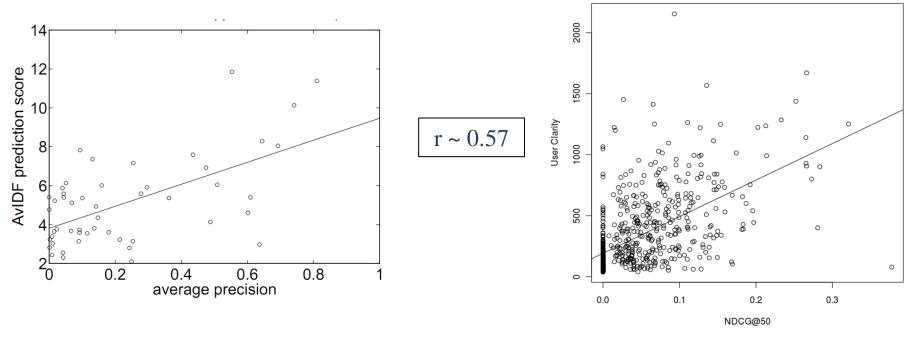
- Predictor that captures uncertainty in user's data
- Different formulations capture different nuances
- More dimensions in RS than in IR: user, items, ratings, features, ...



ACM Conference on Recommender Systems 2011 – Doctoral Symposium October 23, Chicago, USA

RQ3. What kind of **evaluation** should be performed? Is IR evaluation still valid in our problem?

- In IR: Mean Average Precision + correlation
 - 50 points (queries) vs 1000+ points (users)



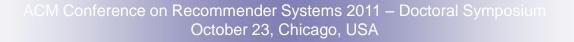
ACM Conference on Recommender Systems 2011 – Doctoral Symposium October 23, Chicago, USA

- **RQ3**. What kind of **evaluation** should be performed? Is IR evaluation still valid in our problem?
- In IR: Mean Average Precision + correlation
 - 50 points (queries) vs 1000+ points (users)
- Performance metric is not clear: error-based, precision-based?
 - What is performance?
 - It may depend on the final application
- Possible bias
 - E.g., towards users or items with larger profiles

ACM Conference on Recommender Systems 2011 – Doctoral Symposium October 23, Chicago, USA

IR Group

- **RQ4**. What kind of recommendation **problems** can these models be applied to?
- Whenever a combination of strategies is available
- Example 1: dynamic neighbor weighting
- Example 2: dynamic ensemble recommendation



Dynamic neighbor weighting

- The user's neighbors are weighted according to their similarity
- Can we take into account the uncertainty in neighbor's data?
- User neighbor weighting [1]

• Static:
$$g(u,i) = C \sum_{v \in N[u]} sim(u,v) \times rat(v,i)$$

• Dynamic:
$$g(u,i) = C \sum_{v \in N[u]} \gamma(v) \times sim(u,v) \times rat(v,i)$$

14

Dynamic hybrid recommendation

- Weight is the same for every item and user (learnt from training)
- What about boosting those users predicted to perform better for some recommender?
- Hybrid recommendation [3]

• Static:
$$g(u,i) = \lambda \times g_{R1}(u,i) + (1-\lambda) \times g_{R2}(u,i)$$

• Dynamic:
$$g(u,i) = (\gamma(u)) \times g_{R1}(u,i) + (1 - (\gamma(u))) \times g_{R2}(u,i)$$

ACM Conference on Recommender Systems 2011 – Doctoral Symposium October 23, Chicago, USA

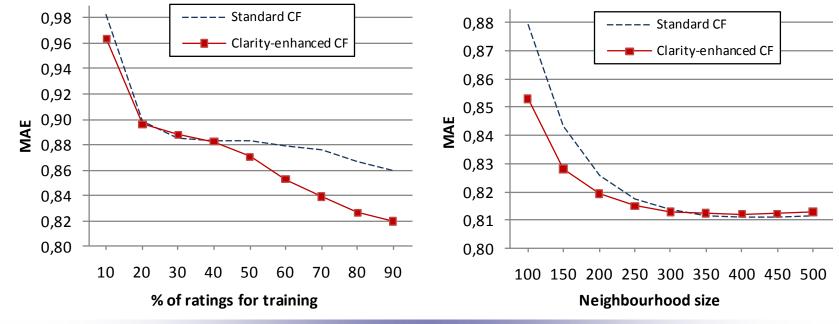
Results – Neighbor weighting

Correlation analysis [1]

• With respect to Neighbor Goodness metric: "how good a neighbor is to her vicinity"

% training	10%	20%	30%	40%	50%	60%	70%	80%	90%
correlation	-0.10	0.10	0.18	0.18	0.18	0.17	0.17	0.15	0.15

• Performance [1] (MAE = Mean Average Error, the lower the better)



ACM Conference on Recommender Systems 2011 – Doctoral Symposium October 23, Chicago, USA

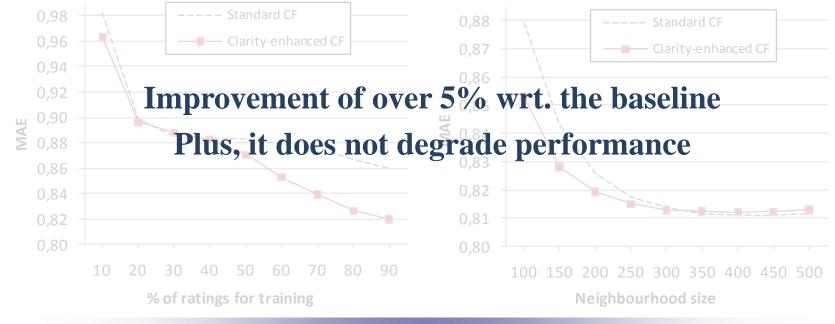
Results – Neighbour weighting

Correlation analysis [1]

• With respect to Neighbour Goodness metric: "how good a neighbour is to her vicinity"

Positive, although not very strong correlations

• Performance [1] (MAE = Mean Average Error, the lower the better)



ACM Conference on Recommender Systems 2011 – Doctoral Symposium October 23, Chicago, USA

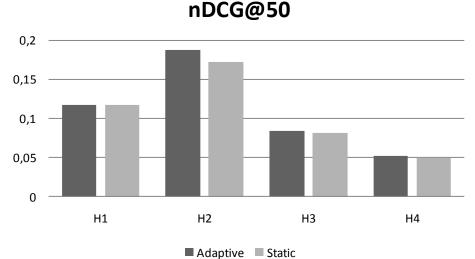
Results – Hybrid recommendation

Correlation analysis [2]

• With respect to nDCG@50 (nDCG, normalized Discount Cumulative Gain)

Predictor	CBF	IB	TF-L1	TF-L2	UB	Median	Mean
ItemSimple	0.257	0.146	0.521	0.564	0.491	0.491	0.396
ItemUser	0.252	0.188	0.534	0.531	0.483	0.483	0.398
RatUser	0.234	0.182	0.507	0.516	0.469	0.469	0.382
RatItem	0.191	0.184	0.442	0.426	0.395	0.395	0.328
IRUser	0.171	-0.092	0.253	0.399	0.257	0.253	0.198
IRItem	0.218	0.152	0.453	0.416	0.372	0.372	0.322
IRUserItem	0.265	0.105	0.523	0.545	0.444	0.444	0.376

Performance [3]



UNIVERSIDAD AUTONOMA

ACM Conference on Recommender Systems 2011 – Doctoral Symposium October 23, Chicago, USA

Results – Hybrid recommendation

Correlation analysis [2]

• With respect to nDCG@50 (nDCG, normalized Discount Cumulative Gain)

	Predictor	CBF	IB	TF-L1	TF-L2	UB	Median	Mean	
In averag	ge, most	of the	predic	tors	obtain	positiv	e, stro	ng cor	relations
R	atUser	0.234	0.182	0.507	0.516	0.469	0.469	0.382	
R	atItem	0.191	0.184	0.442	0.426	0.395	0.395	0.328	
П	RUser	0.171	-0.092	0.253	0.399	0.257	0.253	0.198	
П	RItem	0.218	0.152	0.453	0.416	0.372	0.372	0.322	
П	RUserItem	0.265	0.105	0.523	0.545	0.444	0.444	0.376	

• Performance [3]

Adaptive Static

ACM Conference on Recommender Systems 2011 – Doctoral Symposium October 23, Chicago, USA

Summary

- Inferring user's performance in a recommender system
- Different adaptations of query clarity techniques
- Building dynamic recommendation strategies
 - Dynamic neighbor weighting: according to expected goodness of neighbor
 - Dynamic hybrid recommendation: based on predicted performance
- Encouraging results
 - Positive predictive power (good correlations between predictors and metrics)
 - Dynamic strategies obtain better (or equal) results than static

Related publications

- [1] A Performance Prediction Aproach to Enhance Collaborative Filtering Performance. A. Bellogín and P. Castells. In ECIR 2010.
- [2] Predicting the Performance of Recommender Systems: An Information Theoretic Approach. A. Bellogín, P. Castells, and I. Cantador. In ICTIR 2011.
- [3] Performance Prediction for Dynamic Ensemble Recommender Systems. A. Bellogín, P. Castells, and I. Cantador. In press.

Future Work

- Explore other input sources
 - Item predictors
 - Social links
 - Implicit data (with time)
- We need a theoretical background
 - Why do some predictors work better?
- Larger datasets

FW – Other input sources

- Item predictors
- Social links
- Implicit data (with time)
- Item predictors could be very useful:
 - Different recommender behavior depending on item attributes
 - They would allow to capture popularity, diversity, etc.

FW – Other input sources

- Item predictors
- Social links
- Implicit data (with time)
- First results using social-based predictors
 - Combination of social and CF
 - Graph-based measures as predictors
 - "Indicators" of the user strength

ngth	H1	H2	H3	H1	H2	H3	
Average Neigh Deg	0.219*	0.092*	<i>0.199</i>	0.240*	0.097*	0.215	
Centrality	0.222*	0.106‡	0.188†	0.242*	0.111‡	0.204†	
Clustering coef	0.211*	0.094*	0.188†	0.231*	0.100*	0.202†	
Degree	<u>0.233</u> ‡	0.095*	0.197	<u>0.256</u> ‡	0.099*	0.213	
Ego Comp Size	0.227 ‡	0.096*	<u>0.201</u> *	0.249 ‡	0.101*	0.215	
HITS	0.225*	<u>0.110</u> ‡	0.197	0.248*	<u>0.114</u> ‡	0.212	
PageRank	0.227‡	0.097*	0.200	0.247*	0.101*	<u>0.216</u>	
Two Hop Neigh	0.229‡	0.093*	0.195	0.250‡	0.100*	0.212	
Static 0.5	0.186	0.077	0.189	0.205	0.081	0.206	
Best static	0.218	0.091	0.199	0.239	0.096	0.215	

P@5

ACM Conference on Recommender Systems 2011 – Doctoral Symposium October 23, Chicago, USA

nDCG@5

FW – Theoretical background

- We need a theoretical background
 - Why do some predictors work better?

Predictor	CBF	B	TF-L1	TF-L2	UB	Median	Mean
ItemSimple	0.257	0.146	0.521	0.564	0.491	0.491	0.396
ItemUser	0.252	0.188	0.534	0.531	0.483	0.483	0.398
RatUser	0.234	0.182	0.507	0.516	0.469	0.469	0.382
RatItem	0.191	0.184	0.442	9.426	0.395	0.395	0.328
IRUser	0.171	-0.092	0.253	(0.399)	0.257	0.253	0.198
IRItem	0.218	0.152	0.453	0.416	0.372	0.372	0.322
IRUserItem	0.265	0.105	0.523	0.545	0.444	0.444	0.376

Thank you!

Predicting Performance in Recommender Systems

Alejandro Bellogín

Supervied by Pablo Castells and Iván Cantador

Escuela Politécnica Superior Universidad Autónoma de Madrid

@abellogin alejandro.bellogin@uam.es

Acknowledgements to the National Science Foundation

for the funding to attend the conference.

ACM Conference on Recommender Systems 2011 – Doctoral Symposium October 23, Chicago, USA 26

Reviewer's comments: Confidence

- Other methods to measure self-performance of RS
 o Confidence
- These methods capture the performance of the RS, not user's performance

Reviewer's comments: Neighbor's goodness

□ Neighbor goodness seems to be a little bit ad-hoc

• We need a measurable definition of neighbor performance

$$NG(u) \sim \text{``total MAE reduction by u''} \sim \text{``MAE without u''} - \text{``MAE with u''}$$
$$= \frac{1}{|R_{U-\{u\}}|} \sum_{v \in U-\{u\}} CE_{U-\{u\}}(v) - \frac{1}{|R_{U-\{u\}}|} \sum_{v \in U-\{u\}} CE_{U}(v)$$
$$CE_{X}(v) = \sum_{i:rat(v,i) \neq \emptyset} |\tilde{r}_{X}(v,i) - r(v,i)|$$

• Some attempts in trust research: sign and error deviation [Rafter et al. 2009]

Reviewer's comments: Neighbor's weighting issues

□ Neighbor size vs dynamic neighborhood weighting

- So far, only dynamic weighting
 - Same training time than static weighting
- Future work: dynamic size
- □ Apply this method for larger datasets
- Current work

□ Apply this method for other CF methods (e.g., latent factor models, SVD)

- More difficult to identify the combination
- Future work

Reviewer's comments: Dynamic hybrid issues

□ Other methods to combine recommenders

- o Stacking
- Multi-linear weighting
- We focus on linear weighted hybrid recommendation
- Future work: cascade, stacking