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Introduction: Recommender Systems

(Adomavicius & Tuzhilin 2005)

 * argmax utility ,u
i I

i u i






 

European Conference on Information Retrieval 2010 

March 28-31, Milton Keynes, United Kingdom

Introduction: Recommender Systems

 Collaborative filtering (Adomavicius & Tuzhilin 2005)
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Is similarity enough?

 No, we propose the following modification

 Related work:

• Experts (Amatriain et al. 2009)

• Power users (Lathia et al. 2008)

• Trust (Kwon et al. 2009, O‘Donovan & Smyth 2005)

• Dealing with users with little overlapping

– Significance weighting: n/50 (Herlocker et al. 2002)

– Confidence (Clements et al. 2007)
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Our approach

 Predict ―neighbor performance‖  ( )

 Adaptation of query performance prediction techniques

• User / item clarity

 Check predictive power

• Correlation against ―neighbor goodness‖

 Enhance CF performance with dynamic weights on neighbors
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Performance prediction in IR

 Mostly addressed as query performance (Hauff et al. 2008)

 Query clarity (Cronen-Townsend et al. 2002)

• Distance (relative entropy) between query and collection language models

 Query clarity captures the (lack of) ambiguity in a query with 
respect to the collection

• Queries whose likely relevant documents are a mix of disparate topics receive a 
lower score than those with a topically-coherent result set.

• Strong correlation between query clarity and the performance (average 
precision) of the result set
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Predicting good neighbors

 User ―clarity‖, item ―clarity‖…?

 Many possible ways to map query clarity to elements in CF

 For instance, for user clarity:
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Evaluation

 Correlation between predictor and performance metric

• How do we define the ―performance‖ of a neighbor?

 Final performance improvements when dynamic weights are introduced

• Metric: RMSE

 Dataset:

• MovieLens (100K)

 Two variables:

• Neighborhood size

• Sparsity (number of available ratings)

 Baseline:

• Standard user-based kNN CF with Pearson similarity
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Assessing predictive power

 A neighbor performance metric is needed

 Proposed approximation to ―neighbor goodness‖

How does a user affect the total MAE of the system

NG(u) ~ ―total MAE reduction by u‖ ~ ―MAE without u‖ – ―MAE with u‖

 Observed results

• Pearson correlation of  0.18 (50% sparsity, p-value < 0.05)
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Performance comparison for different rating density

Dynamic neighbor weights in CF

1,00
1,02
1,04
1,06
1,08
1,10
1,12
1,14
1,16
1,18
1,20
1,22
1,24
1,26
1,28
1,30
1,32

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

R
M

SE

% of ratings for training

a)  Neighbourhood size: 100

Standard CF

Clarity-enhanced CF

b)  Neighbourhood size: 500



 

European Conference on Information Retrieval 2010 

March 28-31, Milton Keynes, United Kingdom

Dynamic neighbor weights in CF

Performance comparison for different neighbourhood sizes
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Conclusions

 Performance prediction for neighbor selection in CF

 Positive though moderate correlations values

• Revise NG: is it an adequate metric?

• Improve predictor

 Performance improvements using dynamic weights for 

neighbors

• Higher difference for small neighborhoods
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Future work

 Alternative variants of clarity based predictor
• Even (u, v, i, …)

 Analysis of user performance metric

 Further comparison with other predictors: variance, social-

based, time-based

 Predicting performance can be useful in many 

recommendation and personalization scenarios
• Hybrid recommender systems, personalized IR, rank fusion



 

European Conference on Information Retrieval  2010

March 28-31, Milton Keynes, United Kingdom

Thank you
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Predicting good neighbors

 Many possible ways 

for the mapping

 User clarity:
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Correlation

 Pearson correlation: user clarity vs neighbor goodness

 Direct correlation

• When calculated with significant data

Not strong values

% training 10% 20% 30% 40% 50% 60% 70% 80% 90% 

correlation -0.10 0.10 0.18 0.18 0.18 0.17 0.17 0.15 0.15 
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Performance comparison for different rating density

Performance results I
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Performance results II

Performance comparison for different neighbourhood sizes
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