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Motivation 

Is it possible to predict the accuracy of a recommendation? 
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Hypothesis 

Data that are commonly available to a 

Recommender System could contain 

signals that enable an a priori estimation 

of the success of the recommendation 
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Research Questions 

1. Is it possible to define a performance prediction theory for 

recommender systems in a sound, formal way? 

2. Is it possible to adapt query performance techniques (from 

IR) to the recommendation task? 

3. What kind of evaluation should be performed? Is IR 

evaluation still valid in our problem? 

4. What kind of recommendation problems can these models 

be applied to? 
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Predicting Performance in Recommender Systems 

RQ1. Is it possible to define a performance prediction theory 

for recommender systems in a sound, formal way? 

 

 a) Define a predictor of performance     = (u, i, r, …) 

 

 b) Agree on a performance metric         = (u, i, r, …) 

  

 c) Check predictive power by measuring correlation 

   corr([(x1), …, (xn)], [(x1), …, (xn)]) 

 

 d) Evaluate final performance: dynamic vs static 
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Predicting Performance in Recommender Systems 

RQ2. Is it possible to adapt query performance techniques 

(from IR) to the recommendation task? 

 

 In IR: “Estimation of the system’s performance in response 

       to a specific query” 

 

 Several predictors proposed 

 

 We focus on query clarity    user clarity 
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User clarity 

 It captures uncertainty in user’s data 

• Distance between the user’s and the system’s probability model 

 

 

 

 

• X may be: users, items, ratings, or a combination 
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User clarity 

 Three user clarity formulations: 
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User clarity 

 Seven user clarity models implemented: 

Name Formulation User model Background model 

RatUser Rating-based 

RatItem Rating-based 

ItemSimple Item-based 

ItemUser Item-based 

IRUser Item-and-rating-based 

IRItem Item-and-rating-based 

IRUserItem Item-and-rating-based 
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User clarity 

 Predictor that captures uncertainty in user’s data 

 

 Different formulations capture different nuances 

 

 More dimensions in RS than in IR: user, items, ratings, features, … 
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Predicting Performance in Recommender Systems 

RQ3. What kind of evaluation should be performed? Is IR 
evaluation still valid in our problem? 

 

 In IR: Mean Average Precision + correlation 

 50 points (queries)  vs  1000+ points (users) 

 

 Performance metric is not clear: error-based, precision-based? 

 What is performance? 

 It may depend on the final application 

 

 Possible bias 

 E.g., towards users or items with larger profiles 

 

r ~ 0.57 
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Predicting Performance in Recommender Systems 

RQ3. What kind of evaluation should be performed? Is IR 
evaluation still valid in our problem? 

 

 In IR: Mean Average Precision + correlation 

 50 points (queries)  vs  1000+ points (users) 

 

 Performance metric is not clear: error-based, precision-based? 
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 It may depend on the final application 

 

 Possible bias 
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Predicting Performance in Recommender Systems 

RQ4. What kind of recommendation problems can these 

models be applied to? 

 

 Whenever a combination of strategies is available 

 

 Example 1: dynamic neighbor weighting 

 

 Example 2: dynamic ensemble recommendation 
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Dynamic neighbor weighting 

 The user’s neighbors are weighted according to their similarity 

 Can we take into account the uncertainty in neighbor’s data? 

 

 User neighbor weighting [1] 

• Static: 

 

 

• Dynamic: 
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Dynamic hybrid recommendation 

 Weight is the same for every item and user (learnt from training) 

 What about boosting those users predicted to perform better for 

some recommender? 

 

 Hybrid recommendation [3] 

 

• Static: 

 

 

• Dynamic: 
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 Correlation analysis [1] 

• With respect to Neighbor Goodness metric: “how good a neighbor is to her vicinity” 

 

 

 

 Performance [1]  (MAE = Mean Average Error, the lower the better) 
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 Correlation analysis [1] 

• With respect to Neighbour Goodness metric: “how good a neighbour is to her vicinity” 

 

 

 

 Performance [1]  (MAE = Mean Average Error, the lower the better) 

Improvement of over 5% wrt. the baseline 

Plus, it does not degrade performance 

Positive, although not very strong correlations 
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 Correlation analysis [2] 

• With respect to nDCG@50  (nDCG, normalized Discount Cumulative Gain) 

 

 

 

 

 Performance [3] 

 



 

IRG
IR Group @ UAM

ACM Conference on Recommender Systems 2011 – Doctoral Symposium 

October 23, Chicago, USA 

19 

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

H1 H2 H3 H4

MAP@50

Adaptive Static

0

0,05

0,1

0,15

0,2

H1 H2 H3 H4

nDCG@50

Adaptive Static

Results – Hybrid recommendation 

 Correlation analysis [2] 

• With respect to nDCG@50  (nDCG, normalized Discount Cumulative Gain) 

 

 

 

 

 Performance [3] 

 

In average, most of the predictors obtain positive, strong correlations 

Dynamic strategy outperforms static for 

different combination of recommenders 
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Summary 

 Inferring user’s performance in a recommender system 

 Different adaptations of query clarity techniques 

 

 Building dynamic recommendation strategies 

• Dynamic neighbor weighting: according to expected goodness of neighbor  

• Dynamic hybrid recommendation: based on predicted performance 

 

 Encouraging results 

• Positive predictive power (good correlations between predictors and metrics) 

• Dynamic strategies obtain better (or equal) results than static 



 

IRG
IR Group @ UAM

ACM Conference on Recommender Systems 2011 – Doctoral Symposium 

October 23, Chicago, USA 

21 

Related publications 

 [1] A Performance Prediction Aproach to Enhance Collaborative 

Filtering Performance. A. Bellogín and P. Castells. In ECIR 2010. 

 

 [2] Predicting the Performance of Recommender Systems: An 

Information Theoretic Approach. A. Bellogín, P. Castells, and I. 

Cantador. In ICTIR 2011. 

 

 [3] Performance Prediction for Dynamic Ensemble Recommender 

Systems. A. Bellogín, P. Castells, and I. Cantador. In press. 



 

IRG
IR Group @ UAM

ACM Conference on Recommender Systems 2011 – Doctoral Symposium 

October 23, Chicago, USA 

22 

Future Work 

 Explore other input sources 

• Item predictors 

• Social links 

• Implicit data (with time) 

 

 We need a theoretical background 

• Why do some predictors work better? 

 

 Larger datasets 
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FW – Other input sources 

 Item predictors 

 Social links 

 Implicit data (with time) 

 

 Item predictors could be very useful: 

• Different recommender behavior depending on item attributes 

• They would allow to capture popularity, diversity, etc. 
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FW – Other input sources 

 Item predictors 

 Social links 

 Implicit data (with time) 

 

 First results using social-based predictors 

• Combination of social and CF 

• Graph-based measures as predictors 

• “Indicators” of the user strength 
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FW – Theoretical background 

 We need a theoretical background 

• Why do some predictors work better? 
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Thank you! 
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Reviewer’s comments: Confidence 

Other methods to measure self-performance of RS 

o Confidence 

 

 These methods capture the performance of the RS,  

 not user’s performance 
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Reviewer’s comments: Neighbor’s goodness 

Neighbor goodness seems to be a little bit ad-hoc 

 

 We need a measurable definition of neighbor performance 

 

  NG(u) ~ “total MAE reduction by u” ~ “MAE without u” – “MAE with u” 

 

 

 

 

 

 Some attempts in trust research: sign and error deviation [Rafter et al. 2009] 
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Reviewer’s comments: Neighbor’s weighting issues 

Neighbor size vs dynamic neighborhood weighting 

 So far, only dynamic weighting 

• Same training time than static weighting 

 Future work: dynamic size 

 

Apply this method for larger datasets 

 Current work 

 

Apply this method for other CF methods (e.g., latent factor models, SVD) 

 More difficult to identify the combination 

 Future work 
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Reviewer’s comments: Dynamic hybrid issues 

Other methods to combine recommenders 

o Stacking 

o Multi-linear weighting 

 

 We focus on linear weighted hybrid recommendation 

 Future work: cascade, stacking 

 


