
Predicting Neighbor Goodness in Collaborative 
Filtering 

Alejandro Bellogín and Pablo Castells 

 
Universidad Autónoma de Madrid 

Escuela Politécnica Superior 
Francisco Tomás y Valiente 11, 28049 Madrid, Spain 

{alejandro.bellogin,pablo.castells}@uam.es 

Abstract. Performance prediction has gained increasing attention in the IR field 
since the half of the past decade and has become an established research topic 
in the field. The present work restates the problem in the subarea of 
Collaborative Filtering (CF), where it has barely been researched so far. We 
investigate the adaptation of clarity-based query performance predictors to 
define predictors of neighbor performance in CF. The proposed predictors are 
introduced in a memory-based CF algorithm to produce a dynamic variant 
where neighbor ratings are weighted based on their predicted performance. The 
approach is tested with encouraging empirical results, as the dynamic variants 
consistently outperform the baseline algorithms, with increasing difference on 
small neighborhoods.  

Keywords: recommender systems, collaborative filtering, neighbor selection, 
performance prediction, query clarity. 

1   Introduction 

Collaborative Filtering (CF) is a particularly successful form of personalized 
Information Retrieval, or personalized assistance over item choice problems in 
general [12,20]. CF has the interesting property that no item description is needed to 
recommend them, but only information about past interaction between users and 
items. Besides, it has the salient advantage that users benefit from other users’ 
experience (opinions, votes, ratings, purchases, tastes, etc.), and not only their own, 
whereby opportunities for users’ exposure to novel and unknown experiences with 
respect to previous instances are furthered, in contrast to other approaches that tend to 
reproduce the user’s past, insofar as they examine the records of individual users in 
isolation. 

CF is also based on the principle that the records of a user are not equally useful to 
all other users as input to produce recommendations [12]. A central aspect of CF 
algorithms is thus to determine which users form the best basis, and to what degree, to 
generate a recommendation for a particular user. Such users are usually referred to as 
neighbors, and their identification is commonly based on notions of similarity to the 
target user. The similarity of two users is generally based on a) finding a set of items 



that both users have interacted with, and b) examining to what degree the users 
displayed similar behaviors (selection, rating, purchase, etc.) on these items. This 
basic approach can be complemented with alternative comparisons of virtually any 
user features the system may have access to, such as personal information, 
demographic data, or similar behaviors in external systems.  

Thus, the more similar a neighbor is to the active user, the more his tastes are taken 
into account as good advice to make up recommendations. For instance, a common 
CF approach consists of predicting the utility of an item for the target user by a linear 
combination of the ratings of all his neighbors, where the ratings are weighted by the 
similarity between each neighbor and the user. It is also common to set a similarity 
threshold (or a maximum number of most similar users) to restrict the set of 
neighbors, in order to avoid the noisy disruption of long tails of dissimilar users in the 
recommendation. 

Similarity has indeed proved to be a key element for neighbor selection in order to 
provide accurate recommendations. Neighbor trustworthiness and expertise have also 
been researched as relevant complementary criteria to select the best possible 
collaborative advice [15]. We believe however that further neighbor and data 
characteristics (individual or relative to the target user) can be exploited to enhance 
the selection and weighting of neighbors in recommendations. For instance, the size, 
heterogeneity, and other characteristics of the associated evidence (set of common 
known items, ratings, etc.), can be key to assess the significance of observations, the 
reliability of the evidence and the confidence of predictions, and the part of such 
elements in recommendations could be adjusted accordingly. Observations on users 
with little experience in common (where two or three coincidences of mismatches 
may lead to extreme similarity values) is far from being  as significant as that on other 
users with a large subset of comparable history, and this difference should be 
accounted for in the CF algorithm. This type of issue is often mentioned and 
occasionally dealt with in the CF literature, but usually by hand-crafted solutions and 
manual tuning, rather than principled ways [4,12]. 

In this context, we research into notions of neighbor goodness, when seen as input 
for recommendation to a given user, where goodness should account for any aspect, 
besides similarity, that correlates with better results when the neighbor is introduced 
(or boosted) in computing a recommendation. Our proposed approach investigates the 
adaptation of performance prediction techniques developed in the IR field to assess 
neighbor goodness, where the latter is seen as an issue of neighbor performance. 
Specifically, we propose two neighbor goodness predictors, and measure their 
appropriateness by using them to introduce a dynamic enhancement in user-based CF, 
where neighbor ratings are weighted by their neighbor goodness. We show empiric 
evidence confirming that measurable improvements result from this approach. 

The rest of the paper is organized as follows. Section 2 provides an overview of the 
state of the art in performance prediction in IR. In Section 3, the proposed approach is 
described, including the definition of the predictors and the formulation of rating 
prediction in CF as an aggregation operation with dynamic weights. Section 4 reports 
on the experimental work, where the proposed techniques are evaluated on a public 
dataset. Finally, Section 5 provides conclusions drawn from this work, along with 
potential lines for the continuation of the research. 



2   Performance Prediction in Information Retrieval 

Performance prediction in IR has been mostly addressed as a query performance 
issue, which refers to the performance of an IR system in response to a specific query. 
It also relates to the appropriateness of a query as an expression for a user information 
need. Dealing effectively with poorly-performing queries is a crucial issue in IR, and 
performance prediction provides tools that can be useful in many ways [22,23]. From 
the user perspective, it provides valuable feedback that can be used to direct a search, 
e.g. by rephrasing the query or providing relevance feedback. From the perspective of 
an IR system, performance prediction provides a means to address the problem of 
retrieval consistency: a retrieval system can invoke alternative retrieval strategies for 
different queries according to their expected performance (query expansion or 
different ranking functions based on the predicted difficulty). From the perspective of 
a system administrator, she can identify queries related to a specific subject that are 
difficult for the search engine, and expand the collection of documents to better 
answer insufficiently covered subjects (e.g. adding more documents to the collection). 
For distributed IR, performance estimations can be used to decide which search 
engine and/or database to use for each particular query, or how much weight to give it 
when its results are combined with those of other engines.  

The prediction methods documented in the literature use a variety of available data, 
such as a query, its properties with respect to the retrieval space [7], the output of the 
retrieval system [5], or the output of other systems [3], as a basis for prediction. 
According to whether or not the retrieval results are used in the prediction, the 
methods can be classified into pre-retrieval and post-retrieval approaches [10]. The 
first type has the advantage that the prediction can be taken into account to improve 
the retrieval process itself. However, these predictors have the potential handicap, 
with regards to their accuracy, that the extra retrieval effectiveness cues available 
after the system response are not exploited [24]. In post-retrieval prediction, 
predictors make use of retrieved results [2,23,24]. Broadly speaking, techniques in 
this category provide better prediction accuracy compared to those in the previous 
category. However, computational efficiency is usually a problem for many of these 
techniques, and furthermore, the predictions cannot be used to improve the retrieval 
strategies, as the output from the latter is needed to compute the predictions in the 
first place.  

Pre-retrieval query performance has been studied mainly based on statistic 
methods, though linguistic approaches have also been researched. Simple statistic 
approaches based on the inverse document frequency (IDF), and variations thereof, 
have been proposed [11,14,19], showing moderate correlation with query 
performance though. He & Ounis propose the notion of query scope as a measure of 
the specificity of a query, which is quantified as the percentage of documents in the 
collection that contain at least one query term [11]. Query scope is effective in 
inferring query performance for short queries in ad hoc text retrieval, though it seems 
very sensitive to query length [17]. 

More effective predictors have been defined in more formal probabilistic grounds 
based on language models with the so-called clarity score, which captures the (lack 
of) ambiguity in a query with respect to the collection, or a specific result set 
[7,23,24] (the second case thus falling in the category of post-retrieval prediction). In 



this work, query ambiguity is meant to be “the degree to which the query retrieves 
documents in the given collection with similar word usage” [6]. Query clarity 
measures the degree of dissimilarity between the language associated with the query 
and the generic language of the collection as a whole. This is measured as the relative 
entropy, or Kullback-Leibler divergence, between the query and collection language 
models (with unigram distributions).  

Analyzing the entropy of the language model induced by the query is indeed a 
natural approach since entropy measures how strongly a distribution specifies certain 
values, in this case, terms. In its original formulation [7], query clarity is defined as 
follows: 
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with w being any term, q the query, d a document or its model, R the set of documents 
in the collection that contain at least one query term (it is also possible to take the 
whole collection here), pml(w|d) the relative frequency of term w in document d, 
pcoll(w) the relative frequency of the term in the collection as a whole, λ a free 
parameter (set to 0.6 in [7]), and V the entire vocabulary. 

It was observed that queries whose likely relevant documents are a mix of 
disparate topics receive a lower score than those with a topically-coherent result set. 
A strong correlation was also found between the query clarity and the performance of 
the result set. Because of that, the clarity score method has been widely used for query 
performance prediction in the area. Some applications include query expansion 
(anticipating poorly performing queries as good candidates to be expanded), rank 
aggregation, link extraction in topic detection and tracking [16], and document 
segmentation [8]. A prolific sequel of variants and enhancements on the notion of 
clarity followed the original works [8,11].  

Aside the statistic approaches, linguistic methods have also been researched. 
Mothe & Tanguy extract 16 query features and study their correlation with respect to 
recall and average precision [18]. The 16 features were classified into three different 
classes according to the linguistic aspects that are analyzed: morphological (such as 
number of words, word length, morphemes per word, proper nouns, acronyms, 
numerals, etc.), syntactic (number of conjunctions, prepositions, pronouns, syntactic 
depth, etc.), and semantic features (polysemy value). The authors found that many 
variables do not have a significant impact on any performance measure, and only the 
most sophisticated syntactic and semantic features, such as polysemy, syntactic links 
span, or the number of proper nouns, were found to be correlated with precision and 
recall. 



3   Neighbor Performance in Collaborative Filtering 

Starting from the work on performance prediction in IR, our research addresses the 
enhancement of neighbor selection techniques in CF by introducing the notion of 
neighbor performance, as an additional factor (besides similarity) to automatically 
tune the neighbor’s participation in the recommendations, according to the expected 
goodness of their advice.  

Our approach investigates the adaptation of the query clarity approach from IR to 
CF, as a basis for finding suitable predictors. This involves finding a meaningful 
equivalence or translation of the retrieval spaces involved in ad-hoc IR (queries, 
words, documents) into the corresponding elements of a CF setting (users, items, 
ratings), in order to provide a specific formulation. After this, we test the 
effectiveness of the defined predictors by introducing and testing a dynamic variant of 
memory-based CF, in which the weights of neighbors are dynamically adjusted based 
on their expected effectiveness. 

3.1   Predicting Good Neighbors 

Inspired by the clarity score defined for query performance [7], we consider its 
adaptation to predict neighbor performance in collaborative recommendation. As 
introduced in section 2, the original clarity score for Web retrieval is defined as: 

( ) ( ) ( )
( )2

c

p |
clarity p | log

p∈

= ∑
w

w q
q w q

wV

, (1)

where the three following key elements are involved: 
• w∈V: the summation is performed over all the words in the vocabulary, since a 

query (the element of interest) is composed by words. 
• p(w|q) defines the language model of the query. 
• pc(w) establishes the language model of the collection. 

In essence, the clarity score captures the lack of ambiguity (uncertainty) in a query, 
by computing the distance between the language models induced by the query and the 
collection. Cronen-Townsend et al showed that clarity is correlated with performance, 
because the less ambiguous a query, the more chances are that the system will return a 
good result in response [7]. Cronen-Townsend’s experiments thus seem to confirm 
the underlying hypothesis that the system performance is largely influenced by the 
amount of uncertainty involved in the inputs it takes to build the retrieval result. That 
is, the uncertainty should correlate negatively with the performance level one may a 
priori expect. 

CF systems rank and recommend items without an explicit user query. However, 
the system uses other inputs that may also determine the resulting performance. In 
analogy to the work on query clarity, we may hypothesize that the amount of 
uncertainty involved in a user neighbor may be a good predictor of his performance. 
In this case, the uncertainty can be understood as the ambiguity of the user’s tastes, 



and it can be approximated as an adaptation of equation (1) to compute the clarity of 
users.  

There are many possible ways to map the terms in equation (1) to elements of CF 
in meaningful ways, many of which we have studied before reaching the formulation 
proposed herein, which goes as follows. First, based on the common view of users in 
CF as a set of weighted items, making an analogy between items and the words in 
query clarity formulation leads to the following formula: 
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Now we need to define the user and collection language models. The latter could 
be approximated under different criteria such as item popularity (e.g. based on the 
sum of ratings of each item), but for the sake of simplicity we assume a uniform 
distribution: 
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For the user language model, we should use the relative frequencies of items in 
users, but since each user does not rate the same item more than once, we modify it in 
order to include in the formulation the rating value of the user for that item, which is 
linearly smoothed with the collection frequency of the item: 
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We refer to the magnitude thus defined as the item-based user clarity IUC (u) = 
clarityI (u).  

On the other hand, clarity can be defined differently, simply by interpreting the 
“words” in a different way. For example, a user can be modeled as a set of users who 
rated similar items to those she rated.1 In this view, and following analogous steps as 
in the definition of IUC, we derive the following formulation:2 

                                                           
1  This can be thought of as an item-based view in CF. 
2  A simplification is made in this formulation: instead of defining p(v|i) as p(i|v)p(v)/p(i), we 

smooth the normalized rating value linearly with the collection frequency, similarly to the 
smoothing in the definition of p(i|u) in IUC. 



( ) ( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

2
c

: ( , ) 0

c

c

p |
clarity p | log

p

p | p | p |

,
p | 1 p

5
1p

∈

≠

=

=

= λ + −λ

=

∑

∑
v

i r u i

v u
u v u

v

v u v i i u

r v i
v i v

v

U
U

U

 

We refer to this magnitude as the user-based user clarity UUC (u) = clarityU (u). 
Analogously, item clarities could be defined with respect to the space of users or the 
space of items, but we shall focus here only on the user-oriented clarity. 

Having thus defined the notion of user clarity by the two proposed formulations, 
the question is whether IUC and UUC can serve as neighbor performance predictors 
(following the analogy to query clarity as a predictor of query performance), and as 
such, whether their predictive power can be leveraged to dynamically weight the 
contribution of neighbors in CF in a way that improves the quality of 
recommendations. We address this in the next section. 

3.2   Rating Prediction as a Dynamic Aggregation of Utilities 

The same as performance prediction in IR has been used to optimize rank 
aggregation, in our proposed view each user’s neighbor is seen as a retrieval 
subsystem (or criteria) whose output is to be combined to form the final system output 
(the recommendations) to the user.  

A common utility-based formulation for rating prediction in memory-based CF, in 
a user-based, mean-centered variant [1], can be expressed as: 
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where N[u] is the set of neighbors of the active user, ( )r u  is the average of all u’s 
ratings, and C is a normalizing factor which can be defined as e.g.  
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Note that this particular formulation of memory-based CF is chosen here without loss 
of generality, as our approach can be developed in equivalent terms for alternative CF 
variants (not mean-centered, item-based, etc. [1]). 

The term r(u,i) in equation (2) can be seen as a retrieval function that aggregates 
the output of several utility subfunctions ( ) ( ), −r v i r v , each corresponding to a 
recommendation given by a neighbor of the target user. The combination of utility 



values is defined as a linear combination (translated by ( )r u ) of the neighbor’s 
ratings, weighted by their similarity sim(u,v) (scaled by C) to the target user. The 
computation of utility values in CF can thus be viewed as a case of rank aggregation 
in IR, and as such, a case for the enhancement of the aggregated result by predicting 
the performance of the recommendation outputs being combined. In fact, the 
similarity value can be seen as a prediction of how useful the neighbor’s advice is 
expected to be for the active user, which has proved to be quite an effective approach. 
The question is whether other performance factors, beyond similarity can be 
considered in a way that further enhancements can be drawn. 

We thus aim to investigate whether CF results can be further enhanced by 
introducing, in addition to a similarity function, further effectiveness predictors, such 
as IUC and UUC defined in the previous section, into the weights in the linear 
combination of neighbor ratings. The idea can be expressed as rewriting equation (2) 
as: 
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where γ(v,u,i) is a predictor of the performance of neighbor v.  
In the general case, γ can be sensitive to the specific target user u, the item i, and in 

general it could even take further inputs from the recommendation space and context. 
As a first step, we explore the simple case when the predictor only examines the data 
related to the neighbor user v. In particular, we consider γ(v,u,i) = IUC (v) and γ(v,u,i) 
= UUC (v). In the next section we show the experiments we have set up in order to 
observe the effect of the introduction of these predictors in the computation of 
collaborative recommendations. 

4   Experimental Work 

The experiment reported here has been carried out using the MovieLens dataset, and 
more specifically the so-called “100K” set. The main variable with respect to which 
the behavior of the proposed algorithms is tested is the amount of sparsity, which we 
relate to the number of available ratings in the dataset: the larger this number, the 
lower the sparsity. To this purpose, we split the dataset into different partitions 
(training vs. test) of the data (10% to 90% in increments of 10%), with ten random 
cuts per sparsity level. The neighborhood size is another parameter with respect to 
which the results are examined.  

The experiment consists of measuring final performance improvements when 
dynamic weights are introduced in a user-based CF. That is, the dynamic aggregation 
of neighbor ratings based on a prediction of their performance, when seen as 
individual recommenders, (as defined in section 3.2) is tested against the basic CF 
algorithm without dynamic weights.  



 
Fig. 1. Performance comparison of CF with dynamic, clarity-based neighbor weighting, and 
standard CF, using neighborhoods of a) 100 users and b) 500 users. 

Figure 1 shows the results for the two clarity-based predictors UUC and IUC 
defined in section 3.1, when taking neighborhood sizes of 100 and 500 users 
respectively. Each graphic shows performance values (MAE) for the nine cuts 
described above.  

Our method clearly improves the baseline with the smaller neighborhoods (by up 
to 9% for 60-80% cuts), and gets almost equal performance with neighborhoods of 
size 500 users. This indicates that our method works particularly well when limited 
neighborhoods are used, and the improvement fades down to the baseline as they are 
enlarged. This means that our method is more efficient than the static option with 
respect to this variable, i.e. that it is able to get better results out of more economic 
neighborhood sizes.  

 
Fig. 2. Comparison of standard CF with dynamic, clarity-based neighbor weighting, and 
standard CF, using neighborhoods varying from 50 to 500 users, at a) 60% cut, b) 80% cut. 

Enlarging neighborhoods comes at an important computational cost (of O(k·n·m) 
order, k being neighborhood size, n the total number of users, and m the number of 
items in the system) in a CF system. Computational cost being one of the well-known 
barriers in the area [9], achieving equal (or improved) performance at a lower cost is a 



relevant result. Let us recall that the total number of users in this dataset is 943, which 
means that 100 users is about a 10% of the total user community. CF systems 
described in the literature commonly take neighborhood sizes of 5 to 500 users for 
this dataset, 50 to 200 being the most common range [20,21].  

The trend in the evolution of performance with neighborhood size is clear in Figure 
2, showing the behavior of clarity-based predictors at different sizes, setting the 
sparsity cut at a) 60% and b) as a double check, 80% (which are standard ranges in 
the CF literature). It can be seen that the shape of the curves in both figures is very 
similar, evidencing the consistent superiority of clarity-based adjusted CF with small 
to medium (i.e. usual) neighborhood sizes (e.g. over 10% improvement at size = 50 
users). With neighborhoods of only 100 users, it can be seen that our method 
performs as well as the baseline algorithm with 250 to 300 users, which exemplifies 
the benefit in terms of the computational cost (time and memory) needed to achieve 
the same performance.  

5   Conclusions 

Our work explores the use of performance prediction techniques to enhance the 
selection and weighting of neighbors in CF. The proposed approach consists of the 
adaptation of performance predictors originally defined for ad-hoc retrieval, into the 
CF domain, where users and items (and ratings), instead of documents and queries, 
make up the problem space. The proposed predictors are used to introduce dynamic 
weights in the combination of neighbor ratings in the computation of collaborative 
recommendations, in an approach where the better the expected performance of a 
neighbor is, the higher weight is assigned to his ratings in the combination. 

The reported experimental results show performance improvements in MAE as a 
result of this dynamic weights adjustment approach, which supports the predictive 
power of clarity-based techniques in CF as a basis for this kind of adjustment. The 
results are particularly positive in small neighborhood situations. Further planned 
work includes the exploration of further variants of the clarity-based predictor, as well 
as new predictors based on other methods besides clarity, which have achieved good 
results in IR. Studying the correlation of the predicted neighbor goodness with actual 
performance values is work in progress as well at the time of this writing. This 
involves defining new specific performance metrics applying to neighbors, which are 
currently not available in the literature.  

Beyond our current research presented here, recommender systems, and 
personalised IR at large, are particularly propitious areas for the introduction of 
performance prediction techniques, because of the naturally arising need for 
combination of multiple diverse evidence and strategies, and the uncertainty (and thus 
the variable accuracy) involved in the exploitation of implicit evidence of user 
interests. For instance hybrid recommender systems combine a content-based and a 
collaborative approach. Performance predictors could be researched to weight the 
influence of each component in the final recommendations (e.g. CF is sensitive to 
gray sheep or new item situations, while content-based filtering is not). Personalized 
ah-hoc retrieval is another interesting problem for this approach, where the weight of 



a query vs. implicit evidence from user history can be dynamically adjusted 
depending on the predicted effectiveness of each side. To the best of our knowledge, 
the introduction of performance predictors in these areas has been barely addressed, if 
at all, as a formal problem. 
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