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1 Introduction
The Master’s Degree in Computer Science at the Computing Engineering School of
UAM includes a course on Information Retrieval (IR) in which the classic retrieval
models are studied (Vector Space Model, Probabilistic Model, etc), along with rank
fusion techniques and other topics, such as Web IR and personalization. This course
does not cover however the topic of Language Models, which is a quite specific area
that nonetheless has recently gained considerable interest in the IR community. Lan-
guage Models for IR consist of an innovative probabilistic framework to retrieve and
rank documents, which has also been used for query analysis [25].

In this work we continue a previous one about the Language Models in Information
Retrieval which I have achieved in the first semester this year, towards problems in
the area of query analysis and characterisation, drawing techniques from Language
Modeling, Information Extraction and Natural Language Processing. The goals of the
present work are:

• An extensive and in-depth state-of-the-art study in query characterisation, and in
particular the prediction of query performance and difficulty.

• A revision and analysis of theoretic approaches for modeling uncertainty, aimed
to clarify and synthesize the involved and related concepts.

• Identify and elaborate the possible applications of these techniques in problems
such as rank fusion and IR personalisation.

• Start prospective experiments with the aim of enhancing the understanding of
the studied techniques, and opportunities for the research of novel approaches
not tested in the literature.

This report pays particular attention to the concept of uncertainty and ambiguity,
since these are important query characteristics. The connection with the previous work
is in the fact that one of the proposed approaches in the literature, which we find of
particular value, for capturing query uncertainty and predicting query performance has
been based on Language Models.
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We have studied the different possibilities, proposed or explored up to date, to
model and handle vague information. These alternatives are reported in this work, after
some introductory background, and a glossary of relevant notions and terminology,
along with the different techniques proposed in the literature, associated with those
definitions. After that, further techniques are described and classified in groups based
on different criteria.

Since metasearch (or rank aggregation in general) is one of the envisioned areas
of application of query analysis and characterisation techniques, some basic concepts
from that area have been revised and are summarized in this report as well. In addition
to this, we have started to study the relation between some well-known uncertainty
models (such as Dempster-Shafer’s theory, fuzzy models, entropy models, etc) and In-
formation Retrieval. In this work we get into this wide area and begin an analysis we
expect to be useful in the near future. Finally, as part of this work, I have conducted
some prospective experiments aimed to observe and better understand the studied tech-
niques, and explore their potential application in innovative approaches addressing new
problem areas.

In section 3, I present some recurrent definitions appeared in the literature in the
form of a glossary as well as different query types according to different aspects. Sec-
tion 4 describes the most important query types. In section 5 different ways for mod-
elling uncertainty are presented. Section 6 describes the most important performance
predictors proposed in the area, and in section 7 an introduction to the state-of-the-art
in rank fusion is given. Section 8 describes a model for personalised IR using clarity
measures. In section 9 I report the experiments carried out and the results drawn from
them. The report ends with some conclusions drawn from the study, possible lanes for
continuation towards further research, and an appendix where the meetings with the
tutor are recorded, in addition to a summary of the TREC datasets, and a summary of
the relation between the main authors in the literature on the relevant topics.

2 Query characterisation
Dealing effectively with poorly-performing queries is a crucial issue in information
retrieval systems. Actually, performance prediction provides some information that
can be useful in many ways [60, 57]:

• From the user perspective, it provides valuable feedback that can be used to
direct a search: rephrasing the query or providing relevance feedback.

• From the perspective of a retrieval system, performance prediction provides a
means to address the problem of retrieval consistency. The consistency of re-
trieval systems can be addressed by distinguishing poorly performing queries
based on performance prediction techniques. Based on that, a retrieval system
can invoke alternative retrieval strategies for different queries (query expansion
or different ranking functions based on predicted difficulty). This way, the search
engine can use the query predictor as a target function for optimizing the query.

• From the perspective of the system administrator, she can identify queries related
to a specific subject that are difficult for the search engine, and expand the collec-
tion of documents to better answer insufficiently covered subjects (for instance,
adding more documents to the collection). It also allows simple evaluation of the
query results.
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• For distributed information retrieval, the estimation can be used to decide which
search engine to use, or how much weight to give it when its results are combined
with those of other engines.

Because of its multiple potential applications, quantifying the ambiguity of queries
has been a major research goal in the area of query analysis, but it has received several
names in different contexts and with distinct nuances. In the next section we review
such names, emphasizing the differences between them, the techniques used and the
variables considered in each context.

3 Glossary
In this section we collect some relevant definitions in the query characterisation area,
defining the most common names used in the literature when discussing about ambi-
guity. As G. J. Klir says in [29]:

“[...] the broad concept of uncertainty is closely connected with the con-
cept of information. The most fundamental aspect of this connection is
that uncertainty involved in any problem-solving situation is a result of
some information deficiency pertaining to the system within which the sit-
uation is conceptualized. There are various manifestations of information
deficiency. The information may be, for example, incomplete, imprecise,
fragmentary, unreliable, vague or contradictory. In general, these various
information deficiencies determine the type of associated uncertainty.”

This quote is a first definition of uncertainty. In table 1 we summarize the list of
concepts that we have found relevant in the scope of this work, and the meaning of
which we aim to clarify, as far as possible, in our glossary.

Clarity
Cronen-Townsend et al. [13] defined the query clarity as a degree of (the lack of) the
query ambiguity. In [12] the authors define query ambiguity as the degree to which the
query retrieves documents in the given collection with similar word usage. They mea-
sure the degree of dissimilarity between the language usage associated with the query
and the generic language of the collection as a whole. This measure (clarity score) is
defined by these authors as the relative entropy, or Kullback-Leibler divergence, be-
tween the query and collection language models (unigram distributions). Analysing
the entropy of the language model induced by the query is a natural approach since en-
tropy measures how strongly a distribution specifies certain values, in this case terms.
Cronen-Townsend et al. used the following formulation:

P (w|Q) =
∑
D∈R

P (w|D)P (D|Q), P (Q|D) =
∏
q∈Q

P (q|D)

P (w|D) = λPml(w|D) + (1− λ)Pcoll(w)

clarity score =
∑
w∈V

P (w|Q) log2

P (w|Q)
Pcoll(w)
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Concept Measure Formula Description Reference(s)
Query clarity Clarity score

∑
w∈V P (w|Q) log2

P (w|Q)
Pcoll(w) Degree to which the

query retrieves doc-
uments in the given
collection with simi-
lar word usage

[13] [12]

Query diffi-
culty

InfoDFR
∑

t∈Q− log2 Prob(Freq
(t|TopDoc)|Freq(t|Coll))

Amount of informa-
tion gained after a
first-pass ranking

[2]

Specificity Query scope − log (NQ/N) Percentage of docu-
ments that contain at
least one query term
in the collection

[45] [23] [38]

Uncertainty Ranking
robustness

1
K

∑K
i=1 SimRank

(L(Q,G, C), L(Q, G, T (i)))
Expected similarity
between a fixed
ranked list and a
random list

[60]

Hardness Jensen-
Shannon
divergence

1
m

∑
j KL(pj ||p̄) Measure the stabil-

ity of ranked results
in the presence of
perturbations of the
scoring function

[3]

Table 1: Summary of the described measures and their respective expression.

with w being any term, Q the query, D a document or its model, R is the set of
documents that contain at least one query term, Pml(w|D) is the relative frequency of
term w in document D, Pcoll(w) is the relative frequency of the term in the collection
as a whole, λ is a parameter (set to 0.6 in Cronen-Townsend’s work), and V is the
entire vocabulary.

It is important to note that the clarity score is neither bounded nor centered in
zero. In figure 1 we can see a representation of the function z = x · log2 x/y when
x, y ∈ (0, 1]. Since the clarity score is calculated adding numbers in this way(∑

w P (w|Q) log2
P (w|Q)

Pcoll(w)

)
it can be seen that a supremum (infimum) of this score

is proportional to the vocabulary size and that it can be positive or negative1

With this definition, we can see that this measure is system-independent, since it
only evaluates the coherence of the ranked list of documents (post-retrieval) for a given
query. For example, in [12] the authors explicitly show the relation between λ and the
collection:

λ =
||D||

||D||+ µ
, prior µ

The degree of ambiguity of a query with respect to the collection of documents
being searched is often closely related to query performance. They found a strong

1Actually, from a technical point of view, we can find a negative clarity value for a term(
P (w|Q) log2

P (w|Q)
Pcoll(w)

)
when P (w|Q) < Pcoll(w) and positive otherwise.
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Figure 1: Surface generated by the function x · log2 x/y when x, y ∈ (0, 1]. It can
be seen that the maximum is found when y ≈ 0, x ≈ 1 and the minimum when
y ≈ 1, x ≈ 0.5.

correlation between the clarity score of a test query with respect to the appropriate test
collection and the performance of that query. Because of that, the clarity score method
has been widely used in the area for query performance prediction [1, 2, 3, 7, 23, 43,
57, 60, 61].

Some applications of the clarity score measure include query expansion (anticipat-
ing poorly performing queries which shoul not be expanded), improving performance
in the link detection task in topic detection and tracking by modifying the measure of
similarity of two documents [36], and document segmentation [16].

Difficulty
In [2], Amati et al. proposed the notion of query difficulty to predict query perfor-
mance. In this work, query difficulty is captured by the notion of the amount of infor-
mation InfoDFR gained after a first-pass ranking. If there is a significant divergence in
the query-term frequencies before and after the retrieval, then the authors make the hy-
pothesis that this divergence is caused by a query which is easy-defined. This InfoDFR
is defined as

InfoDFR =
∑
t∈Q

− log2 Prob(Freq(t|TopDocuments)|Freq(t|Collection))

For the implementation of this predictor, two different expansion models were tried:
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InfoKL(t) =
Freq(t|TopDocs)

TotFreq(TopDocs)
· log2

Freq(t|TopDocs) · TotFreq(C)
TotFreq(TopDocs) · Freq(t|C)

InfoBo2(t) = − log2

(
1

1 + λ

)
− Freq(t|TopDocs) · log2

(
1

1 + λ

)
λ = TotFreq(TopDocs) · Freq(t|C)

TotFreq(C)

where TopDocs denotes the pseudo-relevant set and C denotes the whole collection.
Query difficulty is system-dependent, since the probability that appears in the for-

mula is not used directly, but it is normalized by considering the probability of the ob-
served term-frequency only in the set of documents containing the term. This measure
has also been applied to query expansion, making it possible for this technique to be
selective, by avoiding the application of query expansion on the set of worst (difficult)
topics.

Specificity
In the same year (2004) Plachouras et al. [45][23][38] defined the query scope as a
measure of the specificity of a query: − log (NQ/N), where NQ is the number of doc-
uments containing at least one of the query terms, and N is the number of documents
in the whole collection. The authors found that query scope is effective for inferring
query performance for short queries in ad-hoc text retrieval. This is because the size of
the document set containing at least one of the query terms is an alternative indication
of the generality/speciality of a query.

One application of this measure is to find which of the available approaches is most
appropriate for a specific query. Plachouras et al. considered content-only retrieval,
retrieval based on the content of documents and the anchor text of their incoming links,
and a combination of the latter approach with a score obtained from the URL length of
a document. For this task the authors defined a more general measure:

qe = min
(
{number of retrieved documents containing all query terms}

α
, 1

)
qe stands for query extent, and it is the number of retrieved documents that contain

all the query terms, normalised between 0 and 1 by dividing with a given fraction of
the total number of documents in the test collection (α). The authors combine query
extent with result extent in order to classify different queries in a particular TREC’s
task.

result extent = {number of sites for which sizej > µsize + 2× σsize}

where sizej is the number of documents from the jth site, and µ, σ its average and
standard deviation. It is system-independent, moreover, its value determines which is
the most appropriate retrieval approach for each query, but strongly collection-dependent.

Another application of query scope can be found in [50], where it is used for as-
signing a measure of uncertainty to each source of evidence (in their work these sources
were content analysis and link structure analysis) and then applying Dempster-Shafer’s
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theory of evidence. The estimation of the term scope (a query is considered as a bag
of terms) is based on defining a probability measure for concepts on top of WordNet’s
hierarchical structure of concepts.

Uncertainty
More recently (2006) a new concept has arisen: ranking robustness [60]. It refers
to a property of a ranked list of documents that indicates how stable the ranking is in
the presence of uncertainty in the ranked documents. The idea of predicting retrieval
performance by measuring ranking robustness is inspired by a general observation in
noisy data retrieval that the degree of ranking robustness against noise is positively
correlated with retrieval performance. Regular documents also contain noise if we
interpret noise as uncertainty. This robustness score performs better than or at least as
good as the clarity score.

This measure has only been applied to predict retrieval effectiveness. Zhou and
Croft consider as inputs to robustness score: a query, a retrieval function (it induces the
ranked list that the measure really needs), a document collection and another collec-
tion (random collection). Therefore, it is collection-dependent, and if we consider the
retrieval function as a black box, it is also system- and query-independent.

Hardness
Another novel and very promising point of view about the performance prediction is
the definition of the query hardness by Aslam and Pavlu in [3]. This technique is
based on examining the ranked lists returned by multiple scoring functions (retrieval
engines) with respect to the given query and collection. The authors propose that the
results returned by multiple retrieval engines will be relatively similar for easy queries
but more diverse for difficult queries. Actually, they distinguish two notions of query
hardness:

System query hardness difficulty of a query for a given retrieval system run over a
given collection. To capture the difficulty of the query for a particular system,
run over a given collection. It is system-specific.

Collection query hardness difficulty of a query with respect to a given collection.
Capturing the inherent difficulty of the query (for the collection) and perhaps
applicable to a wide variety of typical systems. It is independent of any specific
retrieval system.

Authors suggest that a procedure for estimating query hardness would be useful to
alert users about the likelihood of poor results (and propose them to reformulate the
query), to employ enhanced search strategies if a difficult query has been found or to
combine more accurately input results from distributed systems.

Other notions
Finally, the concepts query vagueness and imprecision has not been used, to our
knowledge, as a specific concept, but as a general one, aggregating all these previous
meanings.
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Notions from Information Theory
Now we can see some related definitions extracted from Information Theory[17]:

• The entropy of a discrete distribution is a measure of the randomness or unpre-
dictability of a sequence of symbols {v1, · · · , vm} drawn from it, with associated
probability Pi. It can be calculated using the logarithm base 2, in this case it is
measured in bits

H = −
m∑

i=1

Pi log2 Pi

One bit corresponds to the uncertainty that can be resolved by the answer to a
single yes/no question. For a continuous distribution, the entropy is

H = −
∫ ∞

−∞
p(x) ln p(x)dx

We have to note that the entropy does not depend on the symbols themselves, just
on their probabilities. When each symbol is equally likely we have the maximum
entropy distribution, that in the discrete case is the uniform distribution and in
the continuous one is the Gaussian. Conversely, if all the pi are 0 except one, we
have the minimum entropy distribution. A probability density in the form of a
Dirac delta function has the minimum entropy:

δ(x− a) =
{

0 x 6= a
∞ x = a∫ ∞

−∞
δ(x)dx = 1

Some properties of the entropy of a discrete distribution is that it is invari-
ant to shuffling the event labels and that, for an arbitrary function f , we have
H(f(x)) ≤ H(x), that is, processing never increases entropy.

• If we have two discrete distributions over the same variable x, p(x) and q(x),
the relative entropy or Kullback-Leibler distance is a measure of the distance
between these distributions:

DKL(p(x), q(x)) =
∑

x

q(x) ln
q(x)
p(x)

It is closely related to cross entropy, information divergence and information for
discrimination. The continuous version is:

DKL(p(x), q(x)) =
∫ ∞

−∞
q(x) ln

q(x)
p(x)

dx

The relative entropy is not a true metric because DKL is not necessarily sym-
metric in the interchange p ↔ q.

In figure 2 we can see the relation between the defined measures.
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• If we want to compare now two distributions over possibly different variables
we can measure the mutual information: reduction in uncertainty about one
variable due to the knowledge of the other variable:

I(p; q) = H(p)−H(p|q) =
∑
x,y

r(x, y) log2

r(x, y)
p(x)q(y)

where r(x, y) is the joint distribution of finding value x and y. The mutual
information measures how much the distributions of the variables differ from
statistical independence (because it is equivalent to the relative entropy between
the joint distribution and the product distribution).

• Dempster-Shafer’s theory of evidence introduces the concept of uncertainty in
the process of merging different sources of evidence, extending in this way the
classical probability theory [47, 50, 35]. According to this theory, the set of
elements Θ = {θ1, · · · , θn} in which we are interested is called the frame of dis-
cernment. The goal is to represent beliefs in these sets, defining belief functions
Bel : 2Θ −→ [0, 1]. These functions are usually computed based on probability
mass functions m that assigns zero mass to the empty set, and a value in [0, 1] to
each element of the power set of Θ:

m(∅) = 0,
∑
A⊆Θ

m(A) = 1

m is called Basic Probability Assignment (BPA). If m(A) > 0 then A is called
a focal element, the set of focal elements and its associated BPA define a body of
evidence on Θ. The belief associated with a set A ⊆ Θ is defined as

Bel(A) =
∑
B⊆A

m(B)

When two bodies of evidence are defined in the same frame of discernment, we
can combine them using Dempster’s combination rule, under the condition that
the two bodies are independent of each other. Let m1,m2 be the probability
mass functions of the two independent bodies of evidence, the probability mass
function m defines a new body of evidence in the same frame of discernment Θ
as follows:

m(A) = m1 ⊕m2(A) =
∑

B∩C=A m1(B)×m2(C)∑
B∩C 6=∅ m1(B)×m2(C)

4 Query types
In this section we review different classifications used in IR for queries. These classifi-
cations can be seen as a first step in order to extract the most relevant query character-
istics and investigate their correlation with performance.

Different information needs suggest different types of queries (and different re-
trieval) issued to the system. The most common type of retrieval is the one of searching
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Figure 2: For two distributions p and q, this figure shows the matematical relationships
among the entropy, mutual information I(p; q), and conditional entropies H(p|q) and
H(q|p). For instance, I(p; p) = H(p), if I(p; q) = 0 then H(q|p) = H(q)

for documents relevant to the particular need received and return these documents ac-
cording to an appropriate ranking. In this retrieval the focus is on the whole document,
because we do not know what the user is searching for. In this case, natural language
processing can help to understand which are the user’s needs and what information is
contained in every document. For making this possible, it is necessary to have a query
written in natural language, but nowadays users frequently issue short queries (3 to
4 words) and without any structure [26]. In this particular scenario, the query can be
seen as a set of terms that have to be present in the documents retrieved (boolean AND
queries). Most typical techniques smooth this condition and give a weight to each term,
even allowing some terms not to appear in the document (OR queries).

Leaving aside this language-based classification, a natural and useful partition of
queries is found: short against long queries. This is a very basic query characteristic
but we have some problems despite its simplicity: from which threshold do we have to
consider a query as long, do we have to process the query before we apply the threshold
(remove stopwords and punctuation), do longer queries always give more information
than shorter queries, ... For example, TREC (see section A) usually provides short title
queries and longer description queries in order to test the systems’ performance with
respect to this feature.

Now we have mentioned TREC, we can look more carefully each track proposed
every year in this conference and extract the different information needs inherent to
each of these tracks in order to know more about their associated queries.2

• Blog track. With this track they want to know which is the behavior in the bl-
ogosphere. Tasks: opinion retrieval (opinionated nature of many blogs), blog
distillation (feed search).

• Enterprise track. This track has an explicit information need: satisfying a user
who is searching the data of an organization to complete some task. It involves
new data (email, documents in version control system) and new tasks (search
across a single data type or mixed data types) with respect to TREC.

• Legal track. This track is focused on a very specific kind of user: a lawyer. This
user needs to retrieve, in a very effective way, documents in digital collections.
Tasks: automatic ad hoc, automatic routing, interactive.

2The first five mentioned tracks will run this year (2008)
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• Million query track. With this track they explore adhoc retrieval on a large col-
lection of documents, and, more important, they investigate about the evaluation:
evaluate large number of queries incompletely, rather than a small number more
completely. Two tasks: run queries and judge documents.

• Relevance feedback track. Relevance feedback is a very common and known
technique in Information Retrieval, with this track they want to provide a frame-
work for exploring the effects of different factors on the success of relevance
feedback, allowing comparisons between systems and a common baseline.

• Cross-language track. A track that investigates the ability of retrieval systems
to find documents that pertain to a topic regardless of the language in which the
document is written.

• Filtering track. The user’s information need in this track is stable and some
relevant documents are known, but there is a stream of new documents. For
each document, the system has to filter the documents to retrieve (make a bi-
nary decision) according to a set of user needs represented in profiles (all of the
information the system has acquired about a specific information need). Tasks:
adaptive filtering, batch filtering, routing.

• Genomics track. In this track, a more specific domain is studied: gene sequences
and documentation (research papers, lab reports, etc.) Actually, the user’s need
is to adquire new knowledge in a sub-area of biology linked with genomics in-
formation.

• HARD track. The goal of HARD is to achieve High Accuracy Retrieval from
Documents by leveraging additional information about the searcher and/or the
search context, through techniques such as passage retrieval and using very tar-
geted interaction with the searcher. In some applications, such as information
analysis, a more specific requirement exists for high accuracy retrieval (instead
of improving the effectiveness of search), i.e. high precision in top documents.
For example, in 2005 its topics were the same that Robust Track used.

• Interactive track. A track studying (real) user interaction with text retrieval sys-
tems. Four sorts of questions: find any n Xs, find the largest/latest/... n Xs, find
the first or last X, comparison of 2 specific Xs. The task consists of answer-
ing each question and identifying a minimal set of documents wich supports the
answer, within a maximum of 5 minutes.

• Novelty track. A track to investigate systems’ abilities to locate new (i.e., non-
redundant) information. The basic design is: given a TREC topic and an ordered
list of relevant documents, find the novel information that should be returned to
the user from this set.

• Question answering track. A track designed to take a step closer to information
retrieval rather than document retrieval. The QA track last ran in 2007. Tasks:
find an exact answer to some question (main task), assemble an answer from
information located in multiple documents (list task).

• Robust retrieval track. Task: ad hoc retrieval focused on individual topic effec-
tiveness rather than average effectiveness. The evaluation methodology empha-
sizes a system’s least effective topics.
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• SPAM track. The goal here is to provide a standard evaluation of current and
proposed spam filtering approaches, thereby laying the foundation for the evalu-
ation of more general email filtering and retrieval tasks. Tasks: on-line filtering
(ideal user feedback and delayed feedback) and active learning (classification of
new messages).

• Terabyte track. With this track they want to develop an evaluation methodol-
ogy for terabyte-scale document collections. Sparck Jones and van Rijsbergen
proposed a way of building significantly larger test collections by using pool-
ing3, although this technique makes relevance information incomplete TREC
has adopted it for this track. Actually, they expect that retrieval algorithms may
perform differently at very large scales and that evaluation methodologies will
need to be revised to deal more effectively with incomplete relevance informa-
tion. The main task for the terabyte track is ad hoc informational search. Others
tasks: efficiency (query processing times), named page finding.

• Video track. It is devoted to research in automatic segmentation, indexing, and
content-based retrieval of digital video. This track became an independent eval-
uation in 2003, with a workshop taking place just before TREC.

• Web track. The document set used in this track is a snapshot of the World Wide
Web, so it is possible to simulate search tasks as if they were being executed
online.

After all this gibberish of tracks, we can summarise the most relevant tasks for our
purposes, focusing on those defining a specific and different user’s need. In the same
table appears which predictors have proved to perform properly in that task, if any
(table 2).

Type of query Good predictors TREC track
Named page finding Query scope [45], Weighted In-

formation Gain [61]
Terabyte

Home page Query scope [45] Web
Content-based Weighted Information Gain [61] Web

Topic distillation Query scope [45] Web
Known item finding Query scope [45] Web

Table 2: Non-linguistic features found statistically significant correlated with average
precision

Besides TREC, there are some more query classifications we can find. There is
a lot of research done in the areas of query expansion and relevance feedback, some
algorithms have proved to be efficient but usually they felt down with some particu-
lar queries: polisemic, ambiguous, long,... queries; in short: difficult queries. These
queries are called bad-to-expand queries [12], and produce negative improvements af-
ter expansion. This is why a very important application of query characterisation is
query expansion, because it will detect when the algorithm can expand normally and
when it is better do nothing.

3Only the top 100 documents for a topic by the participating systems are judged by human assessors and
all the documents which are not in the pool are unjudged, forming the qrel set, and assumed to be irrelevant.
Therefore, many relevant documents may be missed using such a pooling strategy.
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Finally, we can consider a special kind of retrieval, in which documents are timed
(the most typical application of this is a news searcher). In this situation we can distin-
guish two main types of queries: the first type of query favors very recent documents
and the other has more relevant documents within a specific period in the past.

Attribute Types
Language Natural language, Database, Bag-of-words
Expansion Bad-to-expand, good-to-expand

Length Short, long
TREC name page, home page, content-based, topic

distillation, known item finding, navigational
AP Weak, strong

Time Recent, past

Efficiency-related tracks
According with [56], there has been no attempt from TREC to build topics that match
any particular characteristics, but the effects of topic characteristics on system perfor-
mance have been analysed both in TREC-2 and TREC-5. This is partly because the
topic emphasis was on real user topics, but also because it is not clear what character-
istics would be appropiate.

In these analyses, a measure called topic hardness was developed. It is defined as
an average over a given sets of runs of the precision for each topic after all the relevant
documents have been retrieved or after a hundred documents have been retrieved, if
more than a hundred documents are relevant. As we can see, this measure is oriented
toward high-recall performance and how well systems do at finding all the relevant
documents.

Despite that, this measure can be used to show correlations between some par-
ticular topic characteristic and system performance. In TREC-5, two specific topic
characteristics were analysed: length of the topic and number of relevant documents
found for that topic. An almost random correlation was found between these charac-
teristics and the hardness (0.19 and 0.14 for number of relevant documents and length,
respectively).

This information was accurate in the moment of printing, but nowadays it is out-of-
date, because we have already mentioned some tracks focused on topic effectiveness
and accuracy:

• Robust track

• HARD track

• Terabyte track

• Legal track

The problem with these tracks is that they are of very recent vintage or have been
discontinued. For example, this year will be the third year that the Legal track will run,
Robust and HARD last ran was in 2005 and Terabyte in 2006. Despite this, majority of
literature still cites these tracks, actually, the most used is the Robust track, with topics
of TREC 7, or others similar.

As a future work for the whole community, it is interesting to know whether a topic
found to be difficult several years ago is still difficult for current state-of-the-art IR
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systems. In the Robust tracks of 2003 and 2004, conclusion about this point was that
current systems still have difficulty in handling those old difficult topics [7]. However,
the Robust track results did not fully answer the basic question underlying its root
cause, that is, why are some topics more difficult than others?

5 Modelling uncertainty
In [22] we can find some representations of uncertainty:

• Numeric representations:

– Probability measures

– Dempster-Shafer belief functions

– Possibility measures

– Ranking functions

• Nonnumeric representations:

– Plausability measures

All these representations arise because probability has its problems:

• Either one event is more probable than the other, or they have equal probability.
It is impossible to say that two events are comparable in likelihood.

• The numbers are not always available

We are going to focus in representations already used in Information Retrieval field,
that is, Dempster-Shafer and fuzzy theory (possibility measures is based on ideas of
fuzzy logic) [5, 50, 35, 10, 11, 34]. These approaches belong to what is called Soft
Information Retrieval, set of approaches that aims at applying techniques for dealing
with vagueness and uncertainty.

5.1 Fuzzy representation
Fuzzy set theory is a formal framework well suited to model vagueness: in Informa-
tion Retrieval it has been successfully employed at several levels, in particular for the
definition of a superstructure of the Boolean model. In [10] we can find different fuzzy
models applied to this field:

• Extended boolean models: fuzzy document representation

• Extended Boolean models: fuzzy extensions of the query language

• Fuzzy Thesauri of terms

• Fuzzy Clustering of Documents

Through these extensions the gradual nature of relevance of documents to user
queries can be modelled. Actually, the same author, Crestani, in [11] presents many
models helping to give a logical definition and capture the view of relevance:

• Logical models:
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– Modal logic

– Conceptual graphs

– Situation theory

– Channel theory

– Terminological logic

– Abductive logic

– Default logic

– Belief revision

– Fuzzy logic

• Logical-uncertainty models (uncertain inference models):

– Based on probability theory

– Based on probabilistic datalog

– Based on logical imaging

– Based on semantic information theory

– Based on probabilistic argumentation systems

• Meta-models

Neural networks have also been used in this context to design and implement In-
formation Retrieval Systems that are able to adapt to the characteristics of the IR en-
vironment, and in particular to the user’s interpretation of relevance [10]. They can be
classified as:

• Supervised Learning Techniques. At first, they were used for modeling each doc-
ument by a unit. Later relevace feedback was added. There has been successful
three layers networks: Belew’s network (descriptors, documents and documents’
authors) and Kwok’s network (queries, index terms and documents). Jung and
Raghavan attempted to join Vector Space model with learning paradigms of con-
nectionist model.

• Unsupervised Learning Techniques. They have been used mainly for documents
or terms clustering and classification. Query expansion is feasable suggesting
the user terms that are similar to those she put in the query.

5.2 Dempster-Shafer representation
[50] presents results obtained from content and link analyses which are then combined
using Dempster-Shafer’s theory of evidence. This theory introduces the concept of
uncertainty in the process of merging different sources of evidence, extending in this
way the classical probability theory. According to this theory, the set of elements
in which we are interested is called the frame of discernment. When two bodies of
evidence are defined in the same frame of discernment, we can combine them using
Dempster’s combination rule, under the condition that the two bodies are independent
of each other. The rule of combination of evidence returns a measure of agreement
between two bodies of evidence.
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With this notation, the frame of discernment in their paper is the set of Web doc-
uments in the collection, the scoring functions for the content analysis and the link
structure analysis are considered to be the bodies of evidence that will be combined
into a single body of evidence in the frame of discernment. Vassilis and Iadh found
that Dempster-Shafer theory of evidence is not effective in significantly improving pre-
cision, due to either the quality of the sources of evidence, or the appropriateness of
the method itself. With respect to the first point, while content-only retrieval is an ef-
fective approach for the tasks they experimented with (topic relevance of TREC10 and
topic distillation of TREC11), hyperlink analysis has not proved to be equally useful.
In addition, the normalisation of the scores used4 could bias the combination of evi-
dence, since the distribution of hyperlink analysis scores is significantly different from
that of the content-only retrieval scores. Instead of Dempster-Shafer theory, different
approaches can be used for the combination of evidence.

In [34] we find a model that allows the expression of uncertainty with respect to
parts of a document. In [35] a four-featured model is discussed (structure, significance,
partiality, uncertainty5). Lalmas uses the Dempster-Shafer theory to express this model
in two steps: first, the initial Dempster’s theory is shown to represent structure and sig-
nificance; second, the refinement function, defined by Shafer, is given as a possible
method for representing partiality and uncertainty. The different representations of the
document capture the partiality of information. The transformed documents are not
actual documents, but consist of more exhaustive representations of the original docu-
ment. The transformation may be uncertain. A document that requires less transforma-
tions than another one is usually more relevant to the query than the other document.
Furthermore, an implementation of the model was performed.

6 Performance prediction
In this section, we show the distinct performance predictors proposed in the literature.
Some of them have already been described in the glossary (section 3), but we provide
a more fine-grained classification here.

One way to measure the effectiveness of the performance prediction methods is to
compare the rankings of queries based on their actual precision (such as MAP) with
the rankings of the same queries ranked by their performance scores (that is, the pre-
dicted precision). Based on whether retrieval results are needed when computing the
performance score, these methods can be classified into three groups: non-retrieval,
pre-retrieval and post-retrieval approaches. Another relevant distinction is, whether
the predictors are trained or not. In the following sections we describe the approaches
proposed in the literature, grouped according to these distinctions.

First of all, we present different performance measures, and after that we describe
the different performance predictors proposed in literature.

4Content and link analysis scores were normalised as follows:

mc(di) =
mc(di)∑
j mc(dj)

, ml(di) =
ml(di)∑
j ml(dj)

where mc and ml denote the bodies of evidence for the content analysis and link analysis
5The exact information content of a document cannot always be identified appropriately because of the

difficulty in capturing the richness and the intensional nature of information. The relevance of a document
with respect to a query depends on the existence of information explicit or implicit in the document, so the
more uncertainty, the less relevant the document.
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6.1 Measures
In order to predict the performance of a query, the first step is to differentiate highly
performing queries from poorly performing queries [24]. This can be approached using
several measures such as the ones we list below.

In the initial robust track [53] two measures were proposed to study how well IR
systems are able to avoid very poor results for individual topics: %no measure (per-
centage of topics that retrieved no relevant documents in the top ten retrieved) and area
measure (area under the curve produced by plotting MAP(X) vs X when X ranges over
the worst quarter topics); but these measures were shown to be unstable. A third mea-
sure was introduced: gmap. Gmap is computed as a geometric mean of the average
precision scores of the test set of topics. This measure gives appropiate emphasis to
poorly performing topics while being stable with as few as 50 topics [55]. As [54]
states, the problem with using MAP as a measure for poorly performing topics is that
changes in the scores of best-performing topics mask changes in the scores of poorly
performing topics6. However, the most commonly used measure to find correlations
with is the average precision obtained for each query by each particular system. Re-
cently, we can see a normalized version of average precision that takes into account the
topic difficulty [40].

6.2 Non-retrieval approaches7

In the field of natural processing language there has been a few attempts to predict
performance of queries. One of these is [43], where Mothe et al. extract 16 features
of the query and study their correlation with respect to recall and average precision. In
this study they used TREC 3, 5, 6 and 7 as datasets.

The 16 linguistic features computed were classified in three different classes ac-
cording to their level of linguistic analysis:

• Morphological features:

Number of words
Average word length is the average length of terms in the query, measured in

numbers of characters

Average number of morphemes per word is obtained using the CELEX8 mor-
phological database. The limit of this method is of course the database cov-
erage, which leaves rare, new, or misspelled words as mono-morphemic.

Average number of suffixed tokens word , the authors used a bootstrapping
method in order to extract the most frequent suffixes from the CELEX
database, and then tested for each lemma in the topic if it was eligible
for a suffix from this list

Average number of proper nouns was obtained through the POS tagger’s anal-
ysis

Average number of acronyms are detected using a simple pattern-matching tech-
nique

6For example, the MAP of a run in which the effectiveness of topic A doubles from 0.02 to 0.04 while
the effectiveness of topic B decreases 5% from 0.4 to 0.38 is identical to the baseline run’s MAP.

7This section is a summary of the work carried out by myself this year in the course of Natural Language
Processing. It is just included here because it is relevant for the subject in hand.

8CELEX English database (1993). Available at www.mpi.nl/world/celex
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Average number of numeral values are detected using a simple pattern-matching
technique

Average number of unknown tokens are those marked up as such by the POS
tagger. Most unknown words are constructed words such as “mainstream-
ing”, “postmenopausal” or “multilingualism”

• Syntactical features:

Average number of conjuctions detected through POS tagging

Average number of prepositions detected through POS tagging

Average number of personal pronouns detected through POS tagging

Average syntactic depth computed from the results of the syntactic analyzer.
It is a straightforward measure of syntactic complexity in terms of hier-
archy. It simply corresponds to the maximum number of nested syntactic
constituents in the query.

Average syntactic links span computed from the results of the syntactic ana-
lyzer. It is the average of the distance between each individual syntactic
links (in terms of number of words) over all syntactic links.

• Semantic feature:

Average polysemy value corresponds to the number of synsets in the WordNet9

database each word belongs to

Mothe et al. found that:

• The only positively correlated feature is the number of proper nouns

• Many variables do not have significant impact on any evaluation measure. Only
the more sophisticated features appear more than once

• The only two variables found correlated in more than one TREC campaign are
the average syntactic links span (for precision) and the average polysemy value
(for recall)

We have reproduced their experiments with other datasets and our results are in
table 3. In these experiments, we were not able to extract the average number of mor-
phemes per word and the average number of suffixed tokens word because the CELEX
database was not available. Nevertheless, we add two new features in our analysis:

Number of hyponyms10 this number is given directly by Wordnet

Average number of hyponyms
9http://wordnet.princeton.edu/
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6.3 Pre-retrieval approaches11

In this category, performance predictors do not rely on the retrieved document set. The
efficiency of this kind of predictor is often high since the performance score can be
computed prior to the retrieval process. However, regarding prediction accuracy, these
predictors generally have a low performance since many factors related to retrieval
effectiveness are not exploited [59].

Some researchers have used IDF-related (inverse document frequency) features as
predictors. For example, He and Ounis [23] proposed a predictor based on the standard
deviation of the IDF of the query terms. Plachouras [44] represented the quality of a
query term by Kwok’s inverse collection term frequency. These IDF-based predictors
showed some moderate correlation with query performance.

Diaz and Jones [16] have tried time features for prediction. They found that al-
though they are not highly correlated to performance, using these time features together
with clarity scores improves prediction accuracy. Kwok et al. [33] built a query pre-
dictor using support vector regression. For features, they chose the best three terms in
each query and used their log document frequency and their corresponding frequencies
in the query. They observed a small correlation between predicted and actual query
performance. He and Ounis [23] proposed the notion of query scope for performance
prediction, which is quantified as the percentage of documents that contain at least one
query term in the collection (− log (NQ/N), where NQ is the number of documents
containing at least one of the query terms and N is the total number of documents in
a collection). Query scope is effective in inferring query performance for short queries
in ad-hoc text retrieval, and it seems to be very sensitive to the query length [38].

In table 4 there are some results that show the correlations we have found using the
query scope and the average precision in TREC 8, 9 and 2001.

6.4 Post-retrieval approaches
In this category, predictors make use of retrieved results in some manner. Generally
speaking, techniques in this category provide better prediction accuracy compared to
those in previous category. However, computational efficiency can be an issue for many
of these techniques.

Using visual features, such as titles and snippets, from a surrogate document repre-
sentation of retrieved documents, Jensen et al. [28] trained a regression model with
manually labeled queries to predict precision at the top 10 documents in the Web
search. The authors reported moderate correlation with precision. Elad Yom-Tov et
al. [57] proposed a histogram-based predictor and a decision tree based predictor. The
features used in their models were the document frequency of query terms and the
overlap of top retrieval results between using the full query and the individual query
terms. Their idea was that well-performing queries tend to agree on most of the re-
trieved documents. They reported promising prediction results and showed that their
methods were more precise than those used in [33, 44].

There are some other techniques based on measuring some characteristics of the re-
trieved document set to estimate performance. For example, the clarity score measures
the coherence of the retrieved document set. In fact, the initial success of the clarity
method has inspired a number of similar techniques. Amati [2] proposed to use the
KL-divergence (as one possible probabilistic model) between a query term’s frequency
in the top retrieved documents and the frequency in the whole collection, which is very

11Some descriptions of this and next section have been extracted from [59]
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similar to the definition of the clarity score. He and Ounis [23] proposed a simplified
version of the clarity score where the query model is estimated by the term frequency
in the query, i.e. the authors proposed the following calculation:

SCS =
∑
Q

Pml(w|Q) log2

Pml(w|Q)
Pcoll(w)

Pml(w|Q) =
qtf

ql

where qtf is the number of occurrences of a query term w in the query and ql is
the query length.

Carmel et al. [7] found that the distance measured by the Jensen-Shannon Diver-
gence (JSD) between the retrieved document set and the collection is significantly cor-
related to average precision. Vinay et al. [51] propose four measures to capture the
geometry of the top retrieved documents for prediction:

• The clustering tendency as measured by the Cox-Lewis statistic,

• the sensitivity to document perturbation,

• the sensitivity to query perturbation,

• the local intrinsic dimensionality

The most effective measure is the sensitivity to document perturbation, an idea
similar to the robustness score but it does not perform equally well for short queries
and prediction accuracy drops considerably when a state-of-the-art retrieval technique
(like Okapi or a language modeling approach) is adopted for retrieval instead of the
tf-idf weighting used in their paper [59].

Kwok et al. [32] suggest predicting query performance by retrieved document simi-
larity. The basic idea is that when relevant documents occupy the top ranking positions,
the similarity between top retrieved documents should be high, based on the assumption
that relevant documents are similar to each other. While this idea is interesting, pre-
liminary results are not promising. A similar technique can be found in [21]. Grivolla
et al. calculate the entropy and pairwise similarity: first, the entropy of the set of the
K top-ranked documents for a query is defined as H = −

∑
w∈W P (w) · log P (w)

where

P (w) =
∑

d∈D Nd(w) + ε∑
v∈W

∑
d∈D Nd(v) + |W |ε

is the probability of the word w in the document set, D is the set of documents on
which to calculate the entropy, W is a lexicon of keywords, Nd(w) the number of
occurrences of w in d, and ε is a constant used to overcome the well-known zero-
frequency estimation problem. This entropy should be higher when the performance
achieved for a given query is bad. Secondly, as a score of the same type as the entropy,
they defined the mean cosine similarity of the documents (DMS), using the base form
of tf-idf term weighting wij = tfij · log |D|

dfi
for term ti in document dj .

Diaz [15] proposes a technique called spatial autocorrelation for performance pre-
diction. This technique measures the degree to which the top ranked documents (for a
given retrieval) receive similar scores by spatial autocorrelation of the retrieval. This
approach is based on the cluster hypothesis [27]: closely-related documents tend to be
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relevant to the same request. A significant correlation between score consistency and
retrieval performance was observed in their experiments.

Zhou et al. [61] defined two more techniques:

• Weighted Information Gain (WIG) measures the change in information about the
quality of retrieval (in response to query Qi) from an imaginary state that only
an average document is retrieved to a posterior state that the actual search results
are observed:

WIG(Qi, C, L) = HQi,L(QS , C)−HQi,L(QS , Dt) =

=
∑
s,t

weight(QS , Dt) log
P (QS , Dt)
P (QS , C)

=

=
1
K

∑
Dt∈TK(L)

log
P (Qi, Dt)
P (Qi, C)

where C is the collection and L the ranked list of documents. The heart of this
technique is how to estimate the joint distribution P (QS , Dt). Zhou et al. decide
to adopt Metzler and Croft’s Markov Random Field (MRF) model:

log P (Qi, Dt) = − log Z1 +
∑

ξ∈F (Qi)

λξ log P (ξ|Dt)

The authors consider two kinds of features: single term features T and proxim-
ity features P . Proximity features include exact phrase and unordered window
features.

• Query Feedback (QF) measures the degree of corruption that arises when Q is
transformed to L (output of the channel when the retrieval system is seen as a
noisy channel). They design a decoder that can accurately translate L back into
new query Q′ and the similarity S between the original query Q and the new
query Q′ is adopted as a performance predictor.

In table 4 can be seen correlations found in our experiments by clarity score (clar-
ity) and simplified clarity score (SCS) using TREC 8, 9 and 2001 as datasets.

6.5 Usage of training data
In [60] the following classification is proposed, based on the need for training data.
Since all the techniques have already been described in previous sections, only the
classification is given.

• No training data: IDF-related features as predictors (standard deviation of the
IDF of the query terms [23], Kwok’s inverse collection term frequency [44]),
related to the ideas in the clarity score technique (KL-divergence between a query
term’s frequency in the top retrieved documents and the frequency in the whole
collection [2], simplified version of the clarity score where the query model is
estimated by the term frequency in the query [23], percentage of documents that
contain at least one query term in the collection (query scope) [23], clarity scores
extended to include time features [16]), predict query performance by retrieved
document similarity [32].
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Queries Pearson Spearman Kendall
All Proper nouns

(0.2305), hyponymy
(−0.1808), poly-
semy (−0.1933),
normalized poly-
semy (−0.2799)

Proper nouns
(0.2103), polysemy
(−0.2089), nor-
malized polysemy
(−0.2506)

Proper nouns
(0.1726), polysemy
(−0.1414), nor-
malized polysemy
(−0.1685)

TREC 8 Proper nouns
(0.2857), syntactic
depth (−0.1201)

Proper nouns
(0.3360), syntactic
depth (−0.0275)

Proper nouns
(0.2772), syntactic
depth (−0.0211)

TREC 9 Proper nouns
(0.2978), hyponymy
(−0.3084), nor-
malized polysemy
(−0.3218)

Normalized poly-
semy (−0.3445),
normalized hy-
ponymy (−0.3099)

Normalized hy-
ponymy (−0.2177),
normalized poly-
semy (−0.2276)

TREC 2001 Acronyms (0.3626) Acronyms (0.2814) Acronyms (0.2320)

Table 3: Linguistic features found statistically significant correlated with average pre-
cision (correlation in parenthesis, the greater absolute value, the more dependance be-
tween variables)

• With training data: histogram-based predictor and a decision tree based predic-
tor (features: document frequency of query terms and the overlap of top retrieval
results between using the full query and the individual query term) [57], using
support vector regression (features: the best three terms in each query, their log
document frequency and their corresponding frequencies in the query) [33], re-
gression model with manually labeled queries to predict precision at the top 10
documents (visual features from a surrogate document representation of retrieved
documents) [28]

6.6 Note about query types
An important issue related with section 4 is that most work on prediction has focused
on the traditional ad-hoc retrieval task where query performance is measured according
to topical relevance. In fact, little work has addressed other types of queries such as
named-page finding (NP) queries (table 2). Moreover, these prediction models are
usually evaluated on traditional TREC document collections which typically consist of
no more than one million relatively homogenous newswire articles.

As can be seen in [59], the prediction accuracy of the clarity and robustness score
is low compared to Weighted Information Gain and Query Feedback. Zhou suggests
that clarity and robustness score have difficulty in adapting to a Web collection, and
these predictors need to consider more documents than WIG or Query Feedback to
adequately measure the coherence of a ranked list. Further investigation showed that
collections with high mean average precision causes low accuracy of the clarity score,
since the ranked list retrieved in these collections are more similar in terms of coher-
ence at the level of top N documents, and it is required to increase N. This can be an
explanation to the abscence of papers using clarity scores with large datasets (such as
WT10G).
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Queries Pearson Spearman Kendall
All SCS (0.2615), clar-

ity (−0.2154)
SCS (0.3519), clar-
ity (−0.3005)

SCS (0.2361), clar-
ity (−0.2003)

TREC 8 Scope (0.4771), SCS
(0.6037)

Scope (0.3248), SCS
(0.4919), clarity
(−0.3268)

Scope (0.2640), SCS
(0.3339), clarity
(−0.2327)

TREC 9 SCS (0.4402) SCS (0.3011)
TREC 2001 Clarity (−0.4822) Clarity (−0.4452) Clarity (−0.3004)

Table 4: Non-linguistic features found statistically significant correlated with average
precision (correlation in parenthesis, the greater absolute value, the more dependance
between variables)

In table 5 we can see a comparison of prediction techniques (where QM stands
form query language model, CM for collection language model, CB for content-based
queries and NP for named-page finding queries) extracted from [59] showing the query
type each technique was designed for.

Technique Key ideas Designed for
Clarity KL-divergence between

QM and CM
CB

JSD Jensen-Shannon Diver-
gence between QM and
CM

CB

Ranking Robustness Perturb terms in the top
ranked documents

CB and NP

Query Feedback Similarity between the
original query and the new
query based on clarity
contribution

CB

WIG The difference between
two weighted entropies

CB and NP

Table 5: Non-linguistic features found statistically significant correlated with average
precision

6.7 Generalization of clarity score
In order to obtain a more general formula for the clarity score, we rewrite clarity score
and WIG formulae as Zhou does in [59]:

clarity =
∑
w∈V

∑
D∈L

P (D|Q)P (w|D) log
∑

D∈L P (D|Q)P (w|D)
Pcoll(w)

WIG(Qi, C, L) =
1
K

∑
Dt∈TK(L)

∑
ξ∈F (Qi)

λξ log
P (ξ|Dt)
P (ξ|C)

23



In this form, both formulae are very similar. Actually, they can be written in the
same form as follows:

score(Q,C,L) =
∑
ξ∈T

∑
D∈L

weight(ξ, D) log
P (ξ,D)
Pcoll(ξ)

where T is a feature space and L is a ranked list. Besides this, D ∈ L ⊆ C must
be comparable somehow with elements ξ ∈ T , in order to make sensible functions
weight(ξ,D) and P (ξ,D).

Once we have this general form, we can find that clarity and WIG differ in the
following three aspects:

1. The feature space T :

• For clarity, the feature space is the whole vocabulary consisting of single
terms.

• For WIG, the feature space is single terms or phrases that extracted from
query Q.

2. The weight(ξ, D):

• For clarity score, weight(ξ, D) = P (D|Q)P (ξ|D)

• For WIG, weight(ξ,D) = λξ

K if D is one of the top K documents in L, and
0 otherwise.

We can see that the weight(ξ,D) for WIG is a almost a constant and is much
simpler than that for clarity, which makes WIG free from estimation noise in
P (ξ|D) and P (D|Q).

3. P (ξ, D):

• For the clarity score, P (ξ, D) =
∑

D∈L P (D|Q)P (ξ|D)

• For WIG, P (ξ,D) = P (ξ|D).

This means that the clarity score uses a document model averaged over all docu-
ments in the ranked list for P (ξ,D), while WIG uses the actual document model
of document D.

7 Rank fusion
Query characterisation methods can be very useful in the context of metasearch, since
they can help to decide which of the different sources is more trustworthy, inferring a
value for each of them in order to combine their results. Accordingly we give here a
short introduction to the topic.

Rank fusion or rank aggregation is needed when you want to combine various result
lists from different sources into one list, with no knowledge neither of the process fol-
lowed by each source to produce those lists nor the data that has been used or the score
rank for each element. Examples were rank fusion takes place include, for instance,
metasearch, personalised retrieval (combine personalised results with query-based re-
sults), multi-criteria retrieval, etc
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There are some inherent problems in rank fusion: each source can use different
methods to return the documents (by similarity or dissimilarity with respect to the
query, counting term frequencies or evaluating the underlying probabilistic methods),
the score ranks for each document (if they are known) can be different for each source.
For these reasons, fusion process is divided in normalisation (data transformation into
a common domain before the next phase) and combination (method for joining the
distinct normalised lists into one). There are techniques in each of these phases that
use the document rank position, others use the score returned by the source for each
document; there are also techniques that use training data.

We will use the following notation:

Ω = {d1, · · · , dn} Document set
R = {τ1, · · · , τk} Ranks to combine

τ(d) Position of document d in ranking τ

sτ (d) Score of d in ranking τ

Ωτ ⊂ Ω Documents retrieved by τ

ΩR = ∪τ∈RΩτ ⊂ Ω Documents retrieved by some τ in R
s̄τ (d) Normalized score of d in τ

sR(d) Combined score of all rankings from R
σ2 Variance

7.1 Normalisation methods
This is a very important process, since it moves the initial data to a common domain,
where the next steps apply.

These methods can be divided in two groups: if they apply over ranking positions or
ranking scores. There also some methods that need training data, although the majority
do not need them.

Rank based :

Rank-sim : s̄τ (d) = 1− τ(d)− 1
|Ωτ |

Borda : s̄τ (d) =

{
1− τ(d)−1

|Ω| , d ∈ Ω
|Ω|−|Ωτ |+1

2|Ω| , d /∈ Ω

Bayes : s̄τ (d) = log
P (τ(d)|d is relevant)
P (τ(d)|d is irrelevant)

Bayes method is the only one that needs training data, it requires some a priori
relevance assessments (such as the ones included in TREC collections)
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Score based :

Standard : s̄τ (d) =

{
sτ (d)−mind′∈Ωτ

sτ (d′)

maxd′∈Ωτ
sτ (d′)−mind′∈Ωτ

sτ (d′) , d ∈ Ω
0 , d /∈ Ω

Sum : s̄τ (d) =

{
sτ (d)−mind′∈Ωτ

sτ (d′)∑
d′∈Ωτ

sτ (d′)−mind′∈Ωτ
sτ (d′) , d ∈ Ω

0 , d /∈ Ω

ZMUV : s̄τ (d) =


sτ (d)−µ

σ2 , d ∈ Ω, σ2 6= 0
0 , d ∈ Ω, σ2 = 0
−2 , d /∈ Ω

2MUV : s̄τ (d) =

 2− sτ (d)−µ
σ2 , d ∈ Ω, σ2 6= 0

0 , d ∈ Ω, σ2 = 0
0 , d /∈ Ω

Manmatha : s̄τ (d) = P (y is relevant |sτ (y) = sτ (x))

All of these methods need no training data. However, Manmatha model [39] as-
sumes that the set of non-relevant documents follow an exponential distribution,
and a Gaussian distribution for the set of relevant ones. The density parameters
are approximated using the Expectation-Maximisation method. The other meth-
ods were proposed by Montague and Aslam in [41] and their difference is in
the parameter shifted to zero (the minimum, the mean) and the value set to non-
retrieved documents. Because of this, ZMUV and 2MUV are outlier-insensitive.

Probabilistic normalisation of score distributions

In [19] we can find a novel score-based normalisation method. This method tries to
avoid the distortion due to combine input sources with different individual biases. The
authors use the score distributions and calculate an optimal score distribution (OSD) in
order to map the input scores and obtain comparable distributions.

This model assumes an ideal unbiased scoring function r(x) exist, ranging in [0, 1],
its cumulative distribution is F̄ . Given a scoring function sτ (x) and its cumulative
distribution Fτ , then the normalised function is s̄τ = F̄−1 ◦Fτ ◦sτ , which is a solution
to P (sτ (y) ≤ s̄τ (x)) = P (r(y) ≤ s̄τ (x)). This can be done with the following steps:

1. Compute the score distribution Fτ of each input system τ

2. Find a good approximation to an unbiased strictly increasing distribution F̄ :
[0, 1] → [0, 1].

3. For each x ∈ Ω and τ ∈ R normalise the score x:

sτ (x) −→ s̄τ (x) = F̄−1 ◦ Fτ ◦ sτ (x)

4. Combine the normalized scores using some score combination strategy.

First two steps can be done offline.
This approach is an alternative to others normalisation methods, since it is better

than other techniques. It can be extended using historic data [20].
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7.2 Combination methods
We can distinguish two types of methods, according they use the score or the rank of
the document:

Score based

CombMIN : sR(d) = min
τ∈R

s̄τ (d)

CombMED : sR(d) = medianτ∈Rs̄τ (d)
CombMAX : sR(d) = max

τ∈R
s̄τ (d)

CombSUM : sR(d) =
∑
τ∈R

s̄τ (d)

CombANZ : sR(d) =
1

h(d,R)

∑
τ∈R

s̄τ (d),

h(d,R) = number of input systems that retrieve d

CombMNZ : sR(d) = h(d,R)
∑
τ∈R

s̄τ (d)

These are some of the most popular and effective combination algorithms to date.
They need no training data. CombMNZ and CombSUM are the best methods
[37], proposed by Fox and Shaw [49].

There are other methods that requires training data: Bartell (describes different
strategies to set the weights, such as the Conjugate Gradient method [4]) and
Vogt (linear combination and neural net fusion methods [52]).

Rank based The two methods belonging to this category need no training data. One
of them uses Markov chains, and the other is the weighted Borda method.

The Markov chain model [18] where the set of states ΩR and the transition ma-
trix is computed by different strategies, based on the rankings produced by the
different input systems. Some specific models to define the transitions are, given
the current state d ∈ ΩR:

• MC1: from current state d choose uniformly from all the sources a state d′

such that τ(d′) ≥ τ(d) for some τ

• MC2: first choose uniformly one source τ including d, and then a state d′

in τ such that τ(d′) ≥ τ(d)
• MC3: equivalent to the previous one but choosing uniformly the state d′,

so that if τ(d′) ≥ τ(d) hold the transition os done d′, otherwise we stay in
d

• MC4: choose uniformly a state d′, if τ(d′) ≥ τ(d) for the majority of
τ ∈ R then move to d′, else, stay in d

The probability values for each state in the stationary distribution of the Markov
chains defined by these models is taken as the score that determines the fused
rankings. In other words, if P : ΩR → [0, 1] is a stationary distribution then
sR(d) = P (d). Between the four presented models, MC1 and MC4 tend to be
the top ones.

Weighted Borda model is based in Borda model, but votes are weighted taking
into account the quality of the source.
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Hybrid methods In this case we only have the logistic regression model, proposed by
Savoy[46] where ranks and scores are combined as follows:

sR(d) =
1

1 + e−α−β·u(d)

β · u(d) =
∑
τ∈R

βτ,1 · τ(d) + βτ,2 · sτ (d) + βτ,3 · σ2
τ (d)

where α, βτ,i, i = 1, 2, 3 are parameters to be learnt by each source τ and σ2
τ is

the variance of the normalised relevance scores for the source τ .

Score-based combination can also be combined with rank-based normalisation. For
instance, the Bayes normalisation followed by CombSUM is competitive with score-
based techniques.

8 Application of clarity measures to personalised IR
We have seen previously the formula of a general score function:

score(Q,L, C) =
∑
ξ∈T

∑
D∈L

weight(ξ,D) log
P (ξ,D)
Pcoll(ξ)

where T is a feature space and L is a ranked list.
We have to note that

• In the personalisation scenario there is no query, and

• the list L can be unordered, since the ordering is used to choose some top-N
when the list is too long

The second observation simplifies the model we are going to build, although, as we
are going to show, this notion can be added to it without too much effort. Without any
doubt, the first observation requires a deeper understanding of the problem to solve.

In the personalisation space we have three objects:

• A set of users U = {u}

• A set of items I = {i}

• A mapping between these sets: m : (u, i) −→ wui, where wui stands for the
weight that users u have for the item i (preference for that item)

Our goal is to translate these objects into the concepts needed by the score function.
Depending on what we want to measure, we will have different choices, but it sounds
sensible to take I as the collection, since items can be documents, and we have a
situation like the one in which clarity score is used 12. Now the problem is still the
query. If we consider that we have no query, then we should have to take as the list L all
the collection, but this measure will say nothing, because we want to detect differences

12Actually, we can take U as the collection, but in this case we will be able to measure different things we
are not going to consider at this point.
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between the list and the collection. Since we want to involve the user (we want to apply
the model to personalise), we can try to take each user as the query, if we interpret the
mapping function m as a retrieval function that returns a list of items (elements from
the collection) given a user (the query). Proceeding in this way, we can build the list L:

Lu = {i : ∃w 6= 0 : m(u, i) = w}

Actually, this list can be sorted according to the weights for each item. Moreover, if
a more fine-grained model is wanted, two lists can be created: one with only the posi-
tive preferences and other with the negative ones. At this point we have not considered
the feature space T yet. In this space we have one constraint: we need its elements
been comparables with respect to the elements of the collections (the items). Our ap-
proach considers this space as an ontological space, where each ξ ∈ T is a concept.
Using this approximation, the weight function is easily defined as the weight given by
an annotator for a concept in an item, and the probability of relevance can be calculated
similarly as with documents: relative frequency of a concept in an item and the overall
frequency in the collection.

Once this model has been created, we can give an interpretation to the score re-
turned by such a function: it will measure the coherence (with respect to the whole
collection) of the list of preferences (profile) for a user. This means that a list very
coherent has concepts very correlated, and, from the point of view of personalisation,
it will be easy for the method find items relevant for the user, however, it will be very
difficult for it to find items related with concepts unknown by the user (protfolio effect).
Therefore, a first application of this measure can be the adaptation of the recommen-
dation algorithm to take these information into consideration.

We have to note that this model is very general, and admits different levels of detail.
For example, in the context of movie recommendation, each item (a movie) has a lot of
features that can be of interest for the user: director, actor, genre, etc. It is not required
for this model to choose only one set of features, we can deal with this issue in the
following way:

T1 = {directors}, T2 = {actors}, · · · , Tn = {genres}
~T =

(
T1 · · · Tn

)
~S =

(
S1 · · · Sn

)
where ~S is the score vector for a user, where each of its components is the score

given by the previous formulation and a specific set of features. Another possible
approach can be to do some kind of linear combination of these scores in order to
return only one number for each user:

Su =
∑

i

λiSi, λi ∈ R

The main problem of this aproximation is its lack of bijectivity, what makes impos-
sible to give explanations for a calculated score.

9 Experiments
We have considered the following experiments:
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1. Implementation of some of the techniques read in the literature, and compare
some examples with the ones mentioned in the papers.

2. Given a collection with a list of predefined queries (such as TREC), calculate
the query clarity for each query and split the queries according to their score.
Then, we can calculate somehow (parametric vs non-parametric estimation) a
distribution for each segment of clarity. When a new query is received, its clarity
score is calculated and the corresponding distribution is assigned.

3. For rank fusion, we may want to give more weight to the system that produces a
higher clarity score given a query.

In these experiments, when we say clarity score we can try any of the other tech-
niques proposed in the area. Actually, we have results from the first two experiments
(using clarity score), and the third one has been developed but not finished at the time
of writing.

We have also found interesting to apply these ambiguity-driven methods to other
fields, in a novel manner, such as:

4. Personalisation: these techniques are able to show which users are more focused
in what, and which are interested in almost everything (concepts in ontology,
items in a recommender system, ...), even discovering relations between users
(analysing their similarity).

5. Folksonomies: using clarity scores and the other related techniques it is possible
to emerge some kind of structure from a given set of tags, studying similarity be-
tween tags or even classifying them into more general or more concrete classes,
as a first step for building an ontology.

Here, we can test quality of these techniques against others used in the literature (al-
though not directly applied in this type of experiments, such as LSA[14] or Normalized
Compression Distance[9]).

We have begun modelling the first experiment (see section 8) and some results are
shown later on. It is important to note that all the experiments aim to be prospective
and by no means conclusive.

9.1 Test collection analysis
In order to make our experiments comparable with the rest of experiments found in the
literature, we have carried out an analysis about the datasets, query-sets and measures
used in some (important) works. Besides, we have noted which of those papers give
enough information to repeat in the same conditions the experiment, i.e. if the authors
only provide some graphics, it is more difficult to compare (or even impossible) against
them than if they give an in-depth study, with a complete table for example.

Because of this, we have combined this information in the tables 6 and 7, focus-
ing on papers related with our experiments (ambiguity and metasearch). In these ta-
bles, contrastable refers to an experiment whose functionality can be implemented and
tested, even with different datasets; reproducible refers to the experimental setup, i.e.
if all the initial conditions of the experiment are provided in order to repeat it.

Based on this table, we have found that TREC 8 collection allows comparisons with
other works in metasearch, whereas Robust Track 2004 has been used when authors
want to predict query difficulty.

30



Reference Dataset Query-set Metrics Contrastable Reproducible
[24] TREC

disk4&5
(minus CR)

TREC2004 Ro-
bust Track (topics
301-450, 601-700)

r and p-value
of the linear
dependence
between the
average pre-
cision and
each of the
predictors

Yes Yes

[2] Idem 100 statements
(among these, 50
difficult topics from
all 150 queries of
previous TRECs)

MAP, P@10 Yes No (which
topics?)

[60] TREC1-3,
TREC4,
Robust04,
Terabyte04,
Terabyte05

All of each track (ti-
tles)

Kendall’s
rank and
Pearson’s
correlation
(with average
precision),
coefficient
of determi-
nation and
standardized
regression
coefficients
(dependent
variable
is average
precision)

Yes Yes

Table 6: Information about different experiments carried out in the study of ambiguity,
clarity and difficulty

These are the reasons why we have used the TREC 8 collection for our main ex-
periments, despite we use query difficulty predictors.

9.2 Description of the experiments
At the beginning, we considered two experiments:

• Cluster queries according their clarity score

• In a metasearch context, use the clarity score to weight the results of each search
engine

Both experiments have some advantages and disadvantages:

• The first work is a natural extension of another work made in this group [19],
besides this it would allow testing a modification of that work prepared in an-
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Reference Dataset Query-set Metrics Contrastable Reproducible
[41] Ad hoc track

of TREC3,
TREC5,
TREC9.
Subset of
the TREC5
data defined
by Vogt

All of each track (and
random set of n en-
gines)

Average pre-
cision

No (only
curves
provided)

No (random
choice)

[39] Ad hoc track
of TREC3,
TREC4,
TREC5,
TREC9

All of each track (and
top n engines)

Average pre-
cision

Yes Yes

[20] Web track
of TREC8,
TREC9,
TREC9L,
TREC2001

All of each track Average
precision
(averaged
over the 4
collections)

Yes Yes

[58] TREC8 col-
lection

249 topics P@10, MAP,
number of
queries with
no relevant
results in the
top 10 results
(%no)

Yes Yes

[3] TREC5,
TREC6,
TREC7,
TREC8,
Robust04,
Terabyte04,
Terabyte05

All queries (among
2, 5, 10, 20 (random
choice and repeated
10 times), or all re-
trieval runs available)

Query aver-
age AP, query
median AP
(for collec-
tion query
hardness),
median-
system AP
(for sys-
tem query
hardness),
Kendall’s τ ,
correlation
coefficient ρ

Yes Yes

[7] .GOV2 100 topics (from
2004 and 2005
terabyte tracks)

Average and
median preci-
sion, Pearson
and Spearman
correlation

Yes Yes

Table 7: Information about different experiments carried out in the rank aggregation
field
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other course (final work in Information Retrieval) consisting of estimating non-
parametrically the distributions used in [19]. The problem here is that we need a
lot of training and testing with respect to which are the best clusters. We could
try different predictors.

• The second experiment would be easier to develop (because it does not require
any training phase) but it has been carried out in a very similar way by other
authors [58].

While thinking about which could be the best experiment we have found another
one. It is focused in metasearch, and it would rank documents (from different sources)
according to the clarity score using a voting-like mechanism:

• We start from an empty list L, used for aggregating documents

• For each source we have a document di which is the first document not used in
that list at the moment

• In each step, we take the document d ∈ {di} that maximizes CS(L∪d, q), where
q is the query issued by the user, L is the aggregated list until that moment and
CS is the clarity score.

As we said before, we can also try different difficulty predictors as a replacement
of the clarity score.

9.3 Results
At the end of this work, four experiments have been carried out:

1. Comparison between linguistic and non-linguistic performance predictors, cor-
relations found between average precision and these predictors. These results
have been shown in section 6.

2. Implementation of clarity-driven personalisation model explained in section.

3. Given a set of queries for testing, they are clustered according to their clarity
value, and these clusters are used to discriminate which scores have to be taken
into account when the source distribution is being build.

4. Use the clarity score to weight each source according to the clarity each one
assigns to the query.

All these experiments have been tested using the TREC 8, 9 and 2001 datasets and
Terrier was used as the indexing and retrieving tool. Implementation of the clarity score
was simplified as follows:

• Sum was not carried out over every term in vocabulary, but only in terms appear-
ing in relevant documents.

• As Cronen-Townsend et al. did in [12], we also set a maximum size for set R (in
our case: 100).

• Only the subset WT2G was used (instead of whole WT10G).

These simplifications were done in order to obtain some results in a short period of
time.

Results related with the fourth experiment listed were not finished by the end of
this work. Results related with the second and third one are presented below.
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9.3.1 Clarity-driven personalisation model

In this experiment, we did some tests with the Movielens dataset13. During these ex-
periments, a simplification was made: only the genre feature was used. But a problem
came out: how do we have to interpret the query (user preferences)? We found this
answer was completely conditional on how the items were interpreted. We had two
options, given a feature (in our case, movie genre):

• Each item is seen as a set of genres. This means that the query is also seen as a
set of genres (each movie the user like is replaced with its genres), where some
decision has to be taken about repetitions.

• Each item is seen as a genre, or equivalently, as a set of movies. In this case, the
user is seen as a set of movies (no change made).

An example of both situations follows. Given the movies Cinderella and The sound
of music with associated genres animation, children’s and musical, for the first one,
and musical, for the second one. A user has preferences about these two movies. The
different options are:

• Cinderella = { animation, children’s, musical }, TSM = { musical }. The user
is seen as U = { animation, children’s, musical }.

• The user is U = { Cinderella, TSM }, both movies have no modification because
now the items are the genres: Animation = { Cinderella, . . . }, Musical = {
Cinderella, TSM, . . . }, and so on.

We tried our clarity-model for both configurations. Three different clarity scores
were calculated:

1. A clarity for each movie (it only has sense in the second case, when each item
is a set of movies). In this situation, movies with highest clarity values belong
to film-noir genre, which is the least popular genre (only a 1.2% of total). Some
examples:

• The movie Agnes Browne (comedy and drama) has a clarity value of−0.4130
(the lowest value)

• Light It Up (drama) has a value of −0.3416

• Hotel de Love (comedy and romance) has a value of 0.0879

• Destination Moon (sci-fi) has a value of 0.7181

• Force of Evil (film-noir) has a value of 2.85 (the highest value)

2. For each user and each item is a set of movies. In this situation, user preferences
had to be limited to their first three movies, since this user query would be too
long and clarity would then be very small.

3. For each user and each item is a set of genres. Here we consider no repetition,
what it means that if a user likes two movies from the same genre, this genre
only will appear once.

34



By movie By genre
User id Value User id Value
1026 3.1181 1946 2.2305
172 3.1181 5096 2.2305

4974 3.1181 3804 2.1955
5999 3.1161 4433 2.1825
2373 3.1156 4238 2.1753
3623 3.1155 1800 2.1650
700 3.1089 2507 2.1580

1034 3.1037 2764 2.1455
4948 3.1024 1053 2.1418
5362 3.0997 180 2.1340
3110 3.0922 889 2.1340
304 3.0868 1310 2.1340

1387 3.0834 1548 2.1340
5055 3.0813 3546 2.1340
4950 3.0801 4369 2.1340
4873 3.0802 4856 2.1340
4920 3.0800 1465 2.1340
5537 3.0744 5847 2.1340
6034 3.0702 3623 2.1339
597 3.0689 1128 2.1234

Table 8: Top 20 “clearest” users. Note that user 3623 appears in both lists. By movie
refers to the model where the items are sets of movies.

The last two experiments are very similar, but the results are slightly different. In
table 8 we can see the top 20 users for each situation. We can find here that both lists
are not the same, rearranged list.

We have to note that there are groups of users with the same value of clarity (this
is more likely to happen when each item is a set of genres), and inside these groups
clarity is sorted according to the movie id.

9.3.2 Score normalisation based on clarity-oriented clustering

In this section we show the results found in one of our experiments. This experiment
has the following steps:

• For each query, find its clarity value

• Cluster queries according to their clarity value (in our case, we had two clusters)

• Apply probabilistic normalisation of score distributions (section 7.1) to each
cluster

• Calculate the MAP of the results obtained for each cluster and when no clustering
is done and compare them.

13http://www.grouplens.org/system/files/ml-data 0.zip
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The algorithm presented in section 7.1 and based on [19] has some parameters we
have had to choose for our experiment. More specifically, we have chosen CombSUM
as a combination method, combination of 2-size systems sets repeating 5 times each
sample. With this configuration, we obtained the results summarised in table 9.

Method TREC 8 TREC 9 TREC 2001
Normal 0.3734 0.1928 0.3273
ClarityB 0.4566 0.2511 0.3577
ClarityW 0.2942 0.1342 0.2848

Table 9: MAP for different normalisation methods. The separation when clarity is
used is given by the median value of all the query clarities involved in each track. If the
superscript is B the cluster used in the normalisation is fromed with the less ambiguous
queries (greater clarity value).

In this table we find some interesting conclusions:

• The unambiguous queries improve their performance when they are normalised
only using scores belonging to unambiguous queries.

• Using the median as a cluster generator give similar results in all tracks.

10 Future work
This work has been very productive, since a lot of techniques has been handled and a
lot of discussions about them have happened. From these discussions, future research
lanes have been opened:

• Define a more general clarity score (or prediction scorer), not restricted to a given
query and a collection, but one able to compare complete collections, or even
more: complete ordered collections. This could solve the problem of the low
correlation between clarity score and average precision when dealing with web
(large) collections. A possible approach to incorporate the document ranking
into the formula is through a probability of being seen or something similar.

• Continue investigating in fuzzy theory, information theory and multicriteria de-
cision making theory.

• Try a different paradigm for the query difficulty prediction: given a normalised
distribution (from a source or a set of sources) for a given query, infer the diffi-
culty of that query. This will require a lot of training experiments to know which
are the parameters more correlated with the query difficulty in the context of
metasearch, such as the combination and normalization methods.

• Check how the clarity score behaves with a dynamic collection, like in the voting-
like experiment described in section 9.2.

• Improve the clarity-driven personalisation model taking into account positive and
negative preferences and the rating values.

36



• Use ambiguity predictors in order to measure similarity between users. This is
applicable when dealing with folksonomies (comparing tags and tagged items for
each user) or for comparing user profiles (defined as a set of concepts). Another
application of such a measure can produce some rules when creating groups of
users, these groups can be used in collaborative areas, such as recommender
algorithms (collaborative filtering) or cooperative work (groupware).

Another interesting task has been untested: combine different predictors linearly
or with the aid of genetic algorithms. Actually, in [59] Zhou combined two predic-
tors by a simple linear combination, and they found that the corresponding Pearson’s
correlation coefficient was increased. Other researchers also report that the combina-
tion of multiple prediction features can provide better prediction accuracy than anyone
when used in isolation. And in general, performance prediction should be done using
a combination of resources, if this is computationally possible, due to the fact that they
capture different aspects of the retrieval process that have a major impact on retrieval
effectiveness.

11 Conclusions
We have reported here our study, findings, and perspectives of an extensive revision
of research addressing the problem of query characterisation as a means to improve
retrieval performance.

Some baselines have been found (i.e. clarity score), but other models and ap-
proaches for the analysis of uncertainty-related features can be explored as well, such
as the fuzzy models, or more specialised vagueness modeling approaches, which we
plan to investigate, seeking for new models or, hopefully, solutions to the problems
studied and/or proposed in this work.

As interesting or likely more than the conclusions and preliminary findings of the
work so far, are he many potential research lanes stemming from this point, several
of which are proposed and outlined in this report. The community is indeed already
using state-of-the-art techniques such as the ones reported, and applying them in dif-
ferent fields (OLAP [6], temporal retrieval [16], NLP [43], query expansion [8], high
accuracy retrieval techniques [48] and more). Metasearch and personalised IR are two
of the potential areas we envision in our future research work for the application of the
techniques studied here.
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Appendix A TREC datasets
This appendix describes some features about the dataset used in the experiments. A
review about two specific tracks are also provided.

TREC14 stands for Text REtrieval Conference. It is a yearly workshop, and it con-
sists of a set of tracks (areas of focus in which particular retrieval tasks are defined).
These tracks have several purposes:

• New research areas: the first running of a track often defines what the problem
really is, and a track creates the necessary infrastructure (test collections, evalu-
ation methodology, etc.) to support research on its task.

• Robustness of core retrieval technology (if the same techniques are appropriate
for a variety of tasks).

• Provide tasks that match the research interests of groups.

Every year new tracks are proposed, and past tracks are submitted, with different
collections or different topics.

An IR test collection consists of three parts:

• A set of documents,

• a set of questions (called topics in TREC), that can be answered by some of the
documents, and

• the right answers (called relevance judgments) that list the documents that are
relevant to each question.

NIST15 (TREC’s sponsor) is very concerned about evaluation metrics, because of
this they provide specific metrics to compare different systems, and investigate about
more stable measures. Actually, they provide a software (trec eval) that returns some
classical IR measures such as precision, recall, average precision or precision at N
given a ranking and the relevance judgments.

We are interested in the Robust Retrieval track because it is focused on individual
topic effectiveness rather than average effectiveness.

A.1 Information about disk4
The document collections consist of the full text of various newspaper and newswire
articles plus government proceedings.

The format of the documents on the TREC disks use a labeled bracketing expressed
in the style of SGML (Standard Generalized Markup Language). SGML DTD’s are in-
cluded on each disk. The different datasets on the disks have identical major structures
but have different minor structures. Every document is bracketed by <DOC></DOC>
tags and has a unique document identifier, bracketed by <DOCNO></DOCNO> tags.
The datasets have all been compressed using the UNIX compress utility and are stored
in chunks of about 1 megabyte each (uncompressed size).

The contents of the disks are as follows:
14http://trec.nist.gov
15National Institute of Standards and Technology: http://www.nist.gov
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Collection Documents Size
Congressional Record of the 103rd Congress 30000 235 MB

Federal Register (1994) 55000 395 MB
Financial Times (1992-1994) 210000 565 MB

A.2 Information about disk5
The format of the documents on the TREC disks use a labeled bracketing expressed in
the style of SGML (Standard Generalized Markup Language). SGML DTD’s are included
on each disk. The different datasets on the disks have identical major structures but
have different minor structures. Every document is bracketed by <DOC></DOC> tags
and has a unique document identifier, bracketed by <DOCNO></DOCNO> tags. The
datasets have all been compressed using the UNIX compress utility and are stored in
chunks of about 1 megabyte each (uncompressed size).

Collection Documents Size
Foreign Broadcast Information Service 130000 470 MB

Los Angeles Times (1989-1990) 130000 475 MB
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Appendix B Relation between seminal authors
In this appendix we show how the principal papers reference each other. This informa-
tion is useful to discover if, in a particular moment, there is a technique developed but
excluded from the community. For instance, [13] is the more cited, but [43] and [42]
and only cited once.

(First) Author Reference Year Citations
Allan [1] 2002 Cronen-Townsend [13]
Amati [2] 2004 Cronen-Townsend [13], Kwok [30]
Aslam [3] 2007 Amati [2], Carmel [7], Cronen-Townsend

[13], Kwok [31], Yom-Tov [58, 57], Zhou
[60]

Carmel [7] 2006 Cronen-Townsend [13], He [23], Mothe
[43], Yom-Tov [57]

Cronen-Townsend [13] 2002 Kwok [30]
He [23] 2004 Amati [2], Cronen-Townsend [13]

Kwok [30] 1996
Kwok [31] 2005 Amati [2], Yom-Tov [57]
Mothe [43] 2005 Cronen-Townsend [13]
Mothe [42] 2005 Carmel [7]

Yom-Tov [57] 2005 Amati [2], Cronen-Townsend [13], He [23]
Zhou [60] 2006 Amati [2], Cronen-Townsend [13], He

[23], Yom-Tov [57]
Zhou [61] 2007 Carmel [7], Cronen-Townsend [13], He

[23], Yom-Tov [57]
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Appendix C Meetings with the tutor
25/02/2008 (2 hours) Detailed description and clarification of the goals of the work,

confirmation of temporal schedule and detailed workplan.

12/03/2008 (1h.) Review of the literature read at that moment and refinement of short-
term goals set: create a glossary and study about some possible experiments.

28/03/2008 (1h.) Revision and discussion of the draft glossary in progress. Starting
to record all type of queries (based on TREC’s tracks, mainly) for a possible
section.

09/04/2008 (1h.) Revision of planning and past tasks. Explanation of some possible
experiments. New task: investigate about the robust track.

16/04/2008 (1h.) Revision of planning: bibliography must be finished for the next
meeting. Organization of future tasks (as milestones, with tentative dates). Search
datasets for experiments.

23/04/2008 (1.5h.) Sections to be finished: TREC, query types, Dempster-Shafer. Dis-
cussion about the next experiment-oriented tasks: general survey about datasets
used in literature, and find out if the experiments described are likely to be repro-
ducible or, at least, comparable with our future experiments. Analysis about the
methodology (dataset, query-set, measure) and a technique for the metasearch
experiment (and choose one out of the two discussed ones).

07/05/2008 (1h.) Discussion about methodology and techniques. Complete analysis
collection table. Another possible experiment is discussed. For the next session
the experiment has to be completely defined.

12/05/2008 (1h.) Three experiments were selected and defined in further detail, to
be conducted for this work: metasearch, query clustering and query clarity by
section. For the next session, we have to check the literature and find out whether
anyone has already tried to directly apply clarity to metasearch.

22/05/2008 (1h.) It would be relevant to find out who cites whom. A preliminary
analysis about personalization to be prepared.

29/05/2008 (1h.) Discussion about using clarity in the personalisation model. High
priority for experiments.

10/06/2008 (1.5h.) Detailed discussion about the experiments. Future work defined.

18/06/2008 (1h.) Revision of report draft and final presentation
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Appendix D Time dedicated by student
Searching and extending bibliography 5 hours

Reading bibliography 2 months (120 hours)

Experiments (design, preparation, realisation, analysis) 1 month (50 hours)

Writing report 1 week (30 hours)

Prepare slides 8 hours

Meetings with tutor 14 hours
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