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Two connectives (and, or) are included in the query [Salton et al, 1983]:
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Similarity score
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p=1: Vector Space Model
p = +oo : Boolean model

A user shows interest for two items:

rat(u,i)=sim(Q",1") <

The Boolean model is too rigid: too loose or tight

Extended Boolean model: more discriminative

— User Profile Expansion — Inferring User Profile Structure

Motivation Motivation

Items that tend to occur together: movie series or by the same director Subprofiles in recommendation
E.g., Lord of the Rings, Star Wars, etc.

These movies could be considered synonyms

E.g., users A and B have similar tastes in movies but different in music

User profiles could thus be decomposed into phrases

Experiments Experiments

We expand every user profile with S synonym movies (i.e., the S most similar items). Each profile is defined as soft OR’s of cohesive subprofiles

Expanded terms (synonyms) are included using an inner Boolean OR (i.e., infinite p-value) Each subprofile is also composed of soft OR’s of item ratings

A significant improvement is found, compared to plain profiles (S=0, baseline).

Tetl @ @3 [ Pa@s [ Pal0 || NDOG@ G@as [ NDCG@s0 [ MRR - - - - -
o etod e e e e D RDCGES [ RDCCDs [ RDLeeo0 I Mo Subprofiles are found by performing clustering (using the Weka library) on genre and
S =1,and(1), or(oc) 0.129 [ 0.121 | 0.120 | 0.114 0.099 0.099 0.126 0.243 similarity values among items:
S =2,and(1),or(cc) | 0.149 | 0.138 | 0.130 | 0.119 || 0.113 0.110 0.128 0.260
S =5,and(1),or(cc) || 0.190 | 0.166 | 0.155 | 0.141 ||  0.140 0.134 0.146 0.304 K-means (K=50)
S =10, and(1),0r(cc) || 0.197 | 0.171 | 0.161 | 0.147 ||  0.146 0.140 0.151 0.313
Not every user needs to be expanded: dynamic user profile expansion Uniform p-value for all the subprofiles

_ Method | ral | Pa3 [ Pas5 | PQl0 || NDCG@3 | NDCG@s | NDCGQ50 |[ MRR NMethod Pa@l | Pa@3 | Pas | Pa@io [ NDCGa3 | NDCGas | NDCGa@s0 T MRR
Jareshold found by mecian || 0.183 | 0.167 | 0.157 | 0.145 §| 0.137 0.132 0.158 0.302 Baseline 0.002 | 0.004 | 0.005 | 0.007 | 0.002 0.003 0.009 0.027
Threshold fU'Lll'].d I'J'}’ average 0.1%6 0.165 0.1558 (0.146 0.137 0.133 0.157 0.303 _K—l'[lea-l'l_ﬁ genre Ur(l} UF(Z) 0.013 0.016 0.017 0.018% 0.010 0.011 0.032 0.061
K-means genre or(2),or(2) || 0.005 [ 0.006 | 0.006 | 0.006 0.003 0.004 0.011 0.030

Discussion K-means sim or(1), or(2) 0.008 | 0.011 | 0.014 | 0.016 0.007 0.009 0.023 0.047
K-means sim or(2), or(2) 0.006 | 0.006 | 0.006 | 0.008 0.004 0.004 0.012 0.031

The order of the connectives is important Discussion

Profiles built using OR + AND make little sense Structured profiles outperform plain profiles (baseline)

Dynamic expansion outperforms static one with larger cutoffs No significant differences for different inner p-values

Better results with subprofiles induced based on genre information

Future Work

al, 2011]

Additional user profile expansion methods to set dynamically the threshold

Combination of this method with recently proposed normalization methods in [Bellogin et
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