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1 Introduction

Information retrieval deals with the representation, storage, organization, and
access to information items. The emphasis is on the retrieval of information as
opposed to the retrieval of data. Nowadays, its most visible applications are
(web) search engines.

In UAM’s Master Degree in Computer Science there is a course named Re-
cuperacion y almacenamiento de informacion en la web in which some classic
retrieval models are studied (Vector Space Model, Probabilistic Model, ---),
along with fusion ranking techniques and other related concepts. Some new
techniques are out of the scope of this course, such as Language Modelling, an
innovative probabilistic-based framework used to rank documents and for query
analysis.

Since it is a powerful and not very spread Information Retrieval model it
is very interesting to learn its functionality and capabilities. Besides that, we
may have here a possible application in the thesis’ area. In particular, envisioned
application to query characterization (difficulty, performance, ambiguity), which
can be used, for instance, to explore novel approaches to dynamic rank fusion.

The following are the goals of this work:

e Learn the basic principles of LM
e Get a wide perspective of the state of the art in the area of LM
e Explore advanced applications and research topics

e Get familiarity with the tools through examples and tests

2 Language Models: a description

Language models in the context of the information retrieval task were born in
1998, when Ponte and Croft presented their proposal [18] (these models are
slightly different from the ones used in statistical techniques for speech recog-
nition). In that moment, some researches started to use this new approach,
there was even a project (Mongrel: Supporting Effective Access Through User-
and Topic-Based Language Models!, 2001-2003) where prominent authors in

Thttp://www.scils.rutgers.edu/etc/mongrel /index.htm



the area like Croft, Allan or Belkin did some research about the use of language
models within relevance feedback, personalisation or query analysis. Several
thesis worked in this subject too ([10], [27], [17]).

In 1999 Croft improved his previous work, this time with Song [23]. In
this paper the authors presented better smoothing techniques to use within
language models. Two years later Lavrenko and Croft proposed a technique
to estimate a relevance model without training data [15], avoiding heuristic
approaches by previous researchers. The next year Cronen-Townsend, Zhou
and Croft introduced the concept of clarity score, studying the relation between
this definition and the prediction of a query performance.

Next sections tackle the aforementioned topics, focusing in the seminal ones
and presenting some novel ideas arisen from these. We are going to center this
work on the unigram language models, which assume terms are independent
from each other.

2.1 Ranking with language models

In its first description [18], the approach consisted in infering a language model
for each document and to estimate the probability of generating the query ac-
cording to each of these models. Then the documents are ranked according
to these probabilities (this is known as the query likelihood ranking principle).
This idea has the following advantages:

e The data model and the discriminant function for retrieval are the same.
In other works the document indexing and document retrieval are different,
and several researchers had the goal of integrating both models. Here the
authors relax some assumptions made by these models about the data:

— The parametric assumption
— Documents are members of pre-defined classes
e Collection statistics (term frequency, document length, document fre-

quency) are integral parts of the language model and are not used heuris-
tically.

This ranking was firstly produced by the following formula:
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where t f(; py is the frequency of term ¢ in document D and dip is the lenght of
document D, but it has some problems:

e We do not wish to assign a probability of zero to a document that is
missing one or more of the query terms.

e The fact that we have not seen a term does not make it impossible to
appear in the language model associated with a document, i.e. we do not
want P(t|Mp) = 0.

e We only have a document sized sample from the distribution of Mp, in-
stead of getting an arbitrary sized sample of data from it.



To solve these problems we have to smooth the estimator and get it from a
larger amount of data:
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This estimation could be improved if the terms with low document frequency
are smoothed, because their average probability is based on a small amount of
data and could be sensitive to outliers.

There has been other improvements related with the use of other smoothing
techniques. Now we continue with other models, discarding the analysis of those
approaches until the next section, where they will be described.

Some authors utilised the same idea but changing the way in which docu-
ments are modeled:

e As mixtures of topics [11]

e Translation probabilities were introduced to deal with synonymy and cross-
lingual retrieval [3]

At the same time, Hiemstra [9] presented a model in which documents and
queries are defined by an ordered sequence of single terms. It uses linear com-
bination to avoid sparsity problem and the next formulae:
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Lavrenko and Croft presented in [15] two methods to estimate the probabil-
ities of words in the relevant class (relevance models) using the query alone and
addressing synonymy and polysemy:



e Method 1: i.i.d. sampling. Query words ¢; and words w in relevant doc-
uments are sampled identically and independently from a unigram distri-
bution Mgr. M represents some finite universe of unigram distributions,
we pick a distribution M € M with a probability P(M), and sample from
it kK 4+ 1 times. Then the total probability of observing w together with
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e Method 2: conditional sampling. We fix a value of w according to some
prior P(w), then we pick a distribution M; € M according to P(M;|w)
and the sample query word ¢; from M; with probability P(q;|M;) k times.
We assume the query words are independent of each other.
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Here we are free to pick a separate M; for every ¢;. This method is less
sensitive to the choice of our universe of distributions M.

Regarding the relevance feedback process, a modification of the model was
proposed by Croft, Cronen-Townsend and Lavrenko [4]. In this work they view
the query as a sample of text from a model of the information need, this new ap-
proach allows the queries to be generated by information need language models
associated with individual users, making available personalisation and relevance
feedback, since users, like documents, can be represented as a mixture of topic
language models generated from previous interactions. Once you have the query
model, retrieval could then be done either by ranking the documents according
to their probability of being generated by the query model, or the query model
and the document models could be directly compared and documents ranked
by the similarity of these models. The problem in this case is that we have to
estimate the query model from very limited data.

Another approach given by Lafferty and Zhai [14] uses risk minimization,
as well as a language model for each document and for each query. Besides
that, the query language model can be exploited to model user preferences, the
context of a query, synonymy and word senses. They introduce a novel method
for estimating query models that uses Markov chains on the inverted indices of
a document collection. This random walk

P(w;|D;)P(D;
>_p p(wi|D)P(D)
has a natural interpretation in terms of document language models, and results
in practical and effective translation models and query language models. This




is because they see the query (based on Bayesian decision theory) as an output
of some probabilistic process associated with the user U/, and similarly, a docu-
ment as the output of some probabilistic process associated with an author or
document source S. The query model could encode detailed knowledge about
a user’s information need and the context in which she makes the query. A
possible action to the system corresponds to a list of documents to return to the
user who has issued query ¢. Such an action has an associated loss function,
and an expected risk of action. The Bayesian decision rule is then to present the
document list having the least expected risk. In this general case, we can have
the loss function depending only on relevance (relevance based) or on query and
document models (distance based). They mention that the classical probabilis-
tic retrieval model and the language modeling approach are special cases of the
former and the vector space model as an special case of the latter. Random
walk written before comes from the next scenario: the user wants to formulate
a query for an information need, and suppose that the user has an index avail-
able to be searched. The user surfs in the following random way: a word wq is
chosen, then the index is consulted and a document Dy containing that word is
chosen (this selection may be affected by the number of times the word appears
in Dy or by extrinsic data). From that document a new word w; is sampled,
and so on. In this manner, the probability of selecting a document D; from the
inverted list for w; is the formula presented before, given the document model
P(:|D) and a prior distribution in documents P(D). They also use the Markov
chains method to expand the query.

2.1.1 Smoothing techniques

We have seen that a very important piece in the language modeling framework
is the choice of the smoothing technique. In [29] we can find an analysis about
the influence these techniques have in the retrieval results.

As we have said previously it is necessary to smooth the estimators used
for language modeling, since they will generally under-estimate the probability
of any word unseen in the document. This is done removing a little bit of
probability mass from the more common terms and collecting it on the unseen
ones. Actually we have the following general form of a smoothed model [29]:

B P,(w|D) if word w is seen
P(w|D) = { apP(w|C) otherwise

where Ps(w|D) is the smoothed probability of a word seen in the document,
P(w]|C) is the collection language model and ap is a coefficient controlling the
probability mass asigned to unseen words, so that all probabilities must sum to
one. If P;(w|D) is given, we must have

- 1- Zw:c(w;D)>O Ps(w|D)
1 - Zw:c(w;D)>0 PS(U)|C)
where ¢(w; D) denotes the count of word w in D. Because of this, smoothing

methods differ in their choice of Ps(w|D). We can see a summary in the next
table, where a larger parameter value means more smoothing.

ap



Method Py (w|D) ap
Jelinek-Mercer (linear in- | (1 — A) Py (w|D) + Ap(w|C) A
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Good-Turing (1 — w)Per(w|D) + wP(w|C) w

The most basic smoothing is the linear interpolation or Jelinek-Mercer method,
which uses a parameter to control the influence of each involved model (max-
imum likelihood and collection ones). It is based on the maximum likelihood
estimator:

c(w; D)
2w c(w; D)

Dirichlet method stands for Bayesian smoothing using Dirichlet priors, where
the language model is a multinomial distribution and the conjugate prior for
Bayesian analysis is the Dirichlet distribution with parameters
(uP(w1|C), -, uP(w,|C)). The Laplace method is a special case of this tech-
nique (this one adds 1 to all frequency counts, it is very simple but it gives too
much probability mass to unseen terms).

Absolute discounting method is similar to the first one, but it substracts a
constant instead of multiplies by 1— A for discounting the seen word probability.
In this model |D|, is the number of unique terms in document D and |D| =
> w c(w; D), i.e. the total count of words in the document.

In [29] the authors only analyse these methods because they are popular
and relatively efficient to implement, unlike Katz or Good-Turing estimators
because of using the count of words with the same frequency, which is expensive
to compute. In this analysis they found the next behaviour using some TREC
collections (TRECT ad hoc, TRECS8 ad hoc, TRECS8 web track):

e The length normalization term is a constant in the Jelinek-Mercer because
ap is the same for all documents. The score can be interpreted as a sum
of weights over each matched term. For title queries, the retrieval perfor-
mance tends to be optimized when A is small (around 0.1), whereas for
long queries, the optimal point is generally higher, and usually around 0.7.
This suggests that long queries need more smoothing, and less emphasis
is placed on the relative weighting of terms.

e Dirichlet priors. ap is document-dependent: it is smaller for long docu-
ments (length normalization component that penalizes long documents);
as p gets large, ap tends to 1, and all term weights tend to zero. However,
the optimal value of u does not seem to be much different for title queries
and long queries but vary from collection to collection.

e Absolute discounting. ap is also document sensitive. The optimal value
of § does not seem to be much different for title queries and long queries,
but this is true across all testing collections.

Concerning the rest of the interpolation methods, Good-Turing [23] needs
the expected value of the number of terms with some specified frequency in
a document, which is almost impossible or very expensive to compute. The



original formula is
E(Niyi1)
E(Niy)
Instead of trying to calculate it, Song and Croft used a smoothed function
(curve-fitting function) for the expected value:

S(Niyi1)
S(Nis)Np

L= (tf +1)

Par(w|D) = (tf +1)

They used the interpolation method with this estimator instead of the maxi-
mum likelihood model (which is the one written in the table) and also a weighted
product approach:

P(w‘D) = PGT(’ZU|D)‘” + p(w|c)(1—w)

One advantage of the interpolation method is that the probabilities are nor-
malized so that the total probability mass is 1, whereas in the weighted product
method it does not happen.

Katz smoothing [12] extends the previous estimator. At first it was used for
speech recognition and it treated differently words of different count by means
of the next formula (for trigram model for convenience [7]):
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where n, is the number of n-grams ocurring exactly r times. We have to note
that the key factor in Katz smoothing is d, ,, because every n-gram units oc-
curing exactly r times will be treated as d,., - r times, or equivalently, it will
be removed (1 —d, ;) - 7 times from every such units and redistributed to the
unseen ones.

Berger and Lafferty [3] tried to incorporate some kind of semantic smoothing
into the language modeling approach by means of estimating translation models
t(q|w) for mapping a document term w to a query term ¢g. The document-to-
query model becomes
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In this smoothing method synonyms and word sense information is incorporated
into the models [14]. The goal is that a document containing the term w =
automobile may be retrieved to answer a query that includes a term ¢ = car,
even if the query term does not appear in the document.

Now we can see some conclusions about these estimators. According to [29]
there is a strong (and unexpected) correlation between the effect of smoothing
and the type of query. This leads the authors to guess that smoothing plays
two roles:

e One role is to improve the accuracy of the estimated document language
model (estimation role)

e The other role is to accommodate generation of common and non-informative
words in a query (query modeling).

In their experiments they found that title queries were more dominated by
the estimation role, since these queries have few or no non-informative common
words, whereas for long queries, the effect was more influenced by the role of
query modeling.

We can also say that linear interpolation method for smoothing gives a robust
estimation of common, context-free words, treated as stopwords in IR systems.

2.2 Query performance

Three years after the development of the language model theory already ex-
plained, some authors proposed to use language models for query analysis. Ac-
tually, this analysis was focused on quantifying the ambiguity of the query, but
it has received several names in different contexts and with distinct nuances:

e Query ambiguity

e Query vagueness

Query clarity (or lack of ambiguity)

Query coherence

Query difficulty

Query performance

Query hardness

It may sound strange to connect performance with ambiguity, but it makes
sense. Actually there are several experiments demonstrating that query ambi-
guity is correlated with query performance. Because of that, everything comes
down to obtain the quantity of ambiguity a query has in the better possible
way. In the last years, there has been a lot of works about this problem, and in
SIGIR 2005 even a workshop was celebrated under the name Predicting Query
Difficulty - Methods and Applications?

There have been some authors that addressed this goal [2, 20], but Steve
Cronen-Townsend, Yun Zhou and Bruce Croft were the first that managed this

2http://www.haifa.il.ibm.com /sigir05-qp/index.html



within the language model framework [6]. They proposed that a query returning
a mix of articles about different topics (it has low coherence) has a model more
like the model of the collection as a whole, and it would get a low score in what
they defined as clarity score. They used the following formulation:

PwlQ) = > PwD)P(DIQ), P@|D)=]] PlaD)

DeR q€Q
P(w|D) = )\Pml(w|D) + (1 — )\)Pcoll(w)
: P(w|Q)
clarity score = Plw log, ————=
y 1;/ ( |Q) g2 Pcoll(w)

with w any term, @ the query, D a document or the model, R is the set of doc-
uments that contain at least one query term, Py,;(w|D) is the relative frequency
of term w in documents D, P.,;(w) is the relative frequency of the term in the
collection as a whole, A is a parameter (in their work, 0.6) and V is the entire vo-
cabulary. P(D|Q) is the Bayesian inversion of P(Q|D) with uniform document
priors. The score is simply calculated through the Kullback-Leibler divergence
or relative entropy between the query and collection language models, which is
a natural approach since entropy measures how strongly a distribution specifies
certain values, in this case terms. Interpreted in terms of coding theory, clarity
is the average number of bits that would be wasted by encoding word events
from the collection model with a code that was optimally designed for the query
model [4].

In this formulation the authors used the Lavrenko and Croft’s Method 1, but
they point out that using Method 2 seems to punish more harshly the addition
of a term that does not co-occur with the other query terms in documents in
the collection. This may be caused by the stronger independence assumptions
employed in this method, because it will assign low probability estimations for
terms not appearing in the query (although they could be in the same document
as a query term) to the contrary what Model 1 does. We can see in figure 1 how
this score works with some related queries. It is worth noting that the query
created from the combination of the two presented meanings receives the lowest
score only with Method 2.

'/ .
train

0.33(0.51)
e N

s
frain dog railroad train
0.65(0.66) 0.73(0.91)
/\ \

' . . . .
obedience train dog } { railroad train caboose ‘

railroad train dog

2.43(2.73) 0.67(0.43) 1.46(1.24)

Figure 1: Clarity scores for some related queries using Model 1 and Model 2 (in
parenthesis)

From their study one conclusion arises: there is a strong correlation between
the clarity score of a test query with respect to the appropriate test collection



and the performance of that query. This may be due to the fact that a low-
coherence retrieval is likely to contain many irrelevant documents in the top
ranks and a high-coherence retrieval often contains many relevant documents in
the top ranks.

Turpin and Hersh [24] modified this definition and used instead of the one
written before, the next

P(w|Q) = > P(w|D)P(Q|D)

DeR

They verify that there is no correlation between user performance and clarity
score for their experiments. This is unsurprising, because we have already pre-
sented a strong correlation between MAP and clarity scores, and there is no
correlation between MAP and user performance in data they used.

Something more interesting is their analysis of the change in clarity of user’s
queries over time. The second query issued by a user generally had a higher
clarity score than the first, but after that next queries did not improve in clarity
score. Another observation is that experienced searchers (in their experiment,
librarians) improve queries with repeated searches as much as less experienced
searchers (postgraduate students).

In other work, Croft et al. [4] replaced the distribution P(D|Q) with an
approximation that uses a fixed number N of documents rather than the entire
retrieved set. This modification results in large performance gains, since the
system will only have to mix N documents as maximum in the computation.

Ounis and He [8] studied some predictors for query performance. They also
introduced a simplification of the clarity score given by

Pri(w|Q)

SCS = mel w|Q) log, —2A—%2 Bronw0)

qtf
Pml = —
ql
gtf = number of occurences of a query term in the query
ql = query length

They simplified the score avoiding the computation of relevance scores for the
query model, which is time-consuming. They also smoothed this estimator
assuming an increasing query term frequency?.

In their work they analyse the linear and non-parametric (using Spearman’s
rank) correlation, and they found that among six predictors, the simplified def-
inition of clarity score (SCS) and the average inverse collection term frequency
have the strongest correlation with average precision (representing the query
performance in all the experiments) for short queries. SCS is also one of the
most correlated with average precision for normal and long queries. If we con-
sider the smoothed version it was improved significantly for normal and long

3This is done in the following way: let p = C - ¢I® the query length density function, with
3 > 0. They substitute the gtf factor by gtfn calculated as

qltavgq
qtfn = qtf - / pd(ql) = qtf - v- ((ql + avgg)'® — ql*®)

where v is a free parameter and avg,; is the average query length
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queries. Besides this, they found that the use of two different document weight-
ing models, i.e. PL2 and BM25, does not affect the correlations of the proposed
predictors with average precision

Other authors used clarity score to present a list of clarifying options to
the searcher helping her in ambiguous queries [1]. They achieved this using
part-of-speech patterns.

More recently, Qiu et al [19] used the Cronen-Townsend’s ideas to quantify
query ambiguity based on the topic structure selected from the ODP taxonomy
(Open Directory Project). They found a strong positive association between
their measure for ambiguity quantification and precision. The measure used
was

clarity score = F(|{topics}iptersect!)

where F'(z) is a function whose values decreases as its argument increases, such
1

as I'(z) = 17, the one adopted in their experiment.

Winaver et al. proposed in [26] an approach for query expansion in which,
given a query, they create a set of language models representing different forms
of its expansion by varying the parameters’ values of some expansion method,
then, they select a single model using some criteria. One of the criteria they
suggest is to calculate the clarity score of each model and to select the one
maximising this score. Once a query model is selected, they rank documents

according Kullback-Leibler measure with respect to the collection model.

3 Technology and tools

In the field of Information Retrieval there are several tools to index and/or

retrieve documents, some of them use algebraic models (Lucene*), others use

probabilistic ones (Lemur®) and others support a few different models (Terrier®).
Language models framework is available in the following tools:

e Lemur: written in C++ it supports XML and structured document re-
trieval, construction of simple language models for documents and queries
and it has been used for 6 years by a large user community. It supports
relevance feedback, smoothing (Dirichlet priors or Marchov Chains) and
document priors (such as PageRank).

e Terrier: written in Java it indexes common file formats such as HTML,
PDF or Microsoft Word. It provides many standard document weighting
models, including DFR (Divergence From Randomness), Okapi BM25,
language modelling and TF-IDF.

We have tested some applications in the tools mentioned before, and we have
been able to found some useful characteristics of each tool:

e Lemur includes a query clarity score calculator, so that it is very easy to
get a score for some query and an indexed collection. One disadvantage
is that we have not been able to create indexes programmatically and we
need to use a graphical interface provided for this purpose. Another one

4http://lucene.apache.org
Shttp://www.lemurproject.org
Shttp://ir.dcs.gla.ac.uk/terrier
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is that the score returned by the tool is not the standard one explained
here.

e Terrier is very easy to personalise, you can create your own collection
decoder (for indexing) and your own weighting model. One possible ap-
plication for this is to create a program that calculates clarity score using
Terrier.

e Terrier supports several weighting models and it is easy to make them
work. Besides that, it uses a very complete configuration file, which makes
possible to have a personalised application without even write a line.

e Terrier handles all currently available TREC test collections what makes
easier experimentation and comparation.

In figure 2 we can see some results given by Terrier about the precision /recall
curves with different weighting models (including the Lemur version of tf-idf,
whose code is herewith presented)

Precision / recall

0,8

o A
3&( —#—FPonteCroft_2

0,6
W —B—TF_IDF_Bolbfree_d_3_t 10_18
0,5

\ —&—InL2c10,99_Bo2bfree_d_3_t_10_34
0,4

\\ ——IFB2C10,99_Bolbfree_d_3_t_10_24

0,3 :

—#—DFR_BM25c10,99_KLbfree_d_3_t_10
0,2 _17

Precision

—@—LemurTF_IDF_0
0,1

Figure 2: Some weighting models tested with the WT2G TREC collection

Lemur’s tf-idf:

public final double score (double tf, double docLength) {
double Robertson tf = k 1xtf/(tf+k 1%(1—b+bx
docLength /averageDocumentLength) ) ;
double idf = i.log(numberOfDocuments/
documentFrequency) ;
return keyFrequencyxRobertson tf % Math.pow(idf,

2);

}

(S

Normal tf-idf:

‘(public final double score(double tf, double docLength) { ‘
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double Robertson tf = k 1xtf/(tf+k 1x(1—Db+bx
docLength /averageDocumentLength) ) ;

double idf = i.log(numberOfDocuments/
documentFrequency+1);

return keyFrequency % Robertson tf * idf;

4 Examples

We have used Lemur tool to calculate easily clarity score in different situa-
tions, appart from that we have done the calculations by hand in some simple
examples.

Using Lemur you can find these results doing the next steps:

1. Create the document collection

2. Index the collection (we have used the graphic interface IndexUI.jar
included in the installation of Lemur)

3. Create two more files: a file containing query(ies) to be executed and a
configuration file with the index path, query file and other parameters

4. Execute the query clarity application provided by Lemur

4.1 First example

We have a document with two words: D = {one, two}. Given the next queries:
Q1 = {one}, Q2 = {two}, Q3 = {three}, Q4 = {three, two}, Q@5 = {one, two}
Lemur gives the next clarity scores:
cs(@Q1) = 1,es(Q2) = 1,¢s(Q3) = 0,¢5(Qq) = 1,¢5(Q5) =1
We obtain the following results by hand:
cs1(Q1) = —0.5,¢51(Q2) = —0.5,¢51(Q3) = 0,¢51(Q4) = —0.5,¢51(Q5) = —0.5,

cs52(Q1) = 0,¢52(Q2) = 0,¢52(Q3) = 0,¢52(Q4) = 0,¢52(Q5) =0

after the next expansion:

c(w; D)
FleP) =5 ews D)
L ypewD)
Foot() 22D 2w c(w; D)
P(w|D) = )\Pml(w|D) + (1 — )\)Pcoll(w)
_ ‘ Pi(wl@) .
csi(Q) = Z Pi(w|Q) log,y m,z =1,2

weV
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if we use Bayesian inversion we will call it as css, and c¢s; if we do not use it:

P@D) = [ PD)

q€Q
P(w|Q) = Y Pw|D)P(Q|D)
DER
Py(w|Q) = Y P(wD)P(D|Q)
DER
_ P(D)
P(DIQ) = ) P(@ID)
P(Q) =) P(D)P(Q|D)
Dec

If we examine formulae for the cs, it is easy to realise why in this example
it is always 0:

|C| = 1:>Pml(w|D):Pcoll(w)
Ic| = 1= P(D|Q)= }%P(QID) =1=

= P(w|Q) = P(w|D) = Peou(w) = logy —— PwlQ) _
Pcoll( )
Conclusion: if you only have one document and you use Bayesian inversion,
clarity score does not work.

We can look now clarity score for the first query calculated without inversion
(A=10.6):

V= {one,two}
1 1
P.oj(one) = Pp(one|lD) = 3= P(one|D) = 3 YA
1 1
Peou(two) = Ppi(two|D) = 5 = P(two|D) = 5 YA
P.oii(three) = Py, (three|D) =0 = P (three|D) =0 V)\
11 1
Pi(one|@Q;) = P(one|D)P(Q|D) = H P(q|D) = 5 P(one|D) = 55 = 4
qul
1
Py(twolQ1) = 1
1. 5, 1. 3 1
cs1(Q1) = 1 log, g + 1 log, g =-3

For the second query we are in the same situation, because the query has
only one term and it is in the vocabulary. Due to the clarity score is calculated
over all vocabulary terms, the result is the same.

For the third query we get a zero score because the term is not in the
vocabulary (it does not appear in any document). The next query is like the
first one but it has also a term which apports nothing. The last query needs
different intermediate process but we get the same result:

Py(one|@Qs) = P(one|D)P(Qs|D) = HPq|D —P(one|D)P(two|D) =
qEQs

14



Py (two|Qs) =

cs1(Qs) =

11 1
22 8
1 1
s 1 g 1
8 8 _
10g2g+§10g2g__§

Once we have shown query clarities calculated by Lemur and the ones cal-
culated by us, one question arises: why are not they the same? After some code
inspection”, we have found that Lemur:

e Calculates the score over the query terms instead of over all terms in the
vocabulary, i.e.

Pw|Q) P(w|Q)

es(Q) = Z P(w|Q)logy ———% vs cs(Q) = Z P(w|Q)log, Pron(w)

weV

Pcoll(w) weQ

e Gives a probability of 1 to terms involved in the calculation (these terms
are in fact part of the query), so:

1
¢SLemur (@) = Z logy 5———
weQ Pcoll (’LU)

4.2 Second example

We have expanded the previous example as follows:

Dy = {one, two, three, four, five}, Do = {two, three, four, five},
D3 = {three, four, five}, Dy = {four, five}, D5 = {five},
Q1 = {one}, Q2 = {two}, Q3 = {five}, Q4 = {three, two}, @5 = {one, two}, Qs = {six},

Clarity scores calculated by Lemur are:

cs(Q1) = 3.90689, cs(Qs) = 2.90689, cs(Q3) = 1.58496,

cs(Qq) = 2.61441, ¢s(Q5) = 3.40689, cs(Qg) =0

We can show the calculations for the first query clarity score:

P, (one)
P,,1(one|Dy)
Ppi(two|Dy)

P, (three|Dy)
P, (four|Dy)
P (five| Dy)

P(D;)
P(one|Dy)

1 2 4

T57 PCO”(tWO) = Ev Pcoll(three) = %7 Pcoll (fOUI‘) = T5; Pcoll(ﬁve) = %

1

57Pml(one\D2) =0, Py (one|D3) = 0, Py (one|Dy) = 0, Ppyi(one|Ds) =0

1 1

g,Pml(tWO|D2> = 17 Pml(tWO‘Dg) = 0, Pml(tWO|D4) = O7 Pml(tWO|D5) =0

1 1 1

g,Pml(three\Dg) =T P, (three|D3) = g,Pml(three|D4) =0, P,,;(three|Ds) = 0
1 1 1 1

g,Pml(four|D2) = Z,Pml(four|D3) =3 mi(four|Dy) = i,Pml(four|D5) =0
1 1 1 1

E,Pml(ﬁve\Dﬂ = E,Pml(ﬁve|D3) =3 mi(five|Dy) = §,Pml(ﬁve|D5) =1

1

5

0.14, P(two|D;) = 0.02, P(three|D;) = 0.02, P(four|D;) = 0.02, P(five|D;) = 0.02

"Inside the Lemur project the file to inspect is SimpleKLRetMethod.cpp

15



For the query Q; = {one}, the set R is only composed by D;%:

P(Q1|D1) = 0.14, P(Q:1|D2) = 0.02, P(Q1|D3) = 0.02,
P(Q1|D4) = 0.02, P(Q1|Ds) = 0.02
Pi(one|Q,) = P(one|D;)P(Qy|Dy) = 0.0196, P(two|Q1) = 0.0028, P(three|Q;) = 0.0028,
P(four|@1) = 0.0028, P(five|@;) = 0.0028
_ P(one|Q1) P(five|Q1) _
cs1(Q1) = P(one|@1)log, Prot(onc) + -+ P(five|@Q1) log, Poon(five)
= —0.105

5 Future work

We have shown a potential application of language models to the analysis of
query performance or prediction of query vagueness. During this work, some
ideas about its utilisation appeared, and we plan to develop them as soon as
possible:

e Given a collection with a list of predefined queries (such as TREC), calcu-
late the query clarity for each query and split the queries according to their
score. Then, we can calculate somehow (parametric vs non-parametric es-
timation) a distribution for each segment of clarity. When a new query is
received, its clarity score is calculated and the corresponding distribution
is assigned.

e For rank fusion, we may want to give more weight to the system that
produces a higher clarity score given a query. Is this correct?

For making all of this possible, it would be interesting to have an application
that calculates precisely the query clarity. We want to develop such an appli-
cation within the Terrier platform, and use it to perform our evaluations, along
with the robust track [25] as the test corpus.

Related with this topic is the study of entropy (entropy models) and its
application to model vagueness. In the future we plan to study these subjects
and find a closer relation with the technique explained here.

6 Conclusion

The language modelling framework has been proved to be a powerful tool to
model reality in the field of Information Retrieval. It has been used for ranking
firstly, but after that some authors started to use it as a very useful and intuitive
query analyser. Since that, language models have grown in complexity, and now
they are able to support feedback or personalisation. However, these approaches
are only scratching the surface of the possibilities language models offer, and
surely there are still several domains to improve by the use of this framework.
One of these areas is the query analysis and its application to predict query
performance or query ambiguity. There has been a lot of research done here and
the use of language models has proved its convenience, in spite of its complexity.

8We have solved this example only for the non-inversion method, because the other implies
the calculation of P(Q1|D;) Vi
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In this work we have deeply investigated these topics. Besides that we have
tested some available tools and we have found which is the most suitable for
continuing developing in this area (Terrier). We have also done calculations by
hand to check the results read in the papers and returned by the tools.
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