Discovering Relevant Preferences in a Personalised Recommender System using Machine Learning Techniques

Alejandro Bellogín, Iván Cantador, Pablo Castells, Álvaro Ortigosa

Escuela Politécnica Superior Universidad Autónoma de Madrid Campus de Cantoblanco, 28049 Madrid, Spain {alejandro.bellogin, ivan.cantador, pablo.castells, alvaro.ortigosa}@uam.es

Motivation

- Complexity of recommender systems
- Several variables affect the effectiveness of recommendations
 - Apply personalisation?
 - Use current context?
 - Consider all the users equally?
 - Consider all the items similarly?
 - ...
- Effectiveness is achieved by adequately handling these variables, but it is also an issue of knowing how relevant each one is
- Can we learn which preferences are relevant to achieve effective recommendations?

Our approach

- Log analysis of a personalised news recommender system
- For each user-rated recommendation, a pattern is created
 - The attributes of the pattern correspond to the characteristics we aim to analyse, and their values are obtained from log information databases.
 - The class of the pattern can be assigned two possible values, correct or incorrect, depending on whether the user evaluated the recommendation as relevant or irrelevant

Architecture

User profile representation

User preferences are described as vectors

 $\mathbf{u}_m = (u_{m,1}, u_{m,2}, \dots, u_{m,K})$ where $u_{m,k} \in [-1,1]$ measures the intensity of the interest of user $u_m \in \mathcal{U}$ for concept $c_k \in \mathcal{O}$ (a class or an instance) in a domain ontology \mathcal{O}

Items d_n ∈ D are assumed to be annotated by vectors
d_n = (d_{n,1}, d_{n,2},..., d_{n,K}) of concept weights, in the same vector-space as user preferences

Recommendation models

- Preference expansion mechanism
 - Through explicit semantic relations with other concepts in the ontology
- Personalised and context-aware

score $(d_n, u_m) = w_p \cdot pref(d_n, u_m) + w_c \cdot pref(d_n, u_m, context)$

- *pref(·,·)* measures the relevance of a document for a user, using a cosine-based vector similarity
- *context* is represented as a set of weighted concepts

Log database

• The system monitors all the actions the user performs, and records them in a log database

Table	Attributes
Browsing	actionID, actionType, timestamp, sessionID, itemID, itemRankingPosition, itemRankingProfile, itemRankingContext, itemRankingCollaborative, itemRankingHybridUP, itemRankingHybridNUP, itemRankingHybridUPq, itemRankingHybridNUPq, topicSection, interestSituation, userProfileWeight, contextWeight, collaborative, scoreSearch
Context updates	actionID, actionType, timestamp, sessionID, context, origin, changeOfFocus
Queries	actionID, actionType, timestamp, sessionID, keywords, topicSection, interestSituation
<i>Recommendations</i> <i>User accesses</i>	actionID, actionType, timestamp, sessionID, recommendationType, userProfileWeight, contextWeight, collaborative, topicSection, interestSituation actionID, actionType, timestamp, sessionID
User evaluations	actionID , actionType, timestamp, sessionID , itemID, rating, userFeedback , tags, comments, topicSection, interestSituation, duration
User preferences	actionID, actionType, timestamp, sessionID, concept, weight, interestSituation
User profiles	actionID, actionType, timestamp, sessionID, userProfile
User sessions	sessionID, userID, timestamp

The News@hand system

• A hybrid news recommender system which makes use of Semantic Web technologies to provide several on-line news recommendation services

Machine learning algorithms

- **Decision Trees:**
 - Interpretable •

DE MADRID

- Most informative attributes (entropy)
- •

Evaluation

- 16 users (12 undergraduate/graduate students, 4 lecturers)
- Task: find and evaluate those news items that were relevant to a given goal

Profile	Section	Query		Task goal	
1 Telecom	World	Q _{1,1}	pakistan	News about media: TV, radio, Internet	
	Entertainment	Q _{1,2}	music	News about software piracy, illegal	
				downloads, file sharing	
2	Business	Q _{2,1}	dollar	News about oil prices	
Banking	Headlines	Q _{2,2}	fraud	News about money losses	
3 Social care	Science	Q _{3.1}	food	News about cloning	
	Headlines	Q _{3,2}	internet	News about children, young people, child	
				safety, child abuse	

- Different configurations based on activation/deactivation of: personalisation and context-aware recommendations, semantic expansion
- Each user classifies an item as relevant in general, relevant to the current goal or relevant to the profile

Results

- Relevant preferences for personalised recommendations:
 - The bigger the user profile size, the more relevant the retrieved news
 - The system retrieves relevant news in the first page (top 5)
 - If the expansion is activated it is a very important preference
- Relevant preferences for context-aware recommendations:
 - Best performance with a medium context size
 - Context usually needs personalisation to obtain good results
- Meta-evaluation conclusions:
 - The evaluation was unbalanced in terms of difficulty of obtaining relevant news items for each task
 - Profile specificity (*Business*, *Entertainment* sections; manual profiles)

Conclusions and future work

- Machine Learning techniques are useful:
 - to learn those user and system features of a recommender system that are (un)favourable for correct recommendations
 - to learn deficiencies and weaknesses of the experiments conducted to measure the system performance
- Next steps:
 - Make the system adaptive to the current status of the analysed preferences and evaluate the (potential) improvement
 - Similar evaluations with the collaborative group-oriented and multi-facet recommendation strategies of News@Hand

Thank you

Split showing unbalanced anomaly

Evaluation: configurations

	Perso	onalised	Context-aware		
_	recomme	endations	recommendations		
	Without	With	With ex	vnansion	
_	expansion	expansion	with expansion		
Usor	w _p =1	w _p =1	w _p =0	$w_{p} = 0.5$	
USCI	w _c =0	w _c =0	w _c =1	w _c =1	
1	*Q _{1,1}	Q _{2,1}	Q _{3,1}	^A Q _{1,2}	
2	Q _{2,2}	*Q _{3,2}	$^{A}Q_{2,1}$	Q _{1,2}	
3	Q _{3,1}	$^{A}Q_{3,2}$	*Q _{1,1}	Q _{2,1}	
4	$^{A}Q_{1,1}$	Q _{1,2}	Q _{2,2}	*Q _{3,2}	
5	Q _{1,2}	*Q _{2,2}	Q _{3,2}	${}^{A}Q_{2,1}$	
6	Q _{2,1}	Q _{3,1}	* ^A Q _{3,2}	Q _{1,1}	
7	Q _{3,2}	$^{A}Q_{1,1}$	Q _{1,2}	*Q _{2,2}	
8	* ^A Q _{2,2}	Q _{1,1}	Q _{2,1}	Q _{3,1}	
9	Q _{1,1}	Q _{2,1}	*Q _{3,1}	^A Q _{3,2}	
10	Q _{2,2}	Q _{3,2}	$^{A}Q_{1,1}$	*Q _{1,2}	
11	*Q _{3,1}	$^{A}Q_{2,2}$	$Q_{1,1}$	Q _{2,1}	
12	^A Q _{3,1}	*Q _{1,2}	Q _{2,2}	Q _{3,2}	
13	Q _{1,2}	Q _{2,2}	Q _{3,2}	*AQ _{1,1}	
14	*Q _{2,1}	Q _{3,1}	$^{A}Q_{2,2}$	Q _{1,1}	
15	Q _{3,2}	*AQ _{3,1}	Q _{1,2}	Q _{2,2}	
16	^A Q _{1,2}	Q _{1,1}	*Q _{2,1}	Q _{3,1}	

Semantic contextualisation of user preferences

 Nodes represent ontology concepts and edges are associated to semantic relations between those concepts.

Knowledge Representation

- User profiles and item descriptions are represented as vectors $\mathbf{u}_{\mathbf{m}} = (u_{m,1}, u_{m,2}, ..., u_{m,K})$ and $\mathbf{d}_{\mathbf{n}} = (d_{n,1}, d_{n,2}, ..., d_{n,K})$, where $u_{m,k}, d_{n,k}$ in [-1,1] are the weights that measure the relevance of concept c_k for user \mathbf{u}_m and item \mathbf{d}_n
- **Recommendation models** are based on the definition of matching algorithms which make use of similarity measures based on $cos(\mathbf{u}_{m}, \mathbf{d}_{n})$

